Multidisease Deep Learning Neural Network for the Diagnosis of Corneal Diseases

To report a multidisease deep learning diagnostic network (MDDN) of common corneal diseases: dry eye syndrome (DES), Fuchs endothelial dystrophy (FED), and keratoconus (KCN) using anterior segment optical coherence tomography (AS-OCT) images. Development of a deep learning neural network diagnosis a...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of ophthalmology Vol. 226; pp. 252 - 261
Main Authors Elsawy, Amr, Eleiwa, Taher, Chase, Collin, Ozcan, Eyup, Tolba, Mohamed, Feuer, William, Abdel-Mottaleb, Mohamed, Abou Shousha, Mohamed
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2021
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To report a multidisease deep learning diagnostic network (MDDN) of common corneal diseases: dry eye syndrome (DES), Fuchs endothelial dystrophy (FED), and keratoconus (KCN) using anterior segment optical coherence tomography (AS-OCT) images. Development of a deep learning neural network diagnosis algorithm. A total of 158,220 AS-OCT images from 879 eyes of 478 subjects were used to develop and validate a classification deep network. After a quality check, the network was trained and validated using 134,460 images. We tested the network using a test set of consecutive patients involving 23,760 AS-OCT images of 132 eyes of 69 patients. The area under receiver operating characteristic curve (AUROC), area under precision-recall curve (AUPRC), and F1 score and 95% confidence intervals (CIs) were computed. The MDDN achieved eye-level AUROCs >0.99 (95% CI: 0.90, 1.0), AUPRCs > 0.96 (95% CI: 0.90, 1.0), and F1 scores > 0.90 (95% CI: 0.81, 1.0) for DES, FED, and KCN, respectively. MDDN is a novel diagnostic tool for corneal diseases that can be used to automatically diagnose KCN, FED, and DES using only AS-OCT images.
AbstractList PurposeTo report a multidisease deep learning diagnostic network (MDDN) of common corneal diseases: dry eye syndrome (DES), Fuchs endothelial dystrophy (FED), and keratoconus (KCN) using anterior segment optical coherence tomography (AS-OCT) images.Study DesignDevelopment of a deep learning neural network diagnosis algorithm.MethodsA total of 158,220 AS-OCT images from 879 eyes of 478 subjects were used to develop and validate a classification deep network. After a quality check, the network was trained and validated using 134,460 images. We tested the network using a test set of consecutive patients involving 23,760 AS-OCT images of 132 eyes of 69 patients. The area under receiver operating characteristic curve (AUROC), area under precision-recall curve (AUPRC), and F1 score and 95% confidence intervals (CIs) were computed.ResultsThe MDDN achieved eye-level AUROCs >0.99 (95% CI: 0.90, 1.0), AUPRCs > 0.96 (95% CI: 0.90, 1.0), and F1 scores > 0.90 (95% CI: 0.81, 1.0) for DES, FED, and KCN, respectively.ConclusionsMDDN is a novel diagnostic tool for corneal diseases that can be used to automatically diagnose KCN, FED, and DES using only AS-OCT images.
To report a multidisease deep learning diagnostic network (MDDN) of common corneal diseases: dry eye syndrome (DES), Fuchs endothelial dystrophy (FED), and keratoconus (KCN) using anterior segment optical coherence tomography (AS-OCT) images. Development of a deep learning neural network diagnosis algorithm. A total of 158,220 AS-OCT images from 879 eyes of 478 subjects were used to develop and validate a classification deep network. After a quality check, the network was trained and validated using 134,460 images. We tested the network using a test set of consecutive patients involving 23,760 AS-OCT images of 132 eyes of 69 patients. The area under receiver operating characteristic curve (AUROC), area under precision-recall curve (AUPRC), and F1 score and 95% confidence intervals (CIs) were computed. The MDDN achieved eye-level AUROCs >0.99 (95% CI: 0.90, 1.0), AUPRCs > 0.96 (95% CI: 0.90, 1.0), and F1 scores > 0.90 (95% CI: 0.81, 1.0) for DES, FED, and KCN, respectively. MDDN is a novel diagnostic tool for corneal diseases that can be used to automatically diagnose KCN, FED, and DES using only AS-OCT images.
To report a multidisease deep learning diagnostic network (MDDN) of common corneal diseases: dry eye syndrome (DES), Fuchs endothelial dystrophy (FED), and keratoconus (KCN) using anterior segment optical coherence tomography (AS-OCT) images.PURPOSETo report a multidisease deep learning diagnostic network (MDDN) of common corneal diseases: dry eye syndrome (DES), Fuchs endothelial dystrophy (FED), and keratoconus (KCN) using anterior segment optical coherence tomography (AS-OCT) images.Development of a deep learning neural network diagnosis algorithm.STUDY DESIGNDevelopment of a deep learning neural network diagnosis algorithm.A total of 158,220 AS-OCT images from 879 eyes of 478 subjects were used to develop and validate a classification deep network. After a quality check, the network was trained and validated using 134,460 images. We tested the network using a test set of consecutive patients involving 23,760 AS-OCT images of 132 eyes of 69 patients. The area under receiver operating characteristic curve (AUROC), area under precision-recall curve (AUPRC), and F1 score and 95% confidence intervals (CIs) were computed.METHODSA total of 158,220 AS-OCT images from 879 eyes of 478 subjects were used to develop and validate a classification deep network. After a quality check, the network was trained and validated using 134,460 images. We tested the network using a test set of consecutive patients involving 23,760 AS-OCT images of 132 eyes of 69 patients. The area under receiver operating characteristic curve (AUROC), area under precision-recall curve (AUPRC), and F1 score and 95% confidence intervals (CIs) were computed.The MDDN achieved eye-level AUROCs >0.99 (95% CI: 0.90, 1.0), AUPRCs > 0.96 (95% CI: 0.90, 1.0), and F1 scores > 0.90 (95% CI: 0.81, 1.0) for DES, FED, and KCN, respectively.RESULTSThe MDDN achieved eye-level AUROCs >0.99 (95% CI: 0.90, 1.0), AUPRCs > 0.96 (95% CI: 0.90, 1.0), and F1 scores > 0.90 (95% CI: 0.81, 1.0) for DES, FED, and KCN, respectively.MDDN is a novel diagnostic tool for corneal diseases that can be used to automatically diagnose KCN, FED, and DES using only AS-OCT images.CONCLUSIONSMDDN is a novel diagnostic tool for corneal diseases that can be used to automatically diagnose KCN, FED, and DES using only AS-OCT images.
Author Elsawy, Amr
Feuer, William
Abdel-Mottaleb, Mohamed
Abou Shousha, Mohamed
Eleiwa, Taher
Chase, Collin
Ozcan, Eyup
Tolba, Mohamed
Author_xml – sequence: 1
  givenname: Amr
  surname: Elsawy
  fullname: Elsawy, Amr
  organization: Bascom Palmer Eye institute, Miller School of Medicine, University of Miami, Miami
– sequence: 2
  givenname: Taher
  orcidid: 0000-0003-3107-2106
  surname: Eleiwa
  fullname: Eleiwa, Taher
  organization: Bascom Palmer Eye institute, Miller School of Medicine, University of Miami, Miami
– sequence: 3
  givenname: Collin
  orcidid: 0000-0002-8839-3245
  surname: Chase
  fullname: Chase, Collin
  organization: Bascom Palmer Eye institute, Miller School of Medicine, University of Miami, Miami
– sequence: 4
  givenname: Eyup
  surname: Ozcan
  fullname: Ozcan, Eyup
  organization: Bascom Palmer Eye institute, Miller School of Medicine, University of Miami, Miami
– sequence: 5
  givenname: Mohamed
  surname: Tolba
  fullname: Tolba, Mohamed
  organization: Bascom Palmer Eye institute, Miller School of Medicine, University of Miami, Miami
– sequence: 6
  givenname: William
  surname: Feuer
  fullname: Feuer, William
  organization: Bascom Palmer Eye institute, Miller School of Medicine, University of Miami, Miami
– sequence: 7
  givenname: Mohamed
  surname: Abdel-Mottaleb
  fullname: Abdel-Mottaleb, Mohamed
  organization: Electrical and Computer Engineering, University of Miami, Coral Gables
– sequence: 8
  givenname: Mohamed
  surname: Abou Shousha
  fullname: Abou Shousha, Mohamed
  email: Mshousha@med.miami.edu, m.aboushousha@med.miami.edu, mshoushamd@gmail.com
  organization: Bascom Palmer Eye institute, Miller School of Medicine, University of Miami, Miami
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33529589$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rGzEQhkVJaZy0P6CXstBLL-tK2pVWoqfi9CPgJJf2LGRplGqzllxJm5J_XxmnPfiQwMAw8DzDMO8ZOgkxAEJvCV4STPjHcanHuKSYkiXel3iBFkQMsiVCkhO0wBjTVnayP0VnOY915EM_vEKnXceoZEIu0M3VPBVvfQadobkA2DVr0Cn4cNtcw5z0VFv5E9Nd42Jqyq8KeX0bYva5ia5ZxRSgQheHDfk1eun0lOHNYz9HP79--bH63q5vvl2uPq9b08uhtBvOCNkQw7lmApjurAAhDOXCMcspEY5qQ52UTltrwTjCmOh7oLgDTEF25-jDYe8uxd8z5KK2PhuYJh0gzlnRXnDSs46Qir4_Qsc4p1CvU5QxzAlnXV-pd4_UvNmCVbvktzo9qH-vqgA5ACbFnBO4_wjBah-HGlWNQ-3jUHhfojrDkWN80cXHUJL205Pmp4MJ9Yn3HpLKxkMwYH0CU5SN_klbHtlm8sEbPd3BwzPuX9mkteg
CitedBy_id crossref_primary_10_3390_diagnostics12123167
crossref_primary_10_3389_fopht_2024_1380701
crossref_primary_10_1097_ICO_0000000000003626
crossref_primary_10_1136_bmjopen_2023_077859
crossref_primary_10_1097_ICO_0000000000003467
crossref_primary_10_1109_TBME_2021_3082152
crossref_primary_10_1097_ICO_0000000000003343
crossref_primary_10_3389_fmed_2023_1309097
crossref_primary_10_1002_14651858_CD014911_pub2
crossref_primary_10_1016_j_jfo_2024_104242
crossref_primary_10_1167_tvst_12_5_14
crossref_primary_10_1186_s40662_024_00376_3
crossref_primary_10_3389_fmed_2021_724902
crossref_primary_10_1007_s40778_023_00229_0
crossref_primary_10_3390_diagnostics13203165
crossref_primary_10_2147_OPTH_S321764
crossref_primary_10_3390_diagnostics14232696
crossref_primary_10_3390_jcm11092528
crossref_primary_10_1016_j_clae_2024_102284
crossref_primary_10_1016_j_jtos_2021_11_004
crossref_primary_10_1038_s41597_024_03464_0
crossref_primary_10_1097_ICU_0000000000000885
crossref_primary_10_1167_tvst_14_3_17
crossref_primary_10_1038_s41598_024_71480_6
crossref_primary_10_1007_s00417_023_06154_6
crossref_primary_10_1016_j_ajo_2023_04_008
crossref_primary_10_1016_j_compbiomed_2022_105471
crossref_primary_10_1038_s41598_024_75518_7
crossref_primary_10_3390_bioengineering11101005
Cites_doi 10.1016/j.survophthal.2018.09.002
10.1038/nature14539
10.1016/j.jtos.2015.11.002
10.1016/j.ophtha.2013.05.027
10.1016/S0161-6420(94)31313-3
10.1371/journal.pone.0205998
10.1167/iovs.14-14346
10.1136/bmjopen-2019-031313
10.1016/j.jcrs.2015.09.020
10.3109/08820538.2013.825283
10.1111/aos.13613
10.1001/jamaophthalmol.2015.4776
10.1007/978-3-319-10590-1_53
10.1038/s41433-019-0592-y
10.1016/j.ajo.2017.02.026
10.1097/ICO.0000000000001776
10.1364/BOE.9.001545
10.1145/3065386
10.1016/j.ophtha.2016.05.029
10.1371/journal.pone.0207891
10.1001/jama.2016.17216
10.1016/j.psym.2016.02.013
10.1016/j.ajo.2017.09.027
10.1016/j.ophtha.2020.01.021
10.1097/ICO.0000000000001194
10.1136/bjophthalmol-2011-300539
