Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil

Production of bio-oil, gas and biochar from pyrolysis of biomass is considered a promising technology for combined production of bioenergy and recalcitrant carbon (C) suitable for sequestration in soil. Using a fast pyrolysis centrifuge reactor (PCR) the present study investigated the relation betwe...

Full description

Saved in:
Bibliographic Details
Published inBiomass & bioenergy Vol. 35; no. 3; pp. 1182 - 1189
Main Authors Bruun, Esben W., Hauggaard-Nielsen, Henrik, Ibrahim, Norazana, Egsgaard, Helge, Ambus, Per, Jensen, Peter A., Dam-Johansen, Kim
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.03.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Production of bio-oil, gas and biochar from pyrolysis of biomass is considered a promising technology for combined production of bioenergy and recalcitrant carbon (C) suitable for sequestration in soil. Using a fast pyrolysis centrifuge reactor (PCR) the present study investigated the relation between fast pyrolysis of wheat straw at different reactor temperatures and the short-term degradability of biochar in soil. After 115 days incubation 3–12% of the added biochar-C had been emitted as CO2. On average, 90% of the total biochar-C loss occurred within the first 20 days of the experiment, emphasizing the importance of knowing the biochar labile fraction when evaluating a specific biochars C sequestration potential. The pyrolysis temperature influenced the outputs of biochar, bio-oil and syngas significantly, as well as the stability of the biochar produced. Contrary to slow pyrolysis a fast pyrolysis process may result in incomplete conversion of biomass due to limitations to heat transfer and kinetics. In our case chemical analysis of the biochars revealed unconverted cellulosic and hemicellulosic fractions, which in turn were found to be proportional with the short-term biochar degradation in soil. As these labile carbohydrates are rapidly mineralized, their presence lowers the biochar-C sequestration potential. By raising the pyrolysis temperature, biochar with none or low contents of these fractions can be produced, but this will be on the expense of the biochar quantity. The yield of CO2 neutral bio-oil is the other factor to optimize when adjusting the pyrolysis temperature settings to give the overall greatest climate change mitigation effect.
AbstractList Production of bio-oil, gas and biochar from pyrolysis of biomass is considered a promising technology for combined production of bioenergy and recalcitrant carbon (C) suitable for sequestration in soil. Using a fast pyrolysis centrifuge reactor (PCR) the present study investigated the relation between fast pyrolysis of wheat straw at different reactor temperatures and the short-term degradability of biochar in soil. After 115 days incubation 3–12% of the added biochar-C had been emitted as CO2. On average, 90% of the total biochar-C loss occurred within the first 20 days of the experiment, emphasizing the importance of knowing the biochar labile fraction when evaluating a specific biochars C sequestration potential. The pyrolysis temperature influenced the outputs of biochar, bio-oil and syngas significantly, as well as the stability of the biochar produced. Contrary to slow pyrolysis a fast pyrolysis process may result in incomplete conversion of biomass due to limitations to heat transfer and kinetics. In our case chemical analysis of the biochars revealed unconverted cellulosic and hemicellulosic fractions, which in turn were found to be proportional with the short-term biochar degradation in soil. As these labile carbohydrates are rapidly mineralized, their presence lowers the biochar-C sequestration potential. By raising the pyrolysis temperature, biochar with none or low contents of these fractions can be produced, but this will be on the expense of the biochar quantity. The yield of CO2 neutral bio-oil is the other factor to optimize when adjusting the pyrolysis temperature settings to give the overall greatest climate change mitigation effect.
Production of bio-oil, gas and biochar from pyrolysis of biomass is considered a promising technology for combined production of bioenergy and recalcitrant carbon (C) suitable for sequestration in soil. Using a fast pyrolysis centrifuge reactor (PCR) the present study investigated the relation between fast pyrolysis of wheat straw at different reactor temperatures and the short-term degradability of biochar in soil. After 115 days incubation 3–12% of the added biochar-C had been emitted as CO₂. On average, 90% of the total biochar-C loss occurred within the first 20 days of the experiment, emphasizing the importance of knowing the biochar labile fraction when evaluating a specific biochars C sequestration potential. The pyrolysis temperature influenced the outputs of biochar, bio-oil and syngas significantly, as well as the stability of the biochar produced. Contrary to slow pyrolysis a fast pyrolysis process may result in incomplete conversion of biomass due to limitations to heat transfer and kinetics. In our case chemical analysis of the biochars revealed unconverted cellulosic and hemicellulosic fractions, which in turn were found to be proportional with the short-term biochar degradation in soil. As these labile carbohydrates are rapidly mineralized, their presence lowers the biochar-C sequestration potential. By raising the pyrolysis temperature, biochar with none or low contents of these fractions can be produced, but this will be on the expense of the biochar quantity. The yield of CO₂ neutral bio-oil is the other factor to optimize when adjusting the pyrolysis temperature settings to give the overall greatest climate change mitigation effect.
