Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR)
The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the abilit...
Saved in:
Published in | Biology (Basel, Switzerland) Vol. 10; no. 6; p. 475 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
27.05.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants. |
---|---|
AbstractList | The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants. Simple SummaryPlant growth-promoting rhizobacteria (PGPR) are an eco-friendly alternative to the use of chemicals in agricultural production and crop protection. However, the efficacy of PGPR as bioinoculants can be diminished by a low capacity to colonize spaces in the rhizosphere. In this work, we review pioneering and recent developments on several important functions that rhizobacteria exhibit in order to compete, colonize, and establish themselves in the plant rhizosphere. Therefore, the use of highly competitive strains in open field trials should be a priority, in order to have consistent and better results in agricultural production activities.AbstractThe application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants. The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants.The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants. |
Author | Loeza-Lara, Pedro Damián Glick, Bernard R. Orozco-Mosqueda, Ma. del Carmen Santoyo, Gustavo Urtis-Flores, Carlos Alberto |
AuthorAffiliation | 1 Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; 1316102a@umich.mx 3 Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Melchor Ocampo, Uruapan 60170, Mexico; carmen.orozco@umich.mx 4 Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; glick@uwaterloo.ca 2 Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo 59103, Mexico; pdloeza@ucemich.edu.mx |
AuthorAffiliation_xml | – name: 1 Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; 1316102a@umich.mx – name: 3 Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Melchor Ocampo, Uruapan 60170, Mexico; carmen.orozco@umich.mx – name: 4 Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; glick@uwaterloo.ca – name: 2 Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo 59103, Mexico; pdloeza@ucemich.edu.mx |
Author_xml | – sequence: 1 givenname: Gustavo orcidid: 0000-0002-0374-9661 surname: Santoyo fullname: Santoyo, Gustavo – sequence: 2 givenname: Carlos Alberto surname: Urtis-Flores fullname: Urtis-Flores, Carlos Alberto – sequence: 3 givenname: Pedro Damián surname: Loeza-Lara fullname: Loeza-Lara, Pedro Damián – sequence: 4 givenname: Ma. del Carmen surname: Orozco-Mosqueda fullname: Orozco-Mosqueda, Ma. del Carmen – sequence: 5 givenname: Bernard R. surname: Glick fullname: Glick, Bernard R. |
BookMark | eNqFks9rHCEUx6WkND-ac68DvaSHaRx1xvESCNtmEwh0CelZ1HF2XWZ0o27K5q_Py24ozUKoHnz4vt8P-t47Rgc-eIvQlwp_p1Tgc-3CEOabCuMGM15_QEcEc1FyTvnBP_EhOk1piWFxTBrafEKHlGEOeXKE7u8W7imk1cJGW0yA592Tyi744ofNNo7OK59ToTfFbIComMbwJy_KWQxjyM7Pi61fKwNip4qz2XR29-0z-tirIdnT1_ME_b76eT-5Lm9_TW8ml7elYYLn0hBqFe40JX3bYWGJoozjxuBW6571QtFG9Ux3jFJCOLGVUH3LCauYFpyoip6gmx23C2opV9GNKm5kUE5uL0KcSxWzM4OVQK-0IbyqRc-EMG3X8dbQhkEdtKUMWBc71mqtR9sZ63NUwxvo24x3CzkPj7IlRAiCAXD2CojhYW1TlqNLxg5QNhvWSb6UHrrUCPJ_aQ1S2HUN0q970mVYRw9VBRVjNW-hr6A636lMDClF2_99d4Xly6zIvVkBR73nMC5vGw-fc8O7vmfJEMTc |
CitedBy_id | crossref_primary_10_1007_s00284_023_03349_2 crossref_primary_10_3390_molecules29184456 crossref_primary_10_3390_plants13182659 crossref_primary_10_1093_jambio_lxae074 crossref_primary_10_1016_j_bcab_2023_102622 crossref_primary_10_1093_jambio_lxaf041 crossref_primary_10_3839_jabc_2021_045 crossref_primary_10_3389_fpls_2023_1175097 crossref_primary_10_3390_plants11152018 crossref_primary_10_3390_horticulturae9101104 crossref_primary_10_3390_agronomy13020550 crossref_primary_10_3389_fbioe_2023_1099999 crossref_primary_10_1128_spectrum_01002_22 crossref_primary_10_1007_s00284_024_03755_0 crossref_primary_10_1007_s11356_023_26730_x crossref_primary_10_1016_j_heliyon_2023_e20204 crossref_primary_10_3389_fmicb_2024_1492139 crossref_primary_10_38211_jms_2024_01_70 crossref_primary_10_1007_s42770_025_01617_w crossref_primary_10_3390_agriculture14122228 crossref_primary_10_1007_s10534_021_00359_0 crossref_primary_10_1111_1751_7915_14296 crossref_primary_10_7717_peerj_17882 crossref_primary_10_1007_s42452_025_06468_6 crossref_primary_10_1007_s11104_023_05963_2 crossref_primary_10_1007_s12033_024_01346_9 crossref_primary_10_1111_ppl_14495 crossref_primary_10_13005_bbra_3313 crossref_primary_10_3390_agronomy15030569 crossref_primary_10_3390_plants11121612 crossref_primary_10_36718_1819_4036_2024_9_26_35 crossref_primary_10_1016_j_plaphy_2023_01_010 crossref_primary_10_3389_fmicb_2024_1473099 crossref_primary_10_3389_fmicb_2022_972393 crossref_primary_10_1099_acmi_0_000543_v3 crossref_primary_10_1016_j_stress_2023_100138 crossref_primary_10_1016_j_jenvman_2024_123102 crossref_primary_10_1002_jobm_202300215 crossref_primary_10_20914_2310_1202_2023_4_86_90 crossref_primary_10_3389_fmicb_2024_1458454 crossref_primary_10_3389_fsufs_2023_1163426 crossref_primary_10_1016_j_jes_2024_05_039 crossref_primary_10_3390_life14111461 crossref_primary_10_1002_jobm_202200361 crossref_primary_10_1016_j_heliyon_2022_e09693 crossref_primary_10_3389_fsufs_2022_1054113 crossref_primary_10_1515_opag_2022_0238 crossref_primary_10_1016_j_pmpp_2024_102548 crossref_primary_10_1016_j_pmpp_2025_102605 crossref_primary_10_1007_s10725_023_01071_4 crossref_primary_10_1016_j_pmpp_2023_102128 crossref_primary_10_3390_biology12070911 crossref_primary_10_3390_plants14010036 crossref_primary_10_3390_microorganisms12020304 crossref_primary_10_3390_microorganisms12010190 