Feature separation and adversarial training for the patient-independent detection of epileptic seizures
An epileptic seizure is the external manifestation of abnormal neuronal discharges, which seriously affecting physical health. The pathogenesis of epilepsy is complex, and the types of epileptic seizures are diverse, resulting in significant variation in epileptic seizure data between subjects. If w...
Saved in:
Published in | Frontiers in computational neuroscience Vol. 17; p. 1195334 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
19.07.2023
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An epileptic seizure is the external manifestation of abnormal neuronal discharges, which seriously affecting physical health. The pathogenesis of epilepsy is complex, and the types of epileptic seizures are diverse, resulting in significant variation in epileptic seizure data between subjects. If we feed epilepsy data from multiple patients directly into the model for training, it will lead to underfitting of the model. To overcome this problem, we propose a robust epileptic seizure detection model that effectively learns from multiple patients while eliminating the negative impact of the data distribution shift between patients. The model adopts a multi-level temporal-spectral feature extraction network to achieve feature extraction, a feature separation network to separate features into category-related and patient-related components, and an invariant feature extraction network to extract essential feature information related to categories. The proposed model is evaluated on the TUH dataset using leave-one-out cross-validation and achieves an average accuracy of 85.7%. The experimental results show that the proposed model is superior to the related literature and provides a valuable reference for the clinical application of epilepsy detection. |
---|---|
AbstractList | An epileptic seizure is the external manifestation of abnormal neuronal discharges, which seriously affecting physical health. The pathogenesis of epilepsy is complex, and the types of epileptic seizures are diverse, resulting in significant variation in epileptic seizure data between subjects. If we feed epilepsy data from multiple patients directly into the model for training, it will lead to underfitting of the model. To overcome this problem, we propose a robust epileptic seizure detection model that effectively learns from multiple patients while eliminating the negative impact of the data distribution shift between patients. The model adopts a multi-level temporal-spectral feature extraction network to achieve feature extraction, a feature separation network to separate features into category-related and patient-related components, and an invariant feature extraction network to extract essential feature information related to categories. The proposed model is evaluated on the TUH dataset using leave-one-out cross-validation and achieves an average accuracy of 85.7%. The experimental results show that the proposed model is superior to the related literature and provides a valuable reference for the clinical application of epilepsy detection. An epileptic seizure is the external manifestation of abnormal neuronal discharges, which seriously affecting physical health. The pathogenesis of epilepsy is complex, and the types of epileptic seizures are diverse, resulting in significant variation in epileptic seizure data between subjects. If we feed epilepsy data from multiple patients directly into the model for training, it will lead to underfitting of the model. To overcome this