Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O

► Incorporation of grass-clover in soil causes increased emission of N2O. ► Interaction of available organic C and mineral N governs release of greenhouse gas. ► Anaerobically digested manures/biomass do not impact soil fertility and microbiota. Anaerobic digestion of animal manure and crop residues...

Full description

Saved in:
Bibliographic Details
Published inApplied soil ecology : a section of Agriculture, ecosystems & environment Vol. 63; pp. 36 - 44
Main Authors Johansen, Anders, Carter, Mette S., Jensen, Erik S., Hauggard-Nielsen, Henrik, Ambus, Per
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 01.01.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► Incorporation of grass-clover in soil causes increased emission of N2O. ► Interaction of available organic C and mineral N governs release of greenhouse gas. ► Anaerobically digested manures/biomass do not impact soil fertility and microbiota. Anaerobic digestion of animal manure and crop residues may be employed to produce biogas as a climate-neutral source of energy and to recycle plant nutrients as fertilizers. However, especially organic farmers are concerned that fertilizing with the digestates may impact the soil microbiota and fertility because they contain more mineral nitrogen (N) and less organic carbon (C) than the non-digested input materials (e.g. raw animal slurry or fresh plant residues). Hence, an incubation study was performed where (1) water, (2) raw cattle slurry, (3) anaerobically digested cattle slurry/maize, (4) anaerobically digested cattle slurry/grass-clover, or (5) fresh grass-clover was applied to soil at arable realistic rates. Experimental unites were sequentially sampled destructively after 1, 3 and 9 days of incubation and the soil assayed for content of mineral N, available organic C, emission of CO2 and N2O, microbial phospholipid fatty acids (biomass and community composition) and catabolic response profiling (functional diversity). Fertilizing with the anaerobically digested materials increased the soil concentration of NO3− ca. 30–40% compared to when raw cattle slurry was applied. Grass-clover contributed with four times more readily degradable organic C than the other materials, causing an increased microbial biomass which depleted the soil for mineral N and probably also O2. Consequently, grass-clover also caused a ∼10 times increase in emissions of CO2 and N2O greenhouse gasses compared to any of the other treatments during the 9 days. Regarding microbial community composition, grass-clover induced the largest changes in microbial diversity measures compared to the controls, where raw cattle slurry and the two anaerobically digested materials (cattle slurry/maize, cattle slurry/grass-clover) only induced minor and transient changes.
AbstractList ► Incorporation of grass-clover in soil causes increased emission of N2O. ► Interaction of available organic C and mineral N governs release of greenhouse gas. ► Anaerobically digested manures/biomass do not impact soil fertility and microbiota. Anaerobic digestion of animal manure and crop residues may be employed to produce biogas as a climate-neutral source of energy and to recycle plant nutrients as fertilizers. However, especially organic farmers are concerned that fertilizing with the digestates may impact the soil microbiota and fertility because they contain more mineral nitrogen (N) and less organic carbon (C) than the non-digested input materials (e.g. raw animal slurry or fresh plant residues). Hence, an incubation study was performed where (1) water, (2) raw cattle slurry, (3) anaerobically digested cattle slurry/maize, (4) anaerobically digested cattle slurry/grass-clover, or (5) fresh grass-clover was applied to soil at arable realistic rates. Experimental unites were sequentially sampled destructively after 1, 3 and 9 days of incubation and the soil assayed for content of mineral N, available organic C, emission of CO2 and N2O, microbial phospholipid fatty acids (biomass and community composition) and catabolic response profiling (functional diversity). Fertilizing with the anaerobically digested materials increased the soil concentration of NO3− ca. 30–40% compared to when raw cattle slurry was applied. Grass-clover contributed with four times more readily degradable organic C than the other materials, causing an increased microbial biomass which depleted the soil for mineral N and probably also O2. Consequently, grass-clover also caused a ∼10 times increase in emissions of CO2 and N2O greenhouse gasses compared to any of the other treatments during the 9 days. Regarding microbial community composition, grass-clover induced the largest changes in microbial diversity measures compared to the controls, where raw cattle slurry and the two anaerobically digested materials (cattle slurry/maize, cattle slurry/grass-clover) only induced minor and transient changes.
Anaerobic digestion of animal manure and crop residues may be employed to produce biogas as a climate-neutral source of energy and to recycle plant nutrients as fertilizers. However, especially organic farmers are concerned that fertilizing with the digestates may impact the soil microbiota and fertility because they contain more mineral nitrogen (N) and less organic carbon (C) than the non-digested input materials (e.g. raw animal slurry or fresh plant residues). Hence, an incubation study was performed where (1) water, (2) raw cattle slurry, (3) anaerobically digested cattle slurry/maize, (4) anaerobically digested cattle slurry/grass-clover, or (5) fresh grass-clover was applied to soil at arable realistic rates. Experimental unites were sequentially sampled destructively after 1, 3 and 9 days of incubation and the soil assayed for content of mineral N, available organic C, emission of CO₂ and N₂O, microbial phospholipid fatty acids (biomass and community composition) and catabolic response profiling (functional diversity). Fertilizing with the anaerobically digested materials increased the soil concentration of NO₃ ⁻ ca. 30–40% compared to when raw cattle slurry was applied. Grass-clover contributed with four times more readily degradable organic C than the other materials, causing an increased microbial biomass which depleted the soil for mineral N and probably also O₂. Consequently, grass-clover also caused a ∼10 times increase in emissions of CO₂ and N₂O greenhouse gasses compared to any of the other treatments during the 9 days. Regarding microbial community composition, grass-clover induced the largest changes in microbial diversity measures compared to the controls, where raw cattle slurry and the two anaerobically digested materials (cattle slurry/maize, cattle slurry/grass-clover) only induced minor and transient changes.
Anaerobic digestion of animal manure and crop residues may be employed to produce biogas as a climate-neutral source of energy and to recycle plant nutrients as fertilizers. However, especially organic farmers are concerned that fertilizing with the digestates may impact the soil microbiota and fertility because they contain more mineral nitrogen (N) and less organic carbon (C) than the non-digested input materials (e.g. raw animal slurry or fresh plant residues). Hence, an incubation study was performed where (1) water, (2) raw cattle slurry, (3) anaerobically digested cattle slurry/maize, (4) anaerobically digested cattle slurry/grass-clover, or (5) fresh grass-clover was applied to soil at arable realistic rates. Experimental unites were sequentially sampled destructively after 1, 3 and 9 days of incubation and the soil assayed for content of mineral N, available organic C, emission of CO2 and N2O, microbial phospholipid fatty acids (biomass and community composition) and catabolic response profiling (fiinctional diversity). Fertilizing with the anaerobically digested materials increased the soil concentration of NO3- ca. 30-40% compared to when raw cattle slurry was applied. Grass-clover contributed with four times more readily degradable organic C than the other materials, causing an increased microbial biomass which depleted the soil for mineral N and probably also O-2. Consequently, grass-clover also caused a 10 times increase in emissions of CO2 and N2O greenhouse gasses compared to any of the other treatments during the 9 days. Regarding microbial community composition, grass-clover induced the largest changes in microbial diversity measures compared to the controls, where raw cattle slurry and the two anaerobically digested materials (cattle slurry/maize, cattle slurry/grass-clover) only induced minor and transient changes. (C) 2012 Elsevier B.V. All rights reserved.
Anaerobic digestion of animal manure and crop residues may be employed to produce biogas as a climate-neutral source of energy and to recycle plant nutrients as fertilizers. However, especially organic farmers are concerned that fertilizing with the digestates may impact the soil microbiota and fertility because they contain more mineral nitrogen (N) and less organic carbon (C) than the non-digested input materials (e.g. raw animal slurry or fresh plant residues). Hence, an incubation study was performed where (1) water, (2) raw cattle slurry, (3) anaerobically digested cattle slurry/maize, (4) anaerobically digested cattle slurry/grass-clover, or (5) fresh grass-clover was applied to soil at arable realistic rates. Experimental unites were sequentially sampled destructively after 1, 3 and 9 days of incubation and the soil assayed for content of mineral N, available organic C, emission of CO2 and N2O, microbial phospholipid fatty acids (biomass and community composition) and catabolic response profiling (functional diversity). Fertilizing with the anaerobically digested materials increased the soil concentration of NO3− ca. 30–40% compared to when raw cattle slurry was applied. Grass-clover contributed with four times more readily degradable organic C than the other materials, causing an increased microbial biomass which depleted the soil for mineral N and probably also O2. Consequently, grass-clover also caused a ∼10 times increase in emissions of CO2 and N2O greenhouse gasses compared to any of the other treatments during the 9 days. Regarding microbial community composition, grass-clover induced the largest changes in microbial diversity measures compared to the controls, where raw cattle slurry and the two anaerobically digested materials (cattle slurry/maize, cattle slurry/grass-clover) only induced minor and transient changes.
Author Ambus, Per
Johansen, Anders
Carter, Mette S.
Jensen, Erik S.
Hauggard-Nielsen, Henrik
Author_xml – sequence: 1
  givenname: Anders
  surname: Johansen
  fullname: Johansen, Anders
  email: ajo@dmu.dk
  organization: Department of Environmental Technology, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
– sequence: 2
  givenname: Mette S.
  surname: Carter
  fullname: Carter, Mette S.
  organization: Risø National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde, Denmark
– sequence: 3
  givenname: Erik S.
  surname: Jensen
  fullname: Jensen, Erik S.
  organization: Department of Agrosystems, Swedish University of Agricultural Sciences, P.O. Box 104, SE-230 53 Alnarp, Sweden
– sequence: 4
  givenname: Henrik
  surname: Hauggard-Nielsen
  fullname: Hauggard-Nielsen, Henrik
  organization: Risø National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde, Denmark
– sequence: 5
  givenname: Per
  surname: Ambus
  fullname: Ambus, Per
  organization: Risø National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde, Denmark
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27054610$$DView record in Pascal Francis
https://res.slu.se/id/publ/40520$$DView record from Swedish Publication Index
BookMark eNqFkk1v1DAQhiNUJLaFf4CEL0hcEsYf-eKAhFalRarYA_RsOc648iqJFztbtH-BX82ELBw4wMmS87wz42dymV1MYcIse8mh4MCrt_vCHFLwQyGAiwLaAkA-yTa8qWUOohYX2QZa0eZctvJZdpnSHgBK0chN9uPaObRzYsGx3j9gms2MzMUwMjMZjKHz1gzD6fwRe2bNPA_I0nCM8URQzw6DmWY2UjB6M1CpiS3TsNHbJW8GZsM4Hic_rzyOPiVPFPXc7sSvu89i9zx76iiOL87nVXb_8frr9ja_29182n64y61q6znveoRKVJWSHQrXtb3oea2kQumA97ZTUhgs-6qBqmpcq3gp266EzqIqmw6MvMrytW76jodjpw_RjyaedDBe06s6E5dDJ9SKJAHxb1b-EMO3I0nQNL_FgV6N4Zg0V6RdCsk5oa_PqEmkzUUzWZ_-dBA1lKriS8l3K0eCUorotPUknpzM0fhBc9DLYvVer4vVy2I1tJoWS2H1V_h3_f_EXq0xZ4I2D5Hmuv9CgALgdSVUTcT7lUCy_-iRPFiPk8XeR_pHdB_8v1v8BHFtzKA
CitedBy_id crossref_primary_10_1186_s40538_022_00310_6
crossref_primary_10_3390_su70810709
crossref_primary_10_3389_fmicb_2016_01469
crossref_primary_10_17660_ActaHortic_2023_1375_11
crossref_primary_10_3390_pr10010147
crossref_primary_10_3390_agronomy11071281
crossref_primary_10_3389_fsufs_2024_1356469
crossref_primary_10_1016_j_geoderma_2020_114458
crossref_primary_10_1016_j_still_2023_105715
crossref_primary_10_1016_j_clcb_2022_100004
crossref_primary_10_1016_j_apsoil_2015_09_007
crossref_primary_10_1016_j_apsoil_2019_07_011
crossref_primary_10_3390_agronomy11102041
crossref_primary_10_3389_fmicb_2021_655515
crossref_primary_10_1016_j_biombioe_2014_04_021
crossref_primary_10_3390_su16198379
crossref_primary_10_1080_03650340_2014_907491
crossref_primary_10_1088_1755_1315_210_1_012014
crossref_primary_10_3390_agronomy12020456
crossref_primary_10_1007_s00248_014_0383_8
crossref_primary_10_1007_s11356_018_2875_4
crossref_primary_10_1016_j_apsoil_2023_105066
crossref_primary_10_1016_j_envpol_2025_125961
crossref_primary_10_1002_saj2_20325
crossref_primary_10_3389_fsufs_2020_614349
crossref_primary_10_1080_10934529_2018_1459076
crossref_primary_10_1016_j_apsoil_2022_104577
crossref_primary_10_1016_j_apsoil_2023_105105
crossref_primary_10_1016_j_eja_2023_126914
crossref_primary_10_3390_agronomy10020226
crossref_primary_10_1007_s10163_018_00816_y
crossref_primary_10_1016_j_biombioe_2020_105665
crossref_primary_10_1080_10962247_2019_1694091
crossref_primary_10_1080_03650340_2019_1652816
crossref_primary_10_1264_jsme2_ME14080
crossref_primary_10_1007_s12649_020_01211_1
crossref_primary_10_1007_s42729_020_00361_4
crossref_primary_10_1007_s11356_016_6591_7
crossref_primary_10_1016_j_still_2015_11_001
crossref_primary_10_1016_j_apsoil_2015_11_019
crossref_primary_10_1016_j_wasman_2014_01_017
crossref_primary_10_4081_ija_2016_657
crossref_primary_10_1007_s42729_020_00237_7
crossref_primary_10_1016_j_jenvman_2019_02_081
crossref_primary_10_1007_s13399_021_02215_0
crossref_primary_10_1016_j_apsoil_2016_12_001
crossref_primary_10_3390_agronomy11081466
crossref_primary_10_3390_pr8020142
crossref_primary_10_1016_j_agsy_2015_07_006
crossref_primary_10_1016_j_jenvman_2020_110422
crossref_primary_10_3389_fenrg_2015_00049
crossref_primary_10_3390_agriculture10060244
crossref_primary_10_1002_jpln_201400544
crossref_primary_10_1007_s12649_022_01963_y
crossref_primary_10_1016_j_sciaf_2020_e00332
crossref_primary_10_1108_MEQ_10_2018_0178
crossref_primary_10_1016_j_agsy_2017_10_016
crossref_primary_10_1007_s11356_024_32850_9
crossref_primary_10_1016_j_apsoil_2019_103403
crossref_primary_10_1016_j_ecolind_2017_02_025
crossref_primary_10_1155_2021_6645203
crossref_primary_10_1016_j_still_2014_12_015
crossref_primary_10_1155_sci5_2123395
crossref_primary_10_1007_s13165_023_00447_0
crossref_primary_10_1016_j_agee_2020_107010
crossref_primary_10_1016_j_biombioe_2014_08_004
crossref_primary_10_1080_01904167_2022_2067065
crossref_primary_10_1111_ejss_13091
crossref_primary_10_1016_j_soilbio_2015_02_006
crossref_primary_10_1016_j_soilbio_2015_02_004
crossref_primary_10_5897_AJAR2018_13761
crossref_primary_10_1016_j_apsoil_2019_103376
crossref_primary_10_1016_j_jhazmat_2015_09_067
crossref_primary_10_3390_ma16031027
crossref_primary_10_1007_s13593_015_0284_3
crossref_primary_10_1016_j_scitotenv_2023_162911
crossref_primary_10_1016_j_soilbio_2014_12_008
crossref_primary_10_1016_j_apsoil_2020_103643
crossref_primary_10_1016_j_wasman_2015_07_037
crossref_primary_10_2136_sssaj2016_05_0132
crossref_primary_10_1007_s11356_015_4678_1
crossref_primary_10_1007_s10311_022_01451_8
crossref_primary_10_3390_su142215099
crossref_primary_10_1016_j_apsoil_2014_10_004
crossref_primary_10_1016_j_envres_2023_117162
crossref_primary_10_1080_00103624_2015_1109652
crossref_primary_10_1002_jeq2_20174
crossref_primary_10_1016_j_ejsobi_2024_103648
crossref_primary_10_1016_j_scitotenv_2022_158177
crossref_primary_10_1016_j_apsoil_2015_06_015
crossref_primary_10_1016_j_watres_2021_117659
crossref_primary_10_1016_S1002_0160_17_60388_6
crossref_primary_10_3390_su132111568
crossref_primary_10_1007_s12649_022_01723_y
crossref_primary_10_3390_agronomy12071593
crossref_primary_10_1088_1757_899X_980_1_012069
crossref_primary_10_3390_agronomy9050227
crossref_primary_10_11118_actaun_2023_009
crossref_primary_10_17221_530_2015_PSE
crossref_primary_10_2525_ecb_61_9
crossref_primary_10_3390_app11020750
crossref_primary_10_1155_2024_6685906
crossref_primary_10_1111_gcbb_12688
crossref_primary_10_1016_j_scitotenv_2020_137227
crossref_primary_10_1016_j_envpol_2013_10_008
crossref_primary_10_1016_j_still_2019_04_024
crossref_primary_10_1016_j_ecoenv_2020_110482
Cites_doi 10.1016/j.gloenvcha.2008.10.009
10.1016/0038-0717(95)00100-X
10.1016/j.apsoil.2011.11.002
10.1016/j.biombioe.2012.01.017
10.3390/en20200226
10.1007/s00374-011-0633-6
10.1016/j.soilbio.2006.08.015
10.1016/j.soilbio.2005.04.004
10.1016/j.apsoil.2009.05.012
10.1007/s00374-005-0858-3
10.1016/j.soilbio.2003.08.018
10.1016/j.agee.2006.05.022
10.1016/j.pedobi.2011.12.002
10.1016/j.apsoil.2012.02.012
10.1023/A:1004350215467
10.1023/A:1004558126118
10.1080/09593332708618635
10.1128/AEM.65.8.3566-3574.1999
10.1016/S0038-0717(03)00249-9
10.2136/sssaj1987.03615995005100050019x
10.1016/S0038-0717(97)00076-X
10.1016/0960-8524(92)90199-8
10.1007/s10705-008-9196-9
10.1046/j.1351-0754.2003.0556.x
10.1016/0038-0717(95)00150-6
10.1016/j.wasman.2007.06.005
10.1128/AEM.69.6.3593-3599.2003
10.1007/s002489900070
10.1007/s10705-008-9236-5
10.1016/j.eja.2008.06.003
10.1007/s11104-007-9485-0
10.1016/j.apsoil.2011.07.007
10.1128/AEM.59.11.3605-3617.1993
10.1016/j.apenergy.2010.03.001
10.1021/es000288s
10.1007/s00248-004-0135-2
10.1002/jpln.200800250
10.1128/MMBR.46.1.43-70.1982
10.1093/jpe/rtq022
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
ADTPV
AOWAS
DOI 10.1016/j.apsoil.2012.09.003
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Ecology
EISSN 1873-0272
EndPage 44
ExternalDocumentID oai_slubar_slu_se_40520
27054610
10_1016_j_apsoil_2012_09_003
US201400176247
S0929139312002260
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
UHS
UNMZH
WUQ
XPP
Y6R
ZMT
~G-
~KM
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
AEGFY
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
IQODW
7S9
L.6
ADTPV
AOWAS
EFKBS
ID FETCH-LOGICAL-c497t-bde0626643be2fb9d2d17434e3f01dcb432ae5d680668f941539b50bce458b0a3
IEDL.DBID .~1
ISSN 0929-1393
1873-0272
IngestDate Thu Aug 21 07:00:40 EDT 2025
Fri Jul 11 16:14:39 EDT 2025
Wed Apr 02 07:26:14 EDT 2025
Thu Apr 24 22:58:41 EDT 2025
Tue Jul 01 03:25:23 EDT 2025
Thu Apr 03 09:43:35 EDT 2025
Fri Feb 23 02:27:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Organic carbon
Biogas and digestate
Organic farming
N2O emission
Microbial community
Nutrient recycling
Microbial activity
Gas emission
Carbon dioxide
Animal slurry
Anaerobic digestion
Biological material
N
Soil science
Recycling
Ungulata
Bovine
Biogas
Ecology
Soils
Vertebrata
Mammalia
O emission
Organic agriculture
Plant origin
Nutrient
Artiodactyla
Nitrogen protoxide
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-bde0626643be2fb9d2d17434e3f01dcb432ae5d680668f941539b50bce458b0a3
Notes http://dx.doi.org/10.1016/j.apsoil.2012.09.003
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1420132311
PQPubID 24069
PageCount 9
ParticipantIDs swepub_primary_oai_slubar_slu_se_40520
proquest_miscellaneous_1420132311
pascalfrancis_primary_27054610
crossref_citationtrail_10_1016_j_apsoil_2012_09_003
crossref_primary_10_1016_j_apsoil_2012_09_003
fao_agris_US201400176247
elsevier_sciencedirect_doi_10_1016_j_apsoil_2012_09_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2013
2013
2013-1-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied soil ecology : a section of Agriculture, ecosystems & environment
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Arthurson (bib0005) 2009; 2
Johansen, Olsson (bib0115) 2005; 49
Müller-Stöver, Hauggaard-Nielsen, Eriksen, Ambus, Johansen (bib0245) 2012; 48
Macnaughton, Stephen, Venosa, Chang, White (bib0170) 1999; 65
Wilkinson (bib0225) 1988; vol. 1
IPCC, 2007. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Mitigation of Climate Change.
Knowles (bib0140) 1982; 46
Hauggaard-Nielsen, de Neergaard, Jensen, Høgh-Jensen, Magid (bib0090) 1998; 203
Petersen, Nielsen, Frostegard, Olesen (bib0210) 1996; 28
Degens, Harris (bib0045) 1997; 29
Möller, Stinner (bib0185) 2009; 30
Bougnom, Niederkofler, Knapp, Stimpfl, Insam (bib0020) 2012; 39
Lalor, Cookson, Murphy (bib0150) 2007; 39
Fliessbach, Oberholzer, Gunst, Mäder (bib0105) 2007; 118
Kroppenstedt (bib0130) 1985
Farquharson, Baldock (bib0055) 2008; 309
Joner, Johansen, Loibner, DelaCruz, Szolar, Portal, Leyval (bib0125) 2001; 35
Ekelund, Olsson, Johansen (bib0050) 2005; 35
Bateman, Baggs (bib0015) 2005; 41
Johansen (bib0110) 1999; 209
Balkwill, Murphy, Fair, Ringelberg, White (bib0010) 1998; 35
IFOAM, 2011. The principles of organic agriculture
Parkin (bib0205) 1987; 51
Frostegård, Tunlid, Bååth (bib0065) 1993; 59
Gunnarsson, Bengtsson, Caspersen (bib0085) 2010; 173
Stevenson, Sparling, Schipper, Degens, Duncan (bib0215) 2003; 36
Cordell, Drangert J.-O., White (bib0035) 2009; 19
Greenberg, Clesceri, Eaton (bib0080) 1998
O’Leary, Wilkinson (bib0160) 1988; vol. 1
Nannipieri, Ascher, Ceccherini, Landi, Pietramellara, Renella (bib0195) 2003; 54
Goberna, Podmirseg, Waldhuber, Knapp, Garcia, Insam (bib0075) 2011; 49
Lehtomäki, Björnsson (bib0155) 2006; 27
Odlare, Pell, Svensson (bib0200) 2008; 28
Frostegard, Tunlid, Bååth (bib0070) 1996; 28
Campbell, Chapman, Cameron, Davidson, Potts (bib0030) 2003; 69
Möller, Stinner, Deuker, Leithold (bib0175) 2008; 82
Möller (bib0180) 2009; 84
.
Yang, Zhu, Zhang, Yan, Sun (bib0230) 2010; 3
Terhoeven-Urselmans, Scheller, Raubuch, Ludwig, Joergensen (bib0220) 2009; 42
Johansen, Knudsen, Binnerup, Winding, Johansen, Jensen, Andersen, Svenning, Bonde (bib0120) 2005; 37
Zhang, Shamsi, Xu, Wang, Lin, Jilani, Hussain, Chaudhry (bib0235) 2012; 57
Mathiesen, Lund, Karlsson (bib0165) 2011; 88
Lagomarsino, Grego, Kandeler (bib0145) 2012; 55
Zhou, Wu, Koetz, Xu, Chen (bib0240) 2012; 53
Danish Energy Agency, 2010. Notat: Anvendelse af biogasressourcerne og strategi herfor.
Federle (bib0060) 1986
Kirchmann, Witter (bib0135) 1992; 40
10.1016/j.apsoil.2012.09.003_bib0040
Fliessbach (10.1016/j.apsoil.2012.09.003_bib0105) 2007; 118
10.1016/j.apsoil.2012.09.003_bib0100
Stevenson (10.1016/j.apsoil.2012.09.003_bib0215) 2003; 36
Mathiesen (10.1016/j.apsoil.2012.09.003_bib0165) 2011; 88
Knowles (10.1016/j.apsoil.2012.09.003_bib0140) 1982; 46
Frostegard (10.1016/j.apsoil.2012.09.003_bib0070) 1996; 28
Johansen (10.1016/j.apsoil.2012.09.003_bib0120) 2005; 37
Farquharson (10.1016/j.apsoil.2012.09.003_bib0055) 2008; 309
Parkin (10.1016/j.apsoil.2012.09.003_bib0205) 1987; 51
Zhou (10.1016/j.apsoil.2012.09.003_bib0240) 2012; 53
Greenberg (10.1016/j.apsoil.2012.09.003_bib0080) 1998
Müller-Stöver (10.1016/j.apsoil.2012.09.003_bib0245) 2012; 48
Lehtomäki (10.1016/j.apsoil.2012.09.003_bib0155) 2006; 27
Macnaughton (10.1016/j.apsoil.2012.09.003_bib0170) 1999; 65
Johansen (10.1016/j.apsoil.2012.09.003_bib0110) 1999; 209
Balkwill (10.1016/j.apsoil.2012.09.003_bib0010) 1998; 35
Kroppenstedt (10.1016/j.apsoil.2012.09.003_bib0130) 1985
Ekelund (10.1016/j.apsoil.2012.09.003_bib0050) 2005; 35
O’Leary (10.1016/j.apsoil.2012.09.003_bib0160) 1988; vol. 1
Petersen (10.1016/j.apsoil.2012.09.003_bib0210) 1996; 28
Terhoeven-Urselmans (10.1016/j.apsoil.2012.09.003_bib0220) 2009; 42
Degens (10.1016/j.apsoil.2012.09.003_bib0045) 1997; 29
Bougnom (10.1016/j.apsoil.2012.09.003_bib0020) 2012; 39
Bateman (10.1016/j.apsoil.2012.09.003_bib0015) 2005; 41
Frostegård (10.1016/j.apsoil.2012.09.003_bib0065) 1993; 59
10.1016/j.apsoil.2012.09.003_bib0095
Möller (10.1016/j.apsoil.2012.09.003_bib0180) 2009; 84
Arthurson (10.1016/j.apsoil.2012.09.003_bib0005) 2009; 2
Goberna (10.1016/j.apsoil.2012.09.003_bib0075) 2011; 49
Möller (10.1016/j.apsoil.2012.09.003_bib0185) 2009; 30
Möller (10.1016/j.apsoil.2012.09.003_bib0175) 2008; 82
Zhang (10.1016/j.apsoil.2012.09.003_bib0235) 2012; 57
Hauggaard-Nielsen (10.1016/j.apsoil.2012.09.003_bib0090) 1998; 203
Kirchmann (10.1016/j.apsoil.2012.09.003_bib0135) 1992; 40
Johansen (10.1016/j.apsoil.2012.09.003_bib0115) 2005; 49
Gunnarsson (10.1016/j.apsoil.2012.09.003_bib0085) 2010; 173
Lagomarsino (10.1016/j.apsoil.2012.09.003_bib0145) 2012; 55
Wilkinson (10.1016/j.apsoil.2012.09.003_bib0225) 1988; vol. 1
Lalor (10.1016/j.apsoil.2012.09.003_bib0150) 2007; 39
Federle (10.1016/j.apsoil.2012.09.003_bib0060) 1986
Joner (10.1016/j.apsoil.2012.09.003_bib0125) 2001; 35
Yang (10.1016/j.apsoil.2012.09.003_bib0230) 2010; 3
Cordell (10.1016/j.apsoil.2012.09.003_bib0035) 2009; 19
Odlare (10.1016/j.apsoil.2012.09.003_bib0200) 2008; 28
Nannipieri (10.1016/j.apsoil.2012.09.003_bib0195) 2003; 54
Campbell (10.1016/j.apsoil.2012.09.003_bib0030) 2003; 69
References_xml – volume: 41
  start-page: 379
  year: 2005
  end-page: 388
  ident: bib0015
  article-title: Contributions of nitrification and denitrification to N
  publication-title: Biol. Fertil. Soils
– volume: 19
  start-page: 292
  year: 2009
  end-page: 305
  ident: bib0035
  article-title: The story of phosphorus: global food security and food for thought
  publication-title: Global Environ. Change
– volume: 39
  start-page: 454
  year: 2007
  end-page: 462
  ident: bib0150
  article-title: Comparison of two methods that assess soil community level physiological profiles in a forest ecosystem
  publication-title: Soil Biol. Biochem.
– volume: 59
  start-page: 3605
  year: 1993
  end-page: 3617
  ident: bib0065
  article-title: Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals
  publication-title: Appl. Environ. Microbiol.
– volume: 309
  start-page: 147
  year: 2008
  end-page: 167
  ident: bib0055
  article-title: Concepts in modelling N
  publication-title: Plant Soil
– volume: 2
  start-page: 226
  year: 2009
  end-page: 242
  ident: bib0005
  article-title: Closing the global energy and nutrient cycles through application of biogas residue to agricultural land – potential benefits and drawbacks
  publication-title: Energies
– year: 1998
  ident: bib0080
  article-title: Standard Methods for the Examination of Water and Wastewater
– volume: 35
  start-page: 156
  year: 1998
  end-page: 171
  ident: bib0010
  article-title: Microbial communities in high and low recharge environments: implications for microbial transport in the vadose zone
  publication-title: Microb. Ecol.
– volume: 35
  start-page: 1507
  year: 2005
  end-page: 1516
  ident: bib0050
  article-title: Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations
  publication-title: Soil Biol. Biochem.
– volume: 69
  start-page: 3593
  year: 2003
  end-page: 3599
  ident: bib0030
  article-title: A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil
  publication-title: Appl. Environ. Microb.
– start-page: 493
  year: 1986
  end-page: 498
  ident: bib0060
  article-title: Microbial distribution in soil – new techniques
  publication-title: Perspectives in Microbial Biology
– volume: 54
  start-page: 655
  year: 2003
  end-page: 670
  ident: bib0195
  article-title: Microbial diversity and soil functions
  publication-title: Eur. J. Soil Sci.
– volume: 173
  start-page: 113
  year: 2010
  end-page: 119
  ident: bib0085
  article-title: Use efficiency of nitrogen from biodigested plant material by ryegrass
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 27
  start-page: 209
  year: 2006
  end-page: 218
  ident: bib0155
  article-title: Two-stage anaerobic digestion of energy crops: methane production, nitrogen mineralization and heavy metal mobilization
  publication-title: Environ. Technol.
– volume: 203
  start-page: 91
  year: 1998
  end-page: 101
  ident: bib0090
  article-title: A field study of nitrogen dynamics and spring barley growth as affected by the quality of incorporated residues from white clover and ryegrass
  publication-title: Plant Soil
– volume: 3
  start-page: 175
  year: 2010
  end-page: 182
  ident: bib0230
  article-title: Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation
  publication-title: J. Plant Ecol.
– volume: 51
  start-page: 1194
  year: 1987
  end-page: 1199
  ident: bib0205
  article-title: Soil microsites as a source of denitrification variability
  publication-title: Soil Sci. Soc. Am. J.
– volume: vol. 1
  start-page: 299
  year: 1988
  end-page: 488
  ident: bib0225
  article-title: Gram-negative bacteria
  publication-title: Microbial Lipids
– volume: 49
  start-page: 1
  year: 2005
  end-page: 10
  ident: bib0115
  article-title: Using phospholipid fatty acid technique to study short-term effects of the biological control agent
  publication-title: Microb. Ecol.
– volume: 46
  start-page: 43
  year: 1982
  end-page: 70
  ident: bib0140
  article-title: Denitrification
  publication-title: Microbiol. Rev.
– volume: 57
  start-page: 1
  year: 2012
  end-page: 8
  ident: bib0235
  article-title: Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure
  publication-title: Appl. Soil Ecol.
– volume: 37
  start-page: 2225
  year: 2005
  end-page: 2239
  ident: bib0120
  article-title: Non-target effects of the microbial control agents
  publication-title: Soil Biol. Biochem.
– volume: 29
  start-page: 1309
  year: 1997
  end-page: 1320
  ident: bib0045
  article-title: Development of a physiological approach to measuring the catabolic diversity of soil microbial communities
  publication-title: Soil Biol. Biochem.
– volume: 209
  start-page: 119
  year: 1999
  end-page: 127
  ident: bib0110
  article-title: Depletion of soil mineral N by roots of
  publication-title: Plant Soil
– volume: 53
  start-page: 49
  year: 2012
  end-page: 55
  ident: bib0240
  article-title: Soil labile carbon and nitrogen pools and microbial metabolic diversity under winter crops in an arid environment
  publication-title: Appl. Soil Ecol.
– volume: 65
  start-page: 3566
  year: 1999
  end-page: 3574
  ident: bib0170
  article-title: Microbial population changes during bioremediation of an experimental oil spill
  publication-title: Appl. Environ. Microbiol.
– volume: 39
  start-page: 290
  year: 2012
  end-page: 295
  ident: bib0020
  article-title: Residues from renewable energy production: their value for fertilizing pastures
  publication-title: Biomass Bioenergy
– volume: 42
  start-page: 297
  year: 2009
  end-page: 302
  ident: bib0220
  article-title: CO
  publication-title: Appl. Soil Ecol.
– volume: 49
  start-page: 18
  year: 2011
  end-page: 25
  ident: bib0075
  article-title: Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure
  publication-title: Appl. Soil Ecol.
– volume: 84
  start-page: 179
  year: 2009
  end-page: 202
  ident: bib0180
  article-title: Effects of biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 118
  start-page: 273
  year: 2007
  end-page: 284
  ident: bib0105
  article-title: Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming
  publication-title: Agric. Ecosyst. Environ.
– volume: vol. 1
  start-page: 117
  year: 1988
  end-page: 201
  ident: bib0160
  article-title: Gram-positive bacteria
  publication-title: Microbial Lipids
– reference: .
– reference: IPCC, 2007. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Mitigation of Climate Change.
– volume: 88
  start-page: 488
  year: 2011
  end-page: 501
  ident: bib0165
  article-title: 100% Renewable energy systems, climate mitigation and economic growth
  publication-title: Appl. Energy
– volume: 28
  start-page: 341
  year: 1996
  end-page: 349
  ident: bib0210
  article-title: O
  publication-title: Soil Biol. Biochem.
– volume: 36
  start-page: 49
  year: 2003
  end-page: 55
  ident: bib0215
  article-title: Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration responses at a landscape scale
  publication-title: Soil Biol. Biochem.
– volume: 82
  start-page: 209
  year: 2008
  end-page: 232
  ident: bib0175
  article-title: Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems
  publication-title: Nutr. Cycl. Agroecosyst.
– reference: IFOAM, 2011. The principles of organic agriculture:
– reference: Danish Energy Agency, 2010. Notat: Anvendelse af biogasressourcerne og strategi herfor.
– volume: 28
  start-page: 55
  year: 1996
  end-page: 63
  ident: bib0070
  article-title: Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals
  publication-title: Soil Biol. Biochem.
– start-page: 173
  year: 1985
  end-page: 199
  ident: bib0130
  article-title: Fatty acid and menaquinone analysis of actinomycetes and related organisms
  publication-title: Chemical Methods in Bacterial Systematics
– volume: 35
  start-page: 2773
  year: 2001
  end-page: 2777
  ident: bib0125
  article-title: Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 371
  year: 2012
  end-page: 383
  ident: bib0245
  article-title: Microbial biomass, microbial diversity, soil carbon C storage and stability after incubation of soil from grass-clover pastures of different age
  publication-title: Biol. Fertil. Soils
– volume: 40
  start-page: 137
  year: 1992
  end-page: 142
  ident: bib0135
  article-title: Composition of fresh, aerobic and anaerobic farm animal dungs
  publication-title: Bioresour. Technol.
– volume: 55
  start-page: 101
  year: 2012
  end-page: 110
  ident: bib0145
  article-title: Soil organic carbon distribution drives microbial activity and functional diversity in particle and aggregate-size fractions
  publication-title: Pedobiologia
– volume: 30
  start-page: 1
  year: 2009
  end-page: 16
  ident: bib0185
  article-title: Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides)
  publication-title: Eur. J. Agron.
– volume: 28
  start-page: 1246
  year: 2008
  end-page: 1253
  ident: bib0200
  article-title: Changes in soil chemical and microbiological properties during 4 years of application of various organic residues
  publication-title: Waste Manage.
– start-page: 493
  year: 1986
  ident: 10.1016/j.apsoil.2012.09.003_bib0060
  article-title: Microbial distribution in soil – new techniques
– volume: 19
  start-page: 292
  year: 2009
  ident: 10.1016/j.apsoil.2012.09.003_bib0035
  article-title: The story of phosphorus: global food security and food for thought
  publication-title: Global Environ. Change
  doi: 10.1016/j.gloenvcha.2008.10.009
– volume: 28
  start-page: 55
  year: 1996
  ident: 10.1016/j.apsoil.2012.09.003_bib0070
  article-title: Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(95)00100-X
– volume: 53
  start-page: 49
  year: 2012
  ident: 10.1016/j.apsoil.2012.09.003_bib0240
  article-title: Soil labile carbon and nitrogen pools and microbial metabolic diversity under winter crops in an arid environment
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2011.11.002
– volume: 39
  start-page: 290
  year: 2012
  ident: 10.1016/j.apsoil.2012.09.003_bib0020
  article-title: Residues from renewable energy production: their value for fertilizing pastures
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.01.017
– volume: 2
  start-page: 226
  year: 2009
  ident: 10.1016/j.apsoil.2012.09.003_bib0005
  article-title: Closing the global energy and nutrient cycles through application of biogas residue to agricultural land – potential benefits and drawbacks
  publication-title: Energies
  doi: 10.3390/en20200226
– volume: 48
  start-page: 371
  year: 2012
  ident: 10.1016/j.apsoil.2012.09.003_bib0245
  article-title: Microbial biomass, microbial diversity, soil carbon C storage and stability after incubation of soil from grass-clover pastures of different age
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-011-0633-6
– volume: 39
  start-page: 454
  year: 2007
  ident: 10.1016/j.apsoil.2012.09.003_bib0150
  article-title: Comparison of two methods that assess soil community level physiological profiles in a forest ecosystem
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2006.08.015
– volume: 37
  start-page: 2225
  year: 2005
  ident: 10.1016/j.apsoil.2012.09.003_bib0120
  article-title: Non-target effects of the microbial control agents Pseudomonas fluorescens DR54 and Clonostachys rosea IK726 in soils cropped with barley followed by sugar beet: a greenhouse assessment
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.04.004
– volume: 42
  start-page: 297
  year: 2009
  ident: 10.1016/j.apsoil.2012.09.003_bib0220
  article-title: CO2 evolution and N mineralization after biogas slurry application in the field and its yield effects on spring barley
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2009.05.012
– volume: 41
  start-page: 379
  year: 2005
  ident: 10.1016/j.apsoil.2012.09.003_bib0015
  article-title: Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-005-0858-3
– ident: 10.1016/j.apsoil.2012.09.003_bib0040
– volume: 36
  start-page: 49
  year: 2003
  ident: 10.1016/j.apsoil.2012.09.003_bib0215
  article-title: Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration responses at a landscape scale
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2003.08.018
– volume: 118
  start-page: 273
  year: 2007
  ident: 10.1016/j.apsoil.2012.09.003_bib0105
  article-title: Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2006.05.022
– volume: 55
  start-page: 101
  year: 2012
  ident: 10.1016/j.apsoil.2012.09.003_bib0145
  article-title: Soil organic carbon distribution drives microbial activity and functional diversity in particle and aggregate-size fractions
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2011.12.002
– volume: 57
  start-page: 1
  year: 2012
  ident: 10.1016/j.apsoil.2012.09.003_bib0235
  article-title: Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2012.02.012
– year: 1998
  ident: 10.1016/j.apsoil.2012.09.003_bib0080
– volume: 203
  start-page: 91
  year: 1998
  ident: 10.1016/j.apsoil.2012.09.003_bib0090
  article-title: A field study of nitrogen dynamics and spring barley growth as affected by the quality of incorporated residues from white clover and ryegrass
  publication-title: Plant Soil
  doi: 10.1023/A:1004350215467
– volume: 209
  start-page: 119
  year: 1999
  ident: 10.1016/j.apsoil.2012.09.003_bib0110
  article-title: Depletion of soil mineral N by roots of Cucumis sativus L. colonized or not by arbuscular mycorrhizal fungi
  publication-title: Plant Soil
  doi: 10.1023/A:1004558126118
– volume: 27
  start-page: 209
  year: 2006
  ident: 10.1016/j.apsoil.2012.09.003_bib0155
  article-title: Two-stage anaerobic digestion of energy crops: methane production, nitrogen mineralization and heavy metal mobilization
  publication-title: Environ. Technol.
  doi: 10.1080/09593332708618635
– volume: 65
  start-page: 3566
  year: 1999
  ident: 10.1016/j.apsoil.2012.09.003_bib0170
  article-title: Microbial population changes during bioremediation of an experimental oil spill
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.65.8.3566-3574.1999
– volume: 35
  start-page: 1507
  year: 2005
  ident: 10.1016/j.apsoil.2012.09.003_bib0050
  article-title: Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(03)00249-9
– volume: 51
  start-page: 1194
  year: 1987
  ident: 10.1016/j.apsoil.2012.09.003_bib0205
  article-title: Soil microsites as a source of denitrification variability
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1987.03615995005100050019x
– start-page: 173
  year: 1985
  ident: 10.1016/j.apsoil.2012.09.003_bib0130
  article-title: Fatty acid and menaquinone analysis of actinomycetes and related organisms
– volume: 29
  start-page: 1309
  year: 1997
  ident: 10.1016/j.apsoil.2012.09.003_bib0045
  article-title: Development of a physiological approach to measuring the catabolic diversity of soil microbial communities
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(97)00076-X
– volume: 40
  start-page: 137
  year: 1992
  ident: 10.1016/j.apsoil.2012.09.003_bib0135
  article-title: Composition of fresh, aerobic and anaerobic farm animal dungs
  publication-title: Bioresour. Technol.
  doi: 10.1016/0960-8524(92)90199-8
– volume: 82
  start-page: 209
  year: 2008
  ident: 10.1016/j.apsoil.2012.09.003_bib0175
  article-title: Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-008-9196-9
– volume: 54
  start-page: 655
  year: 2003
  ident: 10.1016/j.apsoil.2012.09.003_bib0195
  article-title: Microbial diversity and soil functions
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1351-0754.2003.0556.x
– volume: 28
  start-page: 341
  year: 1996
  ident: 10.1016/j.apsoil.2012.09.003_bib0210
  article-title: O2 uptake, C metabolism and denitrification associated with manure hot-spots
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(95)00150-6
– volume: 28
  start-page: 1246
  year: 2008
  ident: 10.1016/j.apsoil.2012.09.003_bib0200
  article-title: Changes in soil chemical and microbiological properties during 4 years of application of various organic residues
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2007.06.005
– volume: 69
  start-page: 3593
  year: 2003
  ident: 10.1016/j.apsoil.2012.09.003_bib0030
  article-title: A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil
  publication-title: Appl. Environ. Microb.
  doi: 10.1128/AEM.69.6.3593-3599.2003
– ident: 10.1016/j.apsoil.2012.09.003_bib0095
– volume: vol. 1
  start-page: 299
  year: 1988
  ident: 10.1016/j.apsoil.2012.09.003_bib0225
  article-title: Gram-negative bacteria
– volume: 35
  start-page: 156
  year: 1998
  ident: 10.1016/j.apsoil.2012.09.003_bib0010
  article-title: Microbial communities in high and low recharge environments: implications for microbial transport in the vadose zone
  publication-title: Microb. Ecol.
  doi: 10.1007/s002489900070
– volume: 84
  start-page: 179
  year: 2009
  ident: 10.1016/j.apsoil.2012.09.003_bib0180
  article-title: Effects of biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-008-9236-5
– volume: 30
  start-page: 1
  year: 2009
  ident: 10.1016/j.apsoil.2012.09.003_bib0185
  article-title: Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides)
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2008.06.003
– volume: 309
  start-page: 147
  year: 2008
  ident: 10.1016/j.apsoil.2012.09.003_bib0055
  article-title: Concepts in modelling N2O emissions from land use
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9485-0
– volume: 49
  start-page: 18
  year: 2011
  ident: 10.1016/j.apsoil.2012.09.003_bib0075
  article-title: Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2011.07.007
– volume: vol. 1
  start-page: 117
  year: 1988
  ident: 10.1016/j.apsoil.2012.09.003_bib0160
  article-title: Gram-positive bacteria
– volume: 59
  start-page: 3605
  year: 1993
  ident: 10.1016/j.apsoil.2012.09.003_bib0065
  article-title: Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.59.11.3605-3617.1993
– ident: 10.1016/j.apsoil.2012.09.003_bib0100
– volume: 88
  start-page: 488
  year: 2011
  ident: 10.1016/j.apsoil.2012.09.003_bib0165
  article-title: 100% Renewable energy systems, climate mitigation and economic growth
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.03.001
– volume: 35
  start-page: 2773
  year: 2001
  ident: 10.1016/j.apsoil.2012.09.003_bib0125
  article-title: Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es000288s
– volume: 49
  start-page: 1
  year: 2005
  ident: 10.1016/j.apsoil.2012.09.003_bib0115
  article-title: Using phospholipid fatty acid technique to study short-term effects of the biological control agent Pseudomonas fluorescens DR54 on the microbial microbiota in barley rhizosphere
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-004-0135-2
– volume: 173
  start-page: 113
  year: 2010
  ident: 10.1016/j.apsoil.2012.09.003_bib0085
  article-title: Use efficiency of nitrogen from biodigested plant material by ryegrass
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200800250
– volume: 46
  start-page: 43
  year: 1982
  ident: 10.1016/j.apsoil.2012.09.003_bib0140
  article-title: Denitrification
  publication-title: Microbiol. Rev.
  doi: 10.1128/MMBR.46.1.43-70.1982
– volume: 3
  start-page: 175
  year: 2010
  ident: 10.1016/j.apsoil.2012.09.003_bib0230
  article-title: Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation
  publication-title: J. Plant Ecol.
  doi: 10.1093/jpe/rtq022
SSID ssj0005283
Score 2.401667
Snippet ► Incorporation of grass-clover in soil causes increased emission of N2O. ► Interaction of available organic C and mineral N governs release of greenhouse gas....
Anaerobic digestion of animal manure and crop residues may be employed to produce biogas as a climate-neutral source of energy and to recycle plant nutrients...
SourceID swepub
proquest
pascalfrancis
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 36
SubjectTerms Agronomy. Soil science and plant productions
anaerobic digestion
arable soils
Biochemistry and biology
biogas
Biogas and digestate
Biological and medical sciences
carbon
cattle
cattle manure
Chemical, physicochemical, biochemical and biological properties
community structure
control methods
corn
crop residues
Ecology
Ekologi
emissions
energy
farmers
fatty acids
fertilizers
functional diversity
Fundamental and applied biological sciences. Psychology
greenhouses
microbial biomass
microbial communities
Microbial community
Microbiology
Mikrobiologi
mineral soils
N2O emission
nitrogen
nitrogen content
Nutrient recycling
nutrients
Organic carbon
Organic farming
Organic matter
phospholipids
Physics, chemistry, biochemistry and biology of agricultural and forest soils
soil fertility
soil microorganisms
Soil science
Title Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O
URI https://dx.doi.org/10.1016/j.apsoil.2012.09.003
https://www.proquest.com/docview/1420132311
https://res.slu.se/id/publ/40520
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRUhwQLCAtjwqIyFuoYntJvGxqnZVXl3EUmlvlu04q6KSVEl76GV_wP5qZuyk2h7QSpxSpePG8Uztb-yZbwj54LI4yZ0sIynyIhK55pHRKYtSYaSwqbbOYr7z93k6W4gvV-OrIzLtc2EwrLKb-8Oc7mfr7s6oG83RerkcXcawsgN-4QnGGQAsxwx2kaGVf7q5G-YRqDhBOELpPn3Ox3jpdVsv8QACdwSRuJL_a3l6UOoa4yZ1C0NXhpoXh6D0LtGoX5zOn5GnHaqkk9Dx5-TIVSfkyeS66Zg13Al5FKpO7uDTmWeq3r0gt4G7uKV1SQt_0gTIk2LGCdWVdkjRBP1Y7bovXUGt5zym7WrbNDsQKuh6BbqhgHuDKdO6ovi29M_SUzxBr2zIQdkEeawvhzt0-MzpBfP35uziJVmcn_2azqKuOENkhcw2kSlcDM4QABrjWGlkwQp0boTjZZwU1gjOtBsXaQ6YJi8l4AQuzTg21olxbmLNX5Hjqq7cKaEJCMAPSSstOGfcydjKNE_BUxOly102ILzXibIdczkW0FipPkTttwqaVKhJFUtkPB2QaN9qHZg77pHPenWrAwtUsLjc0_IUrENpUGqrFpcMnVaY6FImoOvDA5PZ94RlgJUBug7I-96GFIw_ntboytXbFnwyhudgPEkG5GMwrn1r5AQHTRvd4EW1TgmMZ3r936_whjxmvs4H7i29JcebZuveAdramKH_Ow3Jw8n057cfeP38dTb_Cx-RKvY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLa2IQQ7IBhM64BhJOAWmjhuEh84TGNTx7busFXazdiOg4pKUiWtUC_8AP4Of5D37KRaD2gS0k6JUjt98Xv2-2w_f4-QdzYNo8yKIhA8ywOeqTjQKmFBwrXgJlHGGjzvfDFKhmP-5WZws0H-dGdhMKyyHfv9mO5G6_ZJv23N_mwy6V-F4NkBv8QRxhkALG8jK8_s8ifM25pPp59Bye8ZOzm-PhoGbWqBwHCRzgOd2xCgPLhjbVmhRc5yhObcxkUY5UbzmCk7yJMMPHJWCPBysdCDUBvLB5kOVQzv3SQPOAwXmDbh46_bcSWe-xOkC1C87ryeCypTs6aa4I4HLkEiU2b8L3-4WagKAzVVA7oqfJKNdRR8m9nUecOTp-RJC2PpoW-pZ2TDljtk-_Bb3VJ52B3y0Ke5XMLdsaPGXj4nvz1ZckOrguZuawugLsUjLlSVyiInFMgxXbY_2pwaR7JMm-mirpdQKKezKRgDBaDt-w6tSopfS39MHKcUSGX8oZe5L48J7XBJEP_z6JK5ZyN2-YKM70Vlu2SrrEq7R2gEBeBFwggDs8HYitCIJEtgasgLm9m0R-JOJ9K0VOmYsWMqu5i479JrUqImZSiQYrVHglWtmacKuaN82qlbrpm8BG92R809sA6pQKmNHF8xnCXDyJowDqIfrJnMShKWAjgHrNwjbzsbktD-uD2kSlstGpgEMtx4i6OoRz5441rVRhJy0LRWNV5kYyXHAKr9__6EN-TR8PriXJ6fjs5eksfMJRnBha1XZGteL-xrgHpzfeC6FiVf77sv_wW_nWS_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+digestate+from+anaerobically+digested+cattle+slurry+and+plant+materials+on+soil+microbial+community+and+emission+of+CO%E2%82%82+and+N%E2%82%82O&rft.jtitle=Applied+soil+ecology+%3A+a+section+of+Agriculture%2C+ecosystems+%26+environment&rft.au=Johansen%2C+Anders&rft.au=Carter%2C+Mette+S&rft.au=Jensen%2C+Erik+S&rft.au=Hauggard-Nielsen%2C+Henrik&rft.date=2013&rft.pub=Elsevier+B.V&rft.issn=0929-1393&rft.volume=63&rft.spage=36&rft.epage=44&rft_id=info:doi/10.1016%2Fj.apsoil.2012.09.003&rft.externalDocID=US201400176247
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-1393&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-1393&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-1393&client=summon