Production of bio-oil, gas and biochar from pyrolysis of biomass is considered a promising technology for combined production of bioenergy and recalcitrant carbon (C) suitable for sequestration in soil. Using a fast pyrolysis centrifuge reactor (PCR) the present study investigated the relation between fast pyrolysis of wheat straw at different reactor temperatures and the short-term degradability of biochar in soil. After 115 days incubation 3-12% of the added biochar-C had been emitted as CO sub(2. On average, 90% of the total biochar-C loss occurred within the first 20 days of the experiment, emphasizing the importance of knowing the biochar labile fraction when evaluating a specific biochars C sequestration potential. The pyrolysis temperature influenced the outputs of biochar, bio-oil and syngas significantly, as well as the stability of the biochar produced. Contrary to slow pyrolysis a fast pyrolysis process may result in incomplete conversion of biomass due to limitations to heat transfer and kinetics. In our case chemical analysis of the biochars revealed unconverted cellulosic and hemicellulosic fractions, which in turn were found to be proportional with the short-term biochar degradation in soil. As these labile carbohydrates are rapidly mineralized, their presence lowers the biochar-C sequestration potential. By raising the pyrolysis temperature, biochar with none or low contents of these fractions can be produced, but this will be on the expense of the biochar quantity. The yield of CO) sub(2) neutral bio-oil is the other factor to optimize when adjusting the pyrolysis temperature settings to give the overall greatest climate change mitigation effect.
Author Ibrahim, Norazana
Egsgaard, Helge
Dam-Johansen, Kim
Hauggaard-Nielsen, Henrik
Bruun, Esben W.
Ambus, Per
Jensen, Peter A.
Author_xml – sequence: 1
  givenname: Esben W.
  surname: Bruun
  fullname: Bruun, Esben W.
  email: esbr@risoe.dtu.dk
  organization: Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde, Denmark
– sequence: 2
  givenname: Henrik
  surname: Hauggaard-Nielsen
  fullname: Hauggaard-Nielsen, Henrik
  organization: Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde, Denmark
– sequence: 3
  givenname: Norazana
  surname: Ibrahim
  fullname: Ibrahim, Norazana
  organization: Chemical Engineering and Biochemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
– sequence: 4
  givenname: Helge
  surname: Egsgaard
  fullname: Egsgaard, Helge
  organization: Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde, Denmark
– sequence: 5
  givenname: Per
  surname: Ambus
  fullname: Ambus, Per
  organization: Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde, Denmark
– sequence: 6
  givenname: Peter A.
  surname: Jensen
  fullname: Jensen, Peter A.
  organization: Chemical Engineering and Biochemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
– sequence: 7
  givenname: Kim
  surname: Dam-Johansen
  fullname: Dam-Johansen, Kim
  organization: Chemical Engineering and Biochemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23928605$$DView record in Pascal Francis
BookMark eNqFkU9vEzEQxS1UJNLCVwBfEFw2-N86a4kDVQWlUiUO0LM18Y6pI-862E6lfHu8SuHAgR4sW29-z2PPOydnc5qRkNecrTnj-sNuvQ1pagvXgi2iWDM2PCMrPmxkJwwzZ2TFjOad6aV6Qc5L2THGFVN8Raab2ccDzg5p8tRDqXR_zCkeSyi04rTHDPWQW3WmrYW7h0wjbENE6jO4GpoO80jLfcq1q5gn6iBvmxpTKTS0ajvBdKQlhfiSPPcQC7563C_I3ZfPP66-drffrm-uLm87p8ymdmbg4DcSBWizNcIb3huPSm5GcOBG6SU4ro3QwqE23oxaSz84jWPv1TgO8oK8O927z-nXAUu1UygOY4QZ06FY0yvNpFGike__S_JeKK4Ho1hD3z6iUBzE9v3ZhWL3OUyQj1ZIIwbN-sbpE-dyG0FG_xfhzC6J2Z39k5hdErNc2JZYM378x-hChWXENUOIT9vfnOwekoWfub3t7rtYgmZMKiN1Iz6dCGyzfwiYbXFhyX4MGV21YwpPNfkNYpjDYQ
CitedBy_id crossref_primary_10_2134_jeq2011_0118
crossref_primary_10_3390_agronomy9110747
crossref_primary_10_1016_j_scitotenv_2017_06_178
crossref_primary_10_1371_journal_pone_0161694
crossref_primary_10_1371_journal_pone_0265663
crossref_primary_10_3390_f15050753
crossref_primary_10_1016_j_soilbio_2022_108810
crossref_primary_10_1002_jpln_201300412
crossref_primary_10_1016_j_catena_2019_104127
crossref_primary_10_1016_j_scitotenv_2020_141354
crossref_primary_10_3390_su15065100
crossref_primary_10_1007_s12649_017_0013_z