crossref_primary_10_1007_s13199_024_00980_w crossref_primary_10_1016_j_sajb_2022_09_036 crossref_primary_10_1093_jambio_lxae270 crossref_primary_10_1371_journal_pone_0298303 crossref_primary_10_1007_s00284_022_03176_x crossref_primary_10_1007_s11104_024_06870_w crossref_primary_10_1039_D3EN00236E crossref_primary_10_3390_f14091848 crossref_primary_10_1051_bioconf_202414301022 crossref_primary_10_3390_plants12040954 crossref_primary_10_3389_fpls_2024_1341993 crossref_primary_10_1016_j_heliyon_2023_e13825 crossref_primary_10_3389_fpls_2022_919696 crossref_primary_10_1111_ppl_14323 crossref_primary_10_3389_fmicb_2025_1551436 crossref_primary_10_1093_jambio_lxae146 crossref_primary_10_31015_2025_1_16 crossref_primary_10_7717_peerj_13405 crossref_primary_10_1007_s10725_024_01218_x crossref_primary_10_13080_z_a_2023_110_020 crossref_primary_10_1007_s12355_023_01299_4 crossref_primary_10_1590_2447_536x_v31_e312785 crossref_primary_10_3390_life14101320 crossref_primary_10_1186_s40538_024_00684_9 crossref_primary_10_1128_mra_00576_23 crossref_primary_10_3390_ijms23168998 crossref_primary_10_3390_plants12132545 crossref_primary_10_1038_s41598_024_68097_0 crossref_primary_10_1007_s13199_023_00904_0 crossref_primary_10_3390_microorganisms9091988 crossref_primary_10_1111_1751_7915_70001 crossref_primary_10_3390_soilsystems8020039 crossref_primary_10_1016_j_clet_2024_100845 crossref_primary_10_1007_s00344_023_11013_z crossref_primary_10_3389_fmicb_2024_1423980 crossref_primary_10_1038_s41598_024_68123_1 crossref_primary_10_3390_plants14030475 crossref_primary_10_3389_fpls_2024_1325048 crossref_primary_10_3390_app12031231 crossref_primary_10_1080_01904167_2022_2160742 crossref_primary_10_3390_ijms252212424 crossref_primary_10_3389_fmicb_2024_1485167 crossref_primary_10_1007_s00203_024_04016_1 crossref_primary_10_3389_fpls_2022_1048696 crossref_primary_10_3389_fsufs_2024_1384700 crossref_primary_10_1007_s11356_024_34157_1 crossref_primary_10_3390_plants13020329 crossref_primary_10_3389_fpls_2023_1297706 crossref_primary_10_1007_s11104_024_07126_3 crossref_primary_10_32350_bsr_64_05 crossref_primary_10_3390_horticulturae11030271 crossref_primary_10_1016_j_micres_2022_127076 crossref_primary_10_33462_jotaf_1279053 crossref_primary_10_3390_microorganisms12020398 crossref_primary_10_1590_1519_6984_282664 crossref_primary_10_3389_fmicb_2022_927889 crossref_primary_10_3390_microorganisms11071655 crossref_primary_10_3390_plants12183262 crossref_primary_10_1016_j_indcrop_2024_120032 crossref_primary_10_1007_s42398_023_00282_9 crossref_primary_10_3390_ijms242316590 crossref_primary_10_1007_s11356_024_35554_2 crossref_primary_10_3390_jof10060398 crossref_primary_10_3390_horticulturae11030260 crossref_primary_10_3389_fpls_2024_1451887 crossref_primary_10_1186_s12866_023_02941_7 crossref_primary_10_1007_s10343_022_00666_7 crossref_primary_10_3390_plants12122307 crossref_primary_10_3390_microorganisms10010150 crossref_primary_10_1134_S000368382206014X crossref_primary_10_1007_s11356_024_34150_8 crossref_primary_10_1002_cssc_202401324 crossref_primary_10_1007_s11356_024_33349_z crossref_primary_10_1016_j_scitotenv_2023_164221 crossref_primary_10_1093_ismejo_wrae067 crossref_primary_10_3390_agronomy12040804 crossref_primary_10_1016_j_pedsph_2024_03_005 crossref_primary_10_3390_biology11121763 crossref_primary_10_1016_j_cj_2024_09_010 crossref_primary_10_3390_plants12112197 crossref_primary_10_31857_S0002188123050071 crossref_primary_10_1016_j_micres_2022_127295 crossref_primary_10_1016_j_biocontrol_2024_105514 crossref_primary_10_15625_2615_9023_21763 crossref_primary_10_1360_TB_2023_0376 crossref_primary_10_3390_agronomy14091915 crossref_primary_10_1016_j_bcab_2025_103527 crossref_primary_10_1021_acsagscitech_4c00476 crossref_primary_10_3390_microorganisms11041088 crossref_primary_10_7717_peerj_14758 crossref_primary_10_1007_s11104_024_07200_w crossref_primary_10_1016_j_apsoil_2024_105636 crossref_primary_10_1016_j_micres_2024_127761 crossref_primary_10_1186_s40538_024_00537_5 crossref_primary_10_1016_j_jia_2024_09_031 crossref_primary_10_1016_j_envpol_2022_118889 crossref_primary_10_1016_j_plantsci_2024_112156 crossref_primary_10_4236_aim_2021_119038 crossref_primary_10_3390_microorganisms12122384 crossref_primary_10_1007_s10658_024_02873_6 crossref_primary_10_1007_s10123_025_00649_4 crossref_primary_10_1007_s12602_025_10503_8 crossref_primary_10_3390_plants12234059 crossref_primary_10_1051_bioconf_202410400011 crossref_primary_10_1016_j_stress_2023_100234 crossref_primary_10_1080_01490451_2024_2343858 crossref_primary_10_32604_biocell_2022_019291 crossref_primary_10_3390_plants11010128 crossref_primary_10_1016_j_envres_2022_114620 crossref_primary_10_3390_agronomy13071835 crossref_primary_10_1016_j_apsoil_2025_106009 crossref_primary_10_1038_s41598_024_51818_w crossref_primary_10_3389_fmicb_2022_889073 crossref_primary_10_1128_spectrum_01147_24 crossref_primary_10_7717_peerj_16992 crossref_primary_10_1002_jobm_202300361 crossref_primary_10_3390_su15042897 crossref_primary_10_1080_01904167_2024_2394131 crossref_primary_10_3390_app122312382 crossref_primary_10_1007_s00253_024_13029_1 crossref_primary_10_15407_biotech15_04_005 crossref_primary_10_1007_s00284_024_03893_5 crossref_primary_10_1080_00103624_2024_2353745 crossref_primary_10_3389_fagro_2021_689972 crossref_primary_10_3390_microorganisms11051103 crossref_primary_10_3389_fpls_2022_926850 crossref_primary_10_1016_j_scienta_2024_113904 crossref_primary_10_1111_jam_15796 crossref_primary_10_1139_cjm_2024_0071 crossref_primary_10_1016_j_pmpp_2023_102173 crossref_primary_10_1128_spectrum_01879_24 crossref_primary_10_3390_su14159280 crossref_primary_10_5423_PPJ_OA_08_2023_0118 crossref_primary_10_3390_app14167421 crossref_primary_10_1093_femsec_fiac022 crossref_primary_10_1016_j_jenvman_2024_122200 crossref_primary_10_1016_j_heliyon_2024_e30276 crossref_primary_10_3390_agronomy14050916 crossref_primary_10_3390_toxics12120886 |