problem, we propose a robust epileptic seizure detection model that effectively learns from multiple patients while eliminating the negative impact of the data distribution shift between patients. The model adopts a multi-level temporal-spectral feature extraction network to achieve feature extraction, a feature separation network to separate features into category-related and patient-related components, and an invariant feature extraction network to extract essential feature information related to categories. The proposed model is evaluated on the TUH dataset using leave-one-out cross-validation and achieves an average accuracy of 85.7%. The experimental results show that the proposed model is superior to the related literature and provides a valuable reference for the clinical application of epilepsy detection.An epileptic seizure is the external manifestation of abnormal neuronal discharges, which seriously affecting physical health. The pathogenesis of epilepsy is complex, and the types of epileptic seizures are diverse, resulting in significant variation in epileptic seizure data between subjects. If we feed epilepsy data from multiple patients directly into the model for training, it will lead to underfitting of the model. To overcome this problem, we propose a robust epileptic seizure detection model that effectively learns from multiple patients while eliminating the negative impact of the data distribution shift between patients. The model adopts a multi-level temporal-spectral feature extraction network to achieve feature extraction, a feature separation network to separate features into category-related and patient-related components, and an invariant feature extraction network to extract essential feature information related to categories. The proposed model is evaluated on the TUH dataset using leave-one-out cross-validation and achieves an average accuracy of 85.7%. The experimental results show that the proposed model is superior to the related literature and provides a valuable reference for the clinical application of epilepsy detection. |
Author | Li, Feng Lin, Xiaoguang Huang, Dong Wen, Han Qin, Xiaolin Yang, Yong |
AuthorAffiliation | 4 Department of Neurology, The First Affiliated Hospital of Chongqing Medical University , Chongqing , China 1 Chengdu Institute of Computer Application, Chinese Academy of Sciences , Chengdu, Sichuan , China 2 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing , China 3 Chongqing School, University of Chinese Academy of Sciences , Chongqing , China |
AuthorAffiliation_xml | – name: 1 Chengdu Institute of Computer Application, Chinese Academy of Sciences , Chengdu, Sichuan , China – name: 2 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing , China – name: 3 Chongqing School, University of Chinese Academy of Sciences , Chongqing , China – name: 4 Department of Neurology, The First Affiliated Hospital of Chongqing Medical University , Chongqing , China |
Author_xml | – sequence: 1 givenname: Yong surname: Yang fullname: Yang, Yong – sequence: 2 givenname: Feng surname: Li fullname: Li, Feng – sequence: 3 givenname: Xiaolin surname: Qin fullname: Qin, Xiaolin – sequence: 4 givenname: Han surname: Wen fullname: Wen, Han – sequence: 5 givenname: Xiaoguang surname: Lin fullname: Lin, Xiaoguang – sequence: 6 givenname: Dong surname: Huang fullname: Huang, Dong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37538929$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vFSEUhiemxn7oH3BhJnHTzVxhgAFWxjS2NmniRteEgcMtN3NhBKaJ_nq5HzVtF26AwHuevIfznjcnIQZomvcYrQgR8pMLJm5XPerJCmPJCKGvmjM8DH3HsBAnT86nzXnOG4SGfmDoTXNKOKuAXp4162vQZUnQZph10sXH0OpgW20fIGWdvJ7akrQPPqxbF1Nb7qGdqw5C6XywMENdQmktFDD78uhamP0Ec_GmYv2fis9vm9dOTxneHfeL5uf11x9X37q77ze3V1_uOkMlL90IzBlOwABFzo4SWasxlYITIkdwjKORCwIjNYJYbWRvXW1jHOg4cmBIkovm9sC1UW_UnPxWp98qaq_2FzGtlU7V2AQKW4vJiDjhlFAAJnuGGeHOWcupdqyyPh9Y8zJuwZraZtLTM-jzl-Dv1To-KIyIpL3klXB5JKT4a4Fc1NZnA9OkA8Qlq17QofonglbpxxfSTVxSqH9VVUQILgXdAT88tfTPy-NAq0AcBCbFnBM4ZXzZj3U3xalaU7vsqH121C476pidWtq_KH2k_6foL8LRy04 |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107484 crossref_primary_10_3389_fncom_2023_1294770 crossref_primary_10_3389_fphys_2024_1364880 |
Cites_doi | 10.1097/WNP.0000000000000533 10.1016/j.ebiom.2017.11.032 10.1109/TGRS.2018.2878510 10.3390/s22114232 10.1007/s40815-020-01030-5 10.3389/fncom.2023.1172987 10.1109/RBME.2020.3008792 10.1007/978-3-319-46478-7_31 10.1038/nrneurol.2009.80 10.1049/cp.2013.2060 10.3389/fnins.2016.00196 10.1109/TAFFC.2018.2885474 10.1155/2015/986736 10.1109/JSEN.2021.3057076 10.1111/epi.13670 10.1109/TNSRE.2020.2973434 10.48550/arXiv.2110.09410 10.1016/j.compbiomed.2008.04.010 10.1142/S0129065721500519 10.48550/arXiv.1505.07818 10.1007/s11042-023-14434-w 10.1109/JBHI.2020.2971610 10.1609/AAAI.V34I07.6846 10.48550/arXiv.2006.05873 10.1056/NEJM200002033420503 10.1109/SPMB.2017.8257015 10.1016/0013-4694(87)90093-9 10.3390/e22010096 10.1007/978-3-319-23344-4_37 10.1109/TNNLS.2020.3010780 10.1609/aaai.v32i1.11767 10.1515/bmt-2020-0250 10.48550/arXiv.2108.01301 10.48550/arXiv.1909.08184 10.1007/s40708-016-0045-3 10.1109/CVPR.2018.00745 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Yang, Li, Qin, Wen, Lin and Huang. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2023 Yang, Li, Qin, Wen, Lin and Huang. 2023 Yang, Li, Qin, Wen, Lin and Huang |
Copyright_xml | – notice: Copyright © 2023 Yang, Li, Qin, Wen, Lin and Huang. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2023 Yang, Li, Qin, Wen, Lin and Huang. 2023 Yang, Li, Qin, Wen, Lin and Huang |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.3389/fncom.2023.1195334 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5188 |
ExternalDocumentID | oai_doaj_org_article_1dd13b0737434ee59251537ffdd74af5 PMC10394297 37538929 10_3389_fncom_2023_1195334 |
Genre | Journal Article |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADMLS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ C1A CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE IPNFZ KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RIG RNS RPM TR2 NPM PQGLB 3V. 7XB 8FK PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c497t-be5fc73ece40fdb90dda14987339bef570b783eb4c83dac92df929b64bb7e5093 |
IEDL.DBID | BENPR |
ISSN | 1662-5188 |
IngestDate | Wed Aug 27 01:14:31 EDT 2025 Thu Aug 21 18:42:21 EDT 2025 Thu Jul 10 18:28:33 EDT 2025 Fri Jul 25 11:44:03 EDT 2025 Mon Jul 21 06:00:01 EDT 2025 Tue Jul 01 02:18:17 EDT 2025 Thu Apr 24 23:02:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | patient-independent epileptic seizure detection adversarial training feature separation EEG |
Language | English |
License | Copyright © 2023 Yang, Li, Qin, Wen, Lin and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-be5fc73ece40fdb90dda14987339bef570b783eb4c83dac92df929b64bb7e5093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Si Wu, Peking University, China Reviewed by: Xin Deng, Chongqing University of Posts and Telecommunications, China; Mario Versaci, Mediterranea University of Reggio Calabria, Italy |
OpenAccessLink | https://www.proquest.com/docview/2838879847?pq-origsite=%requestingapplication% |
PMID | 37538929 |
PQID | 2838879847 |