crossref_primary_10_1016_j_biombioe_2014_01_056
crossref_primary_10_1007_s10668_019_00327_2
crossref_primary_10_1007_s13595_020_00960_2
crossref_primary_10_1016_j_jaap_2014_09_010
crossref_primary_10_1016_j_scitotenv_2014_12_035
crossref_primary_10_1016_j_jenvman_2017_06_018
crossref_primary_10_1016_j_biombioe_2012_12_014
crossref_primary_10_1371_journal_pone_0138781
crossref_primary_10_3390_su131810362
crossref_primary_10_1071_CP21042
crossref_primary_10_1016_j_biombioe_2014_07_017
crossref_primary_10_3390_f12101350
crossref_primary_10_1016_j_energy_2021_119893
crossref_primary_10_1016_j_chemosphere_2021_133474
crossref_primary_10_1080_03601234_2015_1028830
crossref_primary_10_1016_j_soilbio_2016_05_020
crossref_primary_10_1098_rstb_2020_0180
crossref_primary_10_2478_ahr_2021_0016
crossref_primary_10_1016_j_jhazmat_2019_03_024
crossref_primary_10_1016_j_wasman_2022_11_012
crossref_primary_10_1016_j_wasman_2014_10_029
crossref_primary_10_1007_s13762_020_02751_8
crossref_primary_10_1016_j_ecoleng_2017_04_026
crossref_primary_10_1111_sum_13096
crossref_primary_10_1016_j_scitotenv_2017_12_343
crossref_primary_10_3390_land12081580
crossref_primary_10_1002_admi_202202290
crossref_primary_10_3390_en11040957
crossref_primary_10_12677_MS_2022_1211135
crossref_primary_10_1002_jsfa_12993
crossref_primary_10_1016_j_jclepro_2019_118841
crossref_primary_10_1007_s11104_015_2519_0
crossref_primary_10_1016_j_geoderma_2018_08_019
crossref_primary_10_1016_j_jece_2025_115477
crossref_primary_10_1016_j_soilbio_2011_06_016
crossref_primary_10_1021_acs_est_6b06300
crossref_primary_10_3390_w14111691
crossref_primary_10_1016_j_cej_2020_124856
crossref_primary_10_1016_j_polymdegradstab_2019_108955
crossref_primary_10_1002_clen_201700656
crossref_primary_10_1007_s00374_015_1047_7
crossref_primary_10_1080_10643389_2017_1328918
crossref_primary_10_1016_j_biombioe_2015_10_025
crossref_primary_10_1016_j_scitotenv_2020_138752
crossref_primary_10_1002_ldr_3147
crossref_primary_10_1111_gcbb_12005
crossref_primary_10_1016_j_rser_2016_06_003
crossref_primary_10_1007_s10533_012_9764_6
crossref_primary_10_1071_WF22166
crossref_primary_10_1590_01000683rbcs20140818
crossref_primary_10_1016_j_chemosphere_2015_05_084
crossref_primary_10_1016_j_microc_2021_106114
crossref_primary_10_1016_j_scitotenv_2015_08_026
crossref_primary_10_3923_ja_2019_71_79
crossref_primary_10_1016_j_jenvman_2020_111097
crossref_primary_10_1016_j_soilbio_2017_10_006
crossref_primary_10_1080_17583004_2022_2117082
crossref_primary_10_1016_j_jenvman_2017_01_061
crossref_primary_10_1016_j_scitotenv_2021_145869
crossref_primary_10_1002_ldr_3495
crossref_primary_10_1007_s13593_016_0372_z
crossref_primary_10_1016_j_scitotenv_2022_161284
crossref_primary_10_1016_j_jece_2023_109643
crossref_primary_10_31545_intagr_158897
crossref_primary_10_1111_gcbb_12234
crossref_primary_10_4236_as_2021_123014
crossref_primary_10_1016_j_scitotenv_2016_01_160
crossref_primary_10_2134_jeq2012_0163
crossref_primary_10_1016_j_chemosphere_2014_06_046
crossref_primary_10_1002_clen_201200619
crossref_primary_10_1016_j_soilbio_2014_04_029
crossref_primary_10_1007_s10098_016_1218_8
crossref_primary_10_1088_1755_1315_748_1_012013
crossref_primary_10_1007_s00374_015_1004_5
crossref_primary_10_4028_www_scientific_net_AMR_391_392_1055
crossref_primary_10_3390_agronomy10060824
crossref_primary_10_1016_j_cej_2013_10_081
crossref_primary_10_1016_j_cej_2012_05_025
crossref_primary_10_1016_j_scitotenv_2022_159773
crossref_primary_10_1016_j_rser_2012_12_051
crossref_primary_10_1016_j_jhazmat_2016_07_041
crossref_primary_10_1016_j_jhazmat_2019_120783
crossref_primary_10_1111_sum_12858
crossref_primary_10_1016_j_geoderma_2017_01_011
crossref_primary_10_2139_ssrn_4070353
crossref_primary_10_1007_s11356_023_28256_8
crossref_primary_10_1080_17583004_2016_1213608
crossref_primary_10_1007_s00267_023_01791_3
crossref_primary_10_1021_acs_est_5b02562
crossref_primary_10_1111_ejss_12383
crossref_primary_10_1016_j_scitotenv_2021_146980
crossref_primary_10_1007_s11270_017_3428_z
crossref_primary_10_1016_j_jtice_2013_06_028
crossref_primary_10_1016_j_still_2022_105337
crossref_primary_10_1111_gcbb_12213
crossref_primary_10_1016_j_fuproc_2019_05_036
crossref_primary_10_1016_j_chemosphere_2021_133389
crossref_primary_10_2136_sssaj2011_0101
crossref_primary_10_3390_su9081482
crossref_primary_10_1016_S1002_0160_20_60094_7
crossref_primary_10_1016_j_still_2016_03_002
crossref_primary_10_1007_s10653_023_01823_1
crossref_primary_10_1007_s11368_022_03269_x
crossref_primary_10_1016_j_carbon_2019_03_050
crossref_primary_10_1016_j_procbio_2018_03_021
crossref_primary_10_1016_j_soilbio_2025_109733
crossref_primary_10_2134_jeq2017_04_0152
crossref_primary_10_1007_s42729_019_00084_1
crossref_primary_10_1016_j_soilbio_2018_01_022
crossref_primary_10_1016_j_ecoenv_2020_111172
crossref_primary_10_1111_sum_12877
crossref_primary_10_1016_j_jenvman_2024_121196
crossref_primary_10_1111_gcbb_12561
crossref_primary_10_1002_clen_201100738
crossref_primary_10_1016_j_scitotenv_2024_172439
crossref_primary_10_3390_su13042018
crossref_primary_10_1128_mSphere_00085_17
crossref_primary_10_1016_j_chemosphere_2017_11_151
crossref_primary_10_1016_j_soilbio_2015_01_006
crossref_primary_10_1016_j_soilbio_2022_108778
crossref_primary_10_1016_j_biortech_2018_06_084
crossref_primary_10_3390_jof7060427
crossref_primary_10_1016_j_watres_2021_117679
crossref_primary_10_1111_gcbb_12314
crossref_primary_10_1007_s12517_019_4482_1
crossref_primary_10_1002_cjce_24426
crossref_primary_10_1007_s10311_021_01251_6
crossref_primary_10_3390_pr10020199
crossref_primary_10_3846_16486897_2017_1304943
crossref_primary_10_1016_j_chemosphere_2013_06_004
crossref_primary_10_1016_j_soilbio_2016_07_021
crossref_primary_10_1039_D3VA00197K
crossref_primary_10_1371_journal_pone_0113888
crossref_primary_10_1371_journal_pone_0150837
crossref_primary_10_1080_10643389_2016_1212368
crossref_primary_10_1007_s41742_024_00592_8
crossref_primary_10_1111_ejss_12073
crossref_primary_10_1071_SR13186
crossref_primary_10_3390_horticulturae5010014
crossref_primary_10_1002_jsfa_7753
crossref_primary_10_3390_agriculture13102003
crossref_primary_10_1002_saj2_20793
crossref_primary_10_1016_j_soilbio_2013_01_019
crossref_primary_10_3390_agronomy12071525
crossref_primary_10_4155_cmt_13_3
crossref_primary_10_3390_en10091293
crossref_primary_10_1021_es5060786
crossref_primary_10_2134_jeq2011_0069
crossref_primary_10_19047_0136_1694_2023_116_43_75
crossref_primary_10_1016_j_jes_2014_08_012
crossref_primary_10_1016_j_fuel_2019_116833
crossref_primary_10_1016_S1002_0160_21_60087_5
crossref_primary_10_1038_ismej_2016_187
crossref_primary_10_3390_agriculture11030219
crossref_primary_10_3390_ma15196722
crossref_primary_10_1016_j_apgeochem_2014_02_003
crossref_primary_10_1007_s12517_019_4239_x
crossref_primary_10_1016_j_geoderma_2017_08_004
crossref_primary_10_1016_j_scitotenv_2021_146824
crossref_primary_10_1016_j_apgeochem_2018_02_004
crossref_primary_10_1016_j_energy_2019_03_182
crossref_primary_10_1111_gcbb_12414
crossref_primary_10_1016_j_apsoil_2017_03_017
crossref_primary_10_1016_j_still_2023_105978
crossref_primary_10_1007_s10163_023_01670_3
crossref_primary_10_1038_s41598_019_52978_w
crossref_primary_10_1016_j_soilbio_2013_09_015
crossref_primary_10_1007_s42773_025_00440_8
crossref_primary_10_1088_2053_1591_ac386b
crossref_primary_10_1371_journal_pone_0176884
crossref_primary_10_1007_s13593_011_0056_7
crossref_primary_10_1080_10643389_2019_1699381
crossref_primary_10_1016_j_agee_2020_107258
crossref_primary_10_1016_j_rser_2015_04_071
crossref_primary_10_1016_j_catena_2020_104735
crossref_primary_10_3390_agronomy8050065
crossref_primary_10_5194_se_5_499_2014
crossref_primary_10_1017_S1755691012000047
crossref_primary_10_1016_j_apsusc_2024_160335
crossref_primary_10_3390_agronomy9100623
crossref_primary_10_1111_sum_12102
crossref_primary_10_1016_j_chemosphere_2015_06_044
crossref_primary_10_1080_01932691_2012_704753
crossref_primary_10_1016_j_agee_2019_04_021
crossref_primary_10_1007_s13399_021_01957_1
crossref_primary_10_1071_SR14075
crossref_primary_10_1016_j_scitotenv_2020_141935
crossref_primary_10_3390_agriculture14010037
crossref_primary_10_1016_j_apsoil_2022_104526
crossref_primary_10_1016_j_scitotenv_2016_06_082
crossref_primary_10_3390_agronomy11112300
crossref_primary_10_1007_s12517_022_11123_0
crossref_primary_10_1080_09593330_2013_826252
crossref_primary_10_1016_j_scitotenv_2020_141265
crossref_primary_10_1007_s41918_024_00223_y
crossref_primary_10_1016_j_orggeochem_2012_07_009
crossref_primary_10_1061__ASCE_IR_1943_4774_0001673
crossref_primary_10_1007_s00128_019_02779_8
crossref_primary_10_3389_fmicb_2020_587972
crossref_primary_10_1109_TPS_2020_2998436
crossref_primary_10_1016_j_jece_2023_110572
crossref_primary_10_1111_gcbb_13147
crossref_primary_10_1002_esp_4925
crossref_primary_10_1007_s11356_019_04863_2
crossref_primary_10_1016_j_crsust_2023_100239
crossref_primary_10_1016_j_still_2020_104874
crossref_primary_10_1111_j_1365_2389_2011_01377_x
crossref_primary_10_3390_su122410586
crossref_primary_10_3390_app9214481
crossref_primary_10_3390_soilsystems2030048
crossref_primary_10_3934_agrfood_2021024
crossref_primary_10_1007_s42773_019_00009_2
crossref_primary_10_1016_j_chemosphere_2016_06_100
crossref_primary_10_1016_j_orggeochem_2011_09_002
crossref_primary_10_3390_su152316446
crossref_primary_10_1007_s11368_016_1360_2
crossref_primary_10_1016_j_chemosphere_2017_04_014
crossref_primary_10_1016_j_apsoil_2016_11_018
crossref_primary_10_1016_j_fuproc_2022_107347
crossref_primary_10_1111_gcbb_12293
crossref_primary_10_3390_agronomy10121950
crossref_primary_10_2134_jeq2014_08_0341
crossref_primary_10_1080_03650340_2017_1325468
crossref_primary_10_2134_jeq2011_0207
crossref_primary_10_1007_s12649_023_02415_x
crossref_primary_10_1016_j_apsoil_2015_08_019
crossref_primary_10_1016_j_crsust_2023_100224
crossref_primary_10_1016_j_jece_2021_107017
crossref_primary_10_1021_es501885n
crossref_primary_10_1007_s11356_016_6336_7
crossref_primary_10_1111_gcbb_12046
crossref_primary_10_1007_s10163_015_0447_y
crossref_primary_10_1016_j_chemosphere_2014_11_074
crossref_primary_10_1016_j_still_2018_04_008
crossref_primary_10_1016_j_scitotenv_2016_01_091
crossref_primary_10_1016_j_soilbio_2011_11_019
Cites_doi 10.1007/s00374-002-0466-4
10.1016/j.chemosphere.2009.06.053
10.1016/j.soilbio.2008.10.016
10.1071/SR07109
10.1016/S0146-6380(02)00062-1
10.1016/j.orggeochem.2006.06.022
10.1021/ie0207919
10.1007/s00374-003-0707-1
10.1111/j.1365-2389.2006.00807.x
10.1016/0144-4565(84)90044-1
10.1023/A:1004207219678
10.1016/j.biortech.2007.08.054
10.1080/02773819108051086
10.1002/jpln.200700272
10.1016/j.orggeochem.2004.03.003
10.1038/447143a
10.1007/s11104-010-0359-5
10.1016/j.biombioe.2007.01.012
10.1016/j.pedobi.2007.08.002
10.2136/sssaj2009.0185
10.1126/science.1154960
10.1007/s11027-005-9006-5
10.1021/es903140c
10.1002/jpln.200625199
10.1016/j.biombioe.2004.04.009
10.1016/j.orggeochem.2008.04.020
10.1016/S0378-4290(01)00176-9
10.2136/sssaj2005.0383
10.5194/bg-3-397-2006
10.1016/j.orggeochem.2009.05.004
10.1021/es030124m
10.1016/S0146-6380(99)00120-5
10.1016/j.biombioe.2009.03.009
10.1034/j.1600-0706.2000.890203.x
ContentType Journal Article
Copyright 2010 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
7QO
7ST
8FD
C1K
FR3
P64
SOI
DOI 10.1016/j.biombioe.2010.12.008
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Biotechnology Research Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
AGRICOLA

Engineering Research Database
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1873-2909
EndPage 1189
ExternalDocumentID 23928605
10_1016_j_biombioe_2010_12_008
US201400034936
S0961953410004381
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSJ
SSR
SSZ
T5K
VH1
WUQ
~G-
~KM
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
IQODW
7S9
L.6
7QO
7ST
8FD
C1K
FR3
P64
SOI
ID FETCH-LOGICAL-c497t-981af73e2a69b92f9159fe437dacacd3f3ac169262ce69f9d663f8c6ed5f4dd83
IEDL.DBID .~1
ISSN 0961-9534
IngestDate Fri Jul 11 15:59:51 EDT 2025
Mon Jul 21 10:53:17 EDT 2025
Mon Jul 21 09:15:03 EDT 2025
Thu Apr 24 23:12:42 EDT 2025
Tue Jul 01 01:49:27 EDT 2025
Thu Apr 03 09:45:23 EDT 2025
Fri Feb 23 02:34:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Biochar stability
Biochar
Carbon sequestration
Triticum aestivum
Pyrolysis centrifuge reactor
Charcoal
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-981af73e2a69b92f9159fe437dacacd3f3ac169262ce69f9d663f8c6ed5f4dd83
Notes http://dx.doi.org/10.1016/j.biombioe.2010.12.008
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1524168940
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_954603942
proquest_miscellaneous_1524168940
pascalfrancis_primary_23928605
crossref_primary_10_1016_j_biombioe_2010_12_008
crossref_citationtrail_10_1016_j_biombioe_2010_12_008
fao_agris_US201400034936
elsevier_sciencedirect_doi_10_1016_j_biombioe_2010_12_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Biomass & bioenergy
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Antal, Gronli (bib25) 2003; 42
Scheller, Joergensen (bib27) 2008; 171
Brodowski, John, Flessa, Amelung (bib32) 2006; 57
Zimmerman (bib5) 2010; 15
Lehmann (bib3) 2007; 447
Glaser, Lehmann, Zech (bib9) 2002; 35
Angers, Recous (bib28) 1997; 189
Steiner, Das, Garcia, Forster, Zech (bib29) 2008; 51
Cheng, Lehmann, Thies, Burton, Engelhard (bib7) 2006; 37
Chan, Van Zwieten, Meszaros, Downie, Joseph (bib10) 2007; 45
Lehmann, Czimnik, Laird, Sohi (bib4) 2009
Hauggaard-Nielsen, Jensen (bib22) 2001; 72
Kramer, Kujawinski, Hatcher (bib35) 2004; 38
Kuzyakov, Subbotina, Chen, Bogomolova, Xu (bib31) 2009; 41
Bridgwater, Meier, Radlein (bib24) 1999; 30
Thomsen, Thygesen, Thomsen (bib20) 2008; 99
SAS institute Inc; 2003.
Fowles (bib38) 2007; 31
Steiner, Glaser, Teixeira, Lehmann, Blum, Zech (bib11) 2008; 171
Oguntunde, Fosu, Ajayi, van de Giesen (bib8) 2004; 39
Spokas, Baker, Reicosky (bib13) 2010; 333
Spokas, Koskinen, Baker, Reicosky (bib14) 2009; 77
Hamer, Marschner, Brodowski, Amelung (bib17) 2004; 35
Lehmann, Gaunt, Rondon (bib1) 2006; 11
Nguyen, Lehmann (bib34) 2009; 40
Barton (bib19) 1984; 4
Chan, Xu (bib26) 2009
Yang, Yan, Chen, Lee, Zheng (bib6) 2008; 87
Bruun, Jensen, Jensen (bib16) 2008; 39
Preston, Schmidt (bib2) 2006; 3
Baldock, Smernik (bib30) 2002; 33
Liang, Lehmann, Solomon, Kinyangi, Grossman, O’Neill (bib33) 2006; 70
Wardle, Nilsson, Zackrisson (bib36) 2008; 320
Bech, Larsen, Jensen, Dam-Johansen (bib18) 2009; 33
Clough, Bertram, Ray, Condron, O’Callaghan, Sherlock (bib15) 2010; 74
Kaar, Cool, Merriman, Brink (bib21) 1991; 11
Pietikainen, Kiikkila, Fritze (bib12) 2000; 89
Caputo, Palumbo, Pelagagge, Scacchia (bib37) 2005; 28
Scheller (10.1016/j.biombioe.2010.12.008_bib27) 2008; 171
Hamer (10.1016/j.biombioe.2010.12.008_bib17) 2004; 35
Cheng (10.1016/j.biombioe.2010.12.008_bib7) 2006; 37
Yang (10.1016/j.biombioe.2010.12.008_bib6) 2008; 87
10.1016/j.biombioe.2010.12.008_bib23
Kuzyakov (10.1016/j.biombioe.2010.12.008_bib31) 2009; 41
Caputo (10.1016/j.biombioe.2010.12.008_bib37) 2005; 28
Lehmann (10.1016/j.biombioe.2010.12.008_bib1) 2006; 11
Glaser (10.1016/j.biombioe.2010.12.008_bib9) 2002; 35
Bridgwater (10.1016/j.biombioe.2010.12.008_bib24) 1999; 30
Zimmerman (10.1016/j.biombioe.2010.12.008_bib5) 2010; 15
Barton (10.1016/j.biombioe.2010.12.008_bib19) 1984; 4
Baldock (10.1016/j.biombioe.2010.12.008_bib30) 2002; 33
Chan (10.1016/j.biombioe.2010.12.008_bib26) 2009
Chan (10.1016/j.biombioe.2010.12.008_bib10) 2007; 45
Lehmann (10.1016/j.biombioe.2010.12.008_bib3) 2007; 447
Angers (10.1016/j.biombioe.2010.12.008_bib28) 1997; 189
Lehmann (10.1016/j.biombioe.2010.12.008_bib4) 2009
Pietikainen (10.1016/j.biombioe.2010.12.008_bib12) 2000; 89
Bruun (10.1016/j.biombioe.2010.12.008_bib16) 2008; 39
Antal (10.1016/j.biombioe.2010.12.008_bib25) 2003; 42
Hauggaard-Nielsen (10.1016/j.biombioe.2010.12.008_bib22) 2001; 72
Steiner (10.1016/j.biombioe.2010.12.008_bib11) 2008; 171
Nguyen (10.1016/j.biombioe.2010.12.008_bib34) 2009; 40
Spokas (10.1016/j.biombioe.2010.12.008_bib14) 2009; 77
Wardle (10.1016/j.biombioe.2010.12.008_bib36) 2008; 320
Thomsen (10.1016/j.biombioe.2010.12.008_bib20) 2008; 99
Liang (10.1016/j.biombioe.2010.12.008_bib33) 2006; 70
Brodowski (10.1016/j.biombioe.2010.12.008_bib32) 2006; 57
Spokas (10.1016/j.biombioe.2010.12.008_bib13) 2010; 333
Bech (10.1016/j.biombioe.2010.12.008_bib18) 2009; 33
Kaar (10.1016/j.biombioe.2010.12.008_bib21) 1991; 11
Kramer (10.1016/j.biombioe.2010.12.008_bib35) 2004; 38
Fowles (10.1016/j.biombioe.2010.12.008_bib38) 2007; 31
Clough (10.1016/j.biombioe.2010.12.008_bib15) 2010; 74
Oguntunde (10.1016/j.biombioe.2010.12.008_bib8) 2004; 39
Preston (10.1016/j.biombioe.2010.12.008_bib2) 2006; 3
Steiner (10.1016/j.biombioe.2010.12.008_bib29) 2008; 51
References_xml – volume: 3
  start-page: 397
  year: 2006
  end-page: 420
  ident: bib2
  article-title: Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions
  publication-title: Biogeosciences
– volume: 39
  start-page: 295
  year: 2004
  end-page: 299
  ident: bib8
  article-title: Effects of charcoal production on maize yield, chemical properties and texture of soil
  publication-title: Biol Fertil Soils
– volume: 39
  start-page: 839
  year: 2008
  end-page: 845
  ident: bib16
  article-title: Microbial mineralization and assimilation of black carbon: dependency on degree of thermal alteration
  publication-title: Org Geochem
– volume: 30
  start-page: 1479
  year: 1999
  end-page: 1493
  ident: bib24
  article-title: An overview of fast pyrolysis of biomass
  publication-title: Org Geochem
– volume: 37
  start-page: 1477
  year: 2006
  end-page: 1488
  ident: bib7
  article-title: Oxidation of black carbon by biotic and abiotic processes
  publication-title: Org Geochem
– volume: 333
  start-page: 443
  year: 2010
  end-page: 452
  ident: bib13
  article-title: Ethylene: potential key for biochar amendment impacts
  publication-title: Plant Soil
– volume: 33
  start-page: 1093
  year: 2002
  end-page: 1109
  ident: bib30
  article-title: Chemical composition and bioavailability of thermally, altered Pinus resinosa (Red pine) wood
  publication-title: Org Geochem
– volume: 171
  start-page: 886
  year: 2008
  end-page: 892
  ident: bib27
  article-title: Decomposition of wheat straw differing in nitrogen content in soils under conventional and organic farming management
  publication-title: J Plant Nutr Soil Sci
– volume: 189
  start-page: 197
  year: 1997
  end-page: 203
  ident: bib28
  article-title: Decomposition of wheat straw and rye residues as affected by particle size
  publication-title: Plant Soil
– volume: 33
  start-page: 999
  year: 2009
  end-page: 1011
  ident: bib18
  article-title: Modelling solid-convective flash pyrolysis of straw and wood in the pyrolysis centrifuge reactor
  publication-title: Biomass Bioenergy
– volume: 447
  start-page: 143
  year: 2007
  end-page: 144
  ident: bib3
  article-title: A handful of carbon
  publication-title: Nature
– volume: 171
  start-page: 893
  year: 2008
  end-page: 899
  ident: bib11
  article-title: Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal
  publication-title: J Plant Nutr Soil Sci
– volume: 320
  start-page: 629
  year: 2008
  end-page: 630
  ident: bib36
  article-title: Fire-derived charcoal causes loss of forest humus
  publication-title: Science
– volume: 89
  start-page: 231
  year: 2000
  end-page: 242
  ident: bib12
  article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus
  publication-title: Oikos
– volume: 70
  start-page: 1719
  year: 2006
  end-page: 1730
  ident: bib33
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Sci Soc Am J
– volume: 40
  start-page: 846
  year: 2009
  end-page: 853
  ident: bib34
  article-title: Black carbon decomposition under varying water regimes
  publication-title: Org Geochem
– start-page: 67
  year: 2009
  end-page: 84
  ident: bib26
  article-title: Biochar: nutrient properties and their Enhancement
  publication-title: Biochar for Environmental management. Science and technology
– volume: 11
  start-page: 403
  year: 2006
  end-page: 427
  ident: bib1
  article-title: Bio-char sequestration in terrestrial ecosystems - a review
  publication-title: Mitigat Adapt Strateg Glob Change
– volume: 35
  start-page: 219
  year: 2002
  end-page: 230
  ident: bib9
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review
  publication-title: Biol Fertil Soils
– volume: 28
  start-page: 35
  year: 2005
  end-page: 51
  ident: bib37
  article-title: Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables
  publication-title: Biomass Bioenergy
– volume: 57
  start-page: 539
  year: 2006
  end-page: 546
  ident: bib32
  article-title: Aggregate-occluded black carbon in soil
  publication-title: Eur J Soil Sci
– volume: 11
  start-page: 447
  year: 1991
  end-page: 463
  ident: bib21
  article-title: The complete analysis of wood polysaccharides using HPLC
  publication-title: J Wood Chem Technol
– volume: 72
  start-page: 185
  year: 2001
  end-page: 196
  ident: bib22
  article-title: Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability
  publication-title: Field Crops Res
– volume: 74
  start-page: 852
  year: 2010
  end-page: 860
  ident: bib15
  article-title: Unweathered wood biochar impact on nitrous oxide emissions from a Bovine-Urine-Amended Pasture soil
  publication-title: Soil Sci Soc Am J
– volume: 31
  start-page: 426
  year: 2007
  end-page: 432
  ident: bib38
  article-title: Black carbon sequestration as an alternative to bioenergy
  publication-title: Biomass Bioenergy
– volume: 42
  start-page: 1619
  year: 2003
  end-page: 1640
  ident: bib25
  article-title: The art, science, and technology of charcoal production
  publication-title: Ind Eng Chem Res
– volume: 51
  start-page: 359
  year: 2008
  end-page: 366
  ident: bib29
  article-title: Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol
  publication-title: Pedobiologia
– volume: 35
  start-page: 823
  year: 2004
  end-page: 830
  ident: bib17
  article-title: Interactive priming of black carbon and glucose mineralisation
  publication-title: Org Geochem
– volume: 45
  start-page: 629
  year: 2007
  end-page: 634
  ident: bib10
  article-title: Agronomic values of greenwaste biochar as a soil amendment
  publication-title: Aust J Soil Res
– volume: 4
  start-page: 311
  year: 1984
  end-page: 314
  ident: bib19
  article-title: Definition of biomass samples involving wood, bark and foliage
  publication-title: Biomass
– start-page: 183
  year: 2009
  end-page: 206
  ident: bib4
  article-title: Stability of biochar in the soil
  publication-title: Biochar for environmental management: science and technology
– volume: 15
  start-page: 1295
  year: 2010
  end-page: 1301
  ident: bib5
  article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (Biochar)
  publication-title: Environ Sci Technol
– reference: SAS institute Inc; 2003.
– volume: 77
  start-page: 574
  year: 2009
  end-page: 581
  ident: bib14
  article-title: Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil
  publication-title: Chemosphere
– volume: 41
  start-page: 210
  year: 2009
  end-page: 219
  ident: bib31
  article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling
  publication-title: Soil Biol Biochem
– volume: 87
  year: 2008
  ident: bib6
  article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis
  publication-title: Fuel
– volume: 99
  start-page: 4221
  year: 2008
  end-page: 4228
  ident: bib20
  article-title: Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis
  publication-title: Bioresour Technol
– volume: 38
  start-page: 3387
  year: 2004
  end-page: 3395
  ident: bib35
  article-title: Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry
  publication-title: Environ Sci Technol
– volume: 35
  start-page: 219
  year: 2002
  ident: 10.1016/j.biombioe.2010.12.008_bib9
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-002-0466-4
– volume: 77
  start-page: 574
  year: 2009
  ident: 10.1016/j.biombioe.2010.12.008_bib14
  article-title: Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.06.053
– volume: 41
  start-page: 210
  year: 2009
  ident: 10.1016/j.biombioe.2010.12.008_bib31
  article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2008.10.016
– volume: 45
  start-page: 629
  year: 2007
  ident: 10.1016/j.biombioe.2010.12.008_bib10
  article-title: Agronomic values of greenwaste biochar as a soil amendment
  publication-title: Aust J Soil Res
  doi: 10.1071/SR07109
– volume: 33
  start-page: 1093
  year: 2002
  ident: 10.1016/j.biombioe.2010.12.008_bib30
  article-title: Chemical composition and bioavailability of thermally, altered Pinus resinosa (Red pine) wood
  publication-title: Org Geochem
  doi: 10.1016/S0146-6380(02)00062-1
– volume: 37
  start-page: 1477
  year: 2006
  ident: 10.1016/j.biombioe.2010.12.008_bib7
  article-title: Oxidation of black carbon by biotic and abiotic processes
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2006.06.022
– volume: 42
  start-page: 1619
  year: 2003
  ident