10.1097/ICL.0000000000000469
10.1016/0002-9394(86)90817-2
10.1016/j.ophtha.2017.02.008
10.1371/journal.pone.0037711
10.1097/TP.0000000000001281
10.1136/bjophthalmol-2018-313173
10.1001/jamaophthalmol.2017.3782
10.1201/9781003522560-16
10.1016/j.ophtha.2018.11.015
10.1016/j.preteyeres.2019.04.003
10.1167/iovs.16-19963
10.1016/j.transproceed.2004.04.093
10.1016/j.jtos.2017.05.003
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright Elsevier Limited Jun 2021
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Jun 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
DOI 10.1016/j.ajo.2021.01.018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1879-1891
EndPage 261
ExternalDocumentID 33529589
10_1016_j_ajo_2021_01_018
S0002939421000398
Genre Validation Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: K23 EY026118
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1CY
1P~
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAHTB
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABCQX
ABDPE
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABPEJ
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CS3
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OF-
OPF
OQ~
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSZ
SV3
T5K
UNMZH
UV1
VH1
WH7
WOW
X7M
XPP
Z5R
ZGI
ZXP
~G-
3V.
7RV
7X7
8FI
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKRA
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
AZQEC
BENPR
EFLBG
FYUFA
G8K
GUQSH
LCYCR
M1P
M2O
RIG
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c497t-b6511b1c66a58e5a3d8e88c268f5d6218f2ac2f99fadddecf155844e203e02e93
IEDL.DBID .~1
ISSN 0002-9394
1879-1891
IngestDate Tue Aug 05 09:33:32 EDT 2025
Sat Jul 26 02:09:34 EDT 2025
Wed Feb 19 02:25:09 EST 2025
Thu Apr 24 23:11:07 EDT 2025
Tue Jul 01 03:25:37 EDT 2025
Fri Feb 23 02:44:46 EST 2024
Tue Aug 26 16:33:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2021. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-b6511b1c66a58e5a3d8e88c268f5d6218f2ac2f99fadddecf155844e203e02e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-8839-3245
0000-0003-3107-2106
PMID 33529589
PQID 2550616534
PQPubID 41749
PageCount 10
ParticipantIDs proquest_miscellaneous_2486145311
proquest_journals_2550616534
pubmed_primary_33529589
crossref_primary_10_1016_j_ajo_2021_01_018
crossref_citationtrail_10_1016_j_ajo_2021_01_018
elsevier_sciencedirect_doi_10_1016_j_ajo_2021_01_018
elsevier_clinicalkey_doi_10_1016_j_ajo_2021_01_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Chicago
PublicationTitle American journal of ophthalmology
PublicationTitleAlternate Am J Ophthalmol
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Ting, Peng, Varadarajan (bib0038) 2019; 72
Asaoka, Murata, Iwase, Araie (bib0034) 2016; 123
Fujimoto, Swanson (bib0031) 2016; 57
Abou Shousha, Yoo, Sayed (bib0025) 2017; 178
Kamiya, Ayatsuka, Kato (bib0022) 2019; 9
Huang D. Future direction of anterior segment optical coherence tomography. 2008:165-172.
Krizhevsky, Sutskever, Hinton (bib0026) 2017; 60
Nanda, Alone (bib0029) 2019; 25
Gulshan, Peng, Coram (bib0036) 2016; 316
Yousefi, Yousefi, Takahashi (bib0039) 2018; 13
Windsor, Sun, Frick, Swanson, Rosenfeld, Huang (bib0042) 2018; 185
Hamill, Schmedt, Jurkunas (bib0008) 2013; 28
Stapleton, Alves, Bunya (bib0005) 2017; 15
Kennedy, Bourne, Dyer (bib0010) 1986; 101
Peng, Dharssi, Chen (bib0035) 2019; 126
Venhuizen, van Ginneken, Liefers (bib0037) 2018; 9
Burlina, Joshi, Pekala, Pacheco, Freund, Bressler (bib0032) 2017; 135
Tuft, Moodaley, Gregory, Davison, Buckley (bib0030) 1994; 101
Abuksis, Orenstein, Hershko (bib0001) 2004; 36
Sandali, El Sanharawi, Temstet (bib0012) 2013; 120
McDonald, Patel, Keith, Snedecor (bib0028) 2016; 14
Treder, Lauermann, Alnawaiseh, Eter (bib0020) 2019; 38
Swanson, Huang (bib0041) 2011; 8
LeCun, Bengio, Hinton (bib0016) 2015; 521
Ruiz Hidalgo, Rozema, Saad (bib0023) 2017; 36
Iovino, Fossarello, Giannaccare (bib0014) 2018; 13
Ting, Pasquale, Peng (bib0017) 2019; 103
Gain, Jullienne, He (bib0006) 2016; 134
Kapoor, Whigham, Al-Aswad (bib0018) 2019; 8
Matthaei, Sandhaeger, Hermel (bib0009) 2017; 101
Gargeya, Leng (bib0033) 2017; 124
Drzyzga, Krupka-Matuszczyk, Drzyzga, Mrukwa-Kominek, Kucia (bib0011) 2016; 57
Zeiler M., Fergus R. Visualizing and understanding convolutional networks. arXiv, 2013.
Abou Shousha, Wang, Kontadakis (bib0013) 2020; 34
Xu, Dupps, Srivastava, Ehlers (bib0040) 2014; 55
van der Heijden, Abramoff, Verbraak, van Hecke, Liem, Nijpels (bib0019) 2018; 96
Kovacs, Mihaltz, Kranitz (bib0021) 2016; 42
Pascolini, Mariotti (bib0003) 2012; 96
Sarnicola, Farooq, Colby (bib0007) 2019; 45
Kapoor, Walters, Al-Aswad (bib0015) 2019; 64
McColgan (bib0002) 2009; 19
Waduthantri, Yong, Tan (bib0004) 2012; 7
Eleiwa, Elsawy, Tolba, Feuer, Yoo, Shousha (bib0043) 2020; 127
Burlina (10.1016/j.ajo.2021.01.018_bib0032) 2017; 135
McColgan (10.1016/j.ajo.2021.01.018_bib0002) 2009; 19
Pascolini (10.1016/j.ajo.2021.01.018_bib0003) 2012; 96
McDonald (10.1016/j.ajo.2021.01.018_bib0028) 2016; 14
Ting (10.1016/j.ajo.2021.01.018_bib0017) 2019; 103
Nanda (10.1016/j.ajo.2021.01.018_bib0029) 2019; 25
Kamiya (10.1016/j.ajo.2021.01.018_bib0022) 2019; 9
Venhuizen (10.1016/j.ajo.2021.01.018_bib0037) 2018; 9
Yousefi (10.1016/j.ajo.2021.01.018_bib0039) 2018; 13
Abou Shousha (10.1016/j.ajo.2021.01.018_bib0025) 2017; 178
Kapoor (10.1016/j.ajo.2021.01.018_bib0018) 2019; 8
Ruiz Hidalgo (10.1016/j.ajo.2021.01.018_bib0023) 2017; 36
Kovacs (10.1016/j.ajo.2021.01.018_bib0021) 2016; 42
Swanson (10.1016/j.ajo.2021.01.018_bib0041) 2011; 8
Sandali (10.1016/j.ajo.2021.01.018_bib0012) 2013; 120
LeCun (10.1016/j.ajo.2021.01.018_bib0016) 2015; 521
Matthaei (10.1016/j.ajo.2021.01.018_bib0009) 2017; 101
Iovino (10.1016/j.ajo.2021.01.018_bib0014) 2018; 13
10.1016/j.ajo.2021.01.018_bib0027
Gulshan (10.1016/j.ajo.2021.01.018_bib0036) 2016; 316
Hamill (10.1016/j.ajo.2021.01.018_bib0008) 2013; 28
10.1016/j.ajo.2021.01.018_bib0024
Kapoor (10.1016/j.ajo.2021.01.018_bib0015) 2019; 64
Abuksis (10.1016/j.ajo.2021.01.018_bib0001) 2004; 36
Abou Shousha (10.1016/j.ajo.2021.01.018_bib0013) 2020; 34
Asaoka (10.1016/j.ajo.2021.01.018_bib0034) 2016; 123
Stapleton (10.1016/j.ajo.2021.01.018_bib0005) 2017; 15
Kennedy (10.1016/j.ajo.2021.01.018_bib0010) 1986; 101
Drzyzga (10.1016/j.ajo.2021.01.018_bib0011) 2016; 57
Ting (10.1016/j.ajo.2021.01.018_bib0038) 2019; 72
Sarnicola (10.1016/j.ajo.2021.01.018_bib0007) 2019; 45
Eleiwa (10.1016/j.ajo.2021.01.018_bib0043) 2020; 127
Gargeya (10.1016/j.ajo.2021.01.018_bib0033) 2017; 124
Krizhevsky (10.1016/j.ajo.2021.01.018_bib0026) 2017; 60
Treder (10.1016/j.ajo.2021.01.018_bib0020) 2019; 38
Waduthantri (10.1016/j.ajo.2021.01.018_bib0004) 2012; 7
Fujimoto (10.1016/j.ajo.2021.01.018_bib0031) 2016; 57
Peng (10.1016/j.ajo.2021.01.018_bib0035) 2019; 126
Tuft (10.1016/j.ajo.2021.01.018_bib0030) 1994; 101
Gain (10.1016/j.ajo.2021.01.018_bib0006) 2016; 134
Windsor (10.1016/j.ajo.2021.01.018_bib0042) 2018; 185
van der Heijden (10.1016/j.ajo.2021.01.018_bib0019) 2018; 96
Xu (10.1016/j.ajo.2021.01.018_bib0040) 2014; 55
References_xml – volume: 45
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib0007
  article-title: Fuchs endothelial corneal dystrophy: update on pathogenesis and future directions
  publication-title: Eye Contact Lens
– volume: 28
  start-page: 281
  year: 2013
  end-page: 286
  ident: bib0008
  article-title: Fuchs endothelial cornea dystrophy: a review of the genetics behind disease development
  publication-title: Semin Ophthalmol
– volume: 13
  year: 2018
  ident: bib0014
  article-title: Corneal endothelium features in Fuchs' endothelial corneal dystrophy: a preliminary 3D anterior segment optical coherence tomography study
  publication-title: PLoS One
– reference: Huang D. Future direction of anterior segment optical coherence tomography. 2008:165-172.
– volume: 8
  start-page: 187
  year: 2019
  end-page: 194
  ident: bib0018
  article-title: Artificial intelligence and optical coherence tomography imaging
  publication-title: Asia Pac J Ophthalmol (Phila)
– volume: 36
  start-page: 1249
  year: 2004
  end-page: 1252
  ident: bib0001
  article-title: Cornea recipients: are their opinions and attitudes toward organ donation different from those of the general population?
  publication-title: Transplant Proc
– volume: 120
  start-page: 2403
  year: 2013
  end-page: 2412
  ident: bib0012
  article-title: Fourier-domain optical coherence tomography imaging in keratoconus: a corneal structural classification
  publication-title: Ophthalmology
– volume: 135
  start-page: 1170
  year: 2017
  end-page: 1176
  ident: bib0032
  article-title: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks
  publication-title: JAMA Ophthalmol
– volume: 13
  year: 2018
  ident: bib0039
  article-title: Keratoconus severity identification using unsupervised machine learning
  publication-title: PLoS One
– volume: 101
  start-page: 267
  year: 1986
  end-page: 273
  ident: bib0010
  article-title: A 48-year clinical and epidemiologic study of keratoconus
  publication-title: Am J Ophthalmol
– volume: 34
  start-page: 915
  year: 2020
  end-page: 922
  ident: bib0013
  article-title: Corneal epithelial thickness profile in dry-eye disease
  publication-title: Eye (Lond)
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: bib0026
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
– volume: 9
  start-page: 1545
  year: 2018
  end-page: 1569
  ident: bib0037
  article-title: Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography
  publication-title: Biomed Opt Express
– volume: 72
  year: 2019
  ident: bib0038
  article-title: Deep learning in ophthalmology: the technical and clinical considerations
  publication-title: Prog Retin Eye Res
– volume: 57
  start-page: 414
  year: 2016
  end-page: 422
  ident: bib0011
  article-title: Quality of life and mental state after sight restoration by corneal transplantation
  publication-title: Psychosomatics
– volume: 178
  start-page: 27
  year: 2017
  end-page: 37
  ident: bib0025
  article-title: In vivo characteristics of corneal endothelium/Descemet membrane complex for the diagnosis of corneal graft rejection
  publication-title: Am J Ophthalmol
– volume: 101
  start-page: 1387
  year: 2017
  end-page: 1399
  ident: bib0009
  article-title: Changing indications in penetrating keratoplasty: a systematic review of 34 years of global reporting
  publication-title: Transplantation
– volume: 19
  start-page: 51
  year: 2009
  end-page: 54
  ident: bib0002
  article-title: Corneal transplant surgery
  publication-title: J Perioper Pract
– volume: 64
  start-page: 233
  year: 2019
  end-page: 240
  ident: bib0015
  article-title: The current state of artificial intelligence in ophthalmology
  publication-title: Surv Ophthalmol
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0016
  article-title: Deep learning
  publication-title: Nature
– volume: 57
  start-page: OCT1
  year: 2016
  end-page: OCT13
  ident: bib0031
  article-title: The development, commercialization, and impact of optical coherence tomography
  publication-title: Invest Ophthalmol Vis Sci
– volume: 103
  start-page: 167
  year: 2019
  end-page: 175
  ident: bib0017
  article-title: Artificial intelligence and deep learning in ophthalmology
  publication-title: Br J Ophthalmol
– volume: 14
  start-page: 144
  year: 2016
  end-page: 167
  ident: bib0028
  article-title: Economic and humanistic burden of dry eye disease in Europe, North America, and Asia: a systematic literature review
  publication-title: Ocular Surface
– volume: 101
  start-page: 439
  year: 1994
  end-page: 447
  ident: bib0030
  article-title: Prognostic factors for the progression of keratoconus
  publication-title: Ophthalmology
– volume: 124
  start-page: 962
  year: 2017
  end-page: 969
  ident: bib0033
  article-title: Automated identification of diabetic retinopathy using deep learning
  publication-title: Ophthalmology
– volume: 9
  year: 2019
  ident: bib0022
  article-title: Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: a diagnostic accuracy study
  publication-title: BMJ Open
– volume: 126
  start-page: 565
  year: 2019
  end-page: 575
  ident: bib0035
  article-title: DeepSeeNet: a deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs
  publication-title: Ophthalmology
– volume: 8
  year: 2011
  ident: bib0041
  article-title: Ophthalmic OCT reaches $1 billion per year
  publication-title: Retinal Physician
– volume: 96
  start-page: 614
  year: 2012
  end-page: 618
  ident: bib0003
  article-title: Global estimates of visual impairment: 2010
  publication-title: Br J Ophthalmol
– volume: 42
  start-page: 275
  year: 2016
  end-page: 283
  ident: bib0021
  article-title: Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of keratoconus
  publication-title: J Cataract Refract Surg
– volume: 7
  start-page: e37711
  year: 2012
  ident: bib0004
  article-title: Cost of dry eye treatment in an Asian clinic setting
  publication-title: PLoS One
– volume: 38
  start-page: 157
  year: 2019
  end-page: 161
  ident: bib0020
  article-title: Using deep learning in automated detection of graft detachment in Descemet membrane endothelial keratoplasty: a pilot study
  publication-title: Cornea
– volume: 36
  start-page: 689
  year: 2017
  end-page: 695
  ident: bib0023
  article-title: Validation of an objective keratoconus detection system implemented in a Scheimpflug tomographer and comparison with other methods
  publication-title: Cornea
– volume: 127
  start-page: 874
  year: 2020
  end-page: 887
  ident: bib0043
  article-title: Diagnostic performance of 3-dimensional thickness of the endothelium-Descemet complex in Fuchs' endothelial cell corneal dystrophy
  publication-title: Ophthalmology
– volume: 134
  start-page: 167
  year: 2016
  end-page: 173
  ident: bib0006
  article-title: Global survey of corneal transplantation and eye banking
  publication-title: JAMA Ophthalmol
– volume: 15
  start-page: 334
  year: 2017
  end-page: 365
  ident: bib0005
  article-title: TFOS DEWS II epidemiology report
  publication-title: Ocul Surf
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: bib0036
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– reference: Zeiler M., Fergus R. Visualizing and understanding convolutional networks. arXiv, 2013.
– volume: 25
  start-page: 295
  year: 2019
  end-page: 310
  ident: bib0029
  article-title: REVIEW: current understanding of the pathogenesis of Fuchs' endothelial corneal dystrophy
  publication-title: Mol Vis
– volume: 185
  start-page: 115
  year: 2018
  end-page: 122
  ident: bib0042
  article-title: Estimating public and patient savings from basic research—a study of optical coherence tomography in managing antiangiogenic therapy
  publication-title: Am J Ophthalmol
– volume: 55
  start-page: 5610
  year: 2014
  end-page: 5615
  ident: bib0040
  article-title: Automated volumetric analysis of interface fluid in Descemet stripping automated endothelial keratoplasty using intraoperative optical coherence tomography
  publication-title: Invest Ophthalmol Vis Sci
– volume: 96
  start-page: 63
  year: 2018
  end-page: 68
  ident: bib0019
  article-title: Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System
  publication-title: Acta Ophthalmol
– volume: 123
  start-page: 1974
  year: 2016
  end-page: 1980
  ident: bib0034
  article-title: Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier
  publication-title: Ophthalmology
– volume: 64
  start-page: 233
  year: 2019
  ident: 10.1016/j.ajo.2021.01.018_bib0015
  article-title: The current state of artificial intelligence in ophthalmology
  publication-title: Surv Ophthalmol
  doi: 10.1016/j.survophthal.2018.09.002
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.ajo.2021.01.018_bib0016
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 14
  start-page: 144
  year: 2016
  ident: 10.1016/j.ajo.2021.01.018_bib0028
  article-title: Economic and humanistic burden of dry eye disease in Europe, North America, and Asia: a systematic literature review
  publication-title: Ocular Surface
  doi: 10.1016/j.jtos.2015.11.002
– volume: 120
  start-page: 2403
  year: 2013
  ident: 10.1016/j.ajo.2021.01.018_bib0012
  article-title: Fourier-domain optical coherence tomography imaging in keratoconus: a corneal structural classification
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.05.027
– volume: 101
  start-page: 439
  year: 1994
  ident: 10.1016/j.ajo.2021.01.018_bib0030
  article-title: Prognostic factors for the progression of keratoconus
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(94)31313-3
– volume: 8
  start-page: 187
  year: 2019
  ident: 10.1016/j.ajo.2021.01.018_bib0018
  article-title: Artificial intelligence and optical coherence tomography imaging
  publication-title: Asia Pac J Ophthalmol (Phila)
– volume: 13
  year: 2018
  ident: 10.1016/j.ajo.2021.01.018_bib0039
  article-title: Keratoconus severity identification using unsupervised machine learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0205998
– volume: 55
  start-page: 5610
  year: 2014
  ident: 10.1016/j.ajo.2021.01.018_bib0040
  article-title: Automated volumetric analysis of interface fluid in Descemet stripping automated endothelial keratoplasty using intraoperative optical coherence tomography
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.14-14346
– volume: 9
  year: 2019
  ident: 10.1016/j.ajo.2021.01.018_bib0022
  article-title: Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: a diagnostic accuracy study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2019-031313
– volume: 42
  start-page: 275
  year: 2016
  ident: 10.1016/j.ajo.2021.01.018_bib0021
  article-title: Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of keratoconus
  publication-title: J Cataract Refract Surg
  doi: 10.1016/j.jcrs.2015.09.020
– volume: 28
  start-page: 281
  year: 2013
  ident: 10.1016/j.ajo.2021.01.018_bib0008
  article-title: Fuchs endothelial cornea dystrophy: a review of the genetics behind disease development
  publication-title: Semin Ophthalmol
  doi: 10.3109/08820538.2013.825283
– volume: 96
  start-page: 63
  year: 2018
  ident: 10.1016/j.ajo.2021.01.018_bib0019
  article-title: Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System
  publication-title: Acta Ophthalmol
  doi: 10.1111/aos.13613
– volume: 134
  start-page: 167
  year: 2016
  ident: 10.1016/j.ajo.2021.01.018_bib0006
  article-title: Global survey of corneal transplantation and eye banking
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2015.4776
– ident: 10.1016/j.ajo.2021.01.018_bib0027
  doi: 10.1007/978-3-319-10590-1_53
– volume: 34
  start-page: 915
  year: 2020
  ident: 10.1016/j.ajo.2021.01.018_bib0013
  article-title: Corneal epithelial thickness profile in dry-eye disease
  publication-title: Eye (Lond)
  doi: 10.1038/s41433-019-0592-y
– volume: 178
  start-page: 27
  year: 2017
  ident: 10.1016/j.ajo.2021.01.018_bib0025
  article-title: In vivo characteristics of corneal endothelium/Descemet membrane complex for the diagnosis of corneal graft rejection
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2017.02.026
– volume: 38
  start-page: 157
  year: 2019
  ident: 10.1016/j.ajo.2021.01.018_bib0020
  article-title: Using deep learning in automated detection of graft detachment in Descemet membrane endothelial keratoplasty: a pilot study
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000001776
– volume: 9
  start-page: 1545
  year: 2018
  ident: 10.1016/j.ajo.2021.01.018_bib0037
  article-title: Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.9.001545
– volume: 60
  start-page: 84
  year: 2017
  ident: 10.1016/j.ajo.2021.01.018_bib0026
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
  doi: 10.1145/3065386
– volume: 123
  start-page: 1974
  year: 2016
  ident: 10.1016/j.ajo.2021.01.018_bib0034
  article-title: Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2016.05.029
– volume: 13
  year: 2018
  ident: 10.1016/j.ajo.2021.01.018_bib0014
  article-title: Corneal endothelium features in Fuchs' endothelial corneal dystrophy: a preliminary 3D anterior segment optical coherence tomography study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0207891
– volume: 316
  start-page: 2402
  year: 2016
  ident: 10.1016/j.ajo.2021.01.018_bib0036
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 57
  start-page: 414
  year: 2016
  ident: 10.1016/j.ajo.2021.01.018_bib0011
  article-title: Quality of life and mental state after sight restoration by corneal transplantation
  publication-title: Psychosomatics
  doi: 10.1016/j.psym.2016.02.013
– volume: 185
  start-page: 115
  year: 2018
  ident: 10.1016/j.ajo.2021.01.018_bib0042
  article-title: Estimating public and patient savings from basic research—a study of optical coherence tomography in managing antiangiogenic therapy
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2017.09.027
– volume: 127
  start-page: 874
  year: 2020
  ident: 10.1016/j.ajo.2021.01.018_bib0043
  article-title: Diagnostic performance of 3-dimensional thickness of the endothelium-Descemet complex in Fuchs' endothelial cell corneal dystrophy
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2020.01.021
– volume: 36
  start-page: 689
  year: 2017
  ident: 10.1016/j.ajo.2021.01.018_bib0023
  article-title: Validation of an objective keratoconus detection system implemented in a Scheimpflug tomographer and comparison with other methods
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000001194
– volume: 96
  start-page: 614
  year: 2012
  ident: 10.1016/j.ajo.2021.01.018_bib0003
  article-title: Global estimates of visual impairment: 2010
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2011-300539
– volume: 45
  start-page: 1
  year: 2019
  ident: 10.1016/j.ajo.2021.01.018_bib0007
  article-title: Fuchs endothelial corneal dystrophy: update on pathogenesis and future directions
  publication-title: Eye Contact Lens
  doi: 10.1097/ICL.0000000000000469
– volume: 101
  start-page: 267
  year: 1986
  ident: 10.1016/j.ajo.2021.01.018_bib0010
  article-title: A 48-year clinical and epidemiologic study of keratoconus
  publication-title: Am J Ophthalmol
  doi: 10.1016/0002-9394(86)90817-2
– volume: 124
  start-page: 962
  year: 2017
  ident: 10.1016/j.ajo.2021.01.018_bib0033
  article-title: Automated identification of diabetic retinopathy using deep learning
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.02.008
– volume: 7
  start-page: e37711
  year: 2012
  ident: 10.1016/j.ajo.2021.01.018_bib0004
  article-title: Cost of dry eye treatment in an Asian clinic setting
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0037711
– volume: 19
  start-page: 51
  year: 2009
  ident: 10.1016/j.ajo.2021.01.018_bib0002
  article-title: Corneal transplant surgery
  publication-title: J Perioper Pract
– volume: 101
  start-page: 1387
  year: 2017
  ident: 10.1016/j.ajo.2021.01.018_bib0009
  article-title: Changing indications in penetrating keratoplasty: a systematic review of 34 years of global reporting
  publication-title: Transplantation
  doi: 10.1097/TP.0000000000001281
– volume: 103
  start-page: 167
  year: 2019
  ident: 10.1016/j.ajo.2021.01.018_bib0017
  article-title: Artificial intelligence and deep learning in ophthalmology
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2018-313173
– volume: 135
  start-page: 1170
  year: 2017
  ident: 10.1016/j.ajo.2021.01.018_bib0032
  article-title: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2017.3782
– ident: 10.1016/j.ajo.2021.01.018_bib0024
  doi: 10.1201/9781003522560-16
– volume: 126
  start-page: 565
  year: 2019
  ident: 10.1016/j.ajo.2021.01.018_bib0035
  article-title: DeepSeeNet: a deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.11.015
– volume: 25
  start-page: 295
  year: 2019
  ident: 10.1016/j.ajo.2021.01.018_bib0029
  article-title: REVIEW: current understanding of the pathogenesis of Fuchs' endothelial corneal dystrophy
  publication-title: Mol Vis
– volume: 72
  year: 2019
  ident: 10.1016/j.ajo.2021.01.018_bib0038
  article-title: Deep learning in ophthalmology: the technical and clinical considerations
  publication-title: Prog Retin Eye Res
  doi: 10.1016/j.preteyeres.2019.04.003
– volume: 57
  start-page: OCT1
  year: 2016
  ident: 10.1016/j.ajo.2021.01.018_bib0031
  article-title: The development, commercialization, and impact of optical coherence tomography
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.16-19963
– volume: 36
  start-page: 1249
  year: 2004
  ident: 10.1016/j.ajo.2021.01.018_bib0001
  article-title: Cornea recipients: are their opinions and attitudes toward organ donation different from those of the general population?
  publication-title: Transplant Proc
  doi: 10.1016/j.transproceed.2004.04.093
– volume: 15
  start-page: 334
  year: 2017
  ident: 10.1016/j.ajo.2021.01.018_bib0005
  article-title: TFOS DEWS II epidemiology report
  publication-title: Ocul Surf
  doi: 10.1016/j.jtos.2017.05.003
– volume: 8
  year: 2011
  ident: 10.1016/j.ajo.2021.01.018_bib0041
  article-title: Ophthalmic OCT reaches $1 billion per year
  publication-title: Retinal Physician
SSID ssj0006747
Score 2.4893844
Snippet To report a multidisease deep learning diagnostic network (MDDN) of common corneal diseases: dry eye syndrome (DES), Fuchs endothelial dystrophy (FED), and...
PurposeTo report a multidisease deep learning diagnostic network (MDDN) of common corneal diseases: dry eye syndrome (DES), Fuchs endothelial dystrophy (FED),...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 252
SubjectTerms Algorithms
Area Under Curve
Artificial intelligence
Automation
Classification
Cornea
Corneal Diseases - diagnosis
Deep Learning
Diabetes
Diabetic retinopathy
Diagnosis, Computer-Assisted
Disease
Dry Eye Syndromes - diagnosis
FDA approval
Female
Fuchs' Endothelial Dystrophy - diagnosis
Health care
Humans
Keratoconus - diagnosis
Male
Medical diagnosis
Middle Aged
Neural networks
Neural Networks, Computer
Patients
Prospective Studies
Public health
Quality of life
ROC Curve
Tomography
Tomography, Optical Coherence
Transplants & implants
Title Multidisease Deep Learning Neural Network for the Diagnosis of Corneal Diseases
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0002939421000398
https://dx.doi.org/10.1016/j.ajo.2021.01.018
https://www.ncbi.nlm.nih.gov/pubmed/33529589
https://www.proquest.com/docview/2550616534
https://www.proquest.com/docview/2486145311
Volume 226
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RSxwxEB5EQXwprdb2Wisp9Kmwuptks8mjnMq1xetLBd9CNpuUE9k7vPPV3-7MbvakUBWEfdndzJKdTGa-kG8mAN8ExyDhG1ypRt1kkjueOS9FFqpQO-G84Q0tFC-manIpf16VVxswHnJhiFaZfH_v0ztvnZ4cJ20eL2YzyvHNMVYZyYsuw5QSfqWsyMqP7h9pHqqS1QCBqfWws9lxvNw15f_xoqvcSed-_D82PYU9uxh0_hbeJPDITvr-vYON0O7C9kXaHt-D3106bdpzYachLFiqn_qXURUOlJ32tG-GWJUh9mOnPdVutmTzyMbz2xaBIz7svrB8D5fnZ3_GkyydmJB5aapVVivET3XhlXKlDqUTjQ5ae650LBuF0Txy53k0JqJba4KPiCa0lIHnIuQ8GLEPm-28DR-BIVIwTSyDqzGAEyNNuMJ7HSMiEmU4H0E-6Mr6VE6cTrW4sQNv7Nqiei2p1-Z06RF8X4ss-loazzXmwwDYIUkU3ZpFT_-ckFwL_WNFL4kdDCNs0xReWlxroRmrUsgRfF2_xslHOyquDfM7bCM1aUcUxQg-9Jax_jNKZjOlNp9e16fPsEN3PSvtADZXt3fhC-KfVX3YGfghbJ38-DWZPgB0PQH-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9BJw1eJvYBdIPNSDxNCiS249qPU6HqNlpeQOLNchwbtUJpRcsrfzvnxClC4kNCypPti5Lz-e5n3RfAIaNoJGyJN1Uvy4RTQxNjOUtczxWGGatoGS6Ko7EYXvJ_V_nVGvTbXJgQVhl1f6PTa20dR44jN4_nk0nI8U3RVilOszrDVK7DB47HN7QxOLp_jPMQPd5rMXBY3ro26yAvMw0JgDSrS3eGxh_PG6eXwGdthAZb8CmiR_Kn-cDPsOaqL_BxFP3jX-G8zqeNThdy4tycxAKq1ySU4UDacRP3TRCsEgR_5KSJtZssyMyT_uy2QuSIg_UbFt_gcnB60R8msWVCYrnqLZNCIIAqMiuEyaXLDSulk9JSIX1eCjTnnhpLvVIe9VrprEc4ITl3NGUupU6xbehUs8rtAkGooEqfO1OgBQ8hacxk1krvEZIIRWkX0pZX2sZ64qGtxY1uA8emGtmrA3t1Gh7Zhd8rknlTTOO1xbTdAN1miaJe06jqXyPiK6InYvQW2V67wzqe4YXGyxbKscgZ78LBahpPX3CpmMrN7nANl4E7LMu6sNNIxurPQjabyqX6_r5v-gUbw4vRmT77O_7_AzbDTBOitged5e2d20cwtCx-1sL-AEm3A4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidisease+Deep+Learning+Neural+Network+for+the+Diagnosis+of+Corneal+Diseases&rft.jtitle=American+journal+of+ophthalmology&rft.au=Elsawy%2C+Amr&rft.au=Eleiwa%2C+Taher&rft.au=Chase%2C+Collin&rft.au=Ozcan%2C+Eyup&rft.date=2021-06-01&rft.eissn=1879-1891&rft.volume=226&rft.spage=252&rft_id=info:doi/10.1016%2Fj.ajo.2021.01.018&rft_id=info%3Apmid%2F33529589&rft.externalDocID=33529589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9394&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9394&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9394&client=summon