PQPubID | 4424409 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1dd13b0737434ee59251537ffdd74af5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10394297 proquest_miscellaneous_2846929384 proquest_journals_2838879847 pubmed_primary_37538929 crossref_citationtrail_10_3389_fncom_2023_1195334 crossref_primary_10_3389_fncom_2023_1195334 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-19 |
PublicationDateYYYYMMDD | 2023-07-19 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in computational neuroscience |
PublicationTitleAlternate | Front Comput Neurosci |
PublicationYear | 2023 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Matsuura (B17) 2020; 34 Fisher (B7) 2017; 58 Zhao (B36) 2021; 32 Rahim (B21) 2016; 3 Li (B13) 2020; 28 Dissanayake (B5) 2021; 21 Waheed (B29) 2023; 82 Fergus (B6) 2015; 2015 Zabihi (B34) 2013 Hu (B9) 2018 Pei (B19) 2018 White (B31) 2020 Yang (B32) 2023; 17 Zhang (B35) 2020; 24 Obeid (B18) 2016; 10 Rakhade (B22) 2009; 5 Liu (B15) 2022; 32 Ansari (B1) 2021; 66 Schirrmeister (B24) 2017 Tang (B26) 2020; 22 Azimi (B2) 2019; 57 Bui (B4) 2021 Wen (B30) 2016 Versaci (B28) 2022; 22 Maaten (B16) 2008; 9 Babb (B3) 1987; 66 Yu (B33) 2019 Rasheed (B23) 2021; 14 Kiral (B11) 2018; 27 Li (B14) 2021; 12 Ganin (B8) 2016; 17 Kwan (B12) 2000; 342 Sridevi (B25) 2019; 36 Indiradevi (B10) 2008; 38 Rahim (B20) 2015 Versaci (B27) 2021; 23 |
References_xml | – volume: 36 start-page: 14 year: 2019 ident: B25 article-title: Improved patient-independent system for detection of electrical onset of seizures. publication-title: J. Clin. Neurophysiol. doi: 10.1097/WNP.0000000000000533 – volume: 27 start-page: 103 year: 2018 ident: B11 article-title: Epileptic seizure prediction using big data and deep learning: Toward a mobile system. publication-title: EBioMedicine doi: 10.1016/j.ebiom.2017.11.032 – volume: 57 start-page: 2920 year: 2019 ident: B2 article-title: Aerial LaneNet: Lane-marking semantic segmentation in aerial imagery using wavelet-enhanced cost-sensitive symmetric fully convolutional neural networks. publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2878510 – volume: 22 year: 2022 ident: B28 article-title: A fuzzy similarity-based approach to classify numerically simulated and experimentally detected carbon fiber-reinforced polymer plate defects. publication-title: Sensors (Basel) doi: 10.3390/s22114232 – volume: 23 start-page: 918 year: 2021 ident: B27 article-title: Image edge detection: A new approach based on fuzzy entropy and fuzzy divergence. publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-020-01030-5 – volume: 17 year: 2023 ident: B32 article-title: Patient-specific approach using data fusion and adversarial training for epileptic seizure prediction. publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2023.1172987 – volume: 14 start-page: 139 year: 2021 ident: B23 article-title: Machine learning for predicting epileptic seizures using EEG signals: A review. publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2020.3008792 – year: 2016 ident: B30 article-title: A discriminative feature learning approach for deep face recognition publication-title: Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9911 doi: 10.1007/978-3-319-46478-7_31 – volume: 5 start-page: 380 year: 2009 ident: B22 article-title: Epileptogenesis in the immature brain: Emerging mechanisms. publication-title: Nat. Rev. Neurol. J. doi: 10.1038/nrneurol.2009.80 – year: 2013 ident: B34 article-title: Patient-specific epileptic seizure detection in long-term EEG recording in paediatric patients with intractable seizures publication-title: Proceedings of the IET Intelligent Signal Processing Conference 2013 (ISP 2013) doi: 10.1049/cp.2013.2060 – volume: 10 year: 2016 ident: B18 article-title: The temple university hospital EEG data corpus. publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00196 – volume: 12 start-page: 494 year: 2021 ident: B14 article-title: A Bi-hemisphere domain adversarial neural network model for EEG emotion recognition. publication-title: IEEE Trans. Affect. Comp. doi: 10.1109/TAFFC.2018.2885474 – volume: 2015 year: 2015 ident: B6 article-title: Automatic epileptic seizure detection using scalp EEG and advanced artificial intelligence techniques. publication-title: Biomed. Res. Int. doi: 10.1155/2015/986736 – volume: 21 start-page: 9377 year: 2021 ident: B5 article-title: Deep learning for patient-independent epileptic seizure prediction using scalp EEG signals. publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2021.3057076 – volume: 58 start-page: 522 year: 2017 ident: B7 article-title: Operational classification of seizure types by the international league against epilepsy: Position paper of the ILAE commission for classification and terminology. publication-title: Epilepsia doi: 10.1111/epi.13670 – volume: 28 start-page: 782 year: 2020 ident: B13 article-title: Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network. publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2973434 – year: 2021 ident: B4 article-title: Exploiting domain-specific features to enhance domain generalization. publication-title: NeurIPS [Preprint]. doi: 10.48550/arXiv.2110.09410 – volume: 38 start-page: 805 year: 2008 ident: B10 article-title: A multi-level wavelet approach for automatic detection of epileptic spikes in the electroencephalogram. publication-title: Comp. Biol. Med. doi: 10.1016/j.compbiomed.2008.04.010 – volume: 32 year: 2022 ident: B15 article-title: Patient-independent seizure detection based on channel-perturbation convolutional neural network and bidirectional long short-term memory. publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065721500519 – volume: 17 start-page: 2096 year: 2016 ident: B8 article-title: Domain-adversarial training of neural networks. publication-title: J. Mach. Learn. Res. doi: 10.48550/arXiv.1505.07818 – volume: 82 start-page: 20283 year: 2023 ident: B29 article-title: CNN deep learning-based image to vector depiction. publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-14434-w – volume: 24 start-page: 2852 year: 2020 ident: B35 article-title: Adversarial representation learning for robust patient-independent epileptic seizure detection. publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.2971610 – volume: 34 start-page: 11749 year: 2020 ident: B17 article-title: Domain generalization using a mixture of multiple latent domains. publication-title: AAAI doi: 10.1609/AAAI.V34I07.6846 – year: 2020 ident: B31 article-title: WasteNet: Waste classification at the edge for smart bins. publication-title: ArXiv [Preprint] doi: 10.48550/arXiv.2006.05873 – volume: 342 start-page: 314 year: 2000 ident: B12 article-title: Early identification of refractory epilepsy. publication-title: N. Engl. J. Med. doi: 10.1056/NEJM200002033420503 – year: 2017 ident: B24 article-title: Deep learning with convolutional neural networks for decoding and visualization of EEG pathology publication-title: Proceedings of the 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB) doi: 10.1109/SPMB.2017.8257015 – volume: 66 start-page: 467 year: 1987 ident: B3 article-title: Firing patterns of human limbic neurons during stereoencephalography (SEEG) and clinical temporal lobe seizures. publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(87)90093-9 – volume: 22 year: 2020 ident: B26 article-title: Conditional adversarial domain adaptation neural network for motor imagery EEG Decoding. publication-title: Entropy doi: 10.3390/e22010096 – year: 2015 ident: B20 article-title: Detection of diabetic retinopathy and maculopathy in eye fundus images using fuzzy image processing publication-title: Brain Informatics and Health. BIH 2015. Lecture Notes in Computer Science, vol 9250 doi: 10.1007/978-3-319-23344-4_37 – volume: 32 start-page: 535 year: 2021 ident: B36 article-title: Deep representation-based domain adaptation for nonstationary EEG classification. publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3010780 – year: 2018 ident: B19 article-title: Multi-adversarial domain adaptation publication-title: Thirty-Second Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) doi: 10.1609/aaai.v32i1.11767 – volume: 66 start-page: 267 year: 2021 ident: B1 article-title: A patient-independent classification system for onset detection of seizures. publication-title: Biomed. Tech. (Berl). doi: 10.1515/bmt-2020-0250 – volume: 9 start-page: 2579 year: 2008 ident: B16 article-title: Visualizing data using t-SNE. publication-title: J. Mach. Learn. Res. doi: 10.48550/arXiv.2108.01301 – year: 2019 ident: B33 article-title: Transfer learning with dynamic adversarial adaptation network publication-title: Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM) doi: 10.48550/arXiv.1909.08184 – volume: 3 start-page: 249 year: 2016 ident: B21 article-title: Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing. publication-title: Brain Inf. doi: 10.1007/s40708-016-0045-3 – start-page: 7132 year: 2018 ident: B9 article-title: Squeeze-and-excitation networks publication-title: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR.2018.00745 |
SSID | ssj0062650 |
Score | 2.337095 |
Snippet | An epileptic seizure is the external manifestation of abnormal neuronal discharges, which seriously affecting physical health. The pathogenesis of epilepsy is... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1195334 |
SubjectTerms | Accuracy adversarial training Convulsions & seizures Datasets EEG Electroencephalography Epilepsy epileptic seizure detection feature separation Information processing Methods Nervous system Neural networks Neuroscience Pathogenesis patient-independent Patients Seizures |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJy6oLf1IociVql6qlM3aie0jrYpQDz0ViZvljzGs1HoRmz3Ar--Mk43YCtFLr7ETOZ6x3xtn8oaxDwhi8yYpqNto2lrGztcGcaR289gh_if6n5KyLX505xfy-2V7-aDUF-WEDfLAw8SdNDE2wqMjItRJgNYgILdCpRSjki4V9VLEvE0wNezByNLb2fCLDIZg5iRlSg2hSuGfSeJMCLkFQ0Wt_zGK-Xem5APoOXvG9kfOyE-HsT5nO5BfsIPTjPHy7zv-kZcsznI8fsCuiNOtb4GvYFD1XmbucuSOCi-vHLkb35SF4EhYORJAPoqr1oupJm7PI_QlSyvzZeJwg5sHbi4BH7u4x8evXrKLs28_v57XYzGFOkij-tpDm4ISEEDOUvRmFqPD6EgrIYyH1KqZV1qAl0GL6IKZx4TMyXfSewXIKsQrtpuXGd4w7lPA2BM6F0g9zzvvO52EEl0yWhsIFWs2c2vDqDROb_bLYsRB9rDFHpbsYUd7VOzTdM_NoLPxZO8vZLKpJ2lklwvoOXb0HPsvz6nY0cbgdly4K4tsC7ddg5hdsfdTMy45-o7iMizX1Ed2ODdC4zheD_4xjURg-KexsWJ6y3O2hrrdkhfXRdabPsojO1Bv_8fLHbI9mjA6hW7MEdvtb9fwDulT74_LSvkDrcUbfA priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKuXBBpeWRUiojIS4oZbO24_iAUEFUFRKcWKm3yI9xWak4ZTcrUX49M3mJRaXX-CHH4_F8Y4-_YewVGrF5ETXkKhiVy1C63KAdye08lGj_I72npGiLr-X5Qn6-UBc7bEx3NEzg-lbXjvJJLVZXJ79-3rxHhX9HHifa27cxUeAH5QE_IQIzIeQ9dh8tkyZF_SKnWwXE7mrWP5z5T7st49Rx-N8GPP-Nn_zLIJ3tsYcDkuSnvegfsR1I--zgNKEX_eOGv-ZdbGd3aH7ALgnpbVbA19BzfTeJ2xS4pXTMa0uLkI_JIjjCWI6wkA-Uq_lyypTb8gBtF7uVeBM5XOOWgluOx26Xv7H79WO2OPv07eN5PqRYyL00us0dqOi1AA9yFoMzsxAs-kyVFsI4iErPnK4EOOkrEaw38xART7lSOqcBsYZ4wnZTk-AZ4y569EihtJ449Zx1rqyi0KKMpqoM-IwV49zWfuAfpz-7qtEPIXnUnTxqkkc9yCNjb6Y21z37xp21P5DIpprEnN19aFaX9aCIdRFCIRxubAidJIAyCPCU0DGGoKWNKmNHo8DrcTXWiMFwMzZoyTP2cipGRaTbFZug2VAdWeLciArH8bRfH9NIBDqFFRZmrNpaOVtD3S5Jy-8d2Tdd1SNm0Id3j-s5e0BTQafOhTliu-1qAy8QLrXuuNOBPxZoF14 priority: 102 providerName: Scholars Portal |
Title | Feature separation and adversarial training for the patient-independent detection of epileptic seizures |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37538929 https://www.proquest.com/docview/2838879847 https://www.proquest.com/docview/2846929384 https://pubmed.ncbi.nlm.nih.gov/PMC10394297 https://doaj.org/article/1dd13b0737434ee59251537ffdd74af5 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHkE2spIiAsK3ayd2D6hFrVUSFQIUWlvkZ9lJepsN9kD_HpmEid0EerFh9iJHI9n5pvxeIaQN6DE5kUQPi-dKnPuKpMr0CO5nrsK9H_A-5QYbXFRnV_yz4tykRxubQqrHGViL6hdY9FHfgRqEPhBgTD9sLrJsWoUnq6mEhr3yS6IYAnG1-7J6cXXb6MsBrRezoarMmCKqaMQMUQEK4a_x1RnjPEtddRn7f8f1Pw3YvKWCjp7RB4m7EiPB2I_Jvd8fEL2jiPYzde_6FvaR3P2bvI9coXYbrP2tPVDdu8mUh0d1ViAudW47ehYHoICcKUABGlKspovp9q4HXW-66O1Im0C9SsQIiBkLHx2-Rs-3z4ll2en3z-e56moQm65El1ufBmsYN56PgvOqJlzGqwkKRhTxodSzIyQzBtuJXPaqrkLgKBMxY0RHtAFe0Z2YhP9C0JNsGCD-kpbzKJntDGVDEywKigplbcZKca1rW3KOI5_9rMGywPpUff0qJEedaJHRt5N76yGfBt3jj5Bkk0jMVd2_6BZX9WJ9erCuYIZEGUAlrj3pQJIVzIRgnOC61BmZH8keJ0YuK3_breMvJ66gfXwPEVH32xwDK9gbZiEeTwf9sc0EwZmoITOjMitnbM11e2euPzRp_fGw3lACeLl3fN6RR7gUqCfuVD7ZKdbb_wBAKTOHCYuOOwdDNB-WhTQfuHyD2pjF48 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7QEuCCiPQAEjARcUuontOD4g1EKrLS0rhFqpt-BnWQmSZTcrVH4Uv5GZvGAR6q3XtRN5Pa9vnPE3hDyDIJYmQfpYOCVi7jITK4gjsU5dBvE_4H1KrLaYZpNT_v5MnG2QX_1dGCyr7H1i46hdZfGMfAfCINiDAmf6Zv49xq5R-HW1b6HRqsWRv_gBKdvy9eE7kO_zND3YP3k7ibuuArHlStax8SJYybz1fBycUWPnNKQJuWRMGR-EHBuZM2-4zZnTVqUuAIQwGTdGetGQL4HL3-QMUpkR2dzbn3781Pt-yA7EuL2aA6mf2gkllqRgh_JXSK3GGF8Lf02XgP9B238rNP8KeQc3yY0Oq9LdVrlukQ1f3iZbuyXk6d8u6AvaVI82x_Jb5Byx5Grh6dK3bOJVSXXpqMaGz0uNak77dhQUgDIF4Ek7Utd4NvTiranzdVMdVtIqUD8HpwVOzcJrZz_h9cs75PRKtvsuGZVV6e8TaoKFnNdn2iJrn9HGZHlgkmVB5bnyNiJJv7eF7RjO8Z99LSDTQXkUjTwKlEfRySMiL4dn5i2_x6Wz91Bkw0zk5m5-qBbnRWfqReJcwgy4TgBn3HuhAEIKJkNwTnIdRES2e4EXncNYFn_UOyJPh2Ewdfx-o0tfrXAOz2BvWA7ruNfqx7ASBmlnDoMRydc0Z22p6yPl7EtDJ47FAIBK5IPL1_WEXJucfDgujg-nRw_JddwWPONO1DYZ1YuVfwTgrDaPO4ug5PNVG-FvLKBTjg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYS4IKA8QgsYCbigsEmcxPEBoZZ21VK0qhCVejPxq10JnO1mV6j8NH4dM3nBItRbr2sn8npe3zjjbwh5CUEsiR23YWZEFqYmV6GAOBKWickh_ju8T4nVFtP88DT9eJadbZBf_V0YLKvsfWLjqE2l8Yx8DGEQ7EGAMx27riziZH_yfn4ZYgcp_NLat9NoVeTYXv2A9K1-d7QPsn6VJJODLx8Ow67DQKhTwZehspnTnFlt08gZJSJjSkgZCs6YUNZlPFK8YFalumCm1CIxDuCEylOluM0aIiZw_5scsqJoRDb3DqYnn_s4AJlCFrXXdCANFGPnsTwFu5W_RZo1xtK1UNh0DPgfzP23WvOv8De5S-50uJXutop2j2xYf59s7XrI2b9f0de0qSRtjui3yDniytXC0tq2zOKVp6U3tMTmz3WJKk_71hQUQDMFEEo7gtdwNvTlXVJjl02lmKeVo3YODgwcnIbXzn7C6-sH5PRGtvshGfnK28eEKqch_7V5qZHBT5VK5YVjnOVOFIWwOiBxv7dSd2zn-M--Sch6UB6ykYdEechOHgF5Mzwzb7k-rp29hyIbZiJPd_NDtTiXndnL2JiYKXCjANRSazMBcDJj3DljeFq6LCA7vcBl5zxq-UfVA_JiGAazx285pbfVCuekOewNK2Adj1r9GFbCIAUtYDAgxZrmrC11fcTPLhpqcSwMAITCn1y_rufkFhif_HQ0Pd4mt3FX8Lg7FjtktFys7FPAaUv1rDMISr7etA3-BpRDV8M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+separation+and+adversarial+training+for+the+patient-independent+detection+of+epileptic+seizures&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Yang%2C+Yong&rft.au=Li%2C+Feng&rft.au=Qin%2C+Xiaolin&rft.au=Wen%2C+Han&rft.date=2023-07-19&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5188&rft_id=info:doi/10.3389%2Ffncom.2023.1195334&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon |