Automated Stellar Spectra Classification with Ensemble Convolutional Neural Network
Large sky survey telescopes have produced a tremendous amount of astronomical data, including spectra. Machine learning methods must be employed to automatically process the spectral data obtained by these telescopes. Classification of stellar spectra by applying deep learning is an important resear...
Saved in:
Published in | Advances in Astronomy Vol. 2022; pp. 1 - 7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
04.01.2022
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Large sky survey telescopes have produced a tremendous amount of astronomical data, including spectra. Machine learning methods must be employed to automatically process the spectral data obtained by these telescopes. Classification of stellar spectra by applying deep learning is an important research direction for the automatic classification of high-dimensional celestial spectra. In this paper, a robust ensemble convolutional neural network (ECNN) was designed and applied to improve the classification accuracy of massive stellar spectra from the Sloan digital sky survey. We designed six classifiers which consist six different convolutional neural networks (CNN), respectively, to recognize the spectra in DR16. Then, according the cross-entropy testing error of the spectra at different signal-to-noise ratios, we integrate the results of different classifiers in an ensemble learning way to improve the effect of classification. The experimental result proved that our one-dimensional ECNN strategy could achieve 95.0% accuracy in the classification task of the stellar spectra, a level of accuracy that exceeds that of the classical principal component analysis and support vector machine model. |
---|---|
AbstractList | Large sky survey telescopes have produced a tremendous amount of astronomical data, including spectra. Machine learning methods must be employed to automatically process the spectral data obtained by these telescopes. Classification of stellar spectra by applying deep learning is an important research direction for the automatic classification of high-dimensional celestial spectra. In this paper, a robust ensemble convolutional neural network (ECNN) was designed and applied to improve the classification accuracy of massive stellar spectra from the Sloan digital sky survey. We designed six classifiers which consist six different convolutional neural networks (CNN), respectively, to recognize the spectra in DR16. Then, according the cross-entropy testing error of the spectra at different signal-to-noise ratios, we integrate the results of different classifiers in an ensemble learning way to improve the effect of classification. The experimental result proved that our one-dimensional ECNN strategy could achieve 95.0% accuracy in the classification task of the stellar spectra, a level of accuracy that exceeds that of the classical principal component analysis and support vector machine model. |
Audience | Academic |
Author | Wei, Jiyu Jiang, Bin Zhao, Zhuang |
Author_xml | – sequence: 1 givenname: Zhuang surname: Zhao fullname: Zhao, Zhuang organization: School of MechanicalElectrical & Information EngineeringShandong UniversityWeihai 264209ShandongChinasdu.edu.cn – sequence: 2 givenname: Jiyu surname: Wei fullname: Wei, Jiyu organization: School of MechanicalElectrical & Information EngineeringShandong UniversityWeihai 264209ShandongChinasdu.edu.cn – sequence: 3 givenname: Bin orcidid: 0000-0002-2897-5745 surname: Jiang fullname: Jiang, Bin organization: School of MechanicalElectrical & Information EngineeringShandong UniversityWeihai 264209ShandongChinasdu.edu.cn |
BackLink | https://www.osti.gov/servlets/purl/1983018$$D View this record in Osti.gov |
BookMark | eNp9ksFu1DAQhiNUJErpjQeI4Ajb2o4T28fVqpRKFRwWztbEHnddsvFiO6x4-3o3VREIkA9jjb9_fs14XlYnYxixql5TckFp214ywtgl51I1rXpWndJOioVQQpw83Tv1ojpPyfeEc8Eko81ptV5OOWwho63XGYcBYr3eockR6tUABXbeQPZhrPc-b-qrMeG2H7BehfFHGKbDCwz1J5ziMeR9iN9eVc8dDAnPH-NZ9fXD1ZfVx8Xt5-ub1fJ2YbgSedErbhizPemMJT10VlEhKTOK9sSQlnLTc-mkaaBtO2IEGMuw76TqnANFXHNW3cx1bYB7vYt-C_GnDuD1MRHinYaYvRlQK4HOEAVAiOVoe8UYKoSDuxQt2lLrzVwrpOx1Mj6j2ZgwjmUWmirZECoL9HaGdjF8nzBlfR-mWAaQNOuoUi1hDf9F3UFx9qMLZZpm65PRy06JjpffYoW6-AtVjsWtL8bofMn_Jng_C0wMKUV0Tx1Tog8boA8boB83oODsD7z0dPzJ4uOHf4nezaKNHy3s_f8tHgDUOsCm |
CitedBy_id | crossref_primary_10_1093_mnras_stac3292 crossref_primary_10_3390_app14199058 crossref_primary_10_1093_mnras_stad1889 |
Cites_doi | 10.1086/171708 10.1086/115714 10.1006/jcss.1997.1504 10.1214/aos/1176344552 10.1214/aos/1013203451 10.1016/s0893-6080(05)80023-1 10.1007/bf00116037 10.1109/34.58871 10.1088/0004-6256/137/5/4377 10.1093/mnras/sty483 10.1088/1674-4527/12/9/003 10.1086/340314 10.1016/s0893-6080(99)00073-8 10.1088/1674-4527/19/8/111 10.1051/0004-6361/202037731 10.1109/proc.1979.11321 10.1142/s2251171720500051 10.3847/1538-3881/aa7567 10.1162/neco.1989.1.4.541 10.1086/378165 10.1051/aas:1998405 10.1088/1674-4527/12/7/002 10.1023/A:1018054314350 10.1007/s11704-019-8208-z |
ContentType | Journal Article |
Copyright | Copyright © 2022 Zhuang Zhao et al. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 Zhuang Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2022 Zhuang Zhao et al. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 Zhuang Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
CorporateAuthor | Shandong University, Shandong (China) |
CorporateAuthor_xml | – name: Shandong University, Shandong (China) |
DBID | RHU RHW RHX AAYXX CITATION 7TG 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU CWDGH DWQXO H8D HCIFZ KL. L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI OIOZB OTOTI DOA |
DOI | 10.1155/2022/4489359 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Middle East & Africa Database ProQuest Central Korea Aerospace Database SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest) ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Middle East & Africa Database Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1687-7977 |
Editor | Yakut, Kadri |
Editor_xml | – sequence: 1 givenname: Kadri surname: Yakut fullname: Yakut, Kadri |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_97efc09aa00d4edb922e9ea2db0875ed 1983018 A697641552 10_1155_2022_4489359 |
GrantInformation_xml | – fundername: Alfred P. Sloan Foundation – fundername: University of Utah – fundername: Natural Science Foundation of Shandong Province grantid: ZR2020MA064 – fundername: U.S. Department of Energy |
GroupedDBID | 188 2WC 3V. 4.4 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAJEY ABDBF ABUWG ADBBV AENEX AFKRA AFPKN AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR BPHCQ CCPQU CS3 CWDGH D1K E3Z EBS ESX GROUPED_DOAJ HCIFZ IAO IEA IGS ISE ITC K6- KQ8 LK5 M7R M~E OK1 P2P P62 PCBAR PIMPY PQQKQ PROAC Q2X RHU RHW RHX TR2 TUS ~8M 0R~ 24P AAYXX ACCMX ACUHS AEUYN CITATION H13 PHGZM PHGZT 7TG 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO H8D KL. L7M PKEHL PQEST PQGLB PQUKI OIOZB OTOTI PUEGO |
ID | FETCH-LOGICAL-c497t-b94c22db06cd0ba6d917812c91b0c0514cb48f8c3a5560c7acd2eb6896ffa90f3 |
IEDL.DBID | BENPR |
ISSN | 1687-7969 |
IngestDate | Wed Aug 27 01:29:25 EDT 2025 Mon Jan 15 05:22:49 EST 2024 Fri Jul 25 20:59:42 EDT 2025 Wed Oct 16 18:01:58 EDT 2024 Tue Oct 15 04:47:19 EDT 2024 Thu Apr 24 23:08:21 EDT 2025 Tue Jul 01 04:15:55 EDT 2025 Sun Jun 02 19:21:13 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-b94c22db06cd0ba6d917812c91b0c0514cb48f8c3a5560c7acd2eb6896ffa90f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ZR2020MA064 Shandong Provincial Natural Science Foundation USDOE Office of Science (SC) Alfred P. Sloan Foundation University of Utah |
ORCID | 0000-0002-2897-5745 0000000228975745 |
OpenAccessLink | https://www.proquest.com/docview/2619950234?pq-origsite=%requestingapplication% |
PQID | 2619950234 |
PQPubID | 237359 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_97efc09aa00d4edb922e9ea2db0875ed osti_scitechconnect_1983018 proquest_journals_2619950234 gale_infotracmisc_A697641552 gale_infotracacademiconefile_A697641552 crossref_primary_10_1155_2022_4489359 crossref_citationtrail_10_1155_2022_4489359 hindawi_primary_10_1155_2022_4489359 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-04 |
PublicationDateYYYYMMDD | 2022-01-04 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Advances in Astronomy |
PublicationYear | 2022 |
Publisher | Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 22 24 25 27 28 29 T. K. Ho (26) X. Q. Cui (6) 2012; 12 K. Abazajian (1) 2003; 126 R. Ahumada (5) 2020; 249 T. Chen (23) 10 11 12 14 15 16 17 18 19 Y. Freund (21) I. Hadji (30) 2018 2 3 4 7 8 9 Y. Lecun (13) 2001 20 |
References_xml | – ident: 27 doi: 10.1086/171708 – ident: 28 doi: 10.1086/115714 – ident: 20 doi: 10.1006/jcss.1997.1504 – ident: 15 doi: 10.1214/aos/1176344552 – ident: 22 doi: 10.1214/aos/1013203451 – ident: 16 doi: 10.1016/s0893-6080(05)80023-1 – ident: 25 doi: 10.1007/bf00116037 – volume: 249 issue: 3 year: 2020 ident: 5 article-title: The 16th data release of the sloan digital sky surveys: first release from the APOGEE-2 southern survey and full release of eBOSS spectra publication-title: The Astrophysical Journal-Supplement Series – start-page: 306 volume-title: Intelligent Signal Processing year: 2001 ident: 13 article-title: Gradient-based learning applied to document recognition – start-page: 278 ident: 26 article-title: Random decision forests (PDF) – ident: 18 doi: 10.1109/34.58871 – ident: 3 doi: 10.1088/0004-6256/137/5/4377 – ident: 11 doi: 10.1093/mnras/sty483 – volume: 12 start-page: 1197 year: 2012 ident: 6 article-title: The large sky area multi-object fiber spectroscopic telescope (LAMOST) publication-title: Research in Astronomy and Astrophysics doi: 10.1088/1674-4527/12/9/003 – ident: 2 doi: 10.1086/340314 – ident: 19 doi: 10.1016/s0893-6080(99)00073-8 – ident: 9 doi: 10.1088/1674-4527/19/8/111 – ident: 10 doi: 10.1051/0004-6361/202037731 – ident: 14 doi: 10.1109/proc.1979.11321 – ident: 8 doi: 10.1142/s2251171720500051 – ident: 4 doi: 10.3847/1538-3881/aa7567 – ident: 12 doi: 10.1162/neco.1989.1.4.541 – volume: 126 start-page: 2081 year: 2003 ident: 1 article-title: The first data release of the sloan digital sky survey publication-title: The Astronomical Journal doi: 10.1086/378165 – ident: 29 doi: 10.1051/aas:1998405 – ident: 7 doi: 10.1088/1674-4527/12/7/002 – start-page: 148 ident: 21 article-title: Experiments with a new boosting algorithm – year: 2018 ident: 30 article-title: What do we understand about convolutional networks? – start-page: 785 ident: 23 article-title: Xgboost: a scalable tree boosting system – ident: 24 doi: 10.1023/A:1018054314350 – ident: 17 doi: 10.1007/s11704-019-8208-z |
SSID | ssib044728213 ssj0064068 |
Score | 2.2608833 |
Snippet | Large sky survey telescopes have produced a tremendous amount of astronomical data, including spectra. Machine learning methods must be employed to... |
SourceID | doaj osti proquest gale crossref hindawi |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Analysis Artificial neural networks Astronomical data ASTRONOMY AND ASTROPHYSICS Automation Celestial bodies Chemical elements Classification Classifiers Deep learning Machine learning Neural networks Principal components analysis Sky surveys (astronomy) Spectra Spectrum analysis Stars & galaxies Stellar spectra Support vector machines Telescope Telescopes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSx0xEA5FEHoptT_wVVtysO2hLGazSV5yfBVFCu3FCt5CMsnSgu6W99aW_vfOZPc9FBEvnnbZDSSZTGa-CZNvGDuowQrXhqZyYa4r9NemCgkMLkhKIEWAYOg28vcf5vRcfbvQF7dKfVFO2EgPPAru0M1zC8KFIERSOUUnZXY5yBSJiz0nsr7o89bB1GiDDbopu05z15oifHmoiGeFOElvOaDC07-xxtu_KA7-9xs_9LjB7pnn4nNOXrIXE1jki3GQO-xZ7l6x3cWKjq_7q__8Ey_v4-nE6jU7W1wPPULQnPgZ3Q4JS0715Ydl4KX4JaUFlZXgdPzKj7tVvoqXmR_13d9JBbE74usoj5Ig_oadnxz_PDqtpqoJFSg3H6roFEgSj4EkYjAJAzL04uDqKIDYziEq21pogka0A_MASeZorDNtG5xom7dsq-u7vMt4zrmtISFIs1qlFENj6jonsI2SWYCcsS9rUXqYKMWpssWlL6GF1p4E7yfBz9jHTes_I5XGA-2-0qps2hABdvmAauEntfCPqcWMfaY19bRNcUgQptsGODEivPILgziMwBROYv9OS9xecOf3waQVjwx6j1TGI24h8l2gLCUYfO0sWlCLfaw1yU82YuUpdnUaMZN69xQz3mPPaUDleEjts61heZ3fI2Aa4oeyN24ANUcS5w priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NaxQxFA-2IHgRW5WurZJD1YMMZjKZzOS4LS1LQS-1sLeQvGRQaGdkZ6r43_teNruwFtHTfIXJJO_r9zLJL4ydltAK07mqMK6pC4zXunABNAokBJDCgdO0GvnTZ724UVfLeplJksaHv_Ax2lF6Lj8qIkmpzR7bQwWjpHyx3KiNUg3mDeXWAWuMUWkFnEb7aYw2m_nuf7xrJxIlwv6tW378lRLin9_wxoCW9sBPp-Bz-Yw9zaiRz9diPmCPYn_IjuYjjWMPd7_4O57O18MU43N2Pb-fBsSiMfBrWibiVpw2mp9WjqddMGl-UBIJp3FYftGP8c7fRn4-9D-yLmJ1RNyRDmmm-At2c3nx5XxR5O0TClCmmQpvFEgZvNAQhHc6YGaG4RxM6QUQ7Tl41XYtVK5G2AONgyCj163RXeeM6KqXbL8f-njEeIyxKyEgWmtrFYJ3lS7LGKCtlIwC5Ix92HSlhcwtTltc3NqUY9S1pY63ueNn7O229Pc1p8Zfyp2RVLZliAk73UDtsNmwrGliB8I4J0RQMXgjZTTRUbsxFYthxt6TTC3ZK34SuLzsABtGzFd2rhGQEarCRpzslEQ7g53Hp1kr_vHRx6QyFgEMsfACTVeCyZamRVfaYh0bTbLZWYyWklhTI3hSr_6vjmP2hC7TSJA6YfvT6j6-Rmw0-TfJMn4DQRwEIw priority: 102 providerName: Hindawi Publishing |
Title | Automated Stellar Spectra Classification with Ensemble Convolutional Neural Network |
URI | https://dx.doi.org/10.1155/2022/4489359 https://www.proquest.com/docview/2619950234 https://www.osti.gov/servlets/purl/1983018 https://doaj.org/article/97efc09aa00d4edb922e9ea2db0875ed |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZoKyQuFU91aVnlUOCAoubhOPYJbatdVqBW0FJpb5YzdgCpTdpNCuLCb2fG6yxUCLg4UWLJsT3vjL9hbD8Fmaja5LEyZRGjvhaxsSBwQ6yFLDFgBJ1GPj4R83P-dlEsQsCtC2mVg0z0gtq2QDHyA7L0VYEahr--uo6pahT9XQ0lNDbYFopgic7X1uH05P3pQFGcl-hSpGvZLFB9-cNxAlmrVEINqfBFQVGA7IATFgvhlv6mpDyW_1pi3_1MvvK3L_igRSb8Q4R7vTS7z7aDQRlNVhTwgN1xzUO2M-koxN1efo9eRP5-FcHoHrGzyU3fopnqbHRGJ0jMMqIa9P3SRL5AJqUO-d2KKEQbTZvOXVYXLjpqm6-BTHE4wvTwF59E_pidz6Yfj-ZxqKwQA1dlH1eKQ5bZKhFgk8oIi04banpQaZUAIaJDxWUtITcFWkRQGrCZq4RUoq6NSur8Cdts2sbtsMg5V6dg0ZCTBbe2MrlIU2dB5jxzCWQj9mpYSg0BdpyqX1xo734UhaaF12HhR-z5uvfVCm7jL_0OaVfWfQgk2z9ol5904DmtSldDooxJEsudrVSWOeUMzRu9NGdH7CXtqSZWxk8CE04k4MQIFEtPBNpqZHDhJPZu9UQWhFuv9wNV_Oejd4lkNNo2BNALlMkEvU6VRCkrcYyBknSQI53-RfVP__16l92joXxwiO-xzX55456hudRXY7YhZ2_GgTPGPuiA7bsPEtvjH1NsT-eLnwtVFMk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4qluW8CHFg4oauI4TnxAaCldtvRxaSv1ZpyxUyq1m7JJqfqn-I3MeJOFCgGnnrJKrDi2570z3zC2lkAR68qmkbZ5FqG-VpF1oPBAnAMRW7CKqpH39tX4SH4-zo4X2I--FobSKnuZGAS1q4Fi5Btk6esMNYx8f_Etoq5R9O9q30JjRhY7_voKXbbm3fZHPN91IUZbh5vjqOsqEIHUeRuVWoIQrowVuLi0yqHDgloOdFLGQGjgUMqiKiC1GVoDkFtwwpeq0KqqrI6rFN97h92VaaqJo4rRp55-pczRgUnmmkChsgyleAoZOddK94n3WUYxB7EhCfmFUFJ_U4mhc8BcP9z7Sp751SneqJHl_1AYQQuOHrGHnfnKhzN6e8wW_OQJWxo2FFCvz6_5ax5-z-IlzVN2MLxsazSKveMHVK9ip5w63rdTy0M7TkpUCrTBKSDMtyaNPy_PPN-sJ987psDpCEEkXELK-jN2dCs7_pwtTuqJX2Lce18l4NBsLDLpXGlTlSTeQZFK4WMQA_a230oDHcg59do4M8HZyTJDG2-6jR-w9fnoixm4x1_GfaBTmY8hSO5wo56emI7Djc59BbG2No6d9K7UQnjtLa0bfULvBuwNnakhwYGfBLarf8CFEQSXGSq0DMm8w0Ws3hiJDA83Hq91VPGfj14hkjFoSREcMFDeFLQm0QXK9ALn6CnJdFKrMb94bPnfj1-x--PDvV2zu72_s8Ie0LQhLCVX2WI7vfQv0FBry5eBOzj7ctvs-BOQyEwR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VVCAu_KOGFvChhQNyYzvrtfeAUEgaUgoVUqnobdmdXQOijUviUJVH41V4GWY2dqAg4NQDp1j2Kuu1v_lbz3zD2HoMeSQL3Q2lztIQ7bUItQWBL8RaSCINWlA18stdMdrnzw_SgyX2tamFobTKRid6RW1LoD3yDnn6MkULwztFnRbxajB8cvwppA5S9KW1aacxh8iOOz3B8G36eHuA73ojSYZbr_ujsO4wEAKXWRUaySFJrIkE2MhoYTF4QYsHMjYREDM4GJ4XOXR1ip4BZBps4ozIpSgKLaOii_97gS1TVyfeYsv9N4NnowbNnGcYzsQLuyDQdPrCPIFinUkhmzT8NKUdiKTDiQeGOFN_MpC-j8DCWlx8T3H6yQc8UaIC-M18eJs4vMq-NU9zngrzcXNWmU348gvR5P_5uK-xK7WrHvTmsnWdLbnxDbbSm9LHg_LoNHgQ-OP53tD0JtvrzaoSAwBngz2qzdGTYI_qWCc68K1HKSnLy0FAm9_B1njqjsyhC_rl-HOtAHA6YkvxPz49_xbbP5cl3matcTl2KyxwzhUxWHSR85Rba3RXxLGzkHd54iJI2uxRAxQFNaE79RU5VD6wS1NFsFI1rNpsYzH6eE5k8odxTwlzizFEP-5PlJN3qtZmSmaugEhqHUWWO2tkkjjpNK0b419n2-whIVaRksRbAl3XeuDCiG5M9QR6weTK4iLWzoxE5QZnLq_XmP_HTa-SQCj0Gon6GChHDCoVyxztV45zNBhXtYaeqh8Av_P3y_fZJUS-erG9u7PKLtOsfgeOr7FWNZm5u-iTVuZeLfwBe3veAvAdyieZhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Stellar+Spectra+Classification+with+Ensemble+Convolutional+Neural+Network&rft.jtitle=Advances+in+astronomy&rft.au=Zhao%2C+Zhuang&rft.au=Wei%2C+Jiyu&rft.au=Jiang%2C+Bin&rft.date=2022-01-04&rft.issn=1687-7969&rft.eissn=1687-7977&rft.volume=2022&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1155%2F2022%2F4489359&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_4489359 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-7969&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-7969&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-7969&client=summon |