Copper chelation suppresses epithelial-mesenchymal transition by inhibition of canonical and non-canonical TGF-β signaling pathways in cancer
Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associat...
Saved in:
Published in | Cell & bioscience Vol. 13; no. 1; pp. 132 - 19 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
21.07.2023
BMC |
Subjects | |
Online Access | Get full text |
ISSN | 2045-3701 2045-3701 |
DOI | 10.1186/s13578-023-01083-7 |
Cover
Loading…
Abstract | Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-β levels and EMT signaling. Given that many drugs targeting TGF-β have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-β/EMT axis.
Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-β and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-β levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-β/SMAD2&3) and non-canonical (TGF-β/PI3K/AKT, TGF-β/RAS/RAF/MEK/ERK, and TGF-β/WNT/β-catenin) TGF-β signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, β-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment.
Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-β and inhibiting EMT in a diverse range of cancers. |
---|---|
AbstractList | BackgroundMetastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-β levels and EMT signaling. Given that many drugs targeting TGF-β have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-β/EMT axis.ResultsOur cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-β and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-β levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-β/SMAD2&3) and non-canonical (TGF-β/PI3K/AKT, TGF-β/RAS/RAF/MEK/ERK, and TGF-β/WNT/β-catenin) TGF-β signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, β-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment.ConclusionsOur study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-β and inhibiting EMT in a diverse range of cancers. Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-β levels and EMT signaling. Given that many drugs targeting TGF-β have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-β/EMT axis.BACKGROUNDMetastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-β levels and EMT signaling. Given that many drugs targeting TGF-β have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-β/EMT axis.Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-β and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-β levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-β/SMAD2&3) and non-canonical (TGF-β/PI3K/AKT, TGF-β/RAS/RAF/MEK/ERK, and TGF-β/WNT/β-catenin) TGF-β signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, β-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment.RESULTSOur cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-β and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-β levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-β/SMAD2&3) and non-canonical (TGF-β/PI3K/AKT, TGF-β/RAS/RAF/MEK/ERK, and TGF-β/WNT/β-catenin) TGF-β signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, β-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment.Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-β and inhibiting EMT in a diverse range of cancers.CONCLUSIONSOur study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-β and inhibiting EMT in a diverse range of cancers. Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-β levels and EMT signaling. Given that many drugs targeting TGF-β have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-β/EMT axis. Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-β and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-β levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-β/SMAD2&3) and non-canonical (TGF-β/PI3K/AKT, TGF-β/RAS/RAF/MEK/ERK, and TGF-β/WNT/β-catenin) TGF-β signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, β-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-β and inhibiting EMT in a diverse range of cancers. Abstract Background Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-β levels and EMT signaling. Given that many drugs targeting TGF-β have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-β/EMT axis. Results Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-β and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-β levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-β/SMAD2&3) and non-canonical (TGF-β/PI3K/AKT, TGF-β/RAS/RAF/MEK/ERK, and TGF-β/WNT/β-catenin) TGF-β signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, β-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. Conclusions Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-β and inhibiting EMT in a diverse range of cancers. |
ArticleNumber | 132 |
Author | Mercatelli, Daniele Jue, Toni Rose Kohane, Felix V. Neumann, Daniel P. Raninga, Prahlad Cazzoli, Riccardo Kasiou, Erin Bell, Jessica L. Cirillo, Giuseppe Michniewicz, Filip T. Whan, Renee Shai-Hee, Tyler Zheng, Ye Slapetova, Iveta Poursani, Ensieh M. Tsoli, Maria Lock, John G. Brettle, Merryn Souza-Fonseca-Guimaraes, Fernando Waters, Shafagh Saletta, Federica Khanna, KumKum Vahdat, Linda Ziegler, David Schadel, Piper Kasherman, Maria Vittorio, Orazio Giorgi, Federico M. Rouaen, Jourdin R. C. |
Author_xml | – sequence: 1 givenname: Ensieh M. surname: Poursani fullname: Poursani, Ensieh M. – sequence: 2 givenname: Daniele surname: Mercatelli fullname: Mercatelli, Daniele – sequence: 3 givenname: Prahlad surname: Raninga fullname: Raninga, Prahlad – sequence: 4 givenname: Jessica L. surname: Bell fullname: Bell, Jessica L. – sequence: 5 givenname: Federica surname: Saletta fullname: Saletta, Federica – sequence: 6 givenname: Felix V. surname: Kohane fullname: Kohane, Felix V. – sequence: 7 givenname: Daniel P. surname: Neumann fullname: Neumann, Daniel P. – sequence: 8 givenname: Ye surname: Zheng fullname: Zheng, Ye – sequence: 9 givenname: Jourdin R. C. surname: Rouaen fullname: Rouaen, Jourdin R. C. – sequence: 10 givenname: Toni Rose surname: Jue fullname: Jue, Toni Rose – sequence: 11 givenname: Filip T. surname: Michniewicz fullname: Michniewicz, Filip T. – sequence: 12 givenname: Piper surname: Schadel fullname: Schadel, Piper – sequence: 13 givenname: Erin surname: Kasiou fullname: Kasiou, Erin – sequence: 14 givenname: Maria surname: Tsoli fullname: Tsoli, Maria – sequence: 15 givenname: Giuseppe surname: Cirillo fullname: Cirillo, Giuseppe – sequence: 16 givenname: Shafagh surname: Waters fullname: Waters, Shafagh – sequence: 17 givenname: Tyler surname: Shai-Hee fullname: Shai-Hee, Tyler – sequence: 18 givenname: Riccardo surname: Cazzoli fullname: Cazzoli, Riccardo – sequence: 19 givenname: Merryn surname: Brettle fullname: Brettle, Merryn – sequence: 20 givenname: Iveta surname: Slapetova fullname: Slapetova, Iveta – sequence: 21 givenname: Maria surname: Kasherman fullname: Kasherman, Maria – sequence: 22 givenname: Renee surname: Whan fullname: Whan, Renee – sequence: 23 givenname: Fernando surname: Souza-Fonseca-Guimaraes fullname: Souza-Fonseca-Guimaraes, Fernando – sequence: 24 givenname: Linda surname: Vahdat fullname: Vahdat, Linda – sequence: 25 givenname: David surname: Ziegler fullname: Ziegler, David – sequence: 26 givenname: John G. surname: Lock fullname: Lock, John G. – sequence: 27 givenname: Federico M. surname: Giorgi fullname: Giorgi, Federico M. – sequence: 28 givenname: KumKum surname: Khanna fullname: Khanna, KumKum – sequence: 29 givenname: Orazio surname: Vittorio fullname: Vittorio, Orazio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37480151$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9u1DAQxi1UREvpC3BAkbhwCfhPHNsnhFa0VKrEpZytieNsvErsYGep9iV4GB6kz1TvppS2B3yZ8fg3n8b29xod-eAtQm8J_kiIrD8lwriQJaasxARLVooX6ITiipdMYHL0KD9GZyltcF6VIljwV-iYiUpiwskJ-r0K02RjYXo7wOyCL9J2mqJNyabCTm7OdQdDOdpkvel3IwzFHMEnd4CbXeF875plF7rCQJ7TmUyBb4ucl_8q1xfn5e2fIrm1h8H5dTHB3N_ALmWNfaOx8Q162cGQ7Nl9PEU_zr9er76VV98vLldfrkpTKTGXQKvadkLkAFLxpuJdpXjbGU5FoySuASBn1BBDrSINGNxRw2qM2worjtkpulx02wAbPUU3QtzpAE4fCiGuNcTZmcHqhgimSKeAqraSWcy0plYkp7UktJNZ6_OiNW2b0bbG-vxAwxPRpyfe9XodfmmCWU0F2yt8uFeI4efWplmPLhk7DOBt2CZNZUUwpYLUGX3_DN2Ebczvuac4JbVUimbq3eORHmb5--8ZoAtgYkgp2u4BIVjv_aUXf-nsL33wlxa5ST5rMm4-mCZfyw3_a70DcznWyw |
CitedBy_id | crossref_primary_10_1002_fsn3_4609 crossref_primary_10_1016_j_cbi_2025_111394 crossref_primary_10_1016_j_isci_2024_109057 crossref_primary_10_1007_s00439_024_02673_2 crossref_primary_10_1016_j_lfs_2024_122972 crossref_primary_10_4103_NRR_NRR_D_24_00140 crossref_primary_10_1186_s12967_025_06121_1 crossref_primary_10_1038_s41467_024_54689_x crossref_primary_10_1007_s12011_024_04440_w crossref_primary_10_1038_s41467_024_50524_5 crossref_primary_10_1021_acs_chemrev_4c00577 crossref_primary_10_1039_D3RA06434D crossref_primary_10_1093_hmg_ddae129 crossref_primary_10_1126_sciadv_ado1583 crossref_primary_10_31083_j_jin2306116 |
Cites_doi | 10.1093/bioinformatics/btt053 10.3892/or.2012.2111 10.1093/nar/gkw377 10.3892/ijo.2017.3954 10.1172/JCI36183 10.3390/cancers14071847 10.1517/14728222.2013.782287 10.1016/j.trsl.2009.05.002 10.1158/0008-5472.CAN-20-0471 10.1002/cmdc.202100172 10.1186/s13046-019-1075-5 10.1177/0300060520919592 10.3390/cancers11050659 10.1016/j.tranon.2020.100773 10.3390/cancers13030379 10.1093/bioinformatics/btt656 10.1186/s13059-014-0550-8 10.1038/nmeth.3317 10.1007/s11684-018-0646-8 10.1038/cr.2009.5 10.1172/JCI65416 10.3390/cancers12123594 10.1016/j.neo.2014.10.006 10.1038/s41571-020-0403-1 10.1016/j.cytogfr.2009.11.008 10.1093/bioinformatics/btaa223 10.3389/fcell.2020.00605 10.1126/science.1203543 10.1158/1078-0432.CCR-09-1361 10.3389/fonc.2020.00499 10.1111/cpr.12633 10.32614/CRAN.package.babelgene 10.1101/cshperspect.a022129 10.7314/APJCP.2015.16.15.6201 10.3934/mbe.2019164 10.1007/s12185-011-0799-6 10.1038/s41523-021-00313-w 10.1007/s00441-011-1201-y 10.1074/jbc.RA118.004889 10.1002/jcb.21675 10.1101/cshperspect.a022137 10.1158/0008-5472.CAN-07-5597 10.1039/C6MT00202A 10.1089/scd.2020.0142 10.1038/nrc1926 10.1038/s41467-018-06654-8 10.3390/life12050648 10.1242/dev.121.6.1845 10.1002/jcb.22309 10.1038/s41589-018-0062-z 10.1095/biolreprod64.5.1331 10.1073/pnas.0403495101 10.1016/j.cell.2011.09.024 10.1177/0192623311416259 10.1007/978-3-319-24277-4_9 10.1186/s12943-015-0421-2 10.1016/j.stem.2018.11.011 10.7150/ijbs.4564 10.1242/jcs.02334 10.1038/s41467-021-20896-z 10.1084/jem.20181827 10.1242/dmm.034850 10.5604/00306657.1202546 10.2217/mmt-2015-0005 10.1172/JCI39104 |
ContentType | Journal Article |
Copyright | 2023. Crown. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Crown 2023 |
Copyright_xml | – notice: 2023. Crown. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Crown 2023 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s13578-023-01083-7 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-3701 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_b17391f9a29d4891bcdc6914896812f8 PMC10362738 37480151 10_1186_s13578_023_01083_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Health and Medical Research Council grantid: APP1164960 – fundername: ; grantid: APP1164960 |
GroupedDBID | 0R~ 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IGS IHR ISR ITC KQ8 LK8 M48 M7P M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RBZ ROL RPM RSV SBL SOJ TUS UKHRP NPM PQGLB 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c497t-a246ef77246a895b45f495dfc527b9806aaa27b2c1c2e91bac0f2c3600d409503 |
IEDL.DBID | M48 |
ISSN | 2045-3701 |
IngestDate | Wed Aug 27 01:28:13 EDT 2025 Thu Aug 21 18:37:28 EDT 2025 Thu Jul 10 16:55:42 EDT 2025 Fri Jul 25 10:31:22 EDT 2025 Mon Jul 21 05:53:45 EDT 2025 Tue Jul 01 01:51:55 EDT 2025 Thu Apr 24 23:11:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Metastasis Copper chelation TGF-β signaling pathways EMT Cancer |
Language | English |
License | 2023. Crown. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-a246ef77246a895b45f495dfc527b9806aaa27b2c1c2e91bac0f2c3600d409503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13578-023-01083-7 |
PMID | 37480151 |
PQID | 2852168992 |
PQPubID | 2040248 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b17391f9a29d4891bcdc6914896812f8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10362738 proquest_miscellaneous_2841022716 proquest_journals_2852168992 pubmed_primary_37480151 crossref_primary_10_1186_s13578_023_01083_7 crossref_citationtrail_10_1186_s13578_023_01083_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-21 |
PublicationDateYYYYMMDD | 2023-07-21 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Cell & bioscience |
PublicationTitleAlternate | Cell Biosci |
PublicationYear | 2023 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | D Kim (1083_CR66) 2015; 12 Q Pan (1083_CR38) 2002; 62 S Baldari (1083_CR47) 2019; 11 Y Seomun (1083_CR22) 2008; 104 Y Mu (1083_CR50) 2012; 347 E Valli (1083_CR40) 2020; 80 K Miyazono (1083_CR53) 2018; 12 CH Stuelten (1083_CR19) 2005; 118 1083_CR18 CL Chaffer (1083_CR3) 2011; 331 D Mercatelli (1083_CR75) 2020; 36 F Voli (1083_CR45) 2020; 80 LH Katz (1083_CR10) 2013; 17 A Khan (1083_CR62) 2021; 12 FM Giorgi (1083_CR76) 2013; 29 C Hochheuser (1083_CR25) 2021; 30 Q Pan (1083_CR39) 2009; 15 J-B Shao (1083_CR55) 2017; 50 P Lelièvre (1083_CR31) 2020; 12 H Wickham (1083_CR64) 2016 1083_CR63 1083_CR65 T Yaguchi (1083_CR7) 2011; 93 NE Bhola (1083_CR28) 2013; 123 1083_CR68 A Alsuliman (1083_CR60) 2015; 14 MV Kuleshov (1083_CR71) 2016; 44 MC Dickson (1083_CR16) 1995; 121 NM Aiello (1083_CR5) 2019; 216 I Georgakopoulos-Soares (1083_CR48) 2020 PB Gupta (1083_CR49) 2019; 24 K Luo (1083_CR51) 2017; 9 M Kalimutho (1083_CR61) 2019; 38 A Chakravarthy (1083_CR59) 2018; 9 S-H Kim (1083_CR42) 2018; 11 YL Liu (1083_CR30) 2021; 7 K Schmidt (1083_CR33) 2018; 293 MJ Joseph (1083_CR43) 2009; 108 V Gómez-Gil (1083_CR15) 2021; 13 L Zecca (1083_CR34) 2004; 101 X Liu (1083_CR6) 2015; 16 MJ Anderton (1083_CR17) 2011; 39 1083_CR73 1083_CR74 H Dong (1083_CR24) 2019; 52 P Panichelli (1083_CR36) 2016; 31 Y Han (1083_CR41) 2020; 10 YE Zhang (1083_CR52) 2017; 9 GJ Brewer (1083_CR37) 2009; 154 F Michniewicz (1083_CR32) 2021; 16 Z-D Lv (1083_CR54) 2013; 29 B Bierie (1083_CR27) 2008; 68 M Zeisberg (1083_CR2) 2009; 119 T Xiao (1083_CR35) 2018; 14 S Blockhuys (1083_CR29) 2017; 9 AF Teixeira (1083_CR13) 2020; 8 B Bierie (1083_CR14) 2010; 21 B Bierie (1083_CR26) 2006; 6 D Ribatti (1083_CR8) 2020; 13 EJ Whiteside (1083_CR56) 2001; 64 R Derynck (1083_CR12) 2021; 18 W Pietruszewska (1083_CR57) 2016; 70 Y Liao (1083_CR67) 2014; 30 K Augoff (1083_CR23) 2022; 14 1083_CR72 H Yamahana (1083_CR21) 2021; 27 FM Giorgi (1083_CR70) 2022; 12 R Kalluri (1083_CR1) 2009; 119 ST Ashraf (1083_CR20) 2019; 16 G Ferrari-Amorotti (1083_CR44) 2014; 16 S Valastyan (1083_CR4) 2011; 147 S Sammons (1083_CR46) 2016; 3 G Chen (1083_CR58) 2020; 48 MI Love (1083_CR69) 2014; 15 J Xu (1083_CR11) 2009; 19 EC Connolly (1083_CR9) 2012; 8 |
References_xml | – volume: 29 start-page: 717 issue: 6 year: 2013 ident: 1083_CR76 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt053 – volume: 29 start-page: 219 issue: 1 year: 2013 ident: 1083_CR54 publication-title: Oncol Rep doi: 10.3892/or.2012.2111 – volume: 44 start-page: W90 issue: W1 year: 2016 ident: 1083_CR71 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw377 – volume: 50 start-page: 1623 issue: 5 year: 2017 ident: 1083_CR55 publication-title: Int J Oncol doi: 10.3892/ijo.2017.3954 – volume: 119 start-page: 1429 issue: 6 year: 2009 ident: 1083_CR2 publication-title: J Clin Investig doi: 10.1172/JCI36183 – volume: 14 start-page: 1847 issue: 7 year: 2022 ident: 1083_CR23 publication-title: Cancers doi: 10.3390/cancers14071847 – ident: 1083_CR65 – volume: 17 start-page: 743 issue: 7 year: 2013 ident: 1083_CR10 publication-title: Expert Opin Ther Targets doi: 10.1517/14728222.2013.782287 – volume: 154 start-page: 70 issue: 2 year: 2009 ident: 1083_CR37 publication-title: Transl Res doi: 10.1016/j.trsl.2009.05.002 – volume: 80 start-page: 4129 issue: 19 year: 2020 ident: 1083_CR40 publication-title: Can Res doi: 10.1158/0008-5472.CAN-20-0471 – volume: 80 start-page: 4129 issue: 19 year: 2020 ident: 1083_CR45 publication-title: Can Res doi: 10.1158/0008-5472.CAN-20-0471 – volume: 16 start-page: 2315 year: 2021 ident: 1083_CR32 publication-title: Chem Med Chem doi: 10.1002/cmdc.202100172 – volume: 38 start-page: 1 issue: 1 year: 2019 ident: 1083_CR61 publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-019-1075-5 – volume: 48 start-page: 030006052091959 issue: 4 year: 2020 ident: 1083_CR58 publication-title: J Int Med Res doi: 10.1177/0300060520919592 – ident: 1083_CR68 – volume: 11 start-page: 659 issue: 5 year: 2019 ident: 1083_CR47 publication-title: Cancers doi: 10.3390/cancers11050659 – volume: 13 start-page: 100773 issue: 6 year: 2020 ident: 1083_CR8 publication-title: Transl Oncol doi: 10.1016/j.tranon.2020.100773 – volume: 13 start-page: 379 issue: 3 year: 2021 ident: 1083_CR15 publication-title: Cancers doi: 10.3390/cancers13030379 – volume: 30 start-page: 923 issue: 7 year: 2014 ident: 1083_CR67 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 15 start-page: 1 issue: 12 year: 2014 ident: 1083_CR69 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 12 start-page: 357 issue: 4 year: 2015 ident: 1083_CR66 publication-title: Nat Methods doi: 10.1038/nmeth.3317 – volume: 12 start-page: 387 issue: 4 year: 2018 ident: 1083_CR53 publication-title: Front Med doi: 10.1007/s11684-018-0646-8 – volume: 19 start-page: 156 issue: 2 year: 2009 ident: 1083_CR11 publication-title: Cell Res doi: 10.1038/cr.2009.5 – volume: 123 start-page: 1348 issue: 3 year: 2013 ident: 1083_CR28 publication-title: J Clin Investig doi: 10.1172/JCI65416 – volume: 12 start-page: 3594 issue: 12 year: 2020 ident: 1083_CR31 publication-title: Cancers doi: 10.3390/cancers12123594 – volume: 16 start-page: 1047 issue: 12 year: 2014 ident: 1083_CR44 publication-title: Neoplasia doi: 10.1016/j.neo.2014.10.006 – volume: 18 start-page: 9 issue: 1 year: 2021 ident: 1083_CR12 publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-020-0403-1 – volume: 21 start-page: 49 issue: 1 year: 2010 ident: 1083_CR14 publication-title: Cytokine Growth Factor Rev doi: 10.1016/j.cytogfr.2009.11.008 – volume: 27 year: 2021 ident: 1083_CR21 publication-title: Biochem Biophys Rep – volume: 36 start-page: 3916 issue: 12 year: 2020 ident: 1083_CR75 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa223 – volume: 8 start-page: 605 year: 2020 ident: 1083_CR13 publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2020.00605 – volume: 331 start-page: 1559 issue: 6024 year: 2011 ident: 1083_CR3 publication-title: Science doi: 10.1126/science.1203543 – volume: 15 start-page: 7441 issue: 23 year: 2009 ident: 1083_CR39 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-1361 – ident: 1083_CR72 – year: 2020 ident: 1083_CR48 publication-title: Front Oncol doi: 10.3389/fonc.2020.00499 – volume: 31 start-page: 159 issue: 5 year: 2016 ident: 1083_CR36 publication-title: Cancer Biother Radiopharm – volume: 52 issue: 5 year: 2019 ident: 1083_CR24 publication-title: Cell Prolif doi: 10.1111/cpr.12633 – ident: 1083_CR74 doi: 10.32614/CRAN.package.babelgene – volume: 9 issue: 2 year: 2017 ident: 1083_CR52 publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a022129 – volume: 16 start-page: 6201 issue: 15 year: 2015 ident: 1083_CR6 publication-title: Asian Pac J Cancer Prev doi: 10.7314/APJCP.2015.16.15.6201 – volume: 16 start-page: 3285 issue: 5 year: 2019 ident: 1083_CR20 publication-title: Math Biosci Eng doi: 10.3934/mbe.2019164 – volume: 93 start-page: 294 issue: 3 year: 2011 ident: 1083_CR7 publication-title: Int J Hematol doi: 10.1007/s12185-011-0799-6 – volume: 7 start-page: 1 issue: 1 year: 2021 ident: 1083_CR30 publication-title: NPJ Breast Cancer doi: 10.1038/s41523-021-00313-w – volume: 347 start-page: 11 issue: 1 year: 2012 ident: 1083_CR50 publication-title: Cell Tissue Res doi: 10.1007/s00441-011-1201-y – volume: 293 start-page: 20085 issue: 52 year: 2018 ident: 1083_CR33 publication-title: J Biol Chem doi: 10.1074/jbc.RA118.004889 – volume: 104 start-page: 934 issue: 3 year: 2008 ident: 1083_CR22 publication-title: J Cell Biochem doi: 10.1002/jcb.21675 – volume: 9 issue: 1 year: 2017 ident: 1083_CR51 publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a022137 – volume: 68 start-page: 1809 issue: 6 year: 2008 ident: 1083_CR27 publication-title: Can Res doi: 10.1158/0008-5472.CAN-07-5597 – volume: 9 start-page: 112 issue: 2 year: 2017 ident: 1083_CR29 publication-title: Metallomics doi: 10.1039/C6MT00202A – volume: 30 start-page: 59 issue: 2 year: 2021 ident: 1083_CR25 publication-title: Stem Cells Dev doi: 10.1089/scd.2020.0142 – ident: 1083_CR63 – volume: 6 start-page: 506 issue: 7 year: 2006 ident: 1083_CR26 publication-title: Nat Rev Cancer doi: 10.1038/nrc1926 – volume: 9 start-page: 1 issue: 1 year: 2018 ident: 1083_CR59 publication-title: Nat Commun doi: 10.1038/s41467-018-06654-8 – volume: 12 start-page: 648 issue: 5 year: 2022 ident: 1083_CR70 publication-title: Life doi: 10.3390/life12050648 – volume: 121 start-page: 1845 issue: 6 year: 1995 ident: 1083_CR16 publication-title: Development doi: 10.1242/dev.121.6.1845 – ident: 1083_CR73 – volume: 108 start-page: 726 issue: 3 year: 2009 ident: 1083_CR43 publication-title: J Cell Biochem doi: 10.1002/jcb.22309 – volume: 14 start-page: 655 issue: 7 year: 2018 ident: 1083_CR35 publication-title: Nat Chem Biol doi: 10.1038/s41589-018-0062-z – volume: 64 start-page: 1331 issue: 5 year: 2001 ident: 1083_CR56 publication-title: Biol Reprod doi: 10.1095/biolreprod64.5.1331 – volume: 10 start-page: 727 issue: 3 year: 2020 ident: 1083_CR41 publication-title: Am J Cancer Res – volume: 101 start-page: 9843 issue: 26 year: 2004 ident: 1083_CR34 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0403495101 – volume: 147 start-page: 275 issue: 2 year: 2011 ident: 1083_CR4 publication-title: Cell doi: 10.1016/j.cell.2011.09.024 – ident: 1083_CR18 – volume: 39 start-page: 916 issue: 6 year: 2011 ident: 1083_CR17 publication-title: Toxicol Pathol doi: 10.1177/0192623311416259 – start-page: 189 volume-title: ggplot2 year: 2016 ident: 1083_CR64 doi: 10.1007/978-3-319-24277-4_9 – volume: 14 start-page: 1 issue: 1 year: 2015 ident: 1083_CR60 publication-title: Mol Cancer doi: 10.1186/s12943-015-0421-2 – volume: 24 start-page: 65 issue: 1 year: 2019 ident: 1083_CR49 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.11.011 – volume: 8 start-page: 964 issue: 7 year: 2012 ident: 1083_CR9 publication-title: Int J Biol Sci doi: 10.7150/ijbs.4564 – volume: 62 start-page: 4854 issue: 17 year: 2002 ident: 1083_CR38 publication-title: Can Res – volume: 118 start-page: 2143 issue: 10 year: 2005 ident: 1083_CR19 publication-title: J Cell Sci doi: 10.1242/jcs.02334 – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 1083_CR62 publication-title: Nat Commun doi: 10.1038/s41467-021-20896-z – volume: 216 start-page: 1016 issue: 5 year: 2019 ident: 1083_CR5 publication-title: J Exp Med doi: 10.1084/jem.20181827 – volume: 11 start-page: DMM034850 issue: 7 year: 2018 ident: 1083_CR42 publication-title: Dis Models Mech doi: 10.1242/dmm.034850 – volume: 70 start-page: 32 issue: 3 year: 2016 ident: 1083_CR57 publication-title: Otolaryngol Pol doi: 10.5604/00306657.1202546 – volume: 3 start-page: 207 issue: 3 year: 2016 ident: 1083_CR46 publication-title: Melanoma Manag doi: 10.2217/mmt-2015-0005 – volume: 119 start-page: 1420 issue: 6 year: 2009 ident: 1083_CR1 publication-title: J Clin Investig doi: 10.1172/JCI39104 |
SSID | ssj0000491075 |
Score | 2.40251 |
Snippet | Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies... BackgroundMetastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent... Abstract Background Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 132 |
SubjectTerms | 1-Phosphatidylinositol 3-kinase AKT protein Brain cancer Breast cancer Cancer Chelating agents Chelation Clinical trials Collagen Copper Copper chelation Cytoplasm Down-regulation Drug delivery EMT Gelatinase B Homeostasis Kinases Metastases Metastasis Molecular modelling Neuroblastoma Patients Phosphorylation Raf protein Signal transduction Smad2 protein Snail protein TGF-β signaling pathways Transcription factors Transforming growth factor-b Tumors Vimentin Wnt protein β-Catenin |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NihQxEA6yIHgR19_WVSJ4k7DT6XQ6OeriuAh62oW9hfwyI7s9zfQMMi_hw-yD-ExWpXvGGRG9eOufdJNOVajvo6u-IuRNnNi68WCBIEVgwrnErMMmAlXilVM2yIAFzp-_yPNL8emqvtpr9YU5YYM88LBwp65sKl0mbbkOQunS-eClBhCvUTkr5TJfiHl7ZOrrgHuB19TbKhklT_sSdV0YhChgz4A7WHMQibJg_59Q5u_JknvRZ_qA3B9hI303TPeY3IntQ3J3aCS5eUS-ny26Li4ppnXmpab9ussprrGnscO6i2twNHaDtUZ-trmBd60wSuWELeo2dN7O5m44WyQK673IBZPUtoHCMft15eLjlP24pZj4YbGWnWJT429208M78EEfl4_J5fTDxdk5GzstMC90s2KWCxkTAG0hrdK1E3UC4hSSr3njtJpIay0ccV96HsEG1k8S9xWApQD8sJ5UT8gRzCI-I1Rb60OZ-ER5AGcNqowqCygvValJTouClNtVN36UIcduGNcm0xElzWApA5Yy2VKmKcjb3TPdIMLx19Hv0Zi7kSignS-AW5nRrcy_3KogJ1tXMOOu7g1XAHYkMFRekNe727Af8SeLbeNijWMEkmigoQV5OnjObiYo9QPwqyyIOvCpg6ke3mnns6z5XSLSaCr1_H983Atyj-eN0DBenpCj1XIdXwK2WrlXeRv9BDc2Iqk priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bbtQwELWgCIkXxL2BgozEG7KaOBfbTwgqlgoJnlpp3yJf2ZXaJGx2Ve1P9GP4EL6JGSebsgj1LRcncjzjzBl75gwh73yqS2FBAq4qHCuMCUwbLCKQB54bqV3lMMH52_fq9Lz4Oi_n44JbP4ZV7v6J8UftWotr5MdcgqGpwDvgH7qfDKtG4e7qWELjLrmH1GUY0iXmYlpjAfQL3k25y5WR1XGfIbsLA0MFPjSgDyb27FGk7f8f1vw3ZPIvGzR7RB6O4JF-HKT9mNzxzRNyfygnuX1Krk_arvMrisGdccBpv-lioKvvqe8w--IC1I1dYsaRXWwv4V1rtFUxbIuaLV02i6UZztpAYdTbmDZJdeMoHLObK2dfZuz3L4rhHxoz2imWNr7S2x7egQ9av3pGzmefz05O2VhvgdlCiTXTvKh8ALhdVFqq0hRlAPfJBVtyYZRMK601HHGbWe5VZrRNA7c5QCYHXmKZ5s_JAfTCHxKqtLYuCzyVFiCaQK5RqQHrhTyIYFSRkGw36rUdycixJsZFHZ0SWdWDpGqQVB0lVYuEvJ-e6QYqjltbf0JhTi2RRjteaFc_6nFW1iYTucqC0ly5QsInWWcrBR6iQlq2IBNytFOFepzbfX2jiQl5O92GWYlbLbrx7QbbFOhKgzOakBeD5kw9QcIfAGFZQuSeTu11df9Os1xE5u8M8YbI5cvb-_WKPOBRxQXj2RE5WK82_jVgp7V5EyfIHxy9GxQ priority: 102 providerName: ProQuest |
Title | Copper chelation suppresses epithelial-mesenchymal transition by inhibition of canonical and non-canonical TGF-β signaling pathways in cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37480151 https://www.proquest.com/docview/2852168992 https://www.proquest.com/docview/2841022716 https://pubmed.ncbi.nlm.nih.gov/PMC10362738 https://doaj.org/article/b17391f9a29d4891bcdc6914896812f8 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwEB3tRaB9QdwJLJWReEOGxrnYfkCIXW1ZIe0Koa3Ut8h2YlrUbUsvgv4EH8OH8E3MOEmhqOKBtyS2IyczozknmQvA86prMulQAmWeljy11nNjqYlA4kVilSnzkhKcLy7z8376fpAN9qBtd9S8wMVOakf9pPrz8ctvX9Zv0OBfB4NX-atFTCVbOHofJMYIKbjch0P0TJIM9aKB-59rNIxsJ2tzZ3YuPYKbVJEFvWS85apCRf9dMPTvaMo_3FPvNtxqcCV7WyvCHdirJnfhRt1pcn0Pvp9OZ7NqzijuM8iCLVazEANbLVg1o8SMMWoiv6ZkJDdcX-O9luTGQkQXs2s2mgxHtj6beoYCmYaMSmYmJcNj_vvK1bse__mDUWSIoWR3Rl2Pv5r1Au9BC101vw_93tnV6TlvWjFwl2q55EakeeURiae5UTqzaeaRWZXeZUJarbq5MQaPhIudqHRsjet64RJEUyUSyKybPIAD3EX1CJg2xpWxF13lEL1JKkOqDMJAn3jprU4jiNu3XrimTjm1yxgXga-ovKiFVqDQiiC0QkbwYrNmVlfp-OfsExLmZiZV2A4XpvNPRWOwhY1lomOvjdBlqvCRXOlyjeRRU8U2ryI4blWhaLW2EArRUI4UVkTwbDOMBkt_Ycykmq5oTkosG3lqBA9rzdnspNW8CNSWTm1tdXtkMhqGouAxQRGZqMf_v_QJHIlgCZKL-BgOlvNV9RQh19J2YF8OZAcOT84uP3zshA8XnWBbvwCWkC8e |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGJgQ3iH8CA4wEV8ha4ziJc4EQGysd2yqENml3me3YtNLWhKbV1JfgUbjgQXgmznGSjiK0u92ljmM5PSfnfF9yfgh5bXsqTg1IoEhEwYTWjimNTQQixyMtVZEUmOB8OEwGx-LzSXyyRn52uTAYVtnZRG-oi9LgO_ItLsHRJMAO-PvqO8OuUfh1tWuh0ajFvl1cAGWr3-19BPm-4by_e7QzYG1XAWZEls6Y4iKxDkClSJTMYi1iByShcCbmqc5kL1FKwRE3oeE2C7UyPcdNBMCgAC4U9yJY9wbZEDAChmBje3f45evyrQ7gbeBTcZedI5OtOsR6MgxcI7B2wDssXfGAvlHA_9Dtv0Gaf3m9_l1yp4Wr9EOjX_fImp3cJzebBpaLB-THTllVdkoxnNSLmNbzyofW2praCvM9zkDB2TnmOJnR4hzWmqF39IFiVC_oeDIa6-ZX6SjIufSJmlRNCgrH7HLk6FOf_f5FMeBEYQ49xWbKF2pRwxp4obHTh-T4WmTxiKzDLuwTQjOlTBE63pMGQGGK1U2lAnTpIpc6nYmAhN2_npu2_Dl24TjLPQ2SSd5IKgdJ5V5SeRqQt8trqqb4x5Wzt1GYy5lYuNsPlNNveWsHch2mURa6TPGsEBJuyRQmyYCTZlgIzsmAbHaqkLfWpM4vdT8gr5anwQ7gxx01seUc5wgk70B_A_K40ZzlTrDEEMC-MCByRadWtrp6ZjIe-VrjISKcNJJPr97XS3JrcHR4kB_sDfefkdvcq3vKeLhJ1mfTuX0OyG2mX7SPCyWn1_2E_gG2mViv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Copper+chelation+suppresses+epithelial-mesenchymal+transition+by+inhibition+of+canonical+and+non-canonical+TGF-%CE%B2+signaling+pathways+in+cancer&rft.jtitle=Cell+%26+bioscience&rft.au=Poursani%2C+Ensieh+M.&rft.au=Mercatelli%2C+Daniele&rft.au=Raninga%2C+Prahlad&rft.au=Bell%2C+Jessica+L.&rft.date=2023-07-21&rft.pub=BioMed+Central&rft.eissn=2045-3701&rft.volume=13&rft_id=info:doi/10.1186%2Fs13578-023-01083-7&rft_id=info%3Apmid%2F37480151&rft.externalDocID=PMC10362738 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-3701&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-3701&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-3701&client=summon |