Automated Stellar Spectra Classification with Ensemble Convolutional Neural Network

Large sky survey telescopes have produced a tremendous amount of astronomical data, including spectra. Machine learning methods must be employed to automatically process the spectral data obtained by these telescopes. Classification of stellar spectra by applying deep learning is an important resear...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Astronomy Vol. 2022; pp. 1 - 7
Main Authors Zhao, Zhuang, Wei, Jiyu, Jiang, Bin
Format Journal Article
LanguageEnglish
Published New York Hindawi 04.01.2022
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Large sky survey telescopes have produced a tremendous amount of astronomical data, including spectra. Machine learning methods must be employed to automatically process the spectral data obtained by these telescopes. Classification of stellar spectra by applying deep learning is an important research direction for the automatic classification of high-dimensional celestial spectra. In this paper, a robust ensemble convolutional neural network (ECNN) was designed and applied to improve the classification accuracy of massive stellar spectra from the Sloan digital sky survey. We designed six classifiers which consist six different convolutional neural networks (CNN), respectively, to recognize the spectra in DR16. Then, according the cross-entropy testing error of the spectra at different signal-to-noise ratios, we integrate the results of different classifiers in an ensemble learning way to improve the effect of classification. The experimental result proved that our one-dimensional ECNN strategy could achieve 95.0% accuracy in the classification task of the stellar spectra, a level of accuracy that exceeds that of the classical principal component analysis and support vector machine model.
AbstractList Large sky survey telescopes have produced a tremendous amount of astronomical data, including spectra. Machine learning methods must be employed to automatically process the spectral data obtained by these telescopes. Classification of stellar spectra by applying deep learning is an important research direction for the automatic classification of high-dimensional celestial spectra. In this paper, a robust ensemble convolutional neural network (ECNN) was designed and applied to improve the classification accuracy of massive stellar spectra from the Sloan digital sky survey. We designed six classifiers which consist six different convolutional neural networks (CNN), respectively, to recognize the spectra in DR16. Then, according the cross-entropy testing error of the spectra at different signal-to-noise ratios, we integrate the results of different classifiers in an ensemble learning way to improve the effect of classification. The experimental result proved that our one-dimensional ECNN strategy could achieve 95.0% accuracy in the classification task of the stellar spectra, a level of accuracy that exceeds that of the classical principal component analysis and support vector machine model.
Audience Academic
Author Wei, Jiyu
Jiang, Bin
Zhao, Zhuang
Author_xml – sequence: 1
  givenname: Zhuang
  surname: Zhao
  fullname: Zhao, Zhuang
  organization: School of MechanicalElectrical & Information EngineeringShandong UniversityWeihai 264209ShandongChinasdu.edu.cn
– sequence: 2
  givenname: Jiyu
  surname: Wei
  fullname: Wei, Jiyu
  organization: School of MechanicalElectrical & Information EngineeringShandong UniversityWeihai 264209ShandongChinasdu.edu.cn
– sequence: 3
  givenname: Bin
  orcidid: 0000-0002-2897-5745
  surname: Jiang
  fullname: Jiang, Bin
  organization: School of MechanicalElectrical & Information EngineeringShandong UniversityWeihai 264209ShandongChinasdu.edu.cn
BackLink https://www.osti.gov/servlets/purl/1983018$$D View this record in Osti.gov
BookMark eNp9ksFu1DAQhiNUJErpjQeI4Ajb2o4T28fVqpRKFRwWztbEHnddsvFiO6x4-3o3VREIkA9jjb9_fs14XlYnYxixql5TckFp214ywtgl51I1rXpWndJOioVQQpw83Tv1ojpPyfeEc8Eko81ptV5OOWwho63XGYcBYr3eockR6tUABXbeQPZhrPc-b-qrMeG2H7BehfFHGKbDCwz1J5ziMeR9iN9eVc8dDAnPH-NZ9fXD1ZfVx8Xt5-ub1fJ2YbgSedErbhizPemMJT10VlEhKTOK9sSQlnLTc-mkaaBtO2IEGMuw76TqnANFXHNW3cx1bYB7vYt-C_GnDuD1MRHinYaYvRlQK4HOEAVAiOVoe8UYKoSDuxQt2lLrzVwrpOx1Mj6j2ZgwjmUWmirZECoL9HaGdjF8nzBlfR-mWAaQNOuoUi1hDf9F3UFx9qMLZZpm65PRy06JjpffYoW6-AtVjsWtL8bofMn_Jng_C0wMKUV0Tx1Tog8boA8boB83oODsD7z0dPzJ4uOHf4nezaKNHy3s_f8tHgDUOsCm
CitedBy_id crossref_primary_10_1093_mnras_stac3292
crossref_primary_10_3390_app14199058
crossref_primary_10_1093_mnras_stad1889
Cites_doi 10.1086/171708
10.1086/115714
10.1006/jcss.1997.1504
10.1214/aos/1176344552
10.1214/aos/1013203451
10.1016/s0893-6080(05)80023-1
10.1007/bf00116037
10.1109/34.58871
10.1088/0004-6256/137/5/4377
10.1093/mnras/sty483
10.1088/1674-4527/12/9/003
10.1086/340314
10.1016/s0893-6080(99)00073-8
10.1088/1674-4527/19/8/111
10.1051/0004-6361/202037731
10.1109/proc.1979.11321
10.1142/s2251171720500051
10.3847/1538-3881/aa7567
10.1162/neco.1989.1.4.541
10.1086/378165
10.1051/aas:1998405
10.1088/1674-4527/12/7/002
10.1023/A:1018054314350
10.1007/s11704-019-8208-z
ContentType Journal Article
Copyright Copyright © 2022 Zhuang Zhao et al.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Zhuang Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2022 Zhuang Zhao et al.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Zhuang Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
CorporateAuthor Shandong University, Shandong (China)
CorporateAuthor_xml – name: Shandong University, Shandong (China)
DBID RHU
RHW
RHX
AAYXX
CITATION
7TG
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CWDGH
DWQXO
H8D
HCIFZ
KL.
L7M
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
OIOZB
OTOTI
DOA
DOI 10.1155/2022/4489359
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
Middle East & Africa Database
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Middle East & Africa Database
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database




CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1687-7977
Editor Yakut, Kadri
Editor_xml – sequence: 1
  givenname: Kadri
  surname: Yakut
  fullname: Yakut, Kadri
EndPage 7
ExternalDocumentID oai_doaj_org_article_97efc09aa00d4edb922e9ea2db0875ed
1983018
A697641552
10_1155_2022_4489359
GrantInformation_xml – fundername: Alfred P. Sloan Foundation
– fundername: University of Utah
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2020MA064
– fundername: U.S. Department of Energy
GroupedDBID 188
2WC
3V.
4.4
5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAJEY
ABDBF
ABUWG
ADBBV
AENEX
AFKRA
AFPKN
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CS3
CWDGH
D1K
E3Z
EBS
ESX
GROUPED_DOAJ
HCIFZ
IAO
IEA
IGS
ISE
ITC
K6-
KQ8
LK5
M7R
M~E
OK1
P2P
P62
PCBAR
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RHX
TR2
TUS
~8M
0R~
24P
AAYXX
ACCMX
ACUHS
AEUYN
CITATION
H13
PHGZM
PHGZT
7TG
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
H8D
KL.
L7M
PKEHL
PQEST
PQGLB
PQUKI
OIOZB
OTOTI
PUEGO
ID FETCH-LOGICAL-c497t-b94c22db06cd0ba6d917812c91b0c0514cb48f8c3a5560c7acd2eb6896ffa90f3
IEDL.DBID BENPR
ISSN 1687-7969
IngestDate Wed Aug 27 01:29:25 EDT 2025
Mon Jan 15 05:22:49 EST 2024
Fri Jul 25 20:59:42 EDT 2025
Wed Oct 16 18:01:58 EDT 2024
Tue Oct 15 04:47:19 EDT 2024
Thu Apr 24 23:08:21 EDT 2025
Tue Jul 01 04:15:55 EDT 2025
Sun Jun 02 19:21:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-b94c22db06cd0ba6d917812c91b0c0514cb48f8c3a5560c7acd2eb6896ffa90f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ZR2020MA064
Shandong Provincial Natural Science Foundation
USDOE Office of Science (SC)
Alfred P. Sloan Foundation
University of Utah
ORCID 0000-0002-2897-5745
0000000228975745
OpenAccessLink https://www.proquest.com/docview/2619950234?pq-origsite=%requestingapplication%
PQID 2619950234
PQPubID 237359
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_97efc09aa00d4edb922e9ea2db0875ed
osti_scitechconnect_1983018
proquest_journals_2619950234
gale_infotracmisc_A697641552
gale_infotracacademiconefile_A697641552
crossref_primary_10_1155_2022_4489359
crossref_citationtrail_10_1155_2022_4489359
hindawi_primary_10_1155_2022_4489359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-04
PublicationDateYYYYMMDD 2022-01-04
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-04
  day: 04
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Advances in Astronomy
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 22
24
25
27
28
29
T. K. Ho (26)
X. Q. Cui (6) 2012; 12
K. Abazajian (1) 2003; 126
R. Ahumada (5) 2020; 249
T. Chen (23)
10
11
12
14
15
16
17
18
19
Y. Freund (21)
I. Hadji (30) 2018
2
3
4
7
8
9
Y. Lecun (13) 2001
20
References_xml – ident: 27
  doi: 10.1086/171708
– ident: 28
  doi: 10.1086/115714
– ident: 20
  doi: 10.1006/jcss.1997.1504
– ident: 15
  doi: 10.1214/aos/1176344552
– ident: 22
  doi: 10.1214/aos/1013203451
– ident: 16
  doi: 10.1016/s0893-6080(05)80023-1
– ident: 25
  doi: 10.1007/bf00116037
– volume: 249
  issue: 3
  year: 2020
  ident: 5
  article-title: The 16th data release of the sloan digital sky surveys: first release from the APOGEE-2 southern survey and full release of eBOSS spectra
  publication-title: The Astrophysical Journal-Supplement Series
– start-page: 306
  volume-title: Intelligent Signal Processing
  year: 2001
  ident: 13
  article-title: Gradient-based learning applied to document recognition
– start-page: 278
  ident: 26
  article-title: Random decision forests (PDF)
– ident: 18
  doi: 10.1109/34.58871
– ident: 3
  doi: 10.1088/0004-6256/137/5/4377
– ident: 11
  doi: 10.1093/mnras/sty483
– volume: 12
  start-page: 1197
  year: 2012
  ident: 6
  article-title: The large sky area multi-object fiber spectroscopic telescope (LAMOST)
  publication-title: Research in Astronomy and Astrophysics
  doi: 10.1088/1674-4527/12/9/003
– ident: 2
  doi: 10.1086/340314
– ident: 19
  doi: 10.1016/s0893-6080(99)00073-8
– ident: 9
  doi: 10.1088/1674-4527/19/8/111
– ident: 10
  doi: 10.1051/0004-6361/202037731
– ident: 14
  doi: 10.1109/proc.1979.11321
– ident: 8
  doi: 10.1142/s2251171720500051
– ident: 4
  doi: 10.3847/1538-3881/aa7567
– ident: 12
  doi: 10.1162/neco.1989.1.4.541
– volume: 126
  start-page: 2081
  year: 2003
  ident: 1
  article-title: The first data release of the sloan digital sky survey
  publication-title: The Astronomical Journal
  doi: 10.1086/378165
– ident: 29
  doi: 10.1051/aas:1998405
– ident: 7
  doi: 10.1088/1674-4527/12/7/002
– start-page: 148
  ident: 21
  article-title: Experiments with a new boosting algorithm
– year: 2018
  ident: 30
  article-title: What do we understand about convolutional networks?
– start-page: 785
  ident: 23
  article-title: Xgboost: a scalable tree boosting system
– ident: 24
  doi: 10.1023/A:1018054314350
– ident: 17
  doi: 10.1007/s11704-019-8208-z
SSID ssib044728213
ssj0064068
Score 2.2608833
Snippet Large sky survey telescopes have produced a tremendous amount of astronomical data, including spectra. Machine learning methods must be employed to...
SourceID doaj
osti
proquest
gale
crossref
hindawi
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis
Artificial neural networks
Astronomical data
ASTRONOMY AND ASTROPHYSICS
Automation
Celestial bodies
Chemical elements
Classification
Classifiers
Deep learning
Machine learning
Neural networks
Principal components analysis
Sky surveys (astronomy)
Spectra
Spectrum analysis
Stars & galaxies
Stellar spectra
Support vector machines
Telescope
Telescopes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSx0xEA5FEHoptT_wVVtysO2hLGazSV5yfBVFCu3FCt5CMsnSgu6W99aW_vfOZPc9FBEvnnbZDSSZTGa-CZNvGDuowQrXhqZyYa4r9NemCgkMLkhKIEWAYOg28vcf5vRcfbvQF7dKfVFO2EgPPAru0M1zC8KFIERSOUUnZXY5yBSJiz0nsr7o89bB1GiDDbopu05z15oifHmoiGeFOElvOaDC07-xxtu_KA7-9xs_9LjB7pnn4nNOXrIXE1jki3GQO-xZ7l6x3cWKjq_7q__8Ey_v4-nE6jU7W1wPPULQnPgZ3Q4JS0715Ydl4KX4JaUFlZXgdPzKj7tVvoqXmR_13d9JBbE74usoj5Ig_oadnxz_PDqtpqoJFSg3H6roFEgSj4EkYjAJAzL04uDqKIDYziEq21pogka0A_MASeZorDNtG5xom7dsq-u7vMt4zrmtISFIs1qlFENj6jonsI2SWYCcsS9rUXqYKMWpssWlL6GF1p4E7yfBz9jHTes_I5XGA-2-0qps2hABdvmAauEntfCPqcWMfaY19bRNcUgQptsGODEivPILgziMwBROYv9OS9xecOf3waQVjwx6j1TGI24h8l2gLCUYfO0sWlCLfaw1yU82YuUpdnUaMZN69xQz3mPPaUDleEjts61heZ3fI2Aa4oeyN24ANUcS5w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NaxQxFA-2IHgRW5WurZJD1YMMZjKZzOS4LS1LQS-1sLeQvGRQaGdkZ6r43_teNruwFtHTfIXJJO_r9zLJL4ydltAK07mqMK6pC4zXunABNAokBJDCgdO0GvnTZ724UVfLeplJksaHv_Ax2lF6Lj8qIkmpzR7bQwWjpHyx3KiNUg3mDeXWAWuMUWkFnEb7aYw2m_nuf7xrJxIlwv6tW378lRLin9_wxoCW9sBPp-Bz-Yw9zaiRz9diPmCPYn_IjuYjjWMPd7_4O57O18MU43N2Pb-fBsSiMfBrWibiVpw2mp9WjqddMGl-UBIJp3FYftGP8c7fRn4-9D-yLmJ1RNyRDmmm-At2c3nx5XxR5O0TClCmmQpvFEgZvNAQhHc6YGaG4RxM6QUQ7Tl41XYtVK5G2AONgyCj163RXeeM6KqXbL8f-njEeIyxKyEgWmtrFYJ3lS7LGKCtlIwC5Ix92HSlhcwtTltc3NqUY9S1pY63ueNn7O229Pc1p8Zfyp2RVLZliAk73UDtsNmwrGliB8I4J0RQMXgjZTTRUbsxFYthxt6TTC3ZK34SuLzsABtGzFd2rhGQEarCRpzslEQ7g53Hp1kr_vHRx6QyFgEMsfACTVeCyZamRVfaYh0bTbLZWYyWklhTI3hSr_6vjmP2hC7TSJA6YfvT6j6-Rmw0-TfJMn4DQRwEIw
  priority: 102
  providerName: Hindawi Publishing
Title Automated Stellar Spectra Classification with Ensemble Convolutional Neural Network
URI https://dx.doi.org/10.1155/2022/4489359
https://www.proquest.com/docview/2619950234
https://www.osti.gov/servlets/purl/1983018
https://doaj.org/article/97efc09aa00d4edb922e9ea2db0875ed
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZoKyQuFU91aVnlUOCAoubhOPYJbatdVqBW0FJpb5YzdgCpTdpNCuLCb2fG6yxUCLg4UWLJsT3vjL9hbD8Fmaja5LEyZRGjvhaxsSBwQ6yFLDFgBJ1GPj4R83P-dlEsQsCtC2mVg0z0gtq2QDHyA7L0VYEahr--uo6pahT9XQ0lNDbYFopgic7X1uH05P3pQFGcl-hSpGvZLFB9-cNxAlmrVEINqfBFQVGA7IATFgvhlv6mpDyW_1pi3_1MvvK3L_igRSb8Q4R7vTS7z7aDQRlNVhTwgN1xzUO2M-koxN1efo9eRP5-FcHoHrGzyU3fopnqbHRGJ0jMMqIa9P3SRL5AJqUO-d2KKEQbTZvOXVYXLjpqm6-BTHE4wvTwF59E_pidz6Yfj-ZxqKwQA1dlH1eKQ5bZKhFgk8oIi04banpQaZUAIaJDxWUtITcFWkRQGrCZq4RUoq6NSur8Cdts2sbtsMg5V6dg0ZCTBbe2MrlIU2dB5jxzCWQj9mpYSg0BdpyqX1xo734UhaaF12HhR-z5uvfVCm7jL_0OaVfWfQgk2z9ol5904DmtSldDooxJEsudrVSWOeUMzRu9NGdH7CXtqSZWxk8CE04k4MQIFEtPBNpqZHDhJPZu9UQWhFuv9wNV_Oejd4lkNNo2BNALlMkEvU6VRCkrcYyBknSQI53-RfVP__16l92joXxwiO-xzX55456hudRXY7YhZ2_GgTPGPuiA7bsPEtvjH1NsT-eLnwtVFMk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4qluW8CHFg4oauI4TnxAaCldtvRxaSv1ZpyxUyq1m7JJqfqn-I3MeJOFCgGnnrJKrDi2570z3zC2lkAR68qmkbZ5FqG-VpF1oPBAnAMRW7CKqpH39tX4SH4-zo4X2I--FobSKnuZGAS1q4Fi5Btk6esMNYx8f_Etoq5R9O9q30JjRhY7_voKXbbm3fZHPN91IUZbh5vjqOsqEIHUeRuVWoIQrowVuLi0yqHDgloOdFLGQGjgUMqiKiC1GVoDkFtwwpeq0KqqrI6rFN97h92VaaqJo4rRp55-pczRgUnmmkChsgyleAoZOddK94n3WUYxB7EhCfmFUFJ_U4mhc8BcP9z7Sp751SneqJHl_1AYQQuOHrGHnfnKhzN6e8wW_OQJWxo2FFCvz6_5ax5-z-IlzVN2MLxsazSKveMHVK9ip5w63rdTy0M7TkpUCrTBKSDMtyaNPy_PPN-sJ987psDpCEEkXELK-jN2dCs7_pwtTuqJX2Lce18l4NBsLDLpXGlTlSTeQZFK4WMQA_a230oDHcg59do4M8HZyTJDG2-6jR-w9fnoixm4x1_GfaBTmY8hSO5wo56emI7Djc59BbG2No6d9K7UQnjtLa0bfULvBuwNnakhwYGfBLarf8CFEQSXGSq0DMm8w0Ws3hiJDA83Hq91VPGfj14hkjFoSREcMFDeFLQm0QXK9ALn6CnJdFKrMb94bPnfj1-x--PDvV2zu72_s8Ie0LQhLCVX2WI7vfQv0FBry5eBOzj7ctvs-BOQyEwR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VVCAu_KOGFvChhQNyYzvrtfeAUEgaUgoVUqnobdmdXQOijUviUJVH41V4GWY2dqAg4NQDp1j2Kuu1v_lbz3zD2HoMeSQL3Q2lztIQ7bUItQWBL8RaSCINWlA18stdMdrnzw_SgyX2tamFobTKRid6RW1LoD3yDnn6MkULwztFnRbxajB8cvwppA5S9KW1aacxh8iOOz3B8G36eHuA73ojSYZbr_ujsO4wEAKXWRUaySFJrIkE2MhoYTF4QYsHMjYREDM4GJ4XOXR1ip4BZBps4ozIpSgKLaOii_97gS1TVyfeYsv9N4NnowbNnGcYzsQLuyDQdPrCPIFinUkhmzT8NKUdiKTDiQeGOFN_MpC-j8DCWlx8T3H6yQc8UaIC-M18eJs4vMq-NU9zngrzcXNWmU348gvR5P_5uK-xK7WrHvTmsnWdLbnxDbbSm9LHg_LoNHgQ-OP53tD0JtvrzaoSAwBngz2qzdGTYI_qWCc68K1HKSnLy0FAm9_B1njqjsyhC_rl-HOtAHA6YkvxPz49_xbbP5cl3matcTl2KyxwzhUxWHSR85Rba3RXxLGzkHd54iJI2uxRAxQFNaE79RU5VD6wS1NFsFI1rNpsYzH6eE5k8odxTwlzizFEP-5PlJN3qtZmSmaugEhqHUWWO2tkkjjpNK0b419n2-whIVaRksRbAl3XeuDCiG5M9QR6weTK4iLWzoxE5QZnLq_XmP_HTa-SQCj0Gon6GChHDCoVyxztV45zNBhXtYaeqh8Av_P3y_fZJUS-erG9u7PKLtOsfgeOr7FWNZm5u-iTVuZeLfwBe3veAvAdyieZhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Stellar+Spectra+Classification+with+Ensemble+Convolutional+Neural+Network&rft.jtitle=Advances+in+astronomy&rft.au=Zhao%2C+Zhuang&rft.au=Wei%2C+Jiyu&rft.au=Jiang%2C+Bin&rft.date=2022-01-04&rft.issn=1687-7969&rft.eissn=1687-7977&rft.volume=2022&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1155%2F2022%2F4489359&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_4489359
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-7969&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-7969&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-7969&client=summon