Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O
► Incorporation of grass-clover in soil causes increased emission of N2O. ► Interaction of available organic C and mineral N governs release of greenhouse gas. ► Anaerobically digested manures/biomass do not impact soil fertility and microbiota. Anaerobic digestion of animal manure and crop residues...
Saved in:
Published in | Applied soil ecology : a section of Agriculture, ecosystems & environment Vol. 63; pp. 36 - 44 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
01.01.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Incorporation of grass-clover in soil causes increased emission of N2O. ► Interaction of available organic C and mineral N governs release of greenhouse gas. ► Anaerobically digested manures/biomass do not impact soil fertility and microbiota.
Anaerobic digestion of animal manure and crop residues may be employed to produce biogas as a climate-neutral source of energy and to recycle plant nutrients as fertilizers. However, especially organic farmers are concerned that fertilizing with the digestates may impact the soil microbiota and fertility because they contain more mineral nitrogen (N) and less organic carbon (C) than the non-digested input materials (e.g. raw animal slurry or fresh plant residues). Hence, an incubation study was performed where (1) water, (2) raw cattle slurry, (3) anaerobically digested cattle slurry/maize, (4) anaerobically digested cattle slurry/grass-clover, or (5) fresh grass-clover was applied to soil at arable realistic rates. Experimental unites were sequentially sampled destructively after 1, 3 and 9 days of incubation and the soil assayed for content of mineral N, available organic C, emission of CO2 and N2O, microbial phospholipid fatty acids (biomass and community composition) and catabolic response profiling (functional diversity). Fertilizing with the anaerobically digested materials increased the soil concentration of NO3− ca. 30–40% compared to when raw cattle slurry was applied. Grass-clover contributed with four times more readily degradable organic C than the other materials, causing an increased microbial biomass which depleted the soil for mineral N and probably also O2. Consequently, grass-clover also caused a ∼10 times increase in emissions of CO2 and N2O greenhouse gasses compared to any of the other treatments during the 9 days. Regarding microbial community composition, grass-clover induced the largest changes in microbial diversity measures compared to the controls, where raw cattle slurry and the two anaerobically digested materials (cattle slurry/maize, cattle slurry/grass-clover) only induced minor and transient changes. |
---|---|
AbstractList | ► Incorporation of grass-clover in soil causes increased emission of N2O. ► Interaction of available organic C and mineral N governs release of greenhouse gas. ► Anaerobically digested manures/biomass do not impact soil fertility and microbiota.
Anaerobic digestion of animal manure and crop residues may be employed to produce biogas as a climate-neutral source of energy and to recycle plant nutrients as fertilizers. However, especially organic farmers are concerned that fertilizing with the digestates may impact the soil microbiota and fertility because they contain more mineral nitrogen (N) and less organic carbon (C) than the non-digested input materials (e.g. raw animal slurry or fresh plant residues). Hence, an incubation study was performed where (1) water, (2) raw cattle slurry, (3) anaerobically digested cattle slurry/maize, (4) anaerobically digested cattle slurry/grass-clover, or (5) fresh grass-clover was applied to soil at arable realistic rates. Experimental unites were sequentially sampled destructively after 1, 3 and 9 days of incubation and the soil assayed for content of mineral N, available organic C, emission of CO2 and N2O, microbial phospholipid fatty acids (biomass and community composition) and catabolic response profiling (functional diversity). Fertilizing with the anaerobically digested materials increased the soil concentration of NO3− ca. 30–40% compared to when raw cattle slurry was applied. Grass-clover contributed with four times more readily degradable organic C than the other materials, causing an increased microbial biomass which depleted the soil for mineral N and probably also O2. Consequently, grass-clover also caused a ∼10 times increase in emissions of CO2 and N2O greenhouse gasses compared to any of the other treatments during the 9 days. Regarding microbial community composition, grass-clover induced the largest changes in microbial diversity measures compared to the controls, where raw cattle slurry and the two anaerobically digested materials (cattle slurry/maize, cattle slurry/grass-clover) only induced minor and transient changes. Anaerobic digestion of animal manure and crop residues may be employed to produce biogas as a climate-neutral source of energy and to recycle plant nutrients as fertilizers. However, especially organic farmers are concerned that fertilizing with the digestates may impact the soil microbiota and fertility because they contain more mineral nitrogen (N) and less organic carbon (C) than the non-digested input materials (e.g. raw animal slurry or fresh plant residues). Hence, an incubation study was performed where (1) water, (2) raw cattle slurry, (3) anaerobically digested cattle slurry/maize, (4) anaerobically digested cattle slurry/grass-clover, or (5) fresh grass-clover was applied to soil at arable realistic rates. Experimental unites were sequentially sampled destructively after 1, 3 and 9 days of incubation and the soil assayed for content of mineral N, available organic C, emission of CO₂ and N₂O, microbial phospholipid fatty acids (biomass and community composition) and catabolic response profiling (functional diversity). Fertilizing with the anaerobically digested materials increased the soil concentration of NO₃ ⁻ ca. 30–40% compared to when raw cattle slurry was applied. Grass-clover contributed with four times more readily degradable organic C than the other materials, causing an increased microbial biomass which depleted the soil for mineral N and probably also O₂. Consequently, grass-clover also caused a ∼10 times increase in emissions of CO₂ and N₂O greenhouse gasses compared to any of the other treatments during the 9 days. Regarding microbial community composition, grass-clover induced the largest changes in microbial diversity measures compared to the controls, where raw cattle slurry and the two anaerobically digested materials (cattle slurry/maize, cattle slurry/grass-clover) only induced minor and transient changes. Anaerobic digestion of animal manure and crop residues may be employed to produce biogas as a climate-neutral source of energy and to recycle plant nutrients as fertilizers. However, especially organic farmers are concerned that fertilizing with the digestates may impact the soil microbiota and fertility because they contain more mineral nitrogen (N) and less organic carbon (C) than the non-digested input materials (e.g. raw animal slurry or fresh plant residues). Hence, an incubation study was performed where (1) water, (2) raw cattle slurry, (3) anaerobically digested cattle slurry/maize, (4) anaerobically digested cattle slurry/grass-clover, or (5) fresh grass-clover was applied to soil at arable realistic rates. Experimental unites were sequentially sampled destructively after 1, 3 and 9 days of incubation and the soil assayed for content of mineral N, available organic C, emission of CO2 and N2O, microbial phospholipid fatty acids (biomass and community composition) and catabolic response profiling (fiinctional diversity). Fertilizing with the anaerobically digested materials increased the soil concentration of NO3- ca. 30-40% compared to when raw cattle slurry was applied. Grass-clover contributed with four times more readily degradable organic C than the other materials, causing an increased microbial biomass which depleted the soil for mineral N and probably also O-2. Consequently, grass-clover also caused a 10 times increase in emissions of CO2 and N2O greenhouse gasses compared to any of the other treatments during the 9 days. Regarding microbial community composition, grass-clover induced the largest changes in microbial diversity measures compared to the controls, where raw cattle slurry and the two anaerobically digested materials (cattle slurry/maize, cattle slurry/grass-clover) only induced minor and transient changes. (C) 2012 Elsevier B.V. All rights reserved. Anaerobic digestion of animal manure and crop residues may be employed to produce biogas as a climate-neutral source of energy and to recycle plant nutrients as fertilizers. However, especially organic farmers are concerned that fertilizing with the digestates may impact the soil microbiota and fertility because they contain more mineral nitrogen (N) and less organic carbon (C) than the non-digested input materials (e.g. raw animal slurry or fresh plant residues). Hence, an incubation study was performed where (1) water, (2) raw cattle slurry, (3) anaerobically digested cattle slurry/maize, (4) anaerobically digested cattle slurry/grass-clover, or (5) fresh grass-clover was applied to soil at arable realistic rates. Experimental unites were sequentially sampled destructively after 1, 3 and 9 days of incubation and the soil assayed for content of mineral N, available organic C, emission of CO2 and N2O, microbial phospholipid fatty acids (biomass and community composition) and catabolic response profiling (functional diversity). Fertilizing with the anaerobically digested materials increased the soil concentration of NO3− ca. 30–40% compared to when raw cattle slurry was applied. Grass-clover contributed with four times more readily degradable organic C than the other materials, causing an increased microbial biomass which depleted the soil for mineral N and probably also O2. Consequently, grass-clover also caused a ∼10 times increase in emissions of CO2 and N2O greenhouse gasses compared to any of the other treatments during the 9 days. Regarding microbial community composition, grass-clover induced the largest changes in microbial diversity measures compared to the controls, where raw cattle slurry and the two anaerobically digested materials (cattle slurry/maize, cattle slurry/grass-clover) only induced minor and transient changes. |
Author | Ambus, Per Johansen, Anders Carter, Mette S. Jensen, Erik S. Hauggard-Nielsen, Henrik |
Author_xml | – sequence: 1 givenname: Anders surname: Johansen fullname: Johansen, Anders email: ajo@dmu.dk organization: Department of Environmental Technology, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark – sequence: 2 givenname: Mette S. surname: Carter fullname: Carter, Mette S. organization: Risø National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde, Denmark – sequence: 3 givenname: Erik S. surname: Jensen fullname: Jensen, Erik S. organization: Department of Agrosystems, Swedish University of Agricultural Sciences, P.O. Box 104, SE-230 53 Alnarp, Sweden – sequence: 4 givenname: Henrik surname: Hauggard-Nielsen fullname: Hauggard-Nielsen, Henrik organization: Risø National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde, Denmark – sequence: 5 givenname: Per surname: Ambus fullname: Ambus, Per organization: Risø National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde, Denmark |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27054610$$DView record in Pascal Francis https://res.slu.se/id/publ/40520$$DView record from Swedish Publication Index |
BookMark | eNqFkk1v1DAQhiNUJLaFf4CEL0hcEsYf-eKAhFalRarYA_RsOc648iqJFztbtH-BX82ELBw4wMmS87wz42dymV1MYcIse8mh4MCrt_vCHFLwQyGAiwLaAkA-yTa8qWUOohYX2QZa0eZctvJZdpnSHgBK0chN9uPaObRzYsGx3j9gms2MzMUwMjMZjKHz1gzD6fwRe2bNPA_I0nCM8URQzw6DmWY2UjB6M1CpiS3TsNHbJW8GZsM4Hic_rzyOPiVPFPXc7sSvu89i9zx76iiOL87nVXb_8frr9ja_29182n64y61q6znveoRKVJWSHQrXtb3oea2kQumA97ZTUhgs-6qBqmpcq3gp266EzqIqmw6MvMrytW76jodjpw_RjyaedDBe06s6E5dDJ9SKJAHxb1b-EMO3I0nQNL_FgV6N4Zg0V6RdCsk5oa_PqEmkzUUzWZ_-dBA1lKriS8l3K0eCUorotPUknpzM0fhBc9DLYvVer4vVy2I1tJoWS2H1V_h3_f_EXq0xZ4I2D5Hmuv9CgALgdSVUTcT7lUCy_-iRPFiPk8XeR_pHdB_8v1v8BHFtzKA |
CitedBy_id | crossref_primary_10_1186_s40538_022_00310_6 crossref_primary_10_3390_su70810709 crossref_primary_10_3389_fmicb_2016_01469 crossref_primary_10_17660_ActaHortic_2023_1375_11 crossref_primary_10_3390_pr10010147 crossref_primary_10_3390_agronomy11071281 crossref_primary_10_3389_fsufs_2024_1356469 crossref_primary_10_1016_j_geoderma_2020_114458 crossref_primary_10_1016_j_still_2023_105715 crossref_primary_10_1016_j_clcb_2022_100004 crossref_primary_10_1016_j_apsoil_2015_09_007 crossref_primary_10_1016_j_apsoil_2019_07_011 crossref_primary_10_3390_agronomy11102041 crossref_primary_10_3389_fmicb_2021_655515 crossref_primary_10_1016_j_biombioe_2014_04_021 crossref_primary_10_3390_su16198379 crossref_primary_10_1080_03650340_2014_907491 crossref_primary_10_1088_1755_1315_210_1_012014 crossref_primary_10_3390_agronomy12020456 crossref_primary_10_1007_s00248_014_0383_8 crossref_primary_10_1007_s11356_018_2875_4 crossref_primary_10_1016_j_apsoil_2023_105066 crossref_primary_10_1016_j_envpol_2025_125961 crossref_primary_10_1002_saj2_20325 crossref_primary_10_3389_fsufs_2020_614349 crossref_primary_10_1080_10934529_2018_1459076 crossref_primary_10_1016_j_apsoil_2022_104577 crossref_primary_10_1016_j_apsoil_2023_105105 crossref_primary_10_1016_j_eja_2023_126914 crossref_primary_10_3390_agronomy10020226 crossref_primary_10_1007_s10163_018_00816_y crossref_primary_10_1016_j_biombioe_2020_105665 crossref_primary_10_1080_10962247_2019_1694091 crossref_primary_10_1080_03650340_2019_1652816 crossref_primary_10_1264_jsme2_ME14080 crossref_primary_10_1007_s12649_020_01211_1 crossref_primary_10_1007_s42729_020_00361_4 crossref_primary_10_1007_s11356_016_6591_7 crossref_primary_10_1016_j_still_2015_11_001 crossref_primary_10_1016_j_apsoil_2015_11_019 crossref_primary_10_1016_j_wasman_2014_01_017 crossref_primary_10_4081_ija_2016_657 crossref_primary_10_1007_s42729_020_00237_7 crossref_primary_10_1016_j_jenvman_2019_02_081 crossref_primary_10_1007_s13399_021_02215_0 crossref_primary_10_1016_j_apsoil_2016_12_001 crossref_primary_10_3390_agronomy11081466 crossref_primary_10_3390_pr8020142 crossref_primary_10_1016_j_agsy_2015_07_006 crossref_primary_10_1016_j_jenvman_2020_110422 crossref_primary_10_3389_fenrg_2015_00049 crossref_primary_10_3390_agriculture10060244 crossref_primary_10_1002_jpln_201400544 crossref_primary_10_1007_s12649_022_01963_y crossref_primary_10_1016_j_sciaf_2020_e00332 crossref_primary_10_1108_MEQ_10_2018_0178 crossref_primary_10_1016_j_agsy_2017_10_016 crossref_primary_10_1007_s11356_024_32850_9 crossref_primary_10_1016_j_apsoil_2019_103403 crossref_primary_10_1016_j_ecolind_2017_02_025 crossref_primary_10_1155_2021_6645203 crossref_primary_10_1016_j_still_2014_12_015 crossref_primary_10_1155_sci5_2123395 crossref_primary_10_1007_s13165_023_00447_0 crossref_primary_10_1016_j_agee_2020_107010 crossref_primary_10_1016_j_biombioe_2014_08_004 crossref_primary_10_1080_01904167_2022_2067065 crossref_primary_10_1111_ejss_13091 crossref_primary_10_1016_j_soilbio_2015_02_006 crossref_primary_10_1016_j_soilbio_2015_02_004 crossref_primary_10_5897_AJAR2018_13761 crossref_primary_10_1016_j_apsoil_2019_103376 crossref_primary_10_1016_j_jhazmat_2015_09_067 crossref_primary_10_3390_ma16031027 crossref_primary_10_1007_s13593_015_0284_3 crossref_primary_10_1016_j_scitotenv_2023_162911 crossref_primary_10_1016_j_soilbio_2014_12_008 crossref_primary_10_1016_j_apsoil_2020_103643 crossref_primary_10_1016_j_wasman_2015_07_037 crossref_primary_10_2136_sssaj2016_05_0132 crossref_primary_10_1007_s11356_015_4678_1 crossref_primary_10_1007_s10311_022_01451_8 crossref_primary_10_3390_su142215099 crossref_primary_10_1016_j_apsoil_2014_10_004 crossref_primary_10_1016_j_envres_2023_117162 crossref_primary_10_1080_00103624_2015_1109652 crossref_primary_10_1002_jeq2_20174 crossref_primary_10_1016_j_ejsobi_2024_103648 crossref_primary_10_1016_j_scitotenv_2022_158177 crossref_primary_10_1016_j_apsoil_2015_06_015 crossref_primary_10_1016_j_watres_2021_117659 crossref_primary_10_1016_S1002_0160_17_60388_6 crossref_primary_10_3390_su132111568 crossref_primary_10_1007_s12649_022_01723_y crossref_primary_10_3390_agronomy12071593 crossref_primary_10_1088_1757_899X_980_1_012069 crossref_primary_10_3390_agronomy9050227 crossref_primary_10_11118_actaun_2023_009 crossref_primary_10_17221_530_2015_PSE crossref_primary_10_2525_ecb_61_9 crossref_primary_10_3390_app11020750 crossref_primary_10_1155_2024_6685906 crossref_primary_10_1111_gcbb_12688 crossref_primary_10_1016_j_scitotenv_2020_137227 crossref_primary_10_1016_j_envpol_2013_10_008 crossref_primary_10_1016_j_still_2019_04_024 crossref_primary_10_1016_j_ecoenv_2020_110482 |
Cites_doi | 10.1016/j.gloenvcha.2008.10.009 10.1016/0038-0717(95)00100-X 10.1016/j.apsoil.2011.11.002 10.1016/j.biombioe.2012.01.017 10.3390/en20200226 10.1007/s00374-011-0633-6 10.1016/j.soilbio.2006.08.015 10.1016/j.soilbio.2005.04.004 10.1016/j.apsoil.2009.05.012 10.1007/s00374-005-0858-3 10.1016/j.soilbio.2003.08.018 10.1016/j.agee.2006.05.022 10.1016/j.pedobi.2011.12.002 10.1016/j.apsoil.2012.02.012 10.1023/A:1004350215467 10.1023/A:1004558126118 10.1080/09593332708618635 10.1128/AEM.65.8.3566-3574.1999 10.1016/S0038-0717(03)00249-9 10.2136/sssaj1987.03615995005100050019x 10.1016/S0038-0717(97)00076-X 10.1016/0960-8524(92)90199-8 10.1007/s10705-008-9196-9 10.1046/j.1351-0754.2003.0556.x 10.1016/0038-0717(95)00150-6 10.1016/j.wasman.2007.06.005 10.1128/AEM.69.6.3593-3599.2003 10.1007/s002489900070 10.1007/s10705-008-9236-5 10.1016/j.eja.2008.06.003 10.1007/s11104-007-9485-0 10.1016/j.apsoil.2011.07.007 10.1128/AEM.59.11.3605-3617.1993 10.1016/j.apenergy.2010.03.001 10.1021/es000288s 10.1007/s00248-004-0135-2 10.1002/jpln.200800250 10.1128/MMBR.46.1.43-70.1982 10.1093/jpe/rtq022 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. 2014 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2014 INIST-CNRS |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 ADTPV AOWAS |
DOI | 10.1016/j.apsoil.2012.09.003 |
DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic SwePub SwePub Articles |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Ecology |
EISSN | 1873-0272 |
EndPage | 44 |
ExternalDocumentID | oai_slubar_slu_se_40520 27054610 10_1016_j_apsoil_2012_09_003 US201400176247 S0929139312002260 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABFYP ABGRD ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPCBC SSA SSJ SSZ T5K UHS UNMZH WUQ XPP Y6R ZMT ~G- ~KM AAHBH AATTM AAXKI ABWVN ACRPL ADNMO AEGFY AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ SSH AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION IQODW 7S9 L.6 ADTPV AOWAS EFKBS |
ID | FETCH-LOGICAL-c497t-bde0626643be2fb9d2d17434e3f01dcb432ae5d680668f941539b50bce458b0a3 |
IEDL.DBID | .~1 |
ISSN | 0929-1393 1873-0272 |
IngestDate | Thu Aug 21 07:00:40 EDT 2025 Fri Jul 11 16:14:39 EDT 2025 Wed Apr 02 07:26:14 EDT 2025 Thu Apr 24 22:58:41 EDT 2025 Tue Jul 01 03:25:23 EDT 2025 Thu Apr 03 09:43:35 EDT 2025 Fri Feb 23 02:27:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Organic carbon Biogas and digestate Organic farming N2O emission Microbial community Nutrient recycling Microbial activity Gas emission Carbon dioxide Animal slurry Anaerobic digestion Biological material N Soil science Recycling Ungulata Bovine Biogas Ecology Soils Vertebrata Mammalia O emission Organic agriculture Plant origin Nutrient Artiodactyla Nitrogen protoxide |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-bde0626643be2fb9d2d17434e3f01dcb432ae5d680668f941539b50bce458b0a3 |
Notes | http://dx.doi.org/10.1016/j.apsoil.2012.09.003 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1420132311 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_40520 proquest_miscellaneous_1420132311 pascalfrancis_primary_27054610 crossref_citationtrail_10_1016_j_apsoil_2012_09_003 crossref_primary_10_1016_j_apsoil_2012_09_003 fao_agris_US201400176247 elsevier_sciencedirect_doi_10_1016_j_apsoil_2012_09_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2013 2013 2013-1-00 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: January 2013 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Applied soil ecology : a section of Agriculture, ecosystems & environment |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Arthurson (bib0005) 2009; 2 Johansen, Olsson (bib0115) 2005; 49 Müller-Stöver, Hauggaard-Nielsen, Eriksen, Ambus, Johansen (bib0245) 2012; 48 Macnaughton, Stephen, Venosa, Chang, White (bib0170) 1999; 65 Wilkinson (bib0225) 1988; vol. 1 IPCC, 2007. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Mitigation of Climate Change. Knowles (bib0140) 1982; 46 Hauggaard-Nielsen, de Neergaard, Jensen, Høgh-Jensen, Magid (bib0090) 1998; 203 Petersen, Nielsen, Frostegard, Olesen (bib0210) 1996; 28 Degens, Harris (bib0045) 1997; 29 Möller, Stinner (bib0185) 2009; 30 Bougnom, Niederkofler, Knapp, Stimpfl, Insam (bib0020) 2012; 39 Lalor, Cookson, Murphy (bib0150) 2007; 39 Fliessbach, Oberholzer, Gunst, Mäder (bib0105) 2007; 118 Kroppenstedt (bib0130) 1985 Farquharson, Baldock (bib0055) 2008; 309 Joner, Johansen, Loibner, DelaCruz, Szolar, Portal, Leyval (bib0125) 2001; 35 Ekelund, Olsson, Johansen (bib0050) 2005; 35 Bateman, Baggs (bib0015) 2005; 41 Johansen (bib0110) 1999; 209 Balkwill, Murphy, Fair, Ringelberg, White (bib0010) 1998; 35 IFOAM, 2011. The principles of organic agriculture Parkin (bib0205) 1987; 51 Frostegård, Tunlid, Bååth (bib0065) 1993; 59 Gunnarsson, Bengtsson, Caspersen (bib0085) 2010; 173 Stevenson, Sparling, Schipper, Degens, Duncan (bib0215) 2003; 36 Cordell, Drangert J.-O., White (bib0035) 2009; 19 Greenberg, Clesceri, Eaton (bib0080) 1998 O’Leary, Wilkinson (bib0160) 1988; vol. 1 Nannipieri, Ascher, Ceccherini, Landi, Pietramellara, Renella (bib0195) 2003; 54 Goberna, Podmirseg, Waldhuber, Knapp, Garcia, Insam (bib0075) 2011; 49 Lehtomäki, Björnsson (bib0155) 2006; 27 Odlare, Pell, Svensson (bib0200) 2008; 28 Frostegard, Tunlid, Bååth (bib0070) 1996; 28 Campbell, Chapman, Cameron, Davidson, Potts (bib0030) 2003; 69 Möller, Stinner, Deuker, Leithold (bib0175) 2008; 82 Möller (bib0180) 2009; 84 . Yang, Zhu, Zhang, Yan, Sun (bib0230) 2010; 3 Terhoeven-Urselmans, Scheller, Raubuch, Ludwig, Joergensen (bib0220) 2009; 42 Johansen, Knudsen, Binnerup, Winding, Johansen, Jensen, Andersen, Svenning, Bonde (bib0120) 2005; 37 Zhang, Shamsi, Xu, Wang, Lin, Jilani, Hussain, Chaudhry (bib0235) 2012; 57 Mathiesen, Lund, Karlsson (bib0165) 2011; 88 Lagomarsino, Grego, Kandeler (bib0145) 2012; 55 Zhou, Wu, Koetz, Xu, Chen (bib0240) 2012; 53 Danish Energy Agency, 2010. Notat: Anvendelse af biogasressourcerne og strategi herfor. Federle (bib0060) 1986 Kirchmann, Witter (bib0135) 1992; 40 10.1016/j.apsoil.2012.09.003_bib0040 Fliessbach (10.1016/j.apsoil.2012.09.003_bib0105) 2007; 118 10.1016/j.apsoil.2012.09.003_bib0100 Stevenson (10.1016/j.apsoil.2012.09.003_bib0215) 2003; 36 Mathiesen (10.1016/j.apsoil.2012.09.003_bib0165) 2011; 88 Knowles (10.1016/j.apsoil.2012.09.003_bib0140) 1982; 46 Frostegard (10.1016/j.apsoil.2012.09.003_bib0070) 1996; 28 Johansen (10.1016/j.apsoil.2012.09.003_bib0120) 2005; 37 Farquharson (10.1016/j.apsoil.2012.09.003_bib0055) 2008; 309 Parkin (10.1016/j.apsoil.2012.09.003_bib0205) 1987; 51 Zhou (10.1016/j.apsoil.2012.09.003_bib0240) 2012; 53 Greenberg (10.1016/j.apsoil.2012.09.003_bib0080) 1998 Müller-Stöver (10.1016/j.apsoil.2012.09.003_bib0245) 2012; 48 Lehtomäki (10.1016/j.apsoil.2012.09.003_bib0155) 2006; 27 Macnaughton (10.1016/j.apsoil.2012.09.003_bib0170) 1999; 65 Johansen (10.1016/j.apsoil.2012.09.003_bib0110) 1999; 209 Balkwill (10.1016/j.apsoil.2012.09.003_bib0010) 1998; 35 Kroppenstedt (10.1016/j.apsoil.2012.09.003_bib0130) 1985 Ekelund (10.1016/j.apsoil.2012.09.003_bib0050) 2005; 35 O’Leary (10.1016/j.apsoil.2012.09.003_bib0160) 1988; vol. 1 Petersen (10.1016/j.apsoil.2012.09.003_bib0210) 1996; 28 Terhoeven-Urselmans (10.1016/j.apsoil.2012.09.003_bib0220) 2009; 42 Degens (10.1016/j.apsoil.2012.09.003_bib0045) 1997; 29 Bougnom (10.1016/j.apsoil.2012.09.003_bib0020) 2012; 39 Bateman (10.1016/j.apsoil.2012.09.003_bib0015) 2005; 41 Frostegård (10.1016/j.apsoil.2012.09.003_bib0065) 1993; 59 10.1016/j.apsoil.2012.09.003_bib0095 Möller (10.1016/j.apsoil.2012.09.003_bib0180) 2009; 84 Arthurson (10.1016/j.apsoil.2012.09.003_bib0005) 2009; 2 Goberna (10.1016/j.apsoil.2012.09.003_bib0075) 2011; 49 Möller (10.1016/j.apsoil.2012.09.003_bib0185) 2009; 30 Möller (10.1016/j.apsoil.2012.09.003_bib0175) 2008; 82 Zhang (10.1016/j.apsoil.2012.09.003_bib0235) 2012; 57 Hauggaard-Nielsen (10.1016/j.apsoil.2012.09.003_bib0090) 1998; 203 Kirchmann (10.1016/j.apsoil.2012.09.003_bib0135) 1992; 40 Johansen (10.1016/j.apsoil.2012.09.003_bib0115) 2005; 49 Gunnarsson (10.1016/j.apsoil.2012.09.003_bib0085) 2010; 173 Lagomarsino (10.1016/j.apsoil.2012.09.003_bib0145) 2012; 55 Wilkinson (10.1016/j.apsoil.2012.09.003_bib0225) 1988; vol. 1 Lalor (10.1016/j.apsoil.2012.09.003_bib0150) 2007; 39 Federle (10.1016/j.apsoil.2012.09.003_bib0060) 1986 Joner (10.1016/j.apsoil.2012.09.003_bib0125) 2001; 35 Yang (10.1016/j.apsoil.2012.09.003_bib0230) 2010; 3 Cordell (10.1016/j.apsoil.2012.09.003_bib0035) 2009; 19 Odlare (10.1016/j.apsoil.2012.09.003_bib0200) 2008; 28 Nannipieri (10.1016/j.apsoil.2012.09.003_bib0195) 2003; 54 Campbell (10.1016/j.apsoil.2012.09.003_bib0030) 2003; 69 |
References_xml | – volume: 41 start-page: 379 year: 2005 end-page: 388 ident: bib0015 article-title: Contributions of nitrification and denitrification to N publication-title: Biol. Fertil. Soils – volume: 19 start-page: 292 year: 2009 end-page: 305 ident: bib0035 article-title: The story of phosphorus: global food security and food for thought publication-title: Global Environ. Change – volume: 39 start-page: 454 year: 2007 end-page: 462 ident: bib0150 article-title: Comparison of two methods that assess soil community level physiological profiles in a forest ecosystem publication-title: Soil Biol. Biochem. – volume: 59 start-page: 3605 year: 1993 end-page: 3617 ident: bib0065 article-title: Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals publication-title: Appl. Environ. Microbiol. – volume: 309 start-page: 147 year: 2008 end-page: 167 ident: bib0055 article-title: Concepts in modelling N publication-title: Plant Soil – volume: 2 start-page: 226 year: 2009 end-page: 242 ident: bib0005 article-title: Closing the global energy and nutrient cycles through application of biogas residue to agricultural land – potential benefits and drawbacks publication-title: Energies – year: 1998 ident: bib0080 article-title: Standard Methods for the Examination of Water and Wastewater – volume: 35 start-page: 156 year: 1998 end-page: 171 ident: bib0010 article-title: Microbial communities in high and low recharge environments: implications for microbial transport in the vadose zone publication-title: Microb. Ecol. – volume: 35 start-page: 1507 year: 2005 end-page: 1516 ident: bib0050 article-title: Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations publication-title: Soil Biol. Biochem. – volume: 69 start-page: 3593 year: 2003 end-page: 3599 ident: bib0030 article-title: A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil publication-title: Appl. Environ. Microb. – start-page: 493 year: 1986 end-page: 498 ident: bib0060 article-title: Microbial distribution in soil – new techniques publication-title: Perspectives in Microbial Biology – volume: 54 start-page: 655 year: 2003 end-page: 670 ident: bib0195 article-title: Microbial diversity and soil functions publication-title: Eur. J. Soil Sci. – volume: 173 start-page: 113 year: 2010 end-page: 119 ident: bib0085 article-title: Use efficiency of nitrogen from biodigested plant material by ryegrass publication-title: J. Plant Nutr. Soil Sci. – volume: 27 start-page: 209 year: 2006 end-page: 218 ident: bib0155 article-title: Two-stage anaerobic digestion of energy crops: methane production, nitrogen mineralization and heavy metal mobilization publication-title: Environ. Technol. – volume: 203 start-page: 91 year: 1998 end-page: 101 ident: bib0090 article-title: A field study of nitrogen dynamics and spring barley growth as affected by the quality of incorporated residues from white clover and ryegrass publication-title: Plant Soil – volume: 3 start-page: 175 year: 2010 end-page: 182 ident: bib0230 article-title: Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation publication-title: J. Plant Ecol. – volume: 51 start-page: 1194 year: 1987 end-page: 1199 ident: bib0205 article-title: Soil microsites as a source of denitrification variability publication-title: Soil Sci. Soc. Am. J. – volume: vol. 1 start-page: 299 year: 1988 end-page: 488 ident: bib0225 article-title: Gram-negative bacteria publication-title: Microbial Lipids – volume: 49 start-page: 1 year: 2005 end-page: 10 ident: bib0115 article-title: Using phospholipid fatty acid technique to study short-term effects of the biological control agent publication-title: Microb. Ecol. – volume: 46 start-page: 43 year: 1982 end-page: 70 ident: bib0140 article-title: Denitrification publication-title: Microbiol. Rev. – volume: 57 start-page: 1 year: 2012 end-page: 8 ident: bib0235 article-title: Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure publication-title: Appl. Soil Ecol. – volume: 37 start-page: 2225 year: 2005 end-page: 2239 ident: bib0120 article-title: Non-target effects of the microbial control agents publication-title: Soil Biol. Biochem. – volume: 29 start-page: 1309 year: 1997 end-page: 1320 ident: bib0045 article-title: Development of a physiological approach to measuring the catabolic diversity of soil microbial communities publication-title: Soil Biol. Biochem. – volume: 209 start-page: 119 year: 1999 end-page: 127 ident: bib0110 article-title: Depletion of soil mineral N by roots of publication-title: Plant Soil – volume: 53 start-page: 49 year: 2012 end-page: 55 ident: bib0240 article-title: Soil labile carbon and nitrogen pools and microbial metabolic diversity under winter crops in an arid environment publication-title: Appl. Soil Ecol. – volume: 65 start-page: 3566 year: 1999 end-page: 3574 ident: bib0170 article-title: Microbial population changes during bioremediation of an experimental oil spill publication-title: Appl. Environ. Microbiol. – volume: 39 start-page: 290 year: 2012 end-page: 295 ident: bib0020 article-title: Residues from renewable energy production: their value for fertilizing pastures publication-title: Biomass Bioenergy – volume: 42 start-page: 297 year: 2009 end-page: 302 ident: bib0220 article-title: CO publication-title: Appl. Soil Ecol. – volume: 49 start-page: 18 year: 2011 end-page: 25 ident: bib0075 article-title: Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure publication-title: Appl. Soil Ecol. – volume: 84 start-page: 179 year: 2009 end-page: 202 ident: bib0180 article-title: Effects of biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems publication-title: Nutr. Cycl. Agroecosyst. – volume: 118 start-page: 273 year: 2007 end-page: 284 ident: bib0105 article-title: Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming publication-title: Agric. Ecosyst. Environ. – volume: vol. 1 start-page: 117 year: 1988 end-page: 201 ident: bib0160 article-title: Gram-positive bacteria publication-title: Microbial Lipids – reference: . – reference: IPCC, 2007. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Mitigation of Climate Change. – volume: 88 start-page: 488 year: 2011 end-page: 501 ident: bib0165 article-title: 100% Renewable energy systems, climate mitigation and economic growth publication-title: Appl. Energy – volume: 28 start-page: 341 year: 1996 end-page: 349 ident: bib0210 article-title: O publication-title: Soil Biol. Biochem. – volume: 36 start-page: 49 year: 2003 end-page: 55 ident: bib0215 article-title: Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration responses at a landscape scale publication-title: Soil Biol. Biochem. – volume: 82 start-page: 209 year: 2008 end-page: 232 ident: bib0175 article-title: Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems publication-title: Nutr. Cycl. Agroecosyst. – reference: IFOAM, 2011. The principles of organic agriculture: – reference: Danish Energy Agency, 2010. Notat: Anvendelse af biogasressourcerne og strategi herfor. – volume: 28 start-page: 55 year: 1996 end-page: 63 ident: bib0070 article-title: Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals publication-title: Soil Biol. Biochem. – start-page: 173 year: 1985 end-page: 199 ident: bib0130 article-title: Fatty acid and menaquinone analysis of actinomycetes and related organisms publication-title: Chemical Methods in Bacterial Systematics – volume: 35 start-page: 2773 year: 2001 end-page: 2777 ident: bib0125 article-title: Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil publication-title: Environ. Sci. Technol. – volume: 48 start-page: 371 year: 2012 end-page: 383 ident: bib0245 article-title: Microbial biomass, microbial diversity, soil carbon C storage and stability after incubation of soil from grass-clover pastures of different age publication-title: Biol. Fertil. Soils – volume: 40 start-page: 137 year: 1992 end-page: 142 ident: bib0135 article-title: Composition of fresh, aerobic and anaerobic farm animal dungs publication-title: Bioresour. Technol. – volume: 55 start-page: 101 year: 2012 end-page: 110 ident: bib0145 article-title: Soil organic carbon distribution drives microbial activity and functional diversity in particle and aggregate-size fractions publication-title: Pedobiologia – volume: 30 start-page: 1 year: 2009 end-page: 16 ident: bib0185 article-title: Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides) publication-title: Eur. J. Agron. – volume: 28 start-page: 1246 year: 2008 end-page: 1253 ident: bib0200 article-title: Changes in soil chemical and microbiological properties during 4 years of application of various organic residues publication-title: Waste Manage. – start-page: 493 year: 1986 ident: 10.1016/j.apsoil.2012.09.003_bib0060 article-title: Microbial distribution in soil – new techniques – volume: 19 start-page: 292 year: 2009 ident: 10.1016/j.apsoil.2012.09.003_bib0035 article-title: The story of phosphorus: global food security and food for thought publication-title: Global Environ. Change doi: 10.1016/j.gloenvcha.2008.10.009 – volume: 28 start-page: 55 year: 1996 ident: 10.1016/j.apsoil.2012.09.003_bib0070 article-title: Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(95)00100-X – volume: 53 start-page: 49 year: 2012 ident: 10.1016/j.apsoil.2012.09.003_bib0240 article-title: Soil labile carbon and nitrogen pools and microbial metabolic diversity under winter crops in an arid environment publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2011.11.002 – volume: 39 start-page: 290 year: 2012 ident: 10.1016/j.apsoil.2012.09.003_bib0020 article-title: Residues from renewable energy production: their value for fertilizing pastures publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.01.017 – volume: 2 start-page: 226 year: 2009 ident: 10.1016/j.apsoil.2012.09.003_bib0005 article-title: Closing the global energy and nutrient cycles through application of biogas residue to agricultural land – potential benefits and drawbacks publication-title: Energies doi: 10.3390/en20200226 – volume: 48 start-page: 371 year: 2012 ident: 10.1016/j.apsoil.2012.09.003_bib0245 article-title: Microbial biomass, microbial diversity, soil carbon C storage and stability after incubation of soil from grass-clover pastures of different age publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-011-0633-6 – volume: 39 start-page: 454 year: 2007 ident: 10.1016/j.apsoil.2012.09.003_bib0150 article-title: Comparison of two methods that assess soil community level physiological profiles in a forest ecosystem publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2006.08.015 – volume: 37 start-page: 2225 year: 2005 ident: 10.1016/j.apsoil.2012.09.003_bib0120 article-title: Non-target effects of the microbial control agents Pseudomonas fluorescens DR54 and Clonostachys rosea IK726 in soils cropped with barley followed by sugar beet: a greenhouse assessment publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.04.004 – volume: 42 start-page: 297 year: 2009 ident: 10.1016/j.apsoil.2012.09.003_bib0220 article-title: CO2 evolution and N mineralization after biogas slurry application in the field and its yield effects on spring barley publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2009.05.012 – volume: 41 start-page: 379 year: 2005 ident: 10.1016/j.apsoil.2012.09.003_bib0015 article-title: Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-005-0858-3 – ident: 10.1016/j.apsoil.2012.09.003_bib0040 – volume: 36 start-page: 49 year: 2003 ident: 10.1016/j.apsoil.2012.09.003_bib0215 article-title: Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration responses at a landscape scale publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2003.08.018 – volume: 118 start-page: 273 year: 2007 ident: 10.1016/j.apsoil.2012.09.003_bib0105 article-title: Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2006.05.022 – volume: 55 start-page: 101 year: 2012 ident: 10.1016/j.apsoil.2012.09.003_bib0145 article-title: Soil organic carbon distribution drives microbial activity and functional diversity in particle and aggregate-size fractions publication-title: Pedobiologia doi: 10.1016/j.pedobi.2011.12.002 – volume: 57 start-page: 1 year: 2012 ident: 10.1016/j.apsoil.2012.09.003_bib0235 article-title: Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2012.02.012 – year: 1998 ident: 10.1016/j.apsoil.2012.09.003_bib0080 – volume: 203 start-page: 91 year: 1998 ident: 10.1016/j.apsoil.2012.09.003_bib0090 article-title: A field study of nitrogen dynamics and spring barley growth as affected by the quality of incorporated residues from white clover and ryegrass publication-title: Plant Soil doi: 10.1023/A:1004350215467 – volume: 209 start-page: 119 year: 1999 ident: 10.1016/j.apsoil.2012.09.003_bib0110 article-title: Depletion of soil mineral N by roots of Cucumis sativus L. colonized or not by arbuscular mycorrhizal fungi publication-title: Plant Soil doi: 10.1023/A:1004558126118 – volume: 27 start-page: 209 year: 2006 ident: 10.1016/j.apsoil.2012.09.003_bib0155 article-title: Two-stage anaerobic digestion of energy crops: methane production, nitrogen mineralization and heavy metal mobilization publication-title: Environ. Technol. doi: 10.1080/09593332708618635 – volume: 65 start-page: 3566 year: 1999 ident: 10.1016/j.apsoil.2012.09.003_bib0170 article-title: Microbial population changes during bioremediation of an experimental oil spill publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.8.3566-3574.1999 – volume: 35 start-page: 1507 year: 2005 ident: 10.1016/j.apsoil.2012.09.003_bib0050 article-title: Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(03)00249-9 – volume: 51 start-page: 1194 year: 1987 ident: 10.1016/j.apsoil.2012.09.003_bib0205 article-title: Soil microsites as a source of denitrification variability publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1987.03615995005100050019x – start-page: 173 year: 1985 ident: 10.1016/j.apsoil.2012.09.003_bib0130 article-title: Fatty acid and menaquinone analysis of actinomycetes and related organisms – volume: 29 start-page: 1309 year: 1997 ident: 10.1016/j.apsoil.2012.09.003_bib0045 article-title: Development of a physiological approach to measuring the catabolic diversity of soil microbial communities publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(97)00076-X – volume: 40 start-page: 137 year: 1992 ident: 10.1016/j.apsoil.2012.09.003_bib0135 article-title: Composition of fresh, aerobic and anaerobic farm animal dungs publication-title: Bioresour. Technol. doi: 10.1016/0960-8524(92)90199-8 – volume: 82 start-page: 209 year: 2008 ident: 10.1016/j.apsoil.2012.09.003_bib0175 article-title: Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-008-9196-9 – volume: 54 start-page: 655 year: 2003 ident: 10.1016/j.apsoil.2012.09.003_bib0195 article-title: Microbial diversity and soil functions publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1351-0754.2003.0556.x – volume: 28 start-page: 341 year: 1996 ident: 10.1016/j.apsoil.2012.09.003_bib0210 article-title: O2 uptake, C metabolism and denitrification associated with manure hot-spots publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(95)00150-6 – volume: 28 start-page: 1246 year: 2008 ident: 10.1016/j.apsoil.2012.09.003_bib0200 article-title: Changes in soil chemical and microbiological properties during 4 years of application of various organic residues publication-title: Waste Manage. doi: 10.1016/j.wasman.2007.06.005 – volume: 69 start-page: 3593 year: 2003 ident: 10.1016/j.apsoil.2012.09.003_bib0030 article-title: A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.69.6.3593-3599.2003 – ident: 10.1016/j.apsoil.2012.09.003_bib0095 – volume: vol. 1 start-page: 299 year: 1988 ident: 10.1016/j.apsoil.2012.09.003_bib0225 article-title: Gram-negative bacteria – volume: 35 start-page: 156 year: 1998 ident: 10.1016/j.apsoil.2012.09.003_bib0010 article-title: Microbial communities in high and low recharge environments: implications for microbial transport in the vadose zone publication-title: Microb. Ecol. doi: 10.1007/s002489900070 – volume: 84 start-page: 179 year: 2009 ident: 10.1016/j.apsoil.2012.09.003_bib0180 article-title: Effects of biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-008-9236-5 – volume: 30 start-page: 1 year: 2009 ident: 10.1016/j.apsoil.2012.09.003_bib0185 article-title: Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides) publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2008.06.003 – volume: 309 start-page: 147 year: 2008 ident: 10.1016/j.apsoil.2012.09.003_bib0055 article-title: Concepts in modelling N2O emissions from land use publication-title: Plant Soil doi: 10.1007/s11104-007-9485-0 – volume: 49 start-page: 18 year: 2011 ident: 10.1016/j.apsoil.2012.09.003_bib0075 article-title: Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2011.07.007 – volume: vol. 1 start-page: 117 year: 1988 ident: 10.1016/j.apsoil.2012.09.003_bib0160 article-title: Gram-positive bacteria – volume: 59 start-page: 3605 year: 1993 ident: 10.1016/j.apsoil.2012.09.003_bib0065 article-title: Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.59.11.3605-3617.1993 – ident: 10.1016/j.apsoil.2012.09.003_bib0100 – volume: 88 start-page: 488 year: 2011 ident: 10.1016/j.apsoil.2012.09.003_bib0165 article-title: 100% Renewable energy systems, climate mitigation and economic growth publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.03.001 – volume: 35 start-page: 2773 year: 2001 ident: 10.1016/j.apsoil.2012.09.003_bib0125 article-title: Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil publication-title: Environ. Sci. Technol. doi: 10.1021/es000288s – volume: 49 start-page: 1 year: 2005 ident: 10.1016/j.apsoil.2012.09.003_bib0115 article-title: Using phospholipid fatty acid technique to study short-term effects of the biological control agent Pseudomonas fluorescens DR54 on the microbial microbiota in barley rhizosphere publication-title: Microb. Ecol. doi: 10.1007/s00248-004-0135-2 – volume: 173 start-page: 113 year: 2010 ident: 10.1016/j.apsoil.2012.09.003_bib0085 article-title: Use efficiency of nitrogen from biodigested plant material by ryegrass publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200800250 – volume: 46 start-page: 43 year: 1982 ident: 10.1016/j.apsoil.2012.09.003_bib0140 article-title: Denitrification publication-title: Microbiol. Rev. doi: 10.1128/MMBR.46.1.43-70.1982 – volume: 3 start-page: 175 year: 2010 ident: 10.1016/j.apsoil.2012.09.003_bib0230 article-title: Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation publication-title: J. Plant Ecol. doi: 10.1093/jpe/rtq022 |
SSID | ssj0005283 |
Score | 2.401667 |
Snippet | ► Incorporation of grass-clover in soil causes increased emission of N2O. ► Interaction of available organic C and mineral N governs release of greenhouse gas.... Anaerobic digestion of animal manure and crop residues may be employed to produce biogas as a climate-neutral source of energy and to recycle plant nutrients... |
SourceID | swepub proquest pascalfrancis crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 36 |
SubjectTerms | Agronomy. Soil science and plant productions anaerobic digestion arable soils Biochemistry and biology biogas Biogas and digestate Biological and medical sciences carbon cattle cattle manure Chemical, physicochemical, biochemical and biological properties community structure control methods corn crop residues Ecology Ekologi emissions energy farmers fatty acids fertilizers functional diversity Fundamental and applied biological sciences. Psychology greenhouses microbial biomass microbial communities Microbial community Microbiology Mikrobiologi mineral soils N2O emission nitrogen nitrogen content Nutrient recycling nutrients Organic carbon Organic farming Organic matter phospholipids Physics, chemistry, biochemistry and biology of agricultural and forest soils soil fertility soil microorganisms Soil science |
Title | Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O |
URI | https://dx.doi.org/10.1016/j.apsoil.2012.09.003 https://www.proquest.com/docview/1420132311 https://res.slu.se/id/publ/40520 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRUhwQLCAtjwqIyFuoYntJvGxqnZVXl3EUmlvlu04q6KSVEl76GV_wP5qZuyk2h7QSpxSpePG8Uztb-yZbwj54LI4yZ0sIynyIhK55pHRKYtSYaSwqbbOYr7z93k6W4gvV-OrIzLtc2EwrLKb-8Oc7mfr7s6oG83RerkcXcawsgN-4QnGGQAsxwx2kaGVf7q5G-YRqDhBOELpPn3Ox3jpdVsv8QACdwSRuJL_a3l6UOoa4yZ1C0NXhpoXh6D0LtGoX5zOn5GnHaqkk9Dx5-TIVSfkyeS66Zg13Al5FKpO7uDTmWeq3r0gt4G7uKV1SQt_0gTIk2LGCdWVdkjRBP1Y7bovXUGt5zym7WrbNDsQKuh6BbqhgHuDKdO6ovi29M_SUzxBr2zIQdkEeawvhzt0-MzpBfP35uziJVmcn_2azqKuOENkhcw2kSlcDM4QABrjWGlkwQp0boTjZZwU1gjOtBsXaQ6YJi8l4AQuzTg21olxbmLNX5Hjqq7cKaEJCMAPSSstOGfcydjKNE_BUxOly102ILzXibIdczkW0FipPkTttwqaVKhJFUtkPB2QaN9qHZg77pHPenWrAwtUsLjc0_IUrENpUGqrFpcMnVaY6FImoOvDA5PZ94RlgJUBug7I-96GFIw_ntboytXbFnwyhudgPEkG5GMwrn1r5AQHTRvd4EW1TgmMZ3r936_whjxmvs4H7i29JcebZuveAdramKH_Ow3Jw8n057cfeP38dTb_Cx-RKvY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLa2IQQ7IBhM64BhJOAWmjhuEh84TGNTx7busFXazdiOg4pKUiWtUC_8AP4Of5D37KRaD2gS0k6JUjt98Xv2-2w_f4-QdzYNo8yKIhA8ywOeqTjQKmFBwrXgJlHGGjzvfDFKhmP-5WZws0H-dGdhMKyyHfv9mO5G6_ZJv23N_mwy6V-F4NkBv8QRxhkALG8jK8_s8ifM25pPp59Bye8ZOzm-PhoGbWqBwHCRzgOd2xCgPLhjbVmhRc5yhObcxkUY5UbzmCk7yJMMPHJWCPBysdCDUBvLB5kOVQzv3SQPOAwXmDbh46_bcSWe-xOkC1C87ryeCypTs6aa4I4HLkEiU2b8L3-4WagKAzVVA7oqfJKNdRR8m9nUecOTp-RJC2PpoW-pZ2TDljtk-_Bb3VJ52B3y0Ke5XMLdsaPGXj4nvz1ZckOrguZuawugLsUjLlSVyiInFMgxXbY_2pwaR7JMm-mirpdQKKezKRgDBaDt-w6tSopfS39MHKcUSGX8oZe5L48J7XBJEP_z6JK5ZyN2-YKM70Vlu2SrrEq7R2gEBeBFwggDs8HYitCIJEtgasgLm9m0R-JOJ9K0VOmYsWMqu5i479JrUqImZSiQYrVHglWtmacKuaN82qlbrpm8BG92R809sA6pQKmNHF8xnCXDyJowDqIfrJnMShKWAjgHrNwjbzsbktD-uD2kSlstGpgEMtx4i6OoRz5441rVRhJy0LRWNV5kYyXHAKr9__6EN-TR8PriXJ6fjs5eksfMJRnBha1XZGteL-xrgHpzfeC6FiVf77sv_wW_nWS_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+digestate+from+anaerobically+digested+cattle+slurry+and+plant+materials+on+soil+microbial+community+and+emission+of+CO%E2%82%82+and+N%E2%82%82O&rft.jtitle=Applied+soil+ecology+%3A+a+section+of+Agriculture%2C+ecosystems+%26+environment&rft.au=Johansen%2C+Anders&rft.au=Carter%2C+Mette+S&rft.au=Jensen%2C+Erik+S&rft.au=Hauggard-Nielsen%2C+Henrik&rft.date=2013&rft.pub=Elsevier+B.V&rft.issn=0929-1393&rft.volume=63&rft.spage=36&rft.epage=44&rft_id=info:doi/10.1016%2Fj.apsoil.2012.09.003&rft.externalDocID=US201400176247 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-1393&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-1393&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-1393&client=summon |