Feature separation and adversarial training for the patient-independent detection of epileptic seizures

An epileptic seizure is the external manifestation of abnormal neuronal discharges, which seriously affecting physical health. The pathogenesis of epilepsy is complex, and the types of epileptic seizures are diverse, resulting in significant variation in epileptic seizure data between subjects. If w...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in computational neuroscience Vol. 17; p. 1195334
Main Authors Yang, Yong, Li, Feng, Qin, Xiaolin, Wen, Han, Lin, Xiaoguang, Huang, Dong
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 19.07.2023
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An epileptic seizure is the external manifestation of abnormal neuronal discharges, which seriously affecting physical health. The pathogenesis of epilepsy is complex, and the types of epileptic seizures are diverse, resulting in significant variation in epileptic seizure data between subjects. If we feed epilepsy data from multiple patients directly into the model for training, it will lead to underfitting of the model. To overcome this problem, we propose a robust epileptic seizure detection model that effectively learns from multiple patients while eliminating the negative impact of the data distribution shift between patients. The model adopts a multi-level temporal-spectral feature extraction network to achieve feature extraction, a feature separation network to separate features into category-related and patient-related components, and an invariant feature extraction network to extract essential feature information related to categories. The proposed model is evaluated on the TUH dataset using leave-one-out cross-validation and achieves an average accuracy of 85.7%. The experimental results show that the proposed model is superior to the related literature and provides a valuable reference for the clinical application of epilepsy detection.
AbstractList An epileptic seizure is the external manifestation of abnormal neuronal discharges, which seriously affecting physical health. The pathogenesis of epilepsy is complex, and the types of epileptic seizures are diverse, resulting in significant variation in epileptic seizure data between subjects. If we feed epilepsy data from multiple patients directly into the model for training, it will lead to underfitting of the model. To overcome this problem, we propose a robust epileptic seizure detection model that effectively learns from multiple patients while eliminating the negative impact of the data distribution shift between patients. The model adopts a multi-level temporal-spectral feature extraction network to achieve feature extraction, a feature separation network to separate features into category-related and patient-related components, and an invariant feature extraction network to extract essential feature information related to categories. The proposed model is evaluated on the TUH dataset using leave-one-out cross-validation and achieves an average accuracy of 85.7%. The experimental results show that the proposed model is superior to the related literature and provides a valuable reference for the clinical application of epilepsy detection.
An epileptic seizure is the external manifestation of abnormal neuronal discharges, which seriously affecting physical health. The pathogenesis of epilepsy is complex, and the types of epileptic seizures are diverse, resulting in significant variation in epileptic seizure data between subjects. If we feed epilepsy data from multiple patients directly into the model for training, it will lead to underfitting of the model. To overcome this problem, we propose a robust epileptic seizure detection model that effectively learns from multiple patients while eliminating the negative impact of the data distribution shift between patients. The model adopts a multi-level temporal-spectral feature extraction network to achieve feature extraction, a feature separation network to separate features into category-related and patient-related components, and an invariant feature extraction network to extract essential feature information related to categories. The proposed model is evaluated on the TUH dataset using leave-one-out cross-validation and achieves an average accuracy of 85.7%. The experimental results show that the proposed model is superior to the related literature and provides a valuable reference for the clinical application of epilepsy detection.An epileptic seizure is the external manifestation of abnormal neuronal discharges, which seriously affecting physical health. The pathogenesis of epilepsy is complex, and the types of epileptic seizures are diverse, resulting in significant variation in epileptic seizure data between subjects. If we feed epilepsy data from multiple patients directly into the model for training, it will lead to underfitting of the model. To overcome this problem, we propose a robust epileptic seizure detection model that effectively learns from multiple patients while eliminating the negative impact of the data distribution shift between patients. The model adopts a multi-level temporal-spectral feature extraction network to achieve feature extraction, a feature separation network to separate features into category-related and patient-related components, and an invariant feature extraction network to extract essential feature information related to categories. The proposed model is evaluated on the TUH dataset using leave-one-out cross-validation and achieves an average accuracy of 85.7%. The experimental results show that the proposed model is superior to the related literature and provides a valuable reference for the clinical application of epilepsy detection.
Author Li, Feng
Lin, Xiaoguang
Huang, Dong
Wen, Han
Qin, Xiaolin
Yang, Yong
AuthorAffiliation 4 Department of Neurology, The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
1 Chengdu Institute of Computer Application, Chinese Academy of Sciences , Chengdu, Sichuan , China
2 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing , China
3 Chongqing School, University of Chinese Academy of Sciences , Chongqing , China
AuthorAffiliation_xml – name: 1 Chengdu Institute of Computer Application, Chinese Academy of Sciences , Chengdu, Sichuan , China
– name: 2 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing , China
– name: 3 Chongqing School, University of Chinese Academy of Sciences , Chongqing , China
– name: 4 Department of Neurology, The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
Author_xml – sequence: 1
  givenname: Yong
  surname: Yang
  fullname: Yang, Yong
– sequence: 2
  givenname: Feng
  surname: Li
  fullname: Li, Feng
– sequence: 3
  givenname: Xiaolin
  surname: Qin
  fullname: Qin, Xiaolin
– sequence: 4
  givenname: Han
  surname: Wen
  fullname: Wen, Han
– sequence: 5
  givenname: Xiaoguang
  surname: Lin
  fullname: Lin, Xiaoguang
– sequence: 6
  givenname: Dong
  surname: Huang
  fullname: Huang, Dong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37538929$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vFSEUhiemxn7oH3BhJnHTzVxhgAFWxjS2NmniRteEgcMtN3NhBKaJ_nq5HzVtF26AwHuevIfznjcnIQZomvcYrQgR8pMLJm5XPerJCmPJCKGvmjM8DH3HsBAnT86nzXnOG4SGfmDoTXNKOKuAXp4162vQZUnQZph10sXH0OpgW20fIGWdvJ7akrQPPqxbF1Nb7qGdqw5C6XywMENdQmktFDD78uhamP0Ec_GmYv2fis9vm9dOTxneHfeL5uf11x9X37q77ze3V1_uOkMlL90IzBlOwABFzo4SWasxlYITIkdwjKORCwIjNYJYbWRvXW1jHOg4cmBIkovm9sC1UW_UnPxWp98qaq_2FzGtlU7V2AQKW4vJiDjhlFAAJnuGGeHOWcupdqyyPh9Y8zJuwZraZtLTM-jzl-Dv1To-KIyIpL3klXB5JKT4a4Fc1NZnA9OkA8Qlq17QofonglbpxxfSTVxSqH9VVUQILgXdAT88tfTPy-NAq0AcBCbFnBM4ZXzZj3U3xalaU7vsqH121C476pidWtq_KH2k_6foL8LRy04
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107484
crossref_primary_10_3389_fncom_2023_1294770
crossref_primary_10_3389_fphys_2024_1364880
Cites_doi 10.1097/WNP.0000000000000533
10.1016/j.ebiom.2017.11.032
10.1109/TGRS.2018.2878510
10.3390/s22114232
10.1007/s40815-020-01030-5
10.3389/fncom.2023.1172987
10.1109/RBME.2020.3008792
10.1007/978-3-319-46478-7_31
10.1038/nrneurol.2009.80
10.1049/cp.2013.2060
10.3389/fnins.2016.00196
10.1109/TAFFC.2018.2885474
10.1155/2015/986736
10.1109/JSEN.2021.3057076
10.1111/epi.13670
10.1109/TNSRE.2020.2973434
10.48550/arXiv.2110.09410
10.1016/j.compbiomed.2008.04.010
10.1142/S0129065721500519
10.48550/arXiv.1505.07818
10.1007/s11042-023-14434-w
10.1109/JBHI.2020.2971610
10.1609/AAAI.V34I07.6846
10.48550/arXiv.2006.05873
10.1056/NEJM200002033420503
10.1109/SPMB.2017.8257015
10.1016/0013-4694(87)90093-9
10.3390/e22010096
10.1007/978-3-319-23344-4_37
10.1109/TNNLS.2020.3010780
10.1609/aaai.v32i1.11767
10.1515/bmt-2020-0250
10.48550/arXiv.2108.01301
10.48550/arXiv.1909.08184
10.1007/s40708-016-0045-3
10.1109/CVPR.2018.00745
ContentType Journal Article
Copyright Copyright © 2023 Yang, Li, Qin, Wen, Lin and Huang.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2023 Yang, Li, Qin, Wen, Lin and Huang. 2023 Yang, Li, Qin, Wen, Lin and Huang
Copyright_xml – notice: Copyright © 2023 Yang, Li, Qin, Wen, Lin and Huang.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2023 Yang, Li, Qin, Wen, Lin and Huang. 2023 Yang, Li, Qin, Wen, Lin and Huang