Cites_doi | 10.1094/MPMI.1998.11.8.763 10.3390/d11100179 10.1016/j.ejbt.2017.11.001 10.4238/2012.July.10.15 10.1016/j.cmet.2019.06.009 10.3389/fmicb.2019.01631 10.5424/sjar/2017151-9990 10.1002/mbo3.813 10.1007/1-4020-4743-6_8 10.1186/s12864-015-1632-z 10.1038/nature06279 10.1094/MPMI-20-5-0526 10.1016/j.ram.2016.07.004 10.1128/AEM.02188-07 10.1038/nature05286 10.3389/fmicb.2016.00993 10.1111/nph.12592 10.3390/agronomy11050870 10.1099/mic.0.074146-0 10.2307/3870043 10.1111/j.1744-7909.2008.00700.x 10.1111/pce.13632 10.3389/fmicb.2017.00975 10.1007/s42398-020-00103-3 10.1007/s11368-017-1685-5 10.1094/MPMI-02-14-0032-R 10.3389/fmicb.2019.00581 10.1146/annurev.micro.62.081307.162918 10.1111/nph.15423 10.1146/annurev.micro.61.080706.093316 10.3389/fmicb.2017.00971 10.1007/s11103-017-0694-5 10.1093/jxb/err291 10.1016/j.ecoenv.2018.03.013 10.1016/j.micres.2018.02.003 10.3390/microorganisms9030554 10.1007/s11274-012-1071-9 10.1371/journal.ppat.1004483 10.1111/mpp.12427 10.1007/978-981-13-5767-1_8 10.1094/Phyto-78-166 10.1016/j.cpb.2020.100189 10.1007/s12223-019-00756-6 10.1371/journal.ppat.1002206 10.1038/nrmicro2091 10.1007/BF02602840 10.1016/j.jare.2019.03.004 10.1007/s11104-012-1263-y 10.1007/978-3-642-21061-7_2 10.6064/2012/963401 10.1016/j.micres.2014.12.012 10.3389/fmicb.2016.00108 10.1186/s40793-015-0123-9 10.1023/B:ANTO.0000024903.10757.6e 10.1016/j.tplants.2012.04.001 10.1007/s42729-020-00246-6 10.1111/jam.14692 10.3389/fpls.2017.00172 10.3390/molecules21101397 10.1038/nri.2016.77 10.1146/annurev-phyto-082712-102340 10.3389/fmicb.2020.569366 10.1007/978-1-4020-2626-3_12 10.1016/j.molp.2020.09.017 10.1016/j.bcab.2017.11.007 10.1111/ejss.12306 10.1016/j.micres.2020.126612 10.1007/978-81-322-1620-9 10.1038/nrmicro954 10.1016/j.jbiotec.2018.07.044 10.1104/pp.109.148379 10.1080/09583157.2014.940846 10.1039/C7NP00062F 10.1016/j.micres.2020.126589 10.1007/s12010-014-1039-3 10.1016/j.geoforum.2018.02.030 10.1016/j.cbi.2005.12.009 10.3390/agriculture9070142 10.1126/science.aaw9285 10.1007/s11104-007-9514-z 10.1111/j.1462-2920.2010.02291.x 10.1104/pp.103.028712 10.1016/j.csbj.2020.11.025 10.1126/science.1243825 10.1016/S0734-9750(99)00014-2 10.7150/jgen.21588 10.1016/j.soilbio.2019.05.011 10.1007/978-3-030-18975-4_6 10.1046/j.1365-313X.1999.00265.x 10.1146/annurev.phyto.39.1.461 10.1111/1751-7915.12117 10.1016/S1369-5274(99)80033-2 10.1080/09583157.2012.694413 10.1007/978-3-0348-8504-1_15 10.3389/fmicb.2018.01997 10.1146/annurev-arplant-050312-120106 10.1094/PHYTO-97-2-0233 10.1016/j.tplants.2017.09.003 10.1038/s41598-021-85218-1 10.1094/MPMI-20-4-0430 10.1094/MPMI-05-11-0127 10.1016/j.micres.2018.01.005 10.1094/PHYTO-97-2-0239 10.7745/KJSSF.2016.49.1.017 10.4161/psb.18765 10.1111/j.1747-0765.2009.00411.x 10.1074/jbc.R115.711507 10.1016/j.scitotenv.2020.140682 10.1016/j.soilbio.2009.11.024 10.1007/s00253-019-09955-0 10.1007/s00253-018-9556-6 10.1016/j.micres.2015.11.008 10.3934/bioeng.2015.3.163 10.1073/pnas.1717617115 10.1016/j.jenvman.2020.111118 10.3389/fmicb.2019.01106 10.1007/s13258-012-0052-6 10.1094/MPMI-12-12-0286-R 10.1039/b906679a |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 7QP 7TK 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/biology10060475 |
DatabaseName | CrossRef Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Agriculture |
EISSN | 2079-7737 |
ExternalDocumentID | oai_doaj_org_article_9e21bc27159f499c8dd78c364720be34 PMC8229920 10_3390_biology10060475 |
GroupedDBID | 2XV 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EBD GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM 7QP 7TK 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c497t-c23ea0db32f8d09e2a34706c08bbf4f9a36af4bd4332272e19af872414b972a13 |
IEDL.DBID | M48 |
ISSN | 2079-7737 |
IngestDate | Wed Aug 27 00:42:05 EDT 2025 Thu Aug 21 18:22:51 EDT 2025 Fri Jul 11 16:12:19 EDT 2025 Fri Jul 11 12:42:59 EDT 2025 Fri Jul 25 12:08:08 EDT 2025 Thu Apr 24 22:56:09 EDT 2025 Tue Jul 01 01:28:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-c23ea0db32f8d09e2a34706c08bbf4f9a36af4bd4332272e19af872414b972a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0374-9661 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/biology10060475 |
PMID | 34072072 |
PQID | 2544578000 |
PQPubID | 2032427 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9e21bc27159f499c8dd78c364720be34 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8229920 proquest_miscellaneous_2636475692 proquest_miscellaneous_2536464655 proquest_journals_2544578000 crossref_primary_10_3390_biology10060475 crossref_citationtrail_10_3390_biology10060475 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210527 |
PublicationDateYYYYMMDD | 2021-05-27 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210527 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Biology (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_93 Dekkers (ref_63) 1998; 11 Fira (ref_79) 2018; 285 Santoyo (ref_5) 2017; 15 Valentini (ref_108) 2016; 291 ref_12 Stringlis (ref_115) 2019; 10 ref_97 ref_96 ref_95 Hartmann (ref_17) 2008; 312 Sandal (ref_106) 2012; 63 Zhang (ref_53) 2019; 221 Mylona (ref_49) 1995; 7 Zhang (ref_54) 2009; 55 Romero (ref_89) 2007; 20 Olanrewaju (ref_18) 2019; 103 Cordovez (ref_124) 2019; 366 Danhorn (ref_62) 2007; 61 Compant (ref_16) 2019; 19 Storz (ref_56) 1999; 2 ref_126 ref_125 Yi (ref_76) 2016; 7 Loper (ref_80) 2007; 97 ref_24 Sakuda (ref_85) 2014; 24 ref_120 Singh (ref_11) 2018; 3 ref_21 Kuzyakov (ref_117) 2019; 135 ref_29 Meneses (ref_68) 2011; 24 Fitzpatrick (ref_33) 2018; 115 Stringlis (ref_99) 2018; 35 Heil (ref_48) 2016; 67 Fernandez (ref_107) 2014; 201 Khatoon (ref_4) 2020; 273 Bhagwat (ref_83) 2019; 103 ref_77 Couto (ref_113) 2016; 16 ref_75 ref_74 ref_73 (ref_39) 2012; 35 Matthews (ref_27) 2019; 10 Bais (ref_90) 2004; 134 Paulucci (ref_69) 2015; 173 ref_82 Meneses (ref_59) 2013; 26 Pfeilmeier (ref_109) 2016; 17 Dimkpa (ref_37) 2016; 27 Fraga (ref_45) 1999; 17 Santoyo (ref_35) 2018; 34 Pel (ref_112) 2014; 27 Ahmed (ref_40) 2014; 7 Lami (ref_121) 2020; 129 Yu (ref_100) 2019; 42 Yadong (ref_104) 2013; 342 Compant (ref_8) 2010; 42 Felix (ref_105) 1999; 18 Loper (ref_43) 1988; 78 Heidari (ref_57) 2012; 11 Raklami (ref_20) 2019; 10 Barahona (ref_92) 2010; 12 Etesami (ref_118) 2018; 156 Dixon (ref_22) 2004; 2 ref_52 Glick (ref_14) 2012; 2012 Ramakrishnan (ref_123) 2017; 17 Alori (ref_46) 2017; 8 Stokes (ref_88) 2019; 30 Bakker (ref_91) 2020; 13 Glick (ref_13) 2018; 208 Libault (ref_101) 2010; 152 Santoyo (ref_102) 2016; 183 ref_60 Prosekov (ref_2) 2018; 91 Santoyo (ref_78) 2012; 22 Santoyo (ref_86) 2016; 22 Hider (ref_38) 2010; 27 Diggle (ref_66) 2007; 450 Lugtenberg (ref_15) 2009; 63 Phour (ref_30) 2020; 241 ref_67 (ref_42) 2012; 28 ref_64 Jones (ref_98) 2006; 444 Zboralski (ref_61) 2020; 18 Sulochana (ref_44) 2014; 174 Lucy (ref_10) 2004; 86 Broeckling (ref_28) 2008; 74 Hurek (ref_94) 2007; 20 Shin (ref_51) 2016; 49 Govindappa (ref_84) 2012; 11 Barbosa (ref_32) 2020; 3 Wu (ref_119) 2019; 8 Ge (ref_7) 2018; 18 ref_116 Cheng (ref_50) 2008; 50 Pieterse (ref_71) 2014; 52 ref_111 ref_110 Becker (ref_81) 2018; 9 Lugtenberg (ref_23) 2001; 39 Numan (ref_58) 2018; 209 Bakker (ref_72) 2007; 97 Menendez (ref_87) 2015; 2 Jog (ref_26) 2014; 160 Ueda (ref_70) 2012; 7 ref_103 Deakin (ref_114) 2009; 7 ref_47 Sasse (ref_19) 2018; 23 ref_41 Berendsen (ref_34) 2012; 17 ref_1 ref_3 Novinscak (ref_122) 2020; 11 Bulgarelli (ref_25) 2013; 64 Dawson (ref_31) 2017; 8 Valko (ref_55) 2006; 160 ref_9 Meena (ref_65) 2017; 8 ref_6 Kloepper (ref_36) 1980; 4 |
References_xml | – volume: 11 start-page: 763 year: 1998 ident: ref_63 article-title: Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH: Ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365 publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI.1998.11.8.763 – ident: ref_1 doi: 10.3390/d11100179 – ident: ref_60 doi: 10.1016/j.ejbt.2017.11.001 – volume: 11 start-page: 2665 year: 2012 ident: ref_84 article-title: Isolation and molecular characterization of a novel strain of Bacillus with antifungal activity from the sorghum rhizosphere publication-title: Genet. Mol. Res. doi: 10.4238/2012.July.10.15 – volume: 22 start-page: 45 year: 2016 ident: ref_86 article-title: Evaluation of Bacillus and Pseudomonas to colonize the rhizosphere and their effect on growth promotion in tomato (Physalis ixocarpa Brot. ex Horm.) publication-title: Rev. Chapingo Ser. Hortic. – volume: 30 start-page: 251 year: 2019 ident: ref_88 article-title: Bacterial metabolism and antibiotic efficacy publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.06.009 – volume: 10 start-page: 2214 year: 2019 ident: ref_115 article-title: Type III secretion system of beneficial rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.01631 – volume: 15 start-page: 13 year: 2017 ident: ref_5 article-title: The role of abiotic factors modulating the plant-microbe-soil interactions: Toward sustainable agriculture. A review publication-title: Span. J. Agric. Res. doi: 10.5424/sjar/2017151-9990 – volume: 8 start-page: e00813 year: 2019 ident: ref_119 article-title: Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens publication-title: MicrobiologyOpen doi: 10.1002/mbo3.813 – ident: ref_41 doi: 10.1007/1-4020-4743-6_8 – volume: 18 start-page: 282 year: 2018 ident: ref_7 article-title: Long-term impact of fertilization on soil pH and fertility in an apple production system publication-title: J. Soil Sci. Plant Nutr. – volume: 3 start-page: 10 year: 2018 ident: ref_11 article-title: Root colonization: Imperative mechanism for efficient plant protection and growth publication-title: MOJ Ecol. Environ. Sci. – ident: ref_111 doi: 10.1186/s12864-015-1632-z – volume: 450 start-page: 411 year: 2007 ident: ref_66 article-title: Cooperation and conflict in quorum-sensing bacterial populations publication-title: Nature doi: 10.1038/nature06279 – volume: 20 start-page: 526 year: 2007 ident: ref_94 article-title: Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72 publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-20-5-0526 – ident: ref_75 doi: 10.1016/j.ram.2016.07.004 – volume: 74 start-page: 738 year: 2008 ident: ref_28 article-title: Root exudates regulate soil fungal community composition and diversity publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02188-07 – volume: 444 start-page: 323 year: 2006 ident: ref_98 article-title: The plant immune system publication-title: Nature doi: 10.1038/nature05286 – volume: 7 start-page: 993 year: 2016 ident: ref_76 article-title: Impact of a bacterial volatile 2,3-butanediol on Bacillus subtilis rhizosphere robustness publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00993 – volume: 201 start-page: 1371 year: 2014 ident: ref_107 article-title: The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria publication-title: New Phytol. doi: 10.1111/nph.12592 – ident: ref_116 doi: 10.3390/agronomy11050870 – volume: 160 start-page: 778 year: 2014 ident: ref_26 article-title: Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth publication-title: Microbiol. doi: 10.1099/mic.0.074146-0 – volume: 7 start-page: 869 year: 1995 ident: ref_49 article-title: Symbiotic Nitrogen Fixation publication-title: Plant Cell doi: 10.2307/3870043 – volume: 50 start-page: 786 year: 2008 ident: ref_50 article-title: Perspectives in biological nitrogen fixation research publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2008.00700.x – volume: 42 start-page: 2860 year: 2019 ident: ref_100 article-title: Beneficial microbes going underground of root immunity publication-title: Plant Cell Environ. doi: 10.1111/pce.13632 – volume: 8 start-page: 975 year: 2017 ident: ref_31 article-title: A small number of low-abundance bacteria dominate plant species-specific responses during rhizosphere colonization publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00975 – volume: 3 start-page: 187 year: 2020 ident: ref_32 article-title: Root exudate supplemented inoculant of Azospirillum brasilense Ab-V5 is more effective in enhancing rhizosphere colonization and growth of maize publication-title: Environ. Sustain. doi: 10.1007/s42398-020-00103-3 – volume: 17 start-page: 2040 year: 2017 ident: ref_123 article-title: Microbial inoculation of seeds characteristically shapes the rhizosphere microbiome in desi and kabuli chickpea types publication-title: J. Soils Sediments doi: 10.1007/s11368-017-1685-5 – volume: 27 start-page: 603 year: 2014 ident: ref_112 article-title: Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-02-14-0032-R – volume: 10 start-page: 581 year: 2019 ident: ref_27 article-title: Rhizobacterial community assembly patterns vary between crop species publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00581 – volume: 63 start-page: 541 year: 2009 ident: ref_15 article-title: Plant growth-promoting rhizobacteria publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.62.081307.162918 – volume: 221 start-page: 1049 year: 2019 ident: ref_53 article-title: The host actin cytoskeleton channels rhizobia release and facilitates symbiosome accommodation during nodulation in Medicago truncatula publication-title: New Phytol. doi: 10.1111/nph.15423 – volume: 61 start-page: 401 year: 2007 ident: ref_62 article-title: Biofilm formation by plant-associated bacteria publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.61.080706.093316 – volume: 8 start-page: 971 year: 2017 ident: ref_46 article-title: Microbial phosphorus solubilization and its potential for use in sustainable agriculture publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00971 – ident: ref_74 doi: 10.1007/s11103-017-0694-5 – volume: 63 start-page: 393 year: 2012 ident: ref_106 article-title: Interplay of flg22-induced defence responses and nodulation in Lotus japonicus publication-title: J. Exp. Bot. doi: 10.1093/jxb/err291 – volume: 156 start-page: 225 year: 2018 ident: ref_118 article-title: Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.03.013 – volume: 27 start-page: 7 year: 2016 ident: ref_37 article-title: Microbial siderophores: Production, detection and application in agriculture and environment publication-title: Endocytobiosis Cell Res. – volume: 209 start-page: 21 year: 2018 ident: ref_58 article-title: Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review publication-title: Microbiol. Res. doi: 10.1016/j.micres.2018.02.003 – ident: ref_93 doi: 10.3390/microorganisms9030554 – volume: 28 start-page: 2615 year: 2012 ident: ref_42 article-title: Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-012-1071-9 – ident: ref_103 doi: 10.1371/journal.ppat.1004483 – volume: 17 start-page: 1298 year: 2016 ident: ref_109 article-title: Bacterial pathogenesis of plants: Future challenges from a microbial perspective: Challenges in Bacterial Molecular Plant Pathology publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12427 – ident: ref_125 doi: 10.1007/978-981-13-5767-1_8 – volume: 78 start-page: 166 year: 1988 ident: ref_43 article-title: Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens Strain publication-title: Phytopathology doi: 10.1094/Phyto-78-166 – ident: ref_120 doi: 10.1016/j.cpb.2020.100189 – ident: ref_95 doi: 10.1007/s12223-019-00756-6 – volume: 11 start-page: 57 year: 2012 ident: ref_57 article-title: Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.) publication-title: J. Saudi Soc. Agric. Sci. – ident: ref_110 doi: 10.1371/journal.ppat.1002206 – volume: 34 start-page: 140 year: 2018 ident: ref_35 article-title: Diversity of cultivable endophytic bacteria associated with blueberry plants (Vaccinium corymbosum L.) cv. Biloxi with plant growth-promoting traits publication-title: Chil. J. Agric. Anim. Sci. – volume: 7 start-page: 312 year: 2009 ident: ref_114 article-title: Symbiotic use of pathogenic strategies: Rhizobial protein secretion systems publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2091 – volume: 4 start-page: 317 year: 1980 ident: ref_36 article-title: Pseudomonas siderophores: A mechanism explaining disease-suppressive soils publication-title: Curr. Microbiol. doi: 10.1007/BF02602840 – volume: 19 start-page: 29 year: 2019 ident: ref_16 article-title: A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application publication-title: J. Adv. Res. doi: 10.1016/j.jare.2019.03.004 – ident: ref_73 doi: 10.1007/s11104-012-1263-y – ident: ref_52 doi: 10.1007/978-3-642-21061-7_2 – volume: 2012 start-page: 963401 year: 2012 ident: ref_14 article-title: Plant Growth-Promoting Bacteria: Mechanisms and Applications publication-title: Scientifica doi: 10.6064/2012/963401 – volume: 173 start-page: 1 year: 2015 ident: ref_69 article-title: Arachis hypogaea PGPR isolated from argentine soil modifies its lipids components in response to temperature and salinity publication-title: Microbiol. Res. doi: 10.1016/j.micres.2014.12.012 – ident: ref_126 doi: 10.3389/fmicb.2016.00108 – ident: ref_97 doi: 10.1186/s40793-015-0123-9 – volume: 86 start-page: 1 year: 2004 ident: ref_10 article-title: Applications of free living plant growth-promoting rhizobacteria publication-title: Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. doi: 10.1023/B:ANTO.0000024903.10757.6e – volume: 17 start-page: 478 year: 2012 ident: ref_34 article-title: The rhizosphere microbiome and plant health publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2012.04.001 – ident: ref_67 doi: 10.1007/s42729-020-00246-6 – volume: 129 start-page: 1321 year: 2020 ident: ref_121 article-title: Pseudomonas stutzeri MJL19, a rhizosphere-colonizing bacterium that promotes plant growth under saline stress publication-title: J. Appl. Microbiol. doi: 10.1111/jam.14692 – volume: 8 start-page: 172 year: 2017 ident: ref_65 article-title: Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00172 – ident: ref_29 doi: 10.3390/molecules21101397 – volume: 16 start-page: 537 year: 2016 ident: ref_113 article-title: Regulation of pattern recognition receptor signalling in plants publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.77 – volume: 52 start-page: 347 year: 2014 ident: ref_71 article-title: Induced systemic resistance by beneficial microbes publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-082712-102340 – volume: 11 start-page: 569366 year: 2020 ident: ref_122 article-title: Inoculation With the plant-growth-promoting rhizobacterium Pseudomonas fluorescens LBUM677 impacts the rhizosphere microbiome of three oilseed crops publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.569366 – ident: ref_6 doi: 10.1007/978-1-4020-2626-3_12 – volume: 35 start-page: 9 year: 2012 ident: ref_39 article-title: Impacto de los sideróforos microbianos y fitosideróforos en la asimilación de hierro por las plantas: Una síntesis publication-title: Rev. Fitotec. Mex. – volume: 13 start-page: 1394 year: 2020 ident: ref_91 article-title: The soil-borne identity and microbiome-assisted agriculture: Looking Back to the Future publication-title: Mol. Plant doi: 10.1016/j.molp.2020.09.017 – ident: ref_77 doi: 10.1016/j.bcab.2017.11.007 – volume: 67 start-page: 23 year: 2016 ident: ref_48 article-title: A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12306 – ident: ref_12 doi: 10.1016/j.micres.2020.126612 – ident: ref_3 doi: 10.1007/978-81-322-1620-9 – volume: 2 start-page: 621 year: 2004 ident: ref_22 article-title: Genetic regulation of biological nitrogen fixation publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro954 – volume: 285 start-page: 44 year: 2018 ident: ref_79 article-title: Biological control of plant pathogens by Bacillus species publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2018.07.044 – volume: 152 start-page: 541 year: 2010 ident: ref_101 article-title: Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection publication-title: Plant Physiol. doi: 10.1104/pp.109.148379 – volume: 24 start-page: 1349 year: 2014 ident: ref_85 article-title: Potential use and mode of action of the new strain Bacillus thuringiensis UM96 for the biological control of the grey mould phytopathogen Botrytis cinerea publication-title: Biocontrol Sci. Technol. doi: 10.1080/09583157.2014.940846 – volume: 35 start-page: 410 year: 2018 ident: ref_99 article-title: Microbial small molecules-weapons of plant subversion publication-title: Nat. Prod. Rep. doi: 10.1039/C7NP00062F – volume: 241 start-page: 126589 year: 2020 ident: ref_30 article-title: Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture publication-title: Microbiol. Res. doi: 10.1016/j.micres.2020.126589 – volume: 174 start-page: 297 year: 2014 ident: ref_44 article-title: Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25 publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-014-1039-3 – volume: 91 start-page: 73 year: 2018 ident: ref_2 article-title: Food security: The challenge of the present publication-title: Geoforum doi: 10.1016/j.geoforum.2018.02.030 – volume: 160 start-page: 1 year: 2006 ident: ref_55 article-title: Free radicals, metals and antioxidants in oxidative stress-induced cancer publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2005.12.009 – ident: ref_24 doi: 10.3390/agriculture9070142 – volume: 366 start-page: 606 year: 2019 ident: ref_124 article-title: Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome publication-title: Science doi: 10.1126/science.aaw9285 – volume: 312 start-page: 7 year: 2008 ident: ref_17 article-title: Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research publication-title: Plant Soil doi: 10.1007/s11104-007-9514-z – volume: 12 start-page: 3185 year: 2010 ident: ref_92 article-title: Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2010.02291.x – volume: 134 start-page: 307 year: 2004 ident: ref_90 article-title: Biocontrol of Bacillus subtilis against Infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production publication-title: Plant Physiol. doi: 10.1104/pp.103.028712 – volume: 18 start-page: 3539 year: 2020 ident: ref_61 article-title: Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2020.11.025 – volume: 342 start-page: 624 year: 2013 ident: ref_104 article-title: Structural basis for flg22-Induced activation of the Arabidopsis FLS2-BAK1 immune complex publication-title: Science doi: 10.1126/science.1243825 – volume: 17 start-page: 319 year: 1999 ident: ref_45 article-title: Phosphate solubilizing bacteria and their role in plant growth promotion publication-title: Biotechnol. Adv. doi: 10.1016/S0734-9750(99)00014-2 – ident: ref_96 doi: 10.7150/jgen.21588 – volume: 135 start-page: 343 year: 2019 ident: ref_117 article-title: Rhizosphere size and shape: Temporal dynamics and spatial stationarity publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.05.011 – ident: ref_64 doi: 10.1007/978-3-030-18975-4_6 – volume: 18 start-page: 265 year: 1999 ident: ref_105 article-title: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin publication-title: Plant J. doi: 10.1046/j.1365-313X.1999.00265.x – volume: 39 start-page: 461 year: 2001 ident: ref_23 article-title: Molecular determinants of rhizosphere colonization by Pseudomonas publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.phyto.39.1.461 – volume: 7 start-page: 196 year: 2014 ident: ref_40 article-title: Siderophores in environmental research: Roles and applications publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.12117 – volume: 2 start-page: 188 year: 1999 ident: ref_56 article-title: Oxidative stress publication-title: Curr. Opin. Microbiol. doi: 10.1016/S1369-5274(99)80033-2 – volume: 22 start-page: 855 year: 2012 ident: ref_78 article-title: Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review publication-title: Biocontrol Sci. Technol. doi: 10.1080/09583157.2012.694413 – ident: ref_47 doi: 10.1007/978-3-0348-8504-1_15 – volume: 9 start-page: 1997 year: 2018 ident: ref_81 article-title: Comparative genomics reveal a flagellar system, a type VI secretion system and plant growth-promoting gene clusters unique to the endophytic bacterium Kosakonia radicincitans publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01997 – volume: 64 start-page: 807 year: 2013 ident: ref_25 article-title: Structure and functions of the bacterial microbiota of plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050312-120106 – volume: 97 start-page: 233 year: 2007 ident: ref_80 article-title: The genomic sequence of Pseudomonas fluorescens Pf-5: Insights into biological control publication-title: Phytopathology doi: 10.1094/PHYTO-97-2-0233 – volume: 23 start-page: 25 year: 2018 ident: ref_19 article-title: Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.09.003 – ident: ref_82 doi: 10.1038/s41598-021-85218-1 – volume: 20 start-page: 430 year: 2007 ident: ref_89 article-title: The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-20-4-0430 – volume: 24 start-page: 1448 year: 2011 ident: ref_68 article-title: Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-05-11-0127 – volume: 208 start-page: 25 year: 2018 ident: ref_13 article-title: Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms publication-title: Microbiol. Res. doi: 10.1016/j.micres.2018.01.005 – volume: 97 start-page: 239 year: 2007 ident: ref_72 article-title: Induced systemic resistance by fluorescent Pseudomonas spp. publication-title: Phytopathology doi: 10.1094/PHYTO-97-2-0239 – volume: 49 start-page: 17 year: 2016 ident: ref_51 article-title: Role of diazotrophic bacteria in biological nitrogen fixation and plant growth improvement publication-title: Korean J. Soil Sci. Fertil. doi: 10.7745/KJSSF.2016.49.1.017 – volume: 7 start-page: 222 year: 2012 ident: ref_70 article-title: Plant communication publication-title: Plant Signal. Behav. doi: 10.4161/psb.18765 – volume: 55 start-page: 685 year: 2009 ident: ref_54 article-title: Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and anti-oxidant system in an alkali-tolerant leguminous forage Lathyrus quinquenervius publication-title: Soil Sci. Plant Nutr. doi: 10.1111/j.1747-0765.2009.00411.x – volume: 291 start-page: 12547 year: 2016 ident: ref_108 article-title: Biofilms and Cyclic di-GMP (c-di-GMP) signaling: Lessons from Pseudomonas aeruginosa and other bacteria publication-title: J. Biol. Chem. doi: 10.1074/jbc.R115.711507 – ident: ref_9 doi: 10.1016/j.scitotenv.2020.140682 – volume: 42 start-page: 669 year: 2010 ident: ref_8 article-title: Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.11.024 – volume: 103 start-page: 7041 year: 2019 ident: ref_83 article-title: Selective antimicrobial activity of cell lytic enzymes in a bacterial consortium publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-019-09955-0 – volume: 103 start-page: 1155 year: 2019 ident: ref_18 article-title: Plant health: Feedback effect of root exudates-rhizobiome interactions publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-9556-6 – volume: 183 start-page: 92 year: 2016 ident: ref_102 article-title: Plant growth-promoting bacterial endophytes publication-title: Microbiol. Res. doi: 10.1016/j.micres.2015.11.008 – volume: 2 start-page: 163 year: 2015 ident: ref_87 article-title: Biotechnological applications of bacterial cellulases publication-title: AIMS Bioeng. doi: 10.3934/bioeng.2015.3.163 – volume: 115 start-page: E1157 year: 2018 ident: ref_33 article-title: Assembly and ecological function of the root microbiome across angiosperm plant species publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1717617115 – volume: 273 start-page: 111118 year: 2020 ident: ref_4 article-title: Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111118 – volume: 10 start-page: 1106 year: 2019 ident: ref_20 article-title: Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.01106 – ident: ref_21 doi: 10.1007/s13258-012-0052-6 – volume: 26 start-page: 937 year: 2013 ident: ref_59 article-title: The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5 publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-12-12-0286-R – volume: 27 start-page: 637 year: 2010 ident: ref_38 article-title: Chemistry and biology of siderophores publication-title: Nat. Prod. Rep. doi: 10.1039/b906679a |
SSID | ssj0000702636 |
Score | 2.620002 |
SecondaryResourceType | review_article |
Snippet | The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that... Simple SummaryPlant growth-promoting rhizobacteria (PGPR) are an eco-friendly alternative to the use of chemicals in agricultural production and crop... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 475 |
SubjectTerms | Agriculture Amino acids Antibiotics Antioxidants Bacteria bacterial motility biocontrol biofilm Biofilms bioinoculants Colonization Environmental conditions Exudates Flowers & plants Host plants Immune system Iron Legumes Lytic enzymes Metabolites Microbiota Microorganisms Organic compounds Pathogens Plant growth plant growth-promoting rhizobacteria Plant protection Review Rhizosphere secretion Seeds Strains (organisms) sustainable agriculture VOCs Volatile organic compounds |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LT9wwEIAttBISlwooVcNLrtQDPaTrtU3sHIF2QZWKVggkbpHHcVikKltBOPDvmXGyqwSpcOk1tvMYezIz8vgbxr6i_oDUpU2DkC4l_kjqVObTShpwYEG04Pnfl9nFjf51e3zbK_VFOWEtHrgV3DgPcgJeGjS7FXrn3palsT5SzwUEFUmgaPN6wVT8BxuMLWhfklg-CuP6ccc0mhCARFNWYc8MRVr_wMUcJkj2LM50k33oXEV-0r7iFlsL9TZbb4tHPn9k11eULvdIWIDAMf5fLI9U8h-9FBcOz5wKEzX8HAPuZp7O2vy7-o7H8dDSmh0_mp3Prr7tsJvpz-uzi7SrkZB6nZsm9VIFJ0pQsrKlQGE5pY3IvLAAla5yFLyrNJSEKZNGhknuKmvQbGvIjXQT9YmN6kUdPjMeSlRfHTxYdAl9KAkNZ6xSosoAJQYJ-74UWeE7gDjVsfhTYCBBMi5eyThhR6sBf1t2xr-7ntIcrLoR9DpewKVQdEuheG8pJGx_OYNFp4mPRUSwGXSLRcK-rJpRh2hjxNVh8UR98CYZkeTe6JPRg46zXCbMDFbH4KWHLfX9PBK7iaqfS7H7P75yj21IyqsRdJZwn42ah6dwgI5RA4dRB14A2mYNlA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3db9MwEMBP0AkJHhAMEIGBjMTDeDBzbS92ntA29iEkpqrapL1FtuN0k1A62uxh_z13iVsaJPYa24lj--w7-_w7gM8oP17qyvIopOPEH-FO5YHX0njnrRc9eP7neX52qX9c7V-lDbdlcqtczYndRF3NA-2R73UoLYPqjfh2-5tT1Cg6XU0hNB7DFk7B1o5g6_D4fDJd77LggJY5nU8S00ehfb-X2EZjApFo8i7cWI46av9A1Rw6Sm6sPCcv4HlSGdlB38cv4VFstuHZwWyRsBlxG570ISXvX8HFlJzolgQLiOwIH64uWrLvG44vzN8zClfUslM0w9trPum98poZ68r7nuHs2O7kdDL98houT44vjs54ipzAgy5My4NU0YnKK1nbShRROqWNyIOw3te6LrA7XK19RfAyaWQcF662Bhdz7Qsj3Vi9gVEzb-JbYLFCodYxeIuKYogVAeOMVUrUucf28xl8XTVgGRJWnKJb_CrRvKAWL_9p8Qx21wVue6LG_7MeUo-ssxEKu3swX8zKJFkl_t3YB2lQL6vRfAu2qowNHRZf-Kh0Bjur_iyTfC7Lv6Mpg0_rZJQsOi5xTZzfUR58SU58uQfy5PSh_byQGZjBWBlUepjS3Fx3HG9i7RdSvHu4gu_hqSQ_GkF3B3dg1C7u4gdUhFr_MY32Pza_C5c priority: 102 providerName: ProQuest |
Title | Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR) |
URI | https://www.proquest.com/docview/2544578000 https://www.proquest.com/docview/2536464655 https://www.proquest.com/docview/2636475692 https://pubmed.ncbi.nlm.nih.gov/PMC8229920 https://doaj.org/article/9e21bc27159f499c8dd78c364720be34 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3dT9swEMBPG2jSXtDY2MgGlSftgT2EuY4bOw8T4htNAlUVlXiLbMcBJJRuJUjrf787Jy0EAU97je0kPvviu_j8O4BvqD9WyELHngsTE38kNknq4lIoa6y2vAHPn56lJ2P562JwcZ8OqBXg7ZOuHeWTGk9vtv_-me2gwv8kjxNd9h8trqhPbBGpBq9hGZclRekMTltbP3yWFbobtFX56Zl2nZUpAPw7Vmc3ZvLBInT0DlZa65HtNsO9Cq989R7eNPkkZx_gfEQRdLdECvBsHy_OT1mygwdRL8zOGOUqqtkx-uD1VTxsQvKqSxba2wbgbNjW8Hg4-r4G46PD8_2TuE2bEDuZqTp2IvGGFzYRpS545oVJpOKp49raUpYZjoUppS2IXCaU8P3MlFqhyKTNlDD95CMsVZPKrwPzBWq09M5qtBKdL4gWp3SS8DK1KDEbwfZcZLlrmeKU2uImR9-CZJw_knEEW4sGvxucxvNV92gMFtWIgx0uTKaXeatWOfaub51QaJSV6Ls5XRRKu8DE59YnMoKN-Qjm87mVByqbQkuZR_B1UYxqRXslpvKTO6qDN0kJLvdCnZQeNEgzEYHqzI7OS3dLquurAPEm0H4m-Of_0csv8FZQqA2n44UbsFRP7_wm2kq17cHy3uHZcNQL_xp6QSP-ATdrGNQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3db9MwEMBPoxMCHhAMEIEBRgJpPGRzbS9OHhDad8e2qqo6aW8hdpxu0pSONhPqP8XfyF0-SoPE3vaaOIlzvrPP9vl3AJ_QfoxQaeg7LhKf-CN-IgPrZ0KbxISGV-D5s37QO1ffL7YvVuB3cxaGwiqbPrHsqNOJpTXyrRKlpdG94d9ufvqUNYp2V5sUGpVanLj5L5yyzb4e72P7fhbi8GC01_PrrAK-VZEufCukS3hqpMjClEdOJFJpHlgeGpOpLMKqJpkyKYG9hBauGyVZqHGgUybSIulKfO8DWFUy4KIDq7sH_cFwsaqDBiQC2g8lhpCUEd-qWUpdAp8oimZcGv7KLAEt17YdmLk00h0-g6e1i8p2Kp16DisuX4MnO-Npjelwa_CwSmE5fwGjIQXtzQhO4NgeXmwOdrL9pUAbZuaM0iMV7Ain_cWlP6iiAPMxK583FTM6YRuDo8Hwy0s4vxeZvoJOPsnda2AuxU5EOWtCdEytSwlQp0MpeRYYlJ_xYLMRYGxrjDll07iOcTpDEo__kbgHG4sHbiqCx_-L7lKLLIoReru8MJmO49qSY_y7rrFCox-Y4XTRhmmqQ1ti-LlxUnmw3rRnXPcHs_iv9nrwcXEbLZm2Z5LcTW6pDL4kIJ7dHWUC-tB2EAkPdEtXWpVu38mvLktuOLH9I8Hf3F3BD_CoNzo7jU-P-ydv4bGgGB5O5xbXoVNMb907dMIK877WfAY_7tvY_gCZeUgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1fb9MwEMBPoxNoPCAYIAIDjATSeAh1bS9OHhDa1nUbgyqqNmlvwXacbhJKRptp6lfj0-HLn9Igsbe9Jk7inO_ss33-HcB7Zz-aiTT0LWXKR_6Ir3hg_IxJrXSoaQ2e_z4Ojs7E1_Od8zX43Z6FwbDKtk-sOuq0MLhG3q9QWtK5N7SfNWER8XD05eqXjxmkcKe1TadRq8iJXdy46dv88_HQtfUHxkYHp_tHfpNhwDcikqVvGLeKppqzLExpZJniQtLA0FDrTGSRq7bKhE4R8sUks4NIZaF0g57QkWRqwN1778G6xFlRD9b3DsbxZLnC44yJBbg3ijwhziPab7hKA4SgCIxsXBkKq4wBHTe3G6S5MuqNHsOjxl0lu7V-PYE1m2_Cw93prEF22E24X6ezXDyF0wkG8M0RVGDJvrvYHvIkw5WgG6IXBFMlleRwVtyUF35cRwTmU1I9r2t-tCLb8WE8-fgMzu5Eps-hlxe5fQHEpq5DEdbo0DmpxqYIq5Mh5zQLtJOf9uBTK8DENEhzzKzxM3FTG5R48o_EPdhePnBV0zz-X3QPW2RZDDHc1YViNk0aq07c3w20YdL5hJmbOpowTWVoKiQ_1ZYLD7ba9kyavmGe_NVkD94tbzurxq0aldviGsu4lwTItrulTIAf2gki5oHs6Eqn0t07-eVFxRBHzn_E6MvbK_gWHjgjS74dj09ewQbDcB6KRxi3oFfOru1r54-V-k2j-AR-3LWt_QGkekxV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhizosphere+Colonization+Determinants+by+Plant+Growth-Promoting+Rhizobacteria+%28PGPR%29&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=Gustavo+Santoyo&rft.au=Carlos+Alberto+Urtis-Flores&rft.au=Pedro+Dami%C3%A1n+Loeza-Lara&rft.au=Ma.+del+Carmen+Orozco-Mosqueda&rft.date=2021-05-27&rft.pub=MDPI+AG&rft.eissn=2079-7737&rft.volume=10&rft.issue=6&rft.spage=475&rft_id=info:doi/10.3390%2Fbiology10060475&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9e21bc27159f499c8dd78c364720be34 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon |