Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR)

The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the abilit...

Full description

Saved in:
Bibliographic Details
Published inBiology (Basel, Switzerland) Vol. 10; no. 6; p. 475
Main Authors Santoyo, Gustavo, Urtis-Flores, Carlos Alberto, Loeza-Lara, Pedro Damián, Orozco-Mosqueda, Ma. del Carmen, Glick, Bernard R.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 27.05.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants.
AbstractList The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants.
Simple SummaryPlant growth-promoting rhizobacteria (PGPR) are an eco-friendly alternative to the use of chemicals in agricultural production and crop protection. However, the efficacy of PGPR as bioinoculants can be diminished by a low capacity to colonize spaces in the rhizosphere. In this work, we review pioneering and recent developments on several important functions that rhizobacteria exhibit in order to compete, colonize, and establish themselves in the plant rhizosphere. Therefore, the use of highly competitive strains in open field trials should be a priority, in order to have consistent and better results in agricultural production activities.AbstractThe application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants.
The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants.The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants.
Author Loeza-Lara, Pedro Damián
Glick, Bernard R.
Orozco-Mosqueda, Ma. del Carmen
Santoyo, Gustavo
Urtis-Flores, Carlos Alberto
AuthorAffiliation 1 Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; 1316102a@umich.mx
3 Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Melchor Ocampo, Uruapan 60170, Mexico; carmen.orozco@umich.mx
4 Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; glick@uwaterloo.ca
2 Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo 59103, Mexico; pdloeza@ucemich.edu.mx
AuthorAffiliation_xml – name: 1 Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; 1316102a@umich.mx
– name: 3 Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Melchor Ocampo, Uruapan 60170, Mexico; carmen.orozco@umich.mx
– name: 4 Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; glick@uwaterloo.ca
– name: 2 Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo 59103, Mexico; pdloeza@ucemich.edu.mx
Author_xml – sequence: 1
  givenname: Gustavo
  orcidid: 0000-0002-0374-9661
  surname: Santoyo
  fullname: Santoyo, Gustavo
– sequence: 2
  givenname: Carlos Alberto
  surname: Urtis-Flores
  fullname: Urtis-Flores, Carlos Alberto
– sequence: 3
  givenname: Pedro Damián
  surname: Loeza-Lara
  fullname: Loeza-Lara, Pedro Damián
– sequence: 4
  givenname: Ma. del Carmen
  surname: Orozco-Mosqueda
  fullname: Orozco-Mosqueda, Ma. del Carmen
– sequence: 5
  givenname: Bernard R.
  surname: Glick
  fullname: Glick, Bernard R.
BookMark eNqFks9rHCEUx6WkND-ac68DvaSHaRx1xvESCNtmEwh0CelZ1HF2XWZ0o27K5q_Py24ozUKoHnz4vt8P-t47Rgc-eIvQlwp_p1Tgc-3CEOabCuMGM15_QEcEc1FyTvnBP_EhOk1piWFxTBrafEKHlGEOeXKE7u8W7imk1cJGW0yA592Tyi744ofNNo7OK59ToTfFbIComMbwJy_KWQxjyM7Pi61fKwNip4qz2XR29-0z-tirIdnT1_ME_b76eT-5Lm9_TW8ml7elYYLn0hBqFe40JX3bYWGJoozjxuBW6571QtFG9Ux3jFJCOLGVUH3LCauYFpyoip6gmx23C2opV9GNKm5kUE5uL0KcSxWzM4OVQK-0IbyqRc-EMG3X8dbQhkEdtKUMWBc71mqtR9sZ63NUwxvo24x3CzkPj7IlRAiCAXD2CojhYW1TlqNLxg5QNhvWSb6UHrrUCPJ_aQ1S2HUN0q970mVYRw9VBRVjNW-hr6A636lMDClF2_99d4Xly6zIvVkBR73nMC5vGw-fc8O7vmfJEMTc
CitedBy_id crossref_primary_10_1007_s00284_023_03349_2
crossref_primary_10_3390_molecules29184456
crossref_primary_10_3390_plants13182659
crossref_primary_10_1093_jambio_lxae074
crossref_primary_10_1016_j_bcab_2023_102622
crossref_primary_10_1093_jambio_lxaf041
crossref_primary_10_3839_jabc_2021_045
crossref_primary_10_3389_fpls_2023_1175097
crossref_primary_10_3390_plants11152018
crossref_primary_10_3390_horticulturae9101104
crossref_primary_10_3390_agronomy13020550
crossref_primary_10_3389_fbioe_2023_1099999
crossref_primary_10_1128_spectrum_01002_22
crossref_primary_10_1007_s00284_024_03755_0
crossref_primary_10_1007_s11356_023_26730_x
crossref_primary_10_1016_j_heliyon_2023_e20204
crossref_primary_10_3389_fmicb_2024_1492139
crossref_primary_10_38211_jms_2024_01_70
crossref_primary_10_1007_s42770_025_01617_w
crossref_primary_10_3390_agriculture14122228
crossref_primary_10_1007_s10534_021_00359_0
crossref_primary_10_1111_1751_7915_14296
crossref_primary_10_7717_peerj_17882
crossref_primary_10_1007_s42452_025_06468_6
crossref_primary_10_1007_s11104_023_05963_2
crossref_primary_10_1007_s12033_024_01346_9
crossref_primary_10_1111_ppl_14495
crossref_primary_10_13005_bbra_3313
crossref_primary_10_3390_agronomy15030569
crossref_primary_10_3390_plants11121612
crossref_primary_10_36718_1819_4036_2024_9_26_35
crossref_primary_10_1016_j_plaphy_2023_01_010
crossref_primary_10_3389_fmicb_2024_1473099
crossref_primary_10_3389_fmicb_2022_972393
crossref_primary_10_1099_acmi_0_000543_v3
crossref_primary_10_1016_j_stress_2023_100138
crossref_primary_10_1016_j_jenvman_2024_123102
crossref_primary_10_1002_jobm_202300215
crossref_primary_10_20914_2310_1202_2023_4_86_90
crossref_primary_10_3389_fmicb_2024_1458454
crossref_primary_10_3389_fsufs_2023_1163426
crossref_primary_10_1016_j_jes_2024_05_039
crossref_primary_10_3390_life14111461
crossref_primary_10_1002_jobm_202200361
crossref_primary_10_1016_j_heliyon_2022_e09693
crossref_primary_10_3389_fsufs_2022_1054113
crossref_primary_10_1515_opag_2022_0238
crossref_primary_10_1016_j_pmpp_2024_102548
crossref_primary_10_1016_j_pmpp_2025_102605
crossref_primary_10_1007_s10725_023_01071_4
crossref_primary_10_1016_j_pmpp_2023_102128
crossref_primary_10_3390_biology12070911
crossref_primary_10_3390_plants14010036
crossref_primary_10_3390_microorganisms12020304
crossref_primary_10_3390_microorganisms12010190
crossref_primary_10_1007_s13199_024_00980_w
crossref_primary_10_1016_j_sajb_2022_09_036
crossref_primary_10_1093_jambio_lxae270
crossref_primary_10_1371_journal_pone_0298303
crossref_primary_10_1007_s00284_022_03176_x
crossref_primary_10_1007_s11104_024_06870_w
crossref_primary_10_1039_D3EN00236E
crossref_primary_10_3390_f14091848
crossref_primary_10_1051_bioconf_202414301022
crossref_primary_10_3390_plants12040954
crossref_primary_10_3389_fpls_2024_1341993
crossref_primary_10_1016_j_heliyon_2023_e13825
crossref_primary_10_3389_fpls_2022_919696
crossref_primary_10_1111_ppl_14323
crossref_primary_10_3389_fmicb_2025_1551436
crossref_primary_10_1093_jambio_lxae146
crossref_primary_10_31015_2025_1_16
crossref_primary_10_7717_peerj_13405
crossref_primary_10_1007_s10725_024_01218_x
crossref_primary_10_13080_z_a_2023_110_020
crossref_primary_10_1007_s12355_023_01299_4
crossref_primary_10_1590_2447_536x_v31_e312785
crossref_primary_10_3390_life14101320
crossref_primary_10_1186_s40538_024_00684_9
crossref_primary_10_1128_mra_00576_23
crossref_primary_10_3390_ijms23168998
crossref_primary_10_3390_plants12132545
crossref_primary_10_1038_s41598_024_68097_0
crossref_primary_10_1007_s13199_023_00904_0
crossref_primary_10_3390_microorganisms9091988
crossref_primary_10_1111_1751_7915_70001
crossref_primary_10_3390_soilsystems8020039
crossref_primary_10_1016_j_clet_2024_100845
crossref_primary_10_1007_s00344_023_11013_z
crossref_primary_10_3389_fmicb_2024_1423980
crossref_primary_10_1038_s41598_024_68123_1
crossref_primary_10_3390_plants14030475
crossref_primary_10_3389_fpls_2024_1325048
crossref_primary_10_3390_app12031231
crossref_primary_10_1080_01904167_2022_2160742
crossref_primary_10_3390_ijms252212424
crossref_primary_10_3389_fmicb_2024_1485167
crossref_primary_10_1007_s00203_024_04016_1
crossref_primary_10_3389_fpls_2022_1048696
crossref_primary_10_3389_fsufs_2024_1384700
crossref_primary_10_1007_s11356_024_34157_1
crossref_primary_10_3390_plants13020329
crossref_primary_10_3389_fpls_2023_1297706
crossref_primary_10_1007_s11104_024_07126_3
crossref_primary_10_32350_bsr_64_05
crossref_primary_10_3390_horticulturae11030271
crossref_primary_10_1016_j_micres_2022_127076
crossref_primary_10_33462_jotaf_1279053
crossref_primary_10_3390_microorganisms12020398
crossref_primary_10_1590_1519_6984_282664
crossref_primary_10_3389_fmicb_2022_927889
crossref_primary_10_3390_microorganisms11071655
crossref_primary_10_3390_plants12183262
crossref_primary_10_1016_j_indcrop_2024_120032
crossref_primary_10_1007_s42398_023_00282_9
crossref_primary_10_3390_ijms242316590
crossref_primary_10_1007_s11356_024_35554_2
crossref_primary_10_3390_jof10060398
crossref_primary_10_3390_horticulturae11030260
crossref_primary_10_3389_fpls_2024_1451887
crossref_primary_10_1186_s12866_023_02941_7
crossref_primary_10_1007_s10343_022_00666_7
crossref_primary_10_3390_plants12122307
crossref_primary_10_3390_microorganisms10010150
crossref_primary_10_1134_S000368382206014X
crossref_primary_10_1007_s11356_024_34150_8
crossref_primary_10_1002_cssc_202401324
crossref_primary_10_1007_s11356_024_33349_z
crossref_primary_10_1016_j_scitotenv_2023_164221
crossref_primary_10_1093_ismejo_wrae067
crossref_primary_10_3390_agronomy12040804
crossref_primary_10_1016_j_pedsph_2024_03_005
crossref_primary_10_3390_biology11121763
crossref_primary_10_1016_j_cj_2024_09_010
crossref_primary_10_3390_plants12112197
crossref_primary_10_31857_S0002188123050071
crossref_primary_10_1016_j_micres_2022_127295
crossref_primary_10_1016_j_biocontrol_2024_105514
crossref_primary_10_15625_2615_9023_21763
crossref_primary_10_1360_TB_2023_0376
crossref_primary_10_3390_agronomy14091915
crossref_primary_10_1016_j_bcab_2025_103527
crossref_primary_10_1021_acsagscitech_4c00476
crossref_primary_10_3390_microorganisms11041088
crossref_primary_10_7717_peerj_14758
crossref_primary_10_1007_s11104_024_07200_w
crossref_primary_10_1016_j_apsoil_2024_105636
crossref_primary_10_1016_j_micres_2024_127761
crossref_primary_10_1186_s40538_024_00537_5
crossref_primary_10_1016_j_jia_2024_09_031
crossref_primary_10_1016_j_envpol_2022_118889
crossref_primary_10_1016_j_plantsci_2024_112156
crossref_primary_10_4236_aim_2021_119038
crossref_primary_10_3390_microorganisms12122384
crossref_primary_10_1007_s10658_024_02873_6
crossref_primary_10_1007_s10123_025_00649_4
crossref_primary_10_1007_s12602_025_10503_8
crossref_primary_10_3390_plants12234059
crossref_primary_10_1051_bioconf_202410400011
crossref_primary_10_1016_j_stress_2023_100234
crossref_primary_10_1080_01490451_2024_2343858
crossref_primary_10_32604_biocell_2022_019291
crossref_primary_10_3390_plants11010128
crossref_primary_10_1016_j_envres_2022_114620
crossref_primary_10_3390_agronomy13071835
crossref_primary_10_1016_j_apsoil_2025_106009
crossref_primary_10_1038_s41598_024_51818_w
crossref_primary_10_3389_fmicb_2022_889073
crossref_primary_10_1128_spectrum_01147_24
crossref_primary_10_7717_peerj_16992
crossref_primary_10_1002_jobm_202300361
crossref_primary_10_3390_su15042897
crossref_primary_10_1080_01904167_2024_2394131
crossref_primary_10_3390_app122312382
crossref_primary_10_1007_s00253_024_13029_1
crossref_primary_10_15407_biotech15_04_005
crossref_primary_10_1007_s00284_024_03893_5
crossref_primary_10_1080_00103624_2024_2353745
crossref_primary_10_3389_fagro_2021_689972
crossref_primary_10_3390_microorganisms11051103
crossref_primary_10_3389_fpls_2022_926850
crossref_primary_10_1016_j_scienta_2024_113904
crossref_primary_10_1111_jam_15796
crossref_primary_10_1139_cjm_2024_0071
crossref_primary_10_1016_j_pmpp_2023_102173
crossref_primary_10_1128_spectrum_01879_24
crossref_primary_10_3390_su14159280
crossref_primary_10_5423_PPJ_OA_08_2023_0118
crossref_primary_10_3390_app14167421
crossref_primary_10_1093_femsec_fiac022
crossref_primary_10_1016_j_jenvman_2024_122200
crossref_primary_10_1016_j_heliyon_2024_e30276
crossref_primary_10_3390_agronomy14050916
crossref_primary_10_3390_toxics12120886
Cites_doi 10.1094/MPMI.1998.11.8.763
10.3390/d11100179
10.1016/j.ejbt.2017.11.001
10.4238/2012.July.10.15
10.1016/j.cmet.2019.06.009
10.3389/fmicb.2019.01631
10.5424/sjar/2017151-9990
10.1002/mbo3.813
10.1007/1-4020-4743-6_8
10.1186/s12864-015-1632-z
10.1038/nature06279
10.1094/MPMI-20-5-0526
10.1016/j.ram.2016.07.004
10.1128/AEM.02188-07
10.1038/nature05286
10.3389/fmicb.2016.00993
10.1111/nph.12592
10.3390/agronomy11050870
10.1099/mic.0.074146-0
10.2307/3870043
10.1111/j.1744-7909.2008.00700.x
10.1111/pce.13632
10.3389/fmicb.2017.00975
10.1007/s42398-020-00103-3
10.1007/s11368-017-1685-5
10.1094/MPMI-02-14-0032-R
10.3389/fmicb.2019.00581
10.1146/annurev.micro.62.081307.162918
10.1111/nph.15423
10.1146/annurev.micro.61.080706.093316
10.3389/fmicb.2017.00971
10.1007/s11103-017-0694-5
10.1093/jxb/err291
10.1016/j.ecoenv.2018.03.013
10.1016/j.micres.2018.02.003
10.3390/microorganisms9030554
10.1007/s11274-012-1071-9
10.1371/journal.ppat.1004483
10.1111/mpp.12427
10.1007/978-981-13-5767-1_8
10.1094/Phyto-78-166
10.1016/j.cpb.2020.100189
10.1007/s12223-019-00756-6
10.1371/journal.ppat.1002206
10.1038/nrmicro2091
10.1007/BF02602840
10.1016/j.jare.2019.03.004
10.1007/s11104-012-1263-y
10.1007/978-3-642-21061-7_2
10.6064/2012/963401
10.1016/j.micres.2014.12.012
10.3389/fmicb.2016.00108
10.1186/s40793-015-0123-9
10.1023/B:ANTO.0000024903.10757.6e
10.1016/j.tplants.2012.04.001
10.1007/s42729-020-00246-6
10.1111/jam.14692
10.3389/fpls.2017.00172
10.3390/molecules21101397
10.1038/nri.2016.77
10.1146/annurev-phyto-082712-102340
10.3389/fmicb.2020.569366
10.1007/978-1-4020-2626-3_12
10.1016/j.molp.2020.09.017
10.1016/j.bcab.2017.11.007
10.1111/ejss.12306
10.1016/j.micres.2020.126612
10.1007/978-81-322-1620-9
10.1038/nrmicro954
10.1016/j.jbiotec.2018.07.044
10.1104/pp.109.148379
10.1080/09583157.2014.940846
10.1039/C7NP00062F
10.1016/j.micres.2020.126589
10.1007/s12010-014-1039-3
10.1016/j.geoforum.2018.02.030
10.1016/j.cbi.2005.12.009
10.3390/agriculture9070142
10.1126/science.aaw9285
10.1007/s11104-007-9514-z
10.1111/j.1462-2920.2010.02291.x
10.1104/pp.103.028712
10.1016/j.csbj.2020.11.025
10.1126/science.1243825
10.1016/S0734-9750(99)00014-2
10.7150/jgen.21588
10.1016/j.soilbio.2019.05.011
10.1007/978-3-030-18975-4_6
10.1046/j.1365-313X.1999.00265.x
10.1146/annurev.phyto.39.1.461
10.1111/1751-7915.12117
10.1016/S1369-5274(99)80033-2
10.1080/09583157.2012.694413
10.1007/978-3-0348-8504-1_15
10.3389/fmicb.2018.01997
10.1146/annurev-arplant-050312-120106
10.1094/PHYTO-97-2-0233
10.1016/j.tplants.2017.09.003
10.1038/s41598-021-85218-1
10.1094/MPMI-20-4-0430
10.1094/MPMI-05-11-0127
10.1016/j.micres.2018.01.005
10.1094/PHYTO-97-2-0239
10.7745/KJSSF.2016.49.1.017
10.4161/psb.18765
10.1111/j.1747-0765.2009.00411.x
10.1074/jbc.R115.711507
10.1016/j.scitotenv.2020.140682
10.1016/j.soilbio.2009.11.024
10.1007/s00253-019-09955-0
10.1007/s00253-018-9556-6
10.1016/j.micres.2015.11.008
10.3934/bioeng.2015.3.163
10.1073/pnas.1717617115
10.1016/j.jenvman.2020.111118
10.3389/fmicb.2019.01106
10.1007/s13258-012-0052-6
10.1094/MPMI-12-12-0286-R
10.1039/b906679a
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7QP
7TK
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/biology10060475
DatabaseName CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Agriculture
EISSN 2079-7737
ExternalDocumentID oai_doaj_org_article_9e21bc27159f499c8dd78c364720be34
PMC8229920
10_3390_biology10060475
GroupedDBID 2XV
53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EBD
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
7QP
7TK
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c497t-c23ea0db32f8d09e2a34706c08bbf4f9a36af4bd4332272e19af872414b972a13
IEDL.DBID M48
ISSN 2079-7737
IngestDate Wed Aug 27 00:42:05 EDT 2025
Thu Aug 21 18:22:51 EDT 2025
Fri Jul 11 16:12:19 EDT 2025
Fri Jul 11 12:42:59 EDT 2025
Fri Jul 25 12:08:08 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
Tue Jul 01 01:28:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-c23ea0db32f8d09e2a34706c08bbf4f9a36af4bd4332272e19af872414b972a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0374-9661
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/biology10060475
PMID 34072072
PQID 2544578000
PQPubID 2032427
ParticipantIDs doaj_primary_oai_doaj_org_article_9e21bc27159f499c8dd78c364720be34
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8229920
proquest_miscellaneous_2636475692
proquest_miscellaneous_2536464655
proquest_journals_2544578000
crossref_primary_10_3390_biology10060475
crossref_citationtrail_10_3390_biology10060475
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210527
PublicationDateYYYYMMDD 2021-05-27
PublicationDate_xml – month: 5
  year: 2021
  text: 20210527
  day: 27
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Biology (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_93
Dekkers (ref_63) 1998; 11
Fira (ref_79) 2018; 285
Santoyo (ref_5) 2017; 15
Valentini (ref_108) 2016; 291
ref_12
Stringlis (ref_115) 2019; 10
ref_97
ref_96
ref_95
Hartmann (ref_17) 2008; 312
Sandal (ref_106) 2012; 63
Zhang (ref_53) 2019; 221
Mylona (ref_49) 1995; 7
Zhang (ref_54) 2009; 55
Romero (ref_89) 2007; 20
Olanrewaju (ref_18) 2019; 103
Cordovez (ref_124) 2019; 366
Danhorn (ref_62) 2007; 61
Compant (ref_16) 2019; 19
Storz (ref_56) 1999; 2
ref_126
ref_125
Yi (ref_76) 2016; 7
Loper (ref_80) 2007; 97
ref_24
Sakuda (ref_85) 2014; 24
ref_120
Singh (ref_11) 2018; 3
ref_21
Kuzyakov (ref_117) 2019; 135
ref_29
Meneses (ref_68) 2011; 24
Fitzpatrick (ref_33) 2018; 115
Stringlis (ref_99) 2018; 35
Heil (ref_48) 2016; 67
Fernandez (ref_107) 2014; 201
Khatoon (ref_4) 2020; 273
Bhagwat (ref_83) 2019; 103
ref_77
Couto (ref_113) 2016; 16
ref_75
ref_74
ref_73
(ref_39) 2012; 35
Matthews (ref_27) 2019; 10
Bais (ref_90) 2004; 134
Paulucci (ref_69) 2015; 173
ref_82
Meneses (ref_59) 2013; 26
Pfeilmeier (ref_109) 2016; 17
Dimkpa (ref_37) 2016; 27
Fraga (ref_45) 1999; 17
Santoyo (ref_35) 2018; 34
Pel (ref_112) 2014; 27
Ahmed (ref_40) 2014; 7
Lami (ref_121) 2020; 129
Yu (ref_100) 2019; 42
Yadong (ref_104) 2013; 342
Compant (ref_8) 2010; 42
Felix (ref_105) 1999; 18
Loper (ref_43) 1988; 78
Heidari (ref_57) 2012; 11
Raklami (ref_20) 2019; 10
Barahona (ref_92) 2010; 12
Etesami (ref_118) 2018; 156
Dixon (ref_22) 2004; 2
ref_52
Glick (ref_14) 2012; 2012
Ramakrishnan (ref_123) 2017; 17
Alori (ref_46) 2017; 8
Stokes (ref_88) 2019; 30
Bakker (ref_91) 2020; 13
Glick (ref_13) 2018; 208
Libault (ref_101) 2010; 152
Santoyo (ref_102) 2016; 183
ref_60
Prosekov (ref_2) 2018; 91
Santoyo (ref_78) 2012; 22
Santoyo (ref_86) 2016; 22
Hider (ref_38) 2010; 27
Diggle (ref_66) 2007; 450
Lugtenberg (ref_15) 2009; 63
Phour (ref_30) 2020; 241
ref_67
(ref_42) 2012; 28
ref_64
Jones (ref_98) 2006; 444
Zboralski (ref_61) 2020; 18
Sulochana (ref_44) 2014; 174
Lucy (ref_10) 2004; 86
Broeckling (ref_28) 2008; 74
Hurek (ref_94) 2007; 20
Shin (ref_51) 2016; 49
Govindappa (ref_84) 2012; 11
Barbosa (ref_32) 2020; 3
Wu (ref_119) 2019; 8
Ge (ref_7) 2018; 18
ref_116
Cheng (ref_50) 2008; 50
Pieterse (ref_71) 2014; 52
ref_111
ref_110
Becker (ref_81) 2018; 9
Lugtenberg (ref_23) 2001; 39
Numan (ref_58) 2018; 209
Bakker (ref_72) 2007; 97
Menendez (ref_87) 2015; 2
Jog (ref_26) 2014; 160
Ueda (ref_70) 2012; 7
ref_103
Deakin (ref_114) 2009; 7
ref_47
Sasse (ref_19) 2018; 23
ref_41
Berendsen (ref_34) 2012; 17
ref_1
ref_3
Novinscak (ref_122) 2020; 11
Bulgarelli (ref_25) 2013; 64
Dawson (ref_31) 2017; 8
Valko (ref_55) 2006; 160
ref_9
Meena (ref_65) 2017; 8
ref_6
Kloepper (ref_36) 1980; 4
References_xml – volume: 11
  start-page: 763
  year: 1998
  ident: ref_63
  article-title: Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH: Ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI.1998.11.8.763
– ident: ref_1
  doi: 10.3390/d11100179
– ident: ref_60
  doi: 10.1016/j.ejbt.2017.11.001
– volume: 11
  start-page: 2665
  year: 2012
  ident: ref_84
  article-title: Isolation and molecular characterization of a novel strain of Bacillus with antifungal activity from the sorghum rhizosphere
  publication-title: Genet. Mol. Res.
  doi: 10.4238/2012.July.10.15
– volume: 22
  start-page: 45
  year: 2016
  ident: ref_86
  article-title: Evaluation of Bacillus and Pseudomonas to colonize the rhizosphere and their effect on growth promotion in tomato (Physalis ixocarpa Brot. ex Horm.)
  publication-title: Rev. Chapingo Ser. Hortic.
– volume: 30
  start-page: 251
  year: 2019
  ident: ref_88
  article-title: Bacterial metabolism and antibiotic efficacy
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.06.009
– volume: 10
  start-page: 2214
  year: 2019
  ident: ref_115
  article-title: Type III secretion system of beneficial rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.01631
– volume: 15
  start-page: 13
  year: 2017
  ident: ref_5
  article-title: The role of abiotic factors modulating the plant-microbe-soil interactions: Toward sustainable agriculture. A review
  publication-title: Span. J. Agric. Res.
  doi: 10.5424/sjar/2017151-9990
– volume: 8
  start-page: e00813
  year: 2019
  ident: ref_119
  article-title: Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens
  publication-title: MicrobiologyOpen
  doi: 10.1002/mbo3.813
– ident: ref_41
  doi: 10.1007/1-4020-4743-6_8
– volume: 18
  start-page: 282
  year: 2018
  ident: ref_7
  article-title: Long-term impact of fertilization on soil pH and fertility in an apple production system
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 3
  start-page: 10
  year: 2018
  ident: ref_11
  article-title: Root colonization: Imperative mechanism for efficient plant protection and growth
  publication-title: MOJ Ecol. Environ. Sci.
– ident: ref_111
  doi: 10.1186/s12864-015-1632-z
– volume: 450
  start-page: 411
  year: 2007
  ident: ref_66
  article-title: Cooperation and conflict in quorum-sensing bacterial populations
  publication-title: Nature
  doi: 10.1038/nature06279
– volume: 20
  start-page: 526
  year: 2007
  ident: ref_94
  article-title: Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-20-5-0526
– ident: ref_75
  doi: 10.1016/j.ram.2016.07.004
– volume: 74
  start-page: 738
  year: 2008
  ident: ref_28
  article-title: Root exudates regulate soil fungal community composition and diversity
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02188-07
– volume: 444
  start-page: 323
  year: 2006
  ident: ref_98
  article-title: The plant immune system
  publication-title: Nature
  doi: 10.1038/nature05286
– volume: 7
  start-page: 993
  year: 2016
  ident: ref_76
  article-title: Impact of a bacterial volatile 2,3-butanediol on Bacillus subtilis rhizosphere robustness
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00993
– volume: 201
  start-page: 1371
  year: 2014
  ident: ref_107
  article-title: The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria
  publication-title: New Phytol.
  doi: 10.1111/nph.12592
– ident: ref_116
  doi: 10.3390/agronomy11050870
– volume: 160
  start-page: 778
  year: 2014
  ident: ref_26
  article-title: Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth
  publication-title: Microbiol.
  doi: 10.1099/mic.0.074146-0
– volume: 7
  start-page: 869
  year: 1995
  ident: ref_49
  article-title: Symbiotic Nitrogen Fixation
  publication-title: Plant Cell
  doi: 10.2307/3870043
– volume: 50
  start-page: 786
  year: 2008
  ident: ref_50
  article-title: Perspectives in biological nitrogen fixation research
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2008.00700.x
– volume: 42
  start-page: 2860
  year: 2019
  ident: ref_100
  article-title: Beneficial microbes going underground of root immunity
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13632
– volume: 8
  start-page: 975
  year: 2017
  ident: ref_31
  article-title: A small number of low-abundance bacteria dominate plant species-specific responses during rhizosphere colonization
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00975
– volume: 3
  start-page: 187
  year: 2020
  ident: ref_32
  article-title: Root exudate supplemented inoculant of Azospirillum brasilense Ab-V5 is more effective in enhancing rhizosphere colonization and growth of maize
  publication-title: Environ. Sustain.
  doi: 10.1007/s42398-020-00103-3
– volume: 17
  start-page: 2040
  year: 2017
  ident: ref_123
  article-title: Microbial inoculation of seeds characteristically shapes the rhizosphere microbiome in desi and kabuli chickpea types
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-017-1685-5
– volume: 27
  start-page: 603
  year: 2014
  ident: ref_112
  article-title: Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-02-14-0032-R
– volume: 10
  start-page: 581
  year: 2019
  ident: ref_27
  article-title: Rhizobacterial community assembly patterns vary between crop species
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00581
– volume: 63
  start-page: 541
  year: 2009
  ident: ref_15
  article-title: Plant growth-promoting rhizobacteria
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.62.081307.162918
– volume: 221
  start-page: 1049
  year: 2019
  ident: ref_53
  article-title: The host actin cytoskeleton channels rhizobia release and facilitates symbiosome accommodation during nodulation in Medicago truncatula
  publication-title: New Phytol.
  doi: 10.1111/nph.15423
– volume: 61
  start-page: 401
  year: 2007
  ident: ref_62
  article-title: Biofilm formation by plant-associated bacteria
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.61.080706.093316
– volume: 8
  start-page: 971
  year: 2017
  ident: ref_46
  article-title: Microbial phosphorus solubilization and its potential for use in sustainable agriculture
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00971
– ident: ref_74
  doi: 10.1007/s11103-017-0694-5
– volume: 63
  start-page: 393
  year: 2012
  ident: ref_106
  article-title: Interplay of flg22-induced defence responses and nodulation in Lotus japonicus
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err291
– volume: 156
  start-page: 225
  year: 2018
  ident: ref_118
  article-title: Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2018.03.013
– volume: 27
  start-page: 7
  year: 2016
  ident: ref_37
  article-title: Microbial siderophores: Production, detection and application in agriculture and environment
  publication-title: Endocytobiosis Cell Res.
– volume: 209
  start-page: 21
  year: 2018
  ident: ref_58
  article-title: Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2018.02.003
– ident: ref_93
  doi: 10.3390/microorganisms9030554
– volume: 28
  start-page: 2615
  year: 2012
  ident: ref_42
  article-title: Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-012-1071-9
– ident: ref_103
  doi: 10.1371/journal.ppat.1004483
– volume: 17
  start-page: 1298
  year: 2016
  ident: ref_109
  article-title: Bacterial pathogenesis of plants: Future challenges from a microbial perspective: Challenges in Bacterial Molecular Plant Pathology
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12427
– ident: ref_125
  doi: 10.1007/978-981-13-5767-1_8
– volume: 78
  start-page: 166
  year: 1988
  ident: ref_43
  article-title: Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens Strain
  publication-title: Phytopathology
  doi: 10.1094/Phyto-78-166
– ident: ref_120
  doi: 10.1016/j.cpb.2020.100189
– ident: ref_95
  doi: 10.1007/s12223-019-00756-6
– volume: 11
  start-page: 57
  year: 2012
  ident: ref_57
  article-title: Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.)
  publication-title: J. Saudi Soc. Agric. Sci.
– ident: ref_110
  doi: 10.1371/journal.ppat.1002206
– volume: 34
  start-page: 140
  year: 2018
  ident: ref_35
  article-title: Diversity of cultivable endophytic bacteria associated with blueberry plants (Vaccinium corymbosum L.) cv. Biloxi with plant growth-promoting traits
  publication-title: Chil. J. Agric. Anim. Sci.
– volume: 7
  start-page: 312
  year: 2009
  ident: ref_114
  article-title: Symbiotic use of pathogenic strategies: Rhizobial protein secretion systems
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2091
– volume: 4
  start-page: 317
  year: 1980
  ident: ref_36
  article-title: Pseudomonas siderophores: A mechanism explaining disease-suppressive soils
  publication-title: Curr. Microbiol.
  doi: 10.1007/BF02602840
– volume: 19
  start-page: 29
  year: 2019
  ident: ref_16
  article-title: A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2019.03.004
– ident: ref_73
  doi: 10.1007/s11104-012-1263-y
– ident: ref_52
  doi: 10.1007/978-3-642-21061-7_2
– volume: 2012
  start-page: 963401
  year: 2012
  ident: ref_14
  article-title: Plant Growth-Promoting Bacteria: Mechanisms and Applications
  publication-title: Scientifica
  doi: 10.6064/2012/963401
– volume: 173
  start-page: 1
  year: 2015
  ident: ref_69
  article-title: Arachis hypogaea PGPR isolated from argentine soil modifies its lipids components in response to temperature and salinity
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2014.12.012
– ident: ref_126
  doi: 10.3389/fmicb.2016.00108
– ident: ref_97
  doi: 10.1186/s40793-015-0123-9
– volume: 86
  start-page: 1
  year: 2004
  ident: ref_10
  article-title: Applications of free living plant growth-promoting rhizobacteria
  publication-title: Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol.
  doi: 10.1023/B:ANTO.0000024903.10757.6e
– volume: 17
  start-page: 478
  year: 2012
  ident: ref_34
  article-title: The rhizosphere microbiome and plant health
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2012.04.001
– ident: ref_67
  doi: 10.1007/s42729-020-00246-6
– volume: 129
  start-page: 1321
  year: 2020
  ident: ref_121
  article-title: Pseudomonas stutzeri MJL19, a rhizosphere-colonizing bacterium that promotes plant growth under saline stress
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.14692
– volume: 8
  start-page: 172
  year: 2017
  ident: ref_65
  article-title: Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00172
– ident: ref_29
  doi: 10.3390/molecules21101397
– volume: 16
  start-page: 537
  year: 2016
  ident: ref_113
  article-title: Regulation of pattern recognition receptor signalling in plants
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.77
– volume: 52
  start-page: 347
  year: 2014
  ident: ref_71
  article-title: Induced systemic resistance by beneficial microbes
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-082712-102340
– volume: 11
  start-page: 569366
  year: 2020
  ident: ref_122
  article-title: Inoculation With the plant-growth-promoting rhizobacterium Pseudomonas fluorescens LBUM677 impacts the rhizosphere microbiome of three oilseed crops
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.569366
– ident: ref_6
  doi: 10.1007/978-1-4020-2626-3_12
– volume: 35
  start-page: 9
  year: 2012
  ident: ref_39
  article-title: Impacto de los sideróforos microbianos y fitosideróforos en la asimilación de hierro por las plantas: Una síntesis
  publication-title: Rev. Fitotec. Mex.
– volume: 13
  start-page: 1394
  year: 2020
  ident: ref_91
  article-title: The soil-borne identity and microbiome-assisted agriculture: Looking Back to the Future
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2020.09.017
– ident: ref_77
  doi: 10.1016/j.bcab.2017.11.007
– volume: 67
  start-page: 23
  year: 2016
  ident: ref_48
  article-title: A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12306
– ident: ref_12
  doi: 10.1016/j.micres.2020.126612
– ident: ref_3
  doi: 10.1007/978-81-322-1620-9
– volume: 2
  start-page: 621
  year: 2004
  ident: ref_22
  article-title: Genetic regulation of biological nitrogen fixation
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro954
– volume: 285
  start-page: 44
  year: 2018
  ident: ref_79
  article-title: Biological control of plant pathogens by Bacillus species
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2018.07.044
– volume: 152
  start-page: 541
  year: 2010
  ident: ref_101
  article-title: Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.148379
– volume: 24
  start-page: 1349
  year: 2014
  ident: ref_85
  article-title: Potential use and mode of action of the new strain Bacillus thuringiensis UM96 for the biological control of the grey mould phytopathogen Botrytis cinerea
  publication-title: Biocontrol Sci. Technol.
  doi: 10.1080/09583157.2014.940846
– volume: 35
  start-page: 410
  year: 2018
  ident: ref_99
  article-title: Microbial small molecules-weapons of plant subversion
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/C7NP00062F
– volume: 241
  start-page: 126589
  year: 2020
  ident: ref_30
  article-title: Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2020.126589
– volume: 174
  start-page: 297
  year: 2014
  ident: ref_44
  article-title: Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-014-1039-3
– volume: 91
  start-page: 73
  year: 2018
  ident: ref_2
  article-title: Food security: The challenge of the present
  publication-title: Geoforum
  doi: 10.1016/j.geoforum.2018.02.030
– volume: 160
  start-page: 1
  year: 2006
  ident: ref_55
  article-title: Free radicals, metals and antioxidants in oxidative stress-induced cancer
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2005.12.009
– ident: ref_24
  doi: 10.3390/agriculture9070142
– volume: 366
  start-page: 606
  year: 2019
  ident: ref_124
  article-title: Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome
  publication-title: Science
  doi: 10.1126/science.aaw9285
– volume: 312
  start-page: 7
  year: 2008
  ident: ref_17
  article-title: Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9514-z
– volume: 12
  start-page: 3185
  year: 2010
  ident: ref_92
  article-title: Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2010.02291.x
– volume: 134
  start-page: 307
  year: 2004
  ident: ref_90
  article-title: Biocontrol of Bacillus subtilis against Infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.028712
– volume: 18
  start-page: 3539
  year: 2020
  ident: ref_61
  article-title: Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp.
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2020.11.025
– volume: 342
  start-page: 624
  year: 2013
  ident: ref_104
  article-title: Structural basis for flg22-Induced activation of the Arabidopsis FLS2-BAK1 immune complex
  publication-title: Science
  doi: 10.1126/science.1243825
– volume: 17
  start-page: 319
  year: 1999
  ident: ref_45
  article-title: Phosphate solubilizing bacteria and their role in plant growth promotion
  publication-title: Biotechnol. Adv.
  doi: 10.1016/S0734-9750(99)00014-2
– ident: ref_96
  doi: 10.7150/jgen.21588
– volume: 135
  start-page: 343
  year: 2019
  ident: ref_117
  article-title: Rhizosphere size and shape: Temporal dynamics and spatial stationarity
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.05.011
– ident: ref_64
  doi: 10.1007/978-3-030-18975-4_6
– volume: 18
  start-page: 265
  year: 1999
  ident: ref_105
  article-title: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1999.00265.x
– volume: 39
  start-page: 461
  year: 2001
  ident: ref_23
  article-title: Molecular determinants of rhizosphere colonization by Pseudomonas
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.phyto.39.1.461
– volume: 7
  start-page: 196
  year: 2014
  ident: ref_40
  article-title: Siderophores in environmental research: Roles and applications
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.12117
– volume: 2
  start-page: 188
  year: 1999
  ident: ref_56
  article-title: Oxidative stress
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/S1369-5274(99)80033-2
– volume: 22
  start-page: 855
  year: 2012
  ident: ref_78
  article-title: Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review
  publication-title: Biocontrol Sci. Technol.
  doi: 10.1080/09583157.2012.694413
– ident: ref_47
  doi: 10.1007/978-3-0348-8504-1_15
– volume: 9
  start-page: 1997
  year: 2018
  ident: ref_81
  article-title: Comparative genomics reveal a flagellar system, a type VI secretion system and plant growth-promoting gene clusters unique to the endophytic bacterium Kosakonia radicincitans
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.01997
– volume: 64
  start-page: 807
  year: 2013
  ident: ref_25
  article-title: Structure and functions of the bacterial microbiota of plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050312-120106
– volume: 97
  start-page: 233
  year: 2007
  ident: ref_80
  article-title: The genomic sequence of Pseudomonas fluorescens Pf-5: Insights into biological control
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-97-2-0233
– volume: 23
  start-page: 25
  year: 2018
  ident: ref_19
  article-title: Feed Your Friends: Do Plant Exudates Shape the Root Microbiome?
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.09.003
– ident: ref_82
  doi: 10.1038/s41598-021-85218-1
– volume: 20
  start-page: 430
  year: 2007
  ident: ref_89
  article-title: The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-20-4-0430
– volume: 24
  start-page: 1448
  year: 2011
  ident: ref_68
  article-title: Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-05-11-0127
– volume: 208
  start-page: 25
  year: 2018
  ident: ref_13
  article-title: Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2018.01.005
– volume: 97
  start-page: 239
  year: 2007
  ident: ref_72
  article-title: Induced systemic resistance by fluorescent Pseudomonas spp.
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-97-2-0239
– volume: 49
  start-page: 17
  year: 2016
  ident: ref_51
  article-title: Role of diazotrophic bacteria in biological nitrogen fixation and plant growth improvement
  publication-title: Korean J. Soil Sci. Fertil.
  doi: 10.7745/KJSSF.2016.49.1.017
– volume: 7
  start-page: 222
  year: 2012
  ident: ref_70
  article-title: Plant communication
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.18765
– volume: 55
  start-page: 685
  year: 2009
  ident: ref_54
  article-title: Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and anti-oxidant system in an alkali-tolerant leguminous forage Lathyrus quinquenervius
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2009.00411.x
– volume: 291
  start-page: 12547
  year: 2016
  ident: ref_108
  article-title: Biofilms and Cyclic di-GMP (c-di-GMP) signaling: Lessons from Pseudomonas aeruginosa and other bacteria
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R115.711507
– ident: ref_9
  doi: 10.1016/j.scitotenv.2020.140682
– volume: 42
  start-page: 669
  year: 2010
  ident: ref_8
  article-title: Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.11.024
– volume: 103
  start-page: 7041
  year: 2019
  ident: ref_83
  article-title: Selective antimicrobial activity of cell lytic enzymes in a bacterial consortium
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-019-09955-0
– volume: 103
  start-page: 1155
  year: 2019
  ident: ref_18
  article-title: Plant health: Feedback effect of root exudates-rhizobiome interactions
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-018-9556-6
– volume: 183
  start-page: 92
  year: 2016
  ident: ref_102
  article-title: Plant growth-promoting bacterial endophytes
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2015.11.008
– volume: 2
  start-page: 163
  year: 2015
  ident: ref_87
  article-title: Biotechnological applications of bacterial cellulases
  publication-title: AIMS Bioeng.
  doi: 10.3934/bioeng.2015.3.163
– volume: 115
  start-page: E1157
  year: 2018
  ident: ref_33
  article-title: Assembly and ecological function of the root microbiome across angiosperm plant species
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1717617115
– volume: 273
  start-page: 111118
  year: 2020
  ident: ref_4
  article-title: Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.111118
– volume: 10
  start-page: 1106
  year: 2019
  ident: ref_20
  article-title: Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.01106
– ident: ref_21
  doi: 10.1007/s13258-012-0052-6
– volume: 26
  start-page: 937
  year: 2013
  ident: ref_59
  article-title: The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-12-12-0286-R
– volume: 27
  start-page: 637
  year: 2010
  ident: ref_38
  article-title: Chemistry and biology of siderophores
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/b906679a
SSID ssj0000702636
Score 2.620002
SecondaryResourceType review_article
Snippet The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that...
Simple SummaryPlant growth-promoting rhizobacteria (PGPR) are an eco-friendly alternative to the use of chemicals in agricultural production and crop...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 475
SubjectTerms Agriculture
Amino acids
Antibiotics
Antioxidants
Bacteria
bacterial motility
biocontrol
biofilm
Biofilms
bioinoculants
Colonization
Environmental conditions
Exudates
Flowers & plants
Host plants
Immune system
Iron
Legumes
Lytic enzymes
Metabolites
Microbiota
Microorganisms
Organic compounds
Pathogens
Plant growth
plant growth-promoting rhizobacteria
Plant protection
Review
Rhizosphere
secretion
Seeds
Strains (organisms)
sustainable agriculture
VOCs
Volatile organic compounds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LT9wwEIAttBISlwooVcNLrtQDPaTrtU3sHIF2QZWKVggkbpHHcVikKltBOPDvmXGyqwSpcOk1tvMYezIz8vgbxr6i_oDUpU2DkC4l_kjqVObTShpwYEG04Pnfl9nFjf51e3zbK_VFOWEtHrgV3DgPcgJeGjS7FXrn3palsT5SzwUEFUmgaPN6wVT8BxuMLWhfklg-CuP6ccc0mhCARFNWYc8MRVr_wMUcJkj2LM50k33oXEV-0r7iFlsL9TZbb4tHPn9k11eULvdIWIDAMf5fLI9U8h-9FBcOz5wKEzX8HAPuZp7O2vy7-o7H8dDSmh0_mp3Prr7tsJvpz-uzi7SrkZB6nZsm9VIFJ0pQsrKlQGE5pY3IvLAAla5yFLyrNJSEKZNGhknuKmvQbGvIjXQT9YmN6kUdPjMeSlRfHTxYdAl9KAkNZ6xSosoAJQYJ-74UWeE7gDjVsfhTYCBBMi5eyThhR6sBf1t2xr-7ntIcrLoR9DpewKVQdEuheG8pJGx_OYNFp4mPRUSwGXSLRcK-rJpRh2hjxNVh8UR98CYZkeTe6JPRg46zXCbMDFbH4KWHLfX9PBK7iaqfS7H7P75yj21IyqsRdJZwn42ah6dwgI5RA4dRB14A2mYNlA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3db9MwEMBP0AkJHhAMEIGBjMTDeDBzbS92ntA29iEkpqrapL1FtuN0k1A62uxh_z13iVsaJPYa24lj--w7-_w7gM8oP17qyvIopOPEH-FO5YHX0njnrRc9eP7neX52qX9c7V-lDbdlcqtczYndRF3NA-2R73UoLYPqjfh2-5tT1Cg6XU0hNB7DFk7B1o5g6_D4fDJd77LggJY5nU8S00ehfb-X2EZjApFo8i7cWI46av9A1Rw6Sm6sPCcv4HlSGdlB38cv4VFstuHZwWyRsBlxG570ISXvX8HFlJzolgQLiOwIH64uWrLvG44vzN8zClfUslM0w9trPum98poZ68r7nuHs2O7kdDL98houT44vjs54ipzAgy5My4NU0YnKK1nbShRROqWNyIOw3te6LrA7XK19RfAyaWQcF662Bhdz7Qsj3Vi9gVEzb-JbYLFCodYxeIuKYogVAeOMVUrUucf28xl8XTVgGRJWnKJb_CrRvKAWL_9p8Qx21wVue6LG_7MeUo-ssxEKu3swX8zKJFkl_t3YB2lQL6vRfAu2qowNHRZf-Kh0Bjur_iyTfC7Lv6Mpg0_rZJQsOi5xTZzfUR58SU58uQfy5PSh_byQGZjBWBlUepjS3Fx3HG9i7RdSvHu4gu_hqSQ_GkF3B3dg1C7u4gdUhFr_MY32Pza_C5c
  priority: 102
  providerName: ProQuest
Title Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR)
URI https://www.proquest.com/docview/2544578000
https://www.proquest.com/docview/2536464655
https://www.proquest.com/docview/2636475692
https://pubmed.ncbi.nlm.nih.gov/PMC8229920
https://doaj.org/article/9e21bc27159f499c8dd78c364720be34
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3dT9swEMBPG2jSXtDY2MgGlSftgT2EuY4bOw8T4htNAlUVlXiLbMcBJJRuJUjrf787Jy0EAU97je0kPvviu_j8O4BvqD9WyELHngsTE38kNknq4lIoa6y2vAHPn56lJ2P562JwcZ8OqBXg7ZOuHeWTGk9vtv_-me2gwv8kjxNd9h8trqhPbBGpBq9hGZclRekMTltbP3yWFbobtFX56Zl2nZUpAPw7Vmc3ZvLBInT0DlZa65HtNsO9Cq989R7eNPkkZx_gfEQRdLdECvBsHy_OT1mygwdRL8zOGOUqqtkx-uD1VTxsQvKqSxba2wbgbNjW8Hg4-r4G46PD8_2TuE2bEDuZqTp2IvGGFzYRpS545oVJpOKp49raUpYZjoUppS2IXCaU8P3MlFqhyKTNlDD95CMsVZPKrwPzBWq09M5qtBKdL4gWp3SS8DK1KDEbwfZcZLlrmeKU2uImR9-CZJw_knEEW4sGvxucxvNV92gMFtWIgx0uTKaXeatWOfaub51QaJSV6Ls5XRRKu8DE59YnMoKN-Qjm87mVByqbQkuZR_B1UYxqRXslpvKTO6qDN0kJLvdCnZQeNEgzEYHqzI7OS3dLquurAPEm0H4m-Of_0csv8FZQqA2n44UbsFRP7_wm2kq17cHy3uHZcNQL_xp6QSP-ATdrGNQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3db9MwEMBPoxMCHhAMEIEBRgJpPGRzbS9OHhDad8e2qqo6aW8hdpxu0pSONhPqP8XfyF0-SoPE3vaaOIlzvrPP9vl3AJ_QfoxQaeg7LhKf-CN-IgPrZ0KbxISGV-D5s37QO1ffL7YvVuB3cxaGwiqbPrHsqNOJpTXyrRKlpdG94d9ufvqUNYp2V5sUGpVanLj5L5yyzb4e72P7fhbi8GC01_PrrAK-VZEufCukS3hqpMjClEdOJFJpHlgeGpOpLMKqJpkyKYG9hBauGyVZqHGgUybSIulKfO8DWFUy4KIDq7sH_cFwsaqDBiQC2g8lhpCUEd-qWUpdAp8oimZcGv7KLAEt17YdmLk00h0-g6e1i8p2Kp16DisuX4MnO-Npjelwa_CwSmE5fwGjIQXtzQhO4NgeXmwOdrL9pUAbZuaM0iMV7Ain_cWlP6iiAPMxK583FTM6YRuDo8Hwy0s4vxeZvoJOPsnda2AuxU5EOWtCdEytSwlQp0MpeRYYlJ_xYLMRYGxrjDll07iOcTpDEo__kbgHG4sHbiqCx_-L7lKLLIoReru8MJmO49qSY_y7rrFCox-Y4XTRhmmqQ1ti-LlxUnmw3rRnXPcHs_iv9nrwcXEbLZm2Z5LcTW6pDL4kIJ7dHWUC-tB2EAkPdEtXWpVu38mvLktuOLH9I8Hf3F3BD_CoNzo7jU-P-ydv4bGgGB5O5xbXoVNMb907dMIK877WfAY_7tvY_gCZeUgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1fb9MwEMBPoxNoPCAYIAIDjATSeAh1bS9OHhDa1nUbgyqqNmlvwXacbhJKRptp6lfj0-HLn9Igsbe9Jk7inO_ss33-HcB7Zz-aiTT0LWXKR_6Ir3hg_IxJrXSoaQ2e_z4Ojs7E1_Od8zX43Z6FwbDKtk-sOuq0MLhG3q9QWtK5N7SfNWER8XD05eqXjxmkcKe1TadRq8iJXdy46dv88_HQtfUHxkYHp_tHfpNhwDcikqVvGLeKppqzLExpZJniQtLA0FDrTGSRq7bKhE4R8sUks4NIZaF0g57QkWRqwN1778G6xFlRD9b3DsbxZLnC44yJBbg3ijwhziPab7hKA4SgCIxsXBkKq4wBHTe3G6S5MuqNHsOjxl0lu7V-PYE1m2_Cw93prEF22E24X6ezXDyF0wkG8M0RVGDJvrvYHvIkw5WgG6IXBFMlleRwVtyUF35cRwTmU1I9r2t-tCLb8WE8-fgMzu5Eps-hlxe5fQHEpq5DEdbo0DmpxqYIq5Mh5zQLtJOf9uBTK8DENEhzzKzxM3FTG5R48o_EPdhePnBV0zz-X3QPW2RZDDHc1YViNk0aq07c3w20YdL5hJmbOpowTWVoKiQ_1ZYLD7ba9kyavmGe_NVkD94tbzurxq0aldviGsu4lwTItrulTIAf2gki5oHs6Eqn0t07-eVFxRBHzn_E6MvbK_gWHjgjS74dj09ewQbDcB6KRxi3oFfOru1r54-V-k2j-AR-3LWt_QGkekxV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhizosphere+Colonization+Determinants+by+Plant+Growth-Promoting+Rhizobacteria+%28PGPR%29&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=Gustavo+Santoyo&rft.au=Carlos+Alberto+Urtis-Flores&rft.au=Pedro+Dami%C3%A1n+Loeza-Lara&rft.au=Ma.+del+Carmen+Orozco-Mosqueda&rft.date=2021-05-27&rft.pub=MDPI+AG&rft.eissn=2079-7737&rft.volume=10&rft.issue=6&rft.spage=475&rft_id=info:doi/10.3390%2Fbiology10060475&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9e21bc27159f499c8dd78c364720be34
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon