Copper chelation suppresses epithelial-mesenchymal transition by inhibition of canonical and non-canonical TGF-β signaling pathways in cancer

Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associat...

Full description

Saved in:
Bibliographic Details
Published inCell & bioscience Vol. 13; no. 1; pp. 132 - 19
Main Authors Poursani, Ensieh M., Mercatelli, Daniele, Raninga, Prahlad, Bell, Jessica L., Saletta, Federica, Kohane, Felix V., Neumann, Daniel P., Zheng, Ye, Rouaen, Jourdin R. C., Jue, Toni Rose, Michniewicz, Filip T., Schadel, Piper, Kasiou, Erin, Tsoli, Maria, Cirillo, Giuseppe, Waters, Shafagh, Shai-Hee, Tyler, Cazzoli, Riccardo, Brettle, Merryn, Slapetova, Iveta, Kasherman, Maria, Whan, Renee, Souza-Fonseca-Guimaraes, Fernando, Vahdat, Linda, Ziegler, David, Lock, John G., Giorgi, Federico M., Khanna, KumKum, Vittorio, Orazio
Format Journal Article
LanguageEnglish
Published England BioMed Central 21.07.2023
BMC
Subjects
Online AccessGet full text
ISSN2045-3701
2045-3701
DOI10.1186/s13578-023-01083-7

Cover

Loading…
Abstract Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-β levels and EMT signaling. Given that many drugs targeting TGF-β have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-β/EMT axis. Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-β and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-β levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-β/SMAD2&3) and non-canonical (TGF-β/PI3K/AKT, TGF-β/RAS/RAF/MEK/ERK, and TGF-β/WNT/β-catenin) TGF-β signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, β-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-β and inhibiting EMT in a diverse range of cancers.
AbstractList BackgroundMetastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-β levels and EMT signaling. Given that many drugs targeting TGF-β have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-β/EMT axis.ResultsOur cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-β and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-β levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-β/SMAD2&3) and non-canonical (TGF-β/PI3K/AKT, TGF-β/RAS/RAF/MEK/ERK, and TGF-β/WNT/β-catenin) TGF-β signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, β-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment.ConclusionsOur study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-β and inhibiting EMT in a diverse range of cancers.
Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-β levels and EMT signaling. Given that many drugs targeting TGF-β have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-β/EMT axis.BACKGROUNDMetastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-β levels and EMT signaling. Given that many drugs targeting TGF-β have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-β/EMT axis.Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-β and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-β levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-β/SMAD2&3) and non-canonical (TGF-β/PI3K/AKT, TGF-β/RAS/RAF/MEK/ERK, and TGF-β/WNT/β-catenin) TGF-β signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, β-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment.RESULTSOur cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-β and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-β levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-β/SMAD2&3) and non-canonical (TGF-β/PI3K/AKT, TGF-β/RAS/RAF/MEK/ERK, and TGF-β/WNT/β-catenin) TGF-β signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, β-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment.Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-β and inhibiting EMT in a diverse range of cancers.CONCLUSIONSOur study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-β and inhibiting EMT in a diverse range of cancers.
Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-β levels and EMT signaling. Given that many drugs targeting TGF-β have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-β/EMT axis. Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-β and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-β levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-β/SMAD2&3) and non-canonical (TGF-β/PI3K/AKT, TGF-β/RAS/RAF/MEK/ERK, and TGF-β/WNT/β-catenin) TGF-β signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, β-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-β and inhibiting EMT in a diverse range of cancers.
Abstract Background Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-β levels and EMT signaling. Given that many drugs targeting TGF-β have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-β/EMT axis. Results Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-β and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-β levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-β/SMAD2&3) and non-canonical (TGF-β/PI3K/AKT, TGF-β/RAS/RAF/MEK/ERK, and TGF-β/WNT/β-catenin) TGF-β signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, β-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. Conclusions Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-β and inhibiting EMT in a diverse range of cancers.
ArticleNumber 132
Author Mercatelli, Daniele
Jue, Toni Rose
Kohane, Felix V.
Neumann, Daniel P.
Raninga, Prahlad
Cazzoli, Riccardo
Kasiou, Erin
Bell, Jessica L.
Cirillo, Giuseppe
Michniewicz, Filip T.
Whan, Renee
Shai-Hee, Tyler
Zheng, Ye
Slapetova, Iveta
Poursani, Ensieh M.
Tsoli, Maria
Lock, John G.
Brettle, Merryn
Souza-Fonseca-Guimaraes, Fernando
Waters, Shafagh
Saletta, Federica
Khanna, KumKum
Vahdat, Linda
Ziegler, David
Schadel, Piper
Kasherman, Maria
Vittorio, Orazio
Giorgi, Federico M.
Rouaen, Jourdin R. C.
Author_xml – sequence: 1
  givenname: Ensieh M.
  surname: Poursani
  fullname: Poursani, Ensieh M.
– sequence: 2
  givenname: Daniele
  surname: Mercatelli
  fullname: Mercatelli, Daniele
– sequence: 3
  givenname: Prahlad
  surname: Raninga
  fullname: Raninga, Prahlad
– sequence: 4
  givenname: Jessica L.
  surname: Bell
  fullname: Bell, Jessica L.
– sequence: 5
  givenname: Federica
  surname: Saletta
  fullname: Saletta, Federica
– sequence: 6
  givenname: Felix V.
  surname: Kohane
  fullname: Kohane, Felix V.
– sequence: 7
  givenname: Daniel P.
  surname: Neumann
  fullname: Neumann, Daniel P.
– sequence: 8
  givenname: Ye
  surname: Zheng
  fullname: Zheng, Ye
– sequence: 9
  givenname: Jourdin R. C.
  surname: Rouaen
  fullname: Rouaen, Jourdin R. C.
– sequence: 10
  givenname: Toni Rose
  surname: Jue
  fullname: Jue, Toni Rose
– sequence: 11
  givenname: Filip T.
  surname: Michniewicz
  fullname: Michniewicz, Filip T.
– sequence: 12
  givenname: Piper
  surname: Schadel
  fullname: Schadel, Piper
– sequence: 13
  givenname: Erin
  surname: Kasiou
  fullname: Kasiou, Erin
– sequence: 14
  givenname: Maria
  surname: Tsoli
  fullname: Tsoli, Maria
– sequence: 15
  givenname: Giuseppe
  surname: Cirillo
  fullname: Cirillo, Giuseppe
– sequence: 16
  givenname: Shafagh
  surname: Waters
  fullname: Waters, Shafagh
– sequence: 17
  givenname: Tyler
  surname: Shai-Hee
  fullname: Shai-Hee, Tyler
– sequence: 18
  givenname: Riccardo
  surname: Cazzoli
  fullname: Cazzoli, Riccardo
– sequence: 19
  givenname: Merryn
  surname: Brettle
  fullname: Brettle, Merryn
– sequence: 20
  givenname: Iveta
  surname: Slapetova
  fullname: Slapetova, Iveta
– sequence: 21
  givenname: Maria
  surname: Kasherman
  fullname: Kasherman, Maria
– sequence: 22
  givenname: Renee
  surname: Whan
  fullname: Whan, Renee
– sequence: 23
  givenname: Fernando
  surname: Souza-Fonseca-Guimaraes
  fullname: Souza-Fonseca-Guimaraes, Fernando
– sequence: 24
  givenname: Linda
  surname: Vahdat
  fullname: Vahdat, Linda
– sequence: 25
  givenname: David
  surname: Ziegler
  fullname: Ziegler, David
– sequence: 26
  givenname: John G.
  surname: Lock
  fullname: Lock, John G.
– sequence: 27
  givenname: Federico M.
  surname: Giorgi
  fullname: Giorgi, Federico M.
– sequence: 28
  givenname: KumKum
  surname: Khanna
  fullname: Khanna, KumKum
– sequence: 29
  givenname: Orazio
  surname: Vittorio
  fullname: Vittorio, Orazio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37480151$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9u1DAQxi1UREvpC3BAkbhwCfhPHNsnhFa0VKrEpZytieNsvErsYGep9iV4GB6kz1TvppS2B3yZ8fg3n8b29xod-eAtQm8J_kiIrD8lwriQJaasxARLVooX6ITiipdMYHL0KD9GZyltcF6VIljwV-iYiUpiwskJ-r0K02RjYXo7wOyCL9J2mqJNyabCTm7OdQdDOdpkvel3IwzFHMEnd4CbXeF875plF7rCQJ7TmUyBb4ucl_8q1xfn5e2fIrm1h8H5dTHB3N_ALmWNfaOx8Q162cGQ7Nl9PEU_zr9er76VV98vLldfrkpTKTGXQKvadkLkAFLxpuJdpXjbGU5FoySuASBn1BBDrSINGNxRw2qM2worjtkpulx02wAbPUU3QtzpAE4fCiGuNcTZmcHqhgimSKeAqraSWcy0plYkp7UktJNZ6_OiNW2b0bbG-vxAwxPRpyfe9XodfmmCWU0F2yt8uFeI4efWplmPLhk7DOBt2CZNZUUwpYLUGX3_DN2Ebczvuac4JbVUimbq3eORHmb5--8ZoAtgYkgp2u4BIVjv_aUXf-nsL33wlxa5ST5rMm4-mCZfyw3_a70DcznWyw
CitedBy_id crossref_primary_10_1002_fsn3_4609
crossref_primary_10_1016_j_cbi_2025_111394
crossref_primary_10_1016_j_isci_2024_109057
crossref_primary_10_1007_s00439_024_02673_2
crossref_primary_10_1016_j_lfs_2024_122972
crossref_primary_10_4103_NRR_NRR_D_24_00140
crossref_primary_10_1186_s12967_025_06121_1
crossref_primary_10_1038_s41467_024_54689_x
crossref_primary_10_1007_s12011_024_04440_w
crossref_primary_10_1038_s41467_024_50524_5
crossref_primary_10_1021_acs_chemrev_4c00577
crossref_primary_10_1039_D3RA06434D
crossref_primary_10_1093_hmg_ddae129
crossref_primary_10_1126_sciadv_ado1583
crossref_primary_10_31083_j_jin2306116
Cites_doi 10.1093/bioinformatics/btt053
10.3892/or.2012.2111
10.1093/nar/gkw377
10.3892/ijo.2017.3954
10.1172/JCI36183
10.3390/cancers14071847
10.1517/14728222.2013.782287
10.1016/j.trsl.2009.05.002
10.1158/0008-5472.CAN-20-0471
10.1002/cmdc.202100172
10.1186/s13046-019-1075-5
10.1177/0300060520919592
10.3390/cancers11050659
10.1016/j.tranon.2020.100773
10.3390/cancers13030379
10.1093/bioinformatics/btt656
10.1186/s13059-014-0550-8
10.1038/nmeth.3317
10.1007/s11684-018-0646-8
10.1038/cr.2009.5
10.1172/JCI65416
10.3390/cancers12123594
10.1016/j.neo.2014.10.006
10.1038/s41571-020-0403-1
10.1016/j.cytogfr.2009.11.008
10.1093/bioinformatics/btaa223
10.3389/fcell.2020.00605
10.1126/science.1203543
10.1158/1078-0432.CCR-09-1361
10.3389/fonc.2020.00499
10.1111/cpr.12633
10.32614/CRAN.package.babelgene
10.1101/cshperspect.a022129
10.7314/APJCP.2015.16.15.6201
10.3934/mbe.2019164
10.1007/s12185-011-0799-6
10.1038/s41523-021-00313-w
10.1007/s00441-011-1201-y
10.1074/jbc.RA118.004889
10.1002/jcb.21675
10.1101/cshperspect.a022137
10.1158/0008-5472.CAN-07-5597
10.1039/C6MT00202A
10.1089/scd.2020.0142
10.1038/nrc1926
10.1038/s41467-018-06654-8
10.3390/life12050648
10.1242/dev.121.6.1845
10.1002/jcb.22309
10.1038/s41589-018-0062-z
10.1095/biolreprod64.5.1331
10.1073/pnas.0403495101
10.1016/j.cell.2011.09.024
10.1177/0192623311416259
10.1007/978-3-319-24277-4_9
10.1186/s12943-015-0421-2
10.1016/j.stem.2018.11.011
10.7150/ijbs.4564
10.1242/jcs.02334
10.1038/s41467-021-20896-z
10.1084/jem.20181827
10.1242/dmm.034850
10.5604/00306657.1202546
10.2217/mmt-2015-0005
10.1172/JCI39104
ContentType Journal Article
Copyright 2023. Crown.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Crown 2023
Copyright_xml – notice: 2023. Crown.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Crown 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13578-023-01083-7
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-3701
EndPage 19
ExternalDocumentID oai_doaj_org_article_b17391f9a29d4891bcdc6914896812f8
PMC10362738
37480151
10_1186_s13578_023_01083_7
Genre Journal Article
GrantInformation_xml – fundername: National Health and Medical Research Council
  grantid: APP1164960
– fundername: ;
  grantid: APP1164960
GroupedDBID 0R~
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
ISR
ITC
KQ8
LK8
M48
M7P
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RBZ
ROL
RPM
RSV
SBL
SOJ
TUS
UKHRP
NPM
PQGLB
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c497t-a246ef77246a895b45f495dfc527b9806aaa27b2c1c2e91bac0f2c3600d409503
IEDL.DBID M48
ISSN 2045-3701
IngestDate Wed Aug 27 01:28:13 EDT 2025
Thu Aug 21 18:37:28 EDT 2025
Thu Jul 10 16:55:42 EDT 2025
Fri Jul 25 10:31:22 EDT 2025
Mon Jul 21 05:53:45 EDT 2025
Tue Jul 01 01:51:55 EDT 2025
Thu Apr 24 23:11:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Metastasis
Copper chelation
TGF-β signaling pathways
EMT
Cancer
Language English
License 2023. Crown.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-a246ef77246a895b45f495dfc527b9806aaa27b2c1c2e91bac0f2c3600d409503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13578-023-01083-7
PMID 37480151
PQID 2852168992
PQPubID 2040248
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_b17391f9a29d4891bcdc6914896812f8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10362738
proquest_miscellaneous_2841022716
proquest_journals_2852168992
pubmed_primary_37480151
crossref_primary_10_1186_s13578_023_01083_7
crossref_citationtrail_10_1186_s13578_023_01083_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-21
PublicationDateYYYYMMDD 2023-07-21
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Cell & bioscience
PublicationTitleAlternate Cell Biosci
PublicationYear 2023
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References D Kim (1083_CR66) 2015; 12
Q Pan (1083_CR38) 2002; 62
S Baldari (1083_CR47) 2019; 11
Y Seomun (1083_CR22) 2008; 104
Y Mu (1083_CR50) 2012; 347
E Valli (1083_CR40) 2020; 80
K Miyazono (1083_CR53) 2018; 12
CH Stuelten (1083_CR19) 2005; 118
1083_CR18
CL Chaffer (1083_CR3) 2011; 331
D Mercatelli (1083_CR75) 2020; 36
F Voli (1083_CR45) 2020; 80
LH Katz (1083_CR10) 2013; 17
A Khan (1083_CR62) 2021; 12
FM Giorgi (1083_CR76) 2013; 29
C Hochheuser (1083_CR25) 2021; 30
Q Pan (1083_CR39) 2009; 15
J-B Shao (1083_CR55) 2017; 50
P Lelièvre (1083_CR31) 2020; 12
H Wickham (1083_CR64) 2016
1083_CR63
1083_CR65
T Yaguchi (1083_CR7) 2011; 93
NE Bhola (1083_CR28) 2013; 123
1083_CR68
A Alsuliman (1083_CR60) 2015; 14
MV Kuleshov (1083_CR71) 2016; 44
MC Dickson (1083_CR16) 1995; 121
NM Aiello (1083_CR5) 2019; 216
I Georgakopoulos-Soares (1083_CR48) 2020
PB Gupta (1083_CR49) 2019; 24
K Luo (1083_CR51) 2017; 9
M Kalimutho (1083_CR61) 2019; 38
A Chakravarthy (1083_CR59) 2018; 9
S-H Kim (1083_CR42) 2018; 11
YL Liu (1083_CR30) 2021; 7
K Schmidt (1083_CR33) 2018; 293
MJ Joseph (1083_CR43) 2009; 108
V Gómez-Gil (1083_CR15) 2021; 13
L Zecca (1083_CR34) 2004; 101
X Liu (1083_CR6) 2015; 16
MJ Anderton (1083_CR17) 2011; 39
1083_CR73
1083_CR74
H Dong (1083_CR24) 2019; 52
P Panichelli (1083_CR36) 2016; 31
Y Han (1083_CR41) 2020; 10
YE Zhang (1083_CR52) 2017; 9
GJ Brewer (1083_CR37) 2009; 154
F Michniewicz (1083_CR32) 2021; 16
Z-D Lv (1083_CR54) 2013; 29
B Bierie (1083_CR27) 2008; 68
M Zeisberg (1083_CR2) 2009; 119
T Xiao (1083_CR35) 2018; 14
S Blockhuys (1083_CR29) 2017; 9
AF Teixeira (1083_CR13) 2020; 8
B Bierie (1083_CR14) 2010; 21
B Bierie (1083_CR26) 2006; 6
D Ribatti (1083_CR8) 2020; 13
EJ Whiteside (1083_CR56) 2001; 64
R Derynck (1083_CR12) 2021; 18
W Pietruszewska (1083_CR57) 2016; 70
Y Liao (1083_CR67) 2014; 30
K Augoff (1083_CR23) 2022; 14
1083_CR72
H Yamahana (1083_CR21) 2021; 27
FM Giorgi (1083_CR70) 2022; 12
R Kalluri (1083_CR1) 2009; 119
ST Ashraf (1083_CR20) 2019; 16
G Ferrari-Amorotti (1083_CR44) 2014; 16
S Valastyan (1083_CR4) 2011; 147
S Sammons (1083_CR46) 2016; 3
G Chen (1083_CR58) 2020; 48
MI Love (1083_CR69) 2014; 15
J Xu (1083_CR11) 2009; 19
EC Connolly (1083_CR9) 2012; 8
References_xml – volume: 29
  start-page: 717
  issue: 6
  year: 2013
  ident: 1083_CR76
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt053
– volume: 29
  start-page: 219
  issue: 1
  year: 2013
  ident: 1083_CR54
  publication-title: Oncol Rep
  doi: 10.3892/or.2012.2111
– volume: 44
  start-page: W90
  issue: W1
  year: 2016
  ident: 1083_CR71
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw377
– volume: 50
  start-page: 1623
  issue: 5
  year: 2017
  ident: 1083_CR55
  publication-title: Int J Oncol
  doi: 10.3892/ijo.2017.3954
– volume: 119
  start-page: 1429
  issue: 6
  year: 2009
  ident: 1083_CR2
  publication-title: J Clin Investig
  doi: 10.1172/JCI36183
– volume: 14
  start-page: 1847
  issue: 7
  year: 2022
  ident: 1083_CR23
  publication-title: Cancers
  doi: 10.3390/cancers14071847
– ident: 1083_CR65
– volume: 17
  start-page: 743
  issue: 7
  year: 2013
  ident: 1083_CR10
  publication-title: Expert Opin Ther Targets
  doi: 10.1517/14728222.2013.782287
– volume: 154
  start-page: 70
  issue: 2
  year: 2009
  ident: 1083_CR37
  publication-title: Transl Res
  doi: 10.1016/j.trsl.2009.05.002
– volume: 80
  start-page: 4129
  issue: 19
  year: 2020
  ident: 1083_CR40
  publication-title: Can Res
  doi: 10.1158/0008-5472.CAN-20-0471
– volume: 80
  start-page: 4129
  issue: 19
  year: 2020
  ident: 1083_CR45
  publication-title: Can Res
  doi: 10.1158/0008-5472.CAN-20-0471
– volume: 16
  start-page: 2315
  year: 2021
  ident: 1083_CR32
  publication-title: Chem Med Chem
  doi: 10.1002/cmdc.202100172
– volume: 38
  start-page: 1
  issue: 1
  year: 2019
  ident: 1083_CR61
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-019-1075-5
– volume: 48
  start-page: 030006052091959
  issue: 4
  year: 2020
  ident: 1083_CR58
  publication-title: J Int Med Res
  doi: 10.1177/0300060520919592
– ident: 1083_CR68
– volume: 11
  start-page: 659
  issue: 5
  year: 2019
  ident: 1083_CR47
  publication-title: Cancers
  doi: 10.3390/cancers11050659
– volume: 13
  start-page: 100773
  issue: 6
  year: 2020
  ident: 1083_CR8
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2020.100773
– volume: 13
  start-page: 379
  issue: 3
  year: 2021
  ident: 1083_CR15
  publication-title: Cancers
  doi: 10.3390/cancers13030379
– volume: 30
  start-page: 923
  issue: 7
  year: 2014
  ident: 1083_CR67
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 15
  start-page: 1
  issue: 12
  year: 2014
  ident: 1083_CR69
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 12
  start-page: 357
  issue: 4
  year: 2015
  ident: 1083_CR66
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3317
– volume: 12
  start-page: 387
  issue: 4
  year: 2018
  ident: 1083_CR53
  publication-title: Front Med
  doi: 10.1007/s11684-018-0646-8
– volume: 19
  start-page: 156
  issue: 2
  year: 2009
  ident: 1083_CR11
  publication-title: Cell Res
  doi: 10.1038/cr.2009.5
– volume: 123
  start-page: 1348
  issue: 3
  year: 2013
  ident: 1083_CR28
  publication-title: J Clin Investig
  doi: 10.1172/JCI65416
– volume: 12
  start-page: 3594
  issue: 12
  year: 2020
  ident: 1083_CR31
  publication-title: Cancers
  doi: 10.3390/cancers12123594
– volume: 16
  start-page: 1047
  issue: 12
  year: 2014
  ident: 1083_CR44
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2014.10.006
– volume: 18
  start-page: 9
  issue: 1
  year: 2021
  ident: 1083_CR12
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/s41571-020-0403-1
– volume: 21
  start-page: 49
  issue: 1
  year: 2010
  ident: 1083_CR14
  publication-title: Cytokine Growth Factor Rev
  doi: 10.1016/j.cytogfr.2009.11.008
– volume: 27
  year: 2021
  ident: 1083_CR21
  publication-title: Biochem Biophys Rep
– volume: 36
  start-page: 3916
  issue: 12
  year: 2020
  ident: 1083_CR75
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa223
– volume: 8
  start-page: 605
  year: 2020
  ident: 1083_CR13
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2020.00605
– volume: 331
  start-page: 1559
  issue: 6024
  year: 2011
  ident: 1083_CR3
  publication-title: Science
  doi: 10.1126/science.1203543
– volume: 15
  start-page: 7441
  issue: 23
  year: 2009
  ident: 1083_CR39
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-09-1361
– ident: 1083_CR72
– year: 2020
  ident: 1083_CR48
  publication-title: Front Oncol
  doi: 10.3389/fonc.2020.00499
– volume: 31
  start-page: 159
  issue: 5
  year: 2016
  ident: 1083_CR36
  publication-title: Cancer Biother Radiopharm
– volume: 52
  issue: 5
  year: 2019
  ident: 1083_CR24
  publication-title: Cell Prolif
  doi: 10.1111/cpr.12633
– ident: 1083_CR74
  doi: 10.32614/CRAN.package.babelgene
– volume: 9
  issue: 2
  year: 2017
  ident: 1083_CR52
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a022129
– volume: 16
  start-page: 6201
  issue: 15
  year: 2015
  ident: 1083_CR6
  publication-title: Asian Pac J Cancer Prev
  doi: 10.7314/APJCP.2015.16.15.6201
– volume: 16
  start-page: 3285
  issue: 5
  year: 2019
  ident: 1083_CR20
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2019164
– volume: 93
  start-page: 294
  issue: 3
  year: 2011
  ident: 1083_CR7
  publication-title: Int J Hematol
  doi: 10.1007/s12185-011-0799-6
– volume: 7
  start-page: 1
  issue: 1
  year: 2021
  ident: 1083_CR30
  publication-title: NPJ Breast Cancer
  doi: 10.1038/s41523-021-00313-w
– volume: 347
  start-page: 11
  issue: 1
  year: 2012
  ident: 1083_CR50
  publication-title: Cell Tissue Res
  doi: 10.1007/s00441-011-1201-y
– volume: 293
  start-page: 20085
  issue: 52
  year: 2018
  ident: 1083_CR33
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA118.004889
– volume: 104
  start-page: 934
  issue: 3
  year: 2008
  ident: 1083_CR22
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.21675
– volume: 9
  issue: 1
  year: 2017
  ident: 1083_CR51
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a022137
– volume: 68
  start-page: 1809
  issue: 6
  year: 2008
  ident: 1083_CR27
  publication-title: Can Res
  doi: 10.1158/0008-5472.CAN-07-5597
– volume: 9
  start-page: 112
  issue: 2
  year: 2017
  ident: 1083_CR29
  publication-title: Metallomics
  doi: 10.1039/C6MT00202A
– volume: 30
  start-page: 59
  issue: 2
  year: 2021
  ident: 1083_CR25
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2020.0142
– ident: 1083_CR63
– volume: 6
  start-page: 506
  issue: 7
  year: 2006
  ident: 1083_CR26
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1926
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 1083_CR59
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06654-8
– volume: 12
  start-page: 648
  issue: 5
  year: 2022
  ident: 1083_CR70
  publication-title: Life
  doi: 10.3390/life12050648
– volume: 121
  start-page: 1845
  issue: 6
  year: 1995
  ident: 1083_CR16
  publication-title: Development
  doi: 10.1242/dev.121.6.1845
– ident: 1083_CR73
– volume: 108
  start-page: 726
  issue: 3
  year: 2009
  ident: 1083_CR43
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.22309
– volume: 14
  start-page: 655
  issue: 7
  year: 2018
  ident: 1083_CR35
  publication-title: Nat Chem Biol
  doi: 10.1038/s41589-018-0062-z
– volume: 64
  start-page: 1331
  issue: 5
  year: 2001
  ident: 1083_CR56
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod64.5.1331
– volume: 10
  start-page: 727
  issue: 3
  year: 2020
  ident: 1083_CR41
  publication-title: Am J Cancer Res
– volume: 101
  start-page: 9843
  issue: 26
  year: 2004
  ident: 1083_CR34
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0403495101
– volume: 147
  start-page: 275
  issue: 2
  year: 2011
  ident: 1083_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.024
– ident: 1083_CR18
– volume: 39
  start-page: 916
  issue: 6
  year: 2011
  ident: 1083_CR17
  publication-title: Toxicol Pathol
  doi: 10.1177/0192623311416259
– start-page: 189
  volume-title: ggplot2
  year: 2016
  ident: 1083_CR64
  doi: 10.1007/978-3-319-24277-4_9
– volume: 14
  start-page: 1
  issue: 1
  year: 2015
  ident: 1083_CR60
  publication-title: Mol Cancer
  doi: 10.1186/s12943-015-0421-2
– volume: 24
  start-page: 65
  issue: 1
  year: 2019
  ident: 1083_CR49
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.11.011
– volume: 8
  start-page: 964
  issue: 7
  year: 2012
  ident: 1083_CR9
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.4564
– volume: 62
  start-page: 4854
  issue: 17
  year: 2002
  ident: 1083_CR38
  publication-title: Can Res
– volume: 118
  start-page: 2143
  issue: 10
  year: 2005
  ident: 1083_CR19
  publication-title: J Cell Sci
  doi: 10.1242/jcs.02334
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 1083_CR62
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-20896-z
– volume: 216
  start-page: 1016
  issue: 5
  year: 2019
  ident: 1083_CR5
  publication-title: J Exp Med
  doi: 10.1084/jem.20181827
– volume: 11
  start-page: DMM034850
  issue: 7
  year: 2018
  ident: 1083_CR42
  publication-title: Dis Models Mech
  doi: 10.1242/dmm.034850
– volume: 70
  start-page: 32
  issue: 3
  year: 2016
  ident: 1083_CR57
  publication-title: Otolaryngol Pol
  doi: 10.5604/00306657.1202546
– volume: 3
  start-page: 207
  issue: 3
  year: 2016
  ident: 1083_CR46
  publication-title: Melanoma Manag
  doi: 10.2217/mmt-2015-0005
– volume: 119
  start-page: 1420
  issue: 6
  year: 2009
  ident: 1083_CR1
  publication-title: J Clin Investig
  doi: 10.1172/JCI39104
SSID ssj0000491075
Score 2.40251
Snippet Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies...
BackgroundMetastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent...
Abstract Background Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 132
SubjectTerms 1-Phosphatidylinositol 3-kinase
AKT protein
Brain cancer
Breast cancer
Cancer
Chelating agents
Chelation
Clinical trials
Collagen
Copper
Copper chelation
Cytoplasm
Down-regulation
Drug delivery
EMT
Gelatinase B
Homeostasis
Kinases
Metastases
Metastasis
Molecular modelling
Neuroblastoma
Patients
Phosphorylation
Raf protein
Signal transduction
Smad2 protein
Snail protein
TGF-β signaling pathways
Transcription factors
Transforming growth factor-b
Tumors
Vimentin
Wnt protein
β-Catenin
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NihQxEA6yIHgR19_WVSJ4k7DT6XQ6OeriuAh62oW9hfwyI7s9zfQMMi_hw-yD-ExWpXvGGRG9eOufdJNOVajvo6u-IuRNnNi68WCBIEVgwrnErMMmAlXilVM2yIAFzp-_yPNL8emqvtpr9YU5YYM88LBwp65sKl0mbbkOQunS-eClBhCvUTkr5TJfiHl7ZOrrgHuB19TbKhklT_sSdV0YhChgz4A7WHMQibJg_59Q5u_JknvRZ_qA3B9hI303TPeY3IntQ3J3aCS5eUS-ny26Li4ppnXmpab9ussprrGnscO6i2twNHaDtUZ-trmBd60wSuWELeo2dN7O5m44WyQK673IBZPUtoHCMft15eLjlP24pZj4YbGWnWJT429208M78EEfl4_J5fTDxdk5GzstMC90s2KWCxkTAG0hrdK1E3UC4hSSr3njtJpIay0ccV96HsEG1k8S9xWApQD8sJ5UT8gRzCI-I1Rb60OZ-ER5AGcNqowqCygvValJTouClNtVN36UIcduGNcm0xElzWApA5Yy2VKmKcjb3TPdIMLx19Hv0Zi7kSignS-AW5nRrcy_3KogJ1tXMOOu7g1XAHYkMFRekNe727Af8SeLbeNijWMEkmigoQV5OnjObiYo9QPwqyyIOvCpg6ke3mnns6z5XSLSaCr1_H983Atyj-eN0DBenpCj1XIdXwK2WrlXeRv9BDc2Iqk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bbtQwELWgCIkXxL2BgozEG7KaOBfbTwgqlgoJnlpp3yJf2ZXaJGx2Ve1P9GP4EL6JGSebsgj1LRcncjzjzBl75gwh73yqS2FBAq4qHCuMCUwbLCKQB54bqV3lMMH52_fq9Lz4Oi_n44JbP4ZV7v6J8UftWotr5MdcgqGpwDvgH7qfDKtG4e7qWELjLrmH1GUY0iXmYlpjAfQL3k25y5WR1XGfIbsLA0MFPjSgDyb27FGk7f8f1vw3ZPIvGzR7RB6O4JF-HKT9mNzxzRNyfygnuX1Krk_arvMrisGdccBpv-lioKvvqe8w--IC1I1dYsaRXWwv4V1rtFUxbIuaLV02i6UZztpAYdTbmDZJdeMoHLObK2dfZuz3L4rhHxoz2imWNr7S2x7egQ9av3pGzmefz05O2VhvgdlCiTXTvKh8ALhdVFqq0hRlAPfJBVtyYZRMK601HHGbWe5VZrRNA7c5QCYHXmKZ5s_JAfTCHxKqtLYuCzyVFiCaQK5RqQHrhTyIYFSRkGw36rUdycixJsZFHZ0SWdWDpGqQVB0lVYuEvJ-e6QYqjltbf0JhTi2RRjteaFc_6nFW1iYTucqC0ly5QsInWWcrBR6iQlq2IBNytFOFepzbfX2jiQl5O92GWYlbLbrx7QbbFOhKgzOakBeD5kw9QcIfAGFZQuSeTu11df9Os1xE5u8M8YbI5cvb-_WKPOBRxQXj2RE5WK82_jVgp7V5EyfIHxy9GxQ
  priority: 102
  providerName: ProQuest
Title Copper chelation suppresses epithelial-mesenchymal transition by inhibition of canonical and non-canonical TGF-β signaling pathways in cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/37480151
https://www.proquest.com/docview/2852168992
https://www.proquest.com/docview/2841022716
https://pubmed.ncbi.nlm.nih.gov/PMC10362738
https://doaj.org/article/b17391f9a29d4891bcdc6914896812f8
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwEB3tRaB9QdwJLJWReEOGxrnYfkCIXW1ZIe0Koa3Ut8h2YlrUbUsvgv4EH8OH8E3MOEmhqOKBtyS2IyczozknmQvA86prMulQAmWeljy11nNjqYlA4kVilSnzkhKcLy7z8376fpAN9qBtd9S8wMVOakf9pPrz8ctvX9Zv0OBfB4NX-atFTCVbOHofJMYIKbjch0P0TJIM9aKB-59rNIxsJ2tzZ3YuPYKbVJEFvWS85apCRf9dMPTvaMo_3FPvNtxqcCV7WyvCHdirJnfhRt1pcn0Pvp9OZ7NqzijuM8iCLVazEANbLVg1o8SMMWoiv6ZkJDdcX-O9luTGQkQXs2s2mgxHtj6beoYCmYaMSmYmJcNj_vvK1bse__mDUWSIoWR3Rl2Pv5r1Au9BC101vw_93tnV6TlvWjFwl2q55EakeeURiae5UTqzaeaRWZXeZUJarbq5MQaPhIudqHRsjet64RJEUyUSyKybPIAD3EX1CJg2xpWxF13lEL1JKkOqDMJAn3jprU4jiNu3XrimTjm1yxgXga-ovKiFVqDQiiC0QkbwYrNmVlfp-OfsExLmZiZV2A4XpvNPRWOwhY1lomOvjdBlqvCRXOlyjeRRU8U2ryI4blWhaLW2EArRUI4UVkTwbDOMBkt_Ycykmq5oTkosG3lqBA9rzdnspNW8CNSWTm1tdXtkMhqGouAxQRGZqMf_v_QJHIlgCZKL-BgOlvNV9RQh19J2YF8OZAcOT84uP3zshA8XnWBbvwCWkC8e
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGJgQ3iH8CA4wEV8ha4ziJc4EQGysd2yqENml3me3YtNLWhKbV1JfgUbjgQXgmznGSjiK0u92ljmM5PSfnfF9yfgh5bXsqTg1IoEhEwYTWjimNTQQixyMtVZEUmOB8OEwGx-LzSXyyRn52uTAYVtnZRG-oi9LgO_ItLsHRJMAO-PvqO8OuUfh1tWuh0ajFvl1cAGWr3-19BPm-4by_e7QzYG1XAWZEls6Y4iKxDkClSJTMYi1iByShcCbmqc5kL1FKwRE3oeE2C7UyPcdNBMCgAC4U9yJY9wbZEDAChmBje3f45evyrQ7gbeBTcZedI5OtOsR6MgxcI7B2wDssXfGAvlHA_9Dtv0Gaf3m9_l1yp4Wr9EOjX_fImp3cJzebBpaLB-THTllVdkoxnNSLmNbzyofW2praCvM9zkDB2TnmOJnR4hzWmqF39IFiVC_oeDIa6-ZX6SjIufSJmlRNCgrH7HLk6FOf_f5FMeBEYQ49xWbKF2pRwxp4obHTh-T4WmTxiKzDLuwTQjOlTBE63pMGQGGK1U2lAnTpIpc6nYmAhN2_npu2_Dl24TjLPQ2SSd5IKgdJ5V5SeRqQt8trqqb4x5Wzt1GYy5lYuNsPlNNveWsHch2mURa6TPGsEBJuyRQmyYCTZlgIzsmAbHaqkLfWpM4vdT8gr5anwQ7gxx01seUc5wgk70B_A_K40ZzlTrDEEMC-MCByRadWtrp6ZjIe-VrjISKcNJJPr97XS3JrcHR4kB_sDfefkdvcq3vKeLhJ1mfTuX0OyG2mX7SPCyWn1_2E_gG2mViv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Copper+chelation+suppresses+epithelial-mesenchymal+transition+by+inhibition+of+canonical+and+non-canonical+TGF-%CE%B2+signaling+pathways+in+cancer&rft.jtitle=Cell+%26+bioscience&rft.au=Poursani%2C+Ensieh+M.&rft.au=Mercatelli%2C+Daniele&rft.au=Raninga%2C+Prahlad&rft.au=Bell%2C+Jessica+L.&rft.date=2023-07-21&rft.pub=BioMed+Central&rft.eissn=2045-3701&rft.volume=13&rft_id=info:doi/10.1186%2Fs13578-023-01083-7&rft_id=info%3Apmid%2F37480151&rft.externalDocID=PMC10362738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-3701&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-3701&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-3701&client=summon