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.3389/fncom.2023.1195334
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef


MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5188
ExternalDocumentID oai_doaj_org_article_1dd13b0737434ee59251537ffdd74af5
PMC10394297
37538929
10_3389_fncom_2023_1195334
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADMLS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
C1A
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
IPNFZ
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RIG
RNS
RPM
TR2
NPM
PQGLB
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c497t-be5fc73ece40fdb90dda14987339bef570b783eb4c83dac92df929b64bb7e5093
IEDL.DBID BENPR
ISSN 1662-5188
IngestDate Wed Aug 27 01:14:31 EDT 2025
Thu Aug 21 18:42:21 EDT 2025
Thu Jul 10 18:28:33 EDT 2025
Fri Jul 25 11:44:03 EDT 2025
Mon Jul 21 06:00:01 EDT 2025
Tue Jul 01 02:18:17 EDT 2025
Thu Apr 24 23:02:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords patient-independent
epileptic seizure detection
adversarial training
feature separation
EEG
Language English
License Copyright © 2023 Yang, Li, Qin, Wen, Lin and Huang.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-be5fc73ece40fdb90dda14987339bef570b783eb4c83dac92df929b64bb7e5093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Si Wu, Peking University, China
Reviewed by: Xin Deng, Chongqing University of Posts and Telecommunications, China; Mario Versaci, Mediterranea University of Reggio Calabria, Italy
OpenAccessLink https://www.proquest.com/docview/2838879847?pq-origsite=%requestingapplication%
PMID 37538929
PQID 2838879847
PQPubID 4424409
ParticipantIDs doaj_primary_oai_doaj_org_article_1dd13b0737434ee59251537ffdd74af5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10394297
proquest_miscellaneous_2846929384
proquest_journals_2838879847
pubmed_primary_37538929
crossref_citationtrail_10_3389_fncom_2023_1195334
crossref_primary_10_3389_fncom_2023_1195334
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-19
PublicationDateYYYYMMDD 2023-07-19
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-19
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in computational neuroscience
PublicationTitleAlternate Front Comput Neurosci
PublicationYear 2023
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Matsuura (B17) 2020; 34
Fisher (B7) 2017; 58
Zhao (B36) 2021; 32
Rahim (B21) 2016; 3
Li (B13) 2020; 28
Dissanayake (B5) 2021; 21
Waheed (B29) 2023; 82
Fergus (B6) 2015; 2015
Zabihi (B34) 2013
Hu (B9) 2018
Pei (B19) 2018
White (B31) 2020
Yang (B32) 2023; 17
Zhang (B35) 2020; 24
Obeid (B18) 2016; 10
Rakhade (B22) 2009; 5
Liu (B15) 2022; 32
Ansari (B1) 2021; 66
Schirrmeister (B24) 2017
Tang (B26) 2020; 22
Azimi (B2) 2019; 57
Bui (B4) 2021
Wen (B30) 2016
Versaci (B28) 2022; 22
Maaten (B16) 2008; 9
Babb (B3) 1987; 66
Yu (B33) 2019
Rasheed (B23) 2021; 14
Kiral (B11) 2018; 27
Li (B14) 2021; 12
Ganin (B8) 2016; 17
Kwan (B12) 2000; 342
Sridevi (B25) 2019; 36
Indiradevi (B10) 2008; 38
Rahim (B20) 2015
Versaci (B27) 2021; 23
References_xml – volume: 36
  start-page: 14
  year: 2019
  ident: B25
  article-title: Improved patient-independent system for detection of electrical onset of seizures.
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/WNP.0000000000000533
– volume: 27
  start-page: 103
  year: 2018
  ident: B11
  article-title: Epileptic seizure prediction using big data and deep learning: Toward a mobile system.
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2017.11.032
– volume: 57
  start-page: 2920
  year: 2019
  ident: B2
  article-title: Aerial LaneNet: Lane-marking semantic segmentation in aerial imagery using wavelet-enhanced cost-sensitive symmetric fully convolutional neural networks.
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2878510
– volume: 22
  year: 2022
  ident: B28
  article-title: A fuzzy similarity-based approach to classify numerically simulated and experimentally detected carbon fiber-reinforced polymer plate defects.
  publication-title: Sensors (Basel)
  doi: 10.3390/s22114232
– volume: 23
  start-page: 918
  year: 2021
  ident: B27
  article-title: Image edge detection: A new approach based on fuzzy entropy and fuzzy divergence.
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-020-01030-5
– volume: 17
  year: 2023
  ident: B32
  article-title: Patient-specific approach using data fusion and adversarial training for epileptic seizure prediction.
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2023.1172987
– volume: 14
  start-page: 139
  year: 2021
  ident: B23
  article-title: Machine learning for predicting epileptic seizures using EEG signals: A review.
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2020.3008792
– year: 2016
  ident: B30
  article-title: A discriminative feature learning approach for deep face recognition
  publication-title: Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9911
  doi: 10.1007/978-3-319-46478-7_31
– volume: 5
  start-page: 380
  year: 2009
  ident: B22
  article-title: Epileptogenesis in the immature brain: Emerging mechanisms.
  publication-title: Nat. Rev. Neurol. J.
  doi: 10.1038/nrneurol.2009.80
– year: 2013
  ident: B34
  article-title: Patient-specific epileptic seizure detection in long-term EEG recording in paediatric patients with intractable seizures
  publication-title: Proceedings of the IET Intelligent Signal Processing Conference 2013 (ISP 2013)
  doi: 10.1049/cp.2013.2060
– volume: 10
  year: 2016
  ident: B18
  article-title: The temple university hospital EEG data corpus.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00196
– volume: 12
  start-page: 494
  year: 2021
  ident: B14
  article-title: A Bi-hemisphere domain adversarial neural network model for EEG emotion recognition.
  publication-title: IEEE Trans. Affect. Comp.
  doi: 10.1109/TAFFC.2018.2885474
– volume: 2015
  year: 2015
  ident: B6
  article-title: Automatic epileptic seizure detection using scalp EEG and advanced artificial intelligence techniques.
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2015/986736
– volume: 21
  start-page: 9377
  year: 2021
  ident: B5
  article-title: Deep learning for patient-independent epileptic seizure prediction using scalp EEG signals.
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2021.3057076
– volume: 58
  start-page: 522
  year: 2017
  ident: B7
  article-title: Operational classification of seizure types by the international league against epilepsy: Position paper of the ILAE commission for classification and terminology.
  publication-title: Epilepsia
  doi: 10.1111/epi.13670
– volume: 28
  start-page: 782
  year: 2020
  ident: B13
  article-title: Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network.
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2973434
– year: 2021
  ident: B4
  article-title: Exploiting domain-specific features to enhance domain generalization.
  publication-title: NeurIPS [Preprint].
  doi: 10.48550/arXiv.2110.09410
– volume: 38
  start-page: 805
  year: 2008
  ident: B10
  article-title: A multi-level wavelet approach for automatic detection of epileptic spikes in the electroencephalogram.
  publication-title: Comp. Biol. Med.
  doi: 10.1016/j.compbiomed.2008.04.010
– volume: 32
  year: 2022
  ident: B15
  article-title: Patient-independent seizure detection based on channel-perturbation convolutional neural network and bidirectional long short-term memory.
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065721500519
– volume: 17
  start-page: 2096
  year: 2016
  ident: B8
  article-title: Domain-adversarial training of neural networks.
  publication-title: J. Mach. Learn. Res.
  doi: 10.48550/arXiv.1505.07818
– volume: 82
  start-page: 20283
  year: 2023
  ident: B29
  article-title: CNN deep learning-based image to vector depiction.
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-14434-w
– volume: 24
  start-page: 2852
  year: 2020
  ident: B35
  article-title: Adversarial representation learning for robust patient-independent epileptic seizure detection.
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2971610
– volume: 34
  start-page: 11749
  year: 2020
  ident: B17
  article-title: Domain generalization using a mixture of multiple latent domains.
  publication-title: AAAI
  doi: 10.1609/AAAI.V34I07.6846
– year: 2020
  ident: B31
  article-title: WasteNet: Waste classification at the edge for smart bins.
  publication-title: ArXiv [Preprint]
  doi: 10.48550/arXiv.2006.05873
– volume: 342
  start-page: 314
  year: 2000
  ident: B12
  article-title: Early identification of refractory epilepsy.
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM200002033420503
– year: 2017
  ident: B24
  article-title: Deep learning with convolutional neural networks for decoding and visualization of EEG pathology
  publication-title: Proceedings of the 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)
  doi: 10.1109/SPMB.2017.8257015
– volume: 66
  start-page: 467
  year: 1987
  ident: B3
  article-title: Firing patterns of human limbic neurons during stereoencephalography (SEEG) and clinical temporal lobe seizures.
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(87)90093-9
– volume: 22
  year: 2020
  ident: B26
  article-title: Conditional adversarial domain adaptation neural network for motor imagery EEG Decoding.
  publication-title: Entropy
  doi: 10.3390/e22010096
– year: 2015
  ident: B20
  article-title: Detection of diabetic retinopathy and maculopathy in eye fundus images using fuzzy image processing
  publication-title: Brain Informatics and Health. BIH 2015. Lecture Notes in Computer Science, vol 9250
  doi: 10.1007/978-3-319-23344-4_37
– volume: 32
  start-page: 535
  year: 2021
  ident: B36
  article-title: Deep representation-based domain adaptation for nonstationary EEG classification.
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3010780
– year: 2018
  ident: B19
  article-title: Multi-adversarial domain adaptation
  publication-title: Thirty-Second Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)
  doi: 10.1609/aaai.v32i1.11767
– volume: 66
  start-page: 267
  year: 2021
  ident: B1
  article-title: A patient-independent classification system for onset detection of seizures.
  publication-title: Biomed. Tech. (Berl).
  doi: 10.1515/bmt-2020-0250
– volume: 9
  start-page: 2579
  year: 2008
  ident: B16
  article-title: Visualizing data using t-SNE.
  publication-title: J. Mach. Learn. Res.
  doi: 10.48550/arXiv.2108.01301
– year: 2019
  ident: B33
  article-title: Transfer learning with dynamic adversarial adaptation network
  publication-title: Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM)
  doi: 10.48550/arXiv.1909.08184
– volume: 3
  start-page: 249
  year: 2016
  ident: B21
  article-title: Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing.
  publication-title: Brain Inf.
  doi: 10.1007/s40708-016-0045-3
– start-page: 7132
  year: 2018
  ident: B9
  article-title: Squeeze-and-excitation networks
  publication-title: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
  doi: 10.1109/CVPR.2018.00745
SSID ssj0062650
Score 2.337095
Snippet An epileptic seizure is the external manifestation of abnormal neuronal discharges, which seriously affecting physical health. The pathogenesis of epilepsy is...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1195334
SubjectTerms Accuracy
adversarial training
Convulsions & seizures
Datasets
EEG
Electroencephalography
Epilepsy
epileptic seizure detection
feature separation
Information processing
Methods
Nervous system
Neural networks
Neuroscience
Pathogenesis
patient-independent
Patients
Seizures
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJy6oLf1IociVql6qlM3aie0jrYpQDz0ViZvljzGs1HoRmz3Ar--Mk43YCtFLr7ETOZ6x3xtn8oaxDwhi8yYpqNto2lrGztcGcaR289gh_if6n5KyLX505xfy-2V7-aDUF-WEDfLAw8SdNDE2wqMjItRJgNYgILdCpRSjki4V9VLEvE0wNezByNLb2fCLDIZg5iRlSg2hSuGfSeJMCLkFQ0Wt_zGK-Xem5APoOXvG9kfOyE-HsT5nO5BfsIPTjPHy7zv-kZcsznI8fsCuiNOtb4GvYFD1XmbucuSOCi-vHLkb35SF4EhYORJAPoqr1oupJm7PI_QlSyvzZeJwg5sHbi4BH7u4x8evXrKLs28_v57XYzGFOkij-tpDm4ISEEDOUvRmFqPD6EgrIYyH1KqZV1qAl0GL6IKZx4TMyXfSewXIKsQrtpuXGd4w7lPA2BM6F0g9zzvvO52EEl0yWhsIFWs2c2vDqDROb_bLYsRB9rDFHpbsYUd7VOzTdM_NoLPxZO8vZLKpJ2lklwvoOXb0HPsvz6nY0cbgdly4K4tsC7ddg5hdsfdTMy45-o7iMizX1Ed2ODdC4zheD_4xjURg-KexsWJ6y3O2hrrdkhfXRdabPsojO1Bv_8fLHbI9mjA6hW7MEdvtb9fwDulT74_LSvkDrcUbfA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKuXBBpeWRUiojIS4oZbO24_iAUEFUFRKcWKm3yI9xWak4ZTcrUX49M3mJRaXX-CHH4_F8Y4-_YewVGrF5ETXkKhiVy1C63KAdye08lGj_I72npGiLr-X5Qn6-UBc7bEx3NEzg-lbXjvJJLVZXJ79-3rxHhX9HHifa27cxUeAH5QE_IQIzIeQ9dh8tkyZF_SKnWwXE7mrWP5z5T7st49Rx-N8GPP-Nn_zLIJ3tsYcDkuSnvegfsR1I--zgNKEX_eOGv-ZdbGd3aH7ALgnpbVbA19BzfTeJ2xS4pXTMa0uLkI_JIjjCWI6wkA-Uq_lyypTb8gBtF7uVeBM5XOOWgluOx26Xv7H79WO2OPv07eN5PqRYyL00us0dqOi1AA9yFoMzsxAs-kyVFsI4iErPnK4EOOkrEaw38xART7lSOqcBsYZ4wnZTk-AZ4y569EihtJ449Zx1rqyi0KKMpqoM-IwV49zWfuAfpz-7qtEPIXnUnTxqkkc9yCNjb6Y21z37xp21P5DIpprEnN19aFaX9aCIdRFCIRxubAidJIAyCPCU0DGGoKWNKmNHo8DrcTXWiMFwMzZoyTP2cipGRaTbFZug2VAdWeLciArH8bRfH9NIBDqFFRZmrNpaOVtD3S5Jy-8d2Tdd1SNm0Id3j-s5e0BTQafOhTliu-1qAy8QLrXuuNOBPxZoF14
  priority: 102
  providerName: Scholars Portal
Title Feature separation and adversarial training for the patient-independent detection of epileptic seizures
URI https://www.ncbi.nlm.nih.gov/pubmed/37538929
https://www.proquest.com/docview/2838879847
https://www.proquest.com/docview/2846929384
https://pubmed.ncbi.nlm.nih.gov/PMC10394297
https://doaj.org/article/1dd13b0737434ee59251537ffdd74af5
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHkE2spIiAsK3ayd2D6hFrVUSFQIUWlvkZ9lJepsN9kD_HpmEid0EerFh9iJHI9n5pvxeIaQN6DE5kUQPi-dKnPuKpMr0CO5nrsK9H_A-5QYbXFRnV_yz4tykRxubQqrHGViL6hdY9FHfgRqEPhBgTD9sLrJsWoUnq6mEhr3yS6IYAnG1-7J6cXXb6MsBrRezoarMmCKqaMQMUQEK4a_x1RnjPEtddRn7f8f1Pw3YvKWCjp7RB4m7EiPB2I_Jvd8fEL2jiPYzde_6FvaR3P2bvI9coXYbrP2tPVDdu8mUh0d1ViAudW47ehYHoICcKUABGlKspovp9q4HXW-66O1Im0C9SsQIiBkLHx2-Rs-3z4ll2en3z-e56moQm65El1ufBmsYN56PgvOqJlzGqwkKRhTxodSzIyQzBtuJXPaqrkLgKBMxY0RHtAFe0Z2YhP9C0JNsGCD-kpbzKJntDGVDEywKigplbcZKca1rW3KOI5_9rMGywPpUff0qJEedaJHRt5N76yGfBt3jj5Bkk0jMVd2_6BZX9WJ9erCuYIZEGUAlrj3pQJIVzIRgnOC61BmZH8keJ0YuK3_breMvJ66gfXwPEVH32xwDK9gbZiEeTwf9sc0EwZmoITOjMitnbM11e2euPzRp_fGw3lACeLl3fN6RR7gUqCfuVD7ZKdbb_wBAKTOHCYuOOwdDNB-WhTQfuHyD2pjF48
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7QEuCCiPQAEjARcUuontOD4g1EKrLS0rhFqpt-BnWQmSZTcrVH4Uv5GZvGAR6q3XtRN5Pa9vnPE3hDyDIJYmQfpYOCVi7jITK4gjsU5dBvE_4H1KrLaYZpNT_v5MnG2QX_1dGCyr7H1i46hdZfGMfAfCINiDAmf6Zv49xq5R-HW1b6HRqsWRv_gBKdvy9eE7kO_zND3YP3k7ibuuArHlStax8SJYybz1fBycUWPnNKQJuWRMGR-EHBuZM2-4zZnTVqUuAIQwGTdGetGQL4HL3-QMUpkR2dzbn3781Pt-yA7EuL2aA6mf2gkllqRgh_JXSK3GGF8Lf02XgP9B238rNP8KeQc3yY0Oq9LdVrlukQ1f3iZbuyXk6d8u6AvaVI82x_Jb5Byx5Grh6dK3bOJVSXXpqMaGz0uNak77dhQUgDIF4Ek7Utd4NvTiranzdVMdVtIqUD8HpwVOzcJrZz_h9cs75PRKtvsuGZVV6e8TaoKFnNdn2iJrn9HGZHlgkmVB5bnyNiJJv7eF7RjO8Z99LSDTQXkUjTwKlEfRySMiL4dn5i2_x6Wz91Bkw0zk5m5-qBbnRWfqReJcwgy4TgBn3HuhAEIKJkNwTnIdRES2e4EXncNYFn_UOyJPh2Ewdfx-o0tfrXAOz2BvWA7ruNfqx7ASBmlnDoMRydc0Z22p6yPl7EtDJ47FAIBK5IPL1_WEXJucfDgujg-nRw_JddwWPONO1DYZ1YuVfwTgrDaPO4ug5PNVG-FvLKBTjg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYS4IKA8QgsYCbigsEmcxPEBoZZ21VK0qhCVejPxq10JnO1mV6j8NH4dM3nBItRbr2sn8npe3zjjbwh5CUEsiR23YWZEFqYmV6GAOBKWickh_ju8T4nVFtP88DT9eJadbZBf_V0YLKvsfWLjqE2l8Yx8DGEQ7EGAMx27riziZH_yfn4ZYgcp_NLat9NoVeTYXv2A9K1-d7QPsn6VJJODLx8Ow67DQKhTwZehspnTnFlt08gZJSJjSkgZCs6YUNZlPFK8YFalumCm1CIxDuCEylOluM0aIiZw_5scsqJoRDb3DqYnn_s4AJlCFrXXdCANFGPnsTwFu5W_RZo1xtK1UNh0DPgfzP23WvOv8De5S-50uJXutop2j2xYf59s7XrI2b9f0de0qSRtjui3yDniytXC0tq2zOKVp6U3tMTmz3WJKk_71hQUQDMFEEo7gtdwNvTlXVJjl02lmKeVo3YODgwcnIbXzn7C6-sH5PRGtvshGfnK28eEKqch_7V5qZHBT5VK5YVjnOVOFIWwOiBxv7dSd2zn-M--Sch6UB6ykYdEechOHgF5Mzwzb7k-rp29hyIbZiJPd_NDtTiXndnL2JiYKXCjANRSazMBcDJj3DljeFq6LCA7vcBl5zxq-UfVA_JiGAazx285pbfVCuekOewNK2Adj1r9GFbCIAUtYDAgxZrmrC11fcTPLhpqcSwMAITCn1y_rufkFhif_HQ0Pd4mt3FX8Lg7FjtktFys7FPAaUv1rDMISr7etA3-BpRDV8M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+separation+and+adversarial+training+for+the+patient-independent+detection+of+epileptic+seizures&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Yang%2C+Yong&rft.au=Li%2C+Feng&rft.au=Qin%2C+Xiaolin&rft.au=Wen%2C+Han&rft.date=2023-07-19&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5188&rft_id=info:doi/10.3389%2Ffncom.2023.1195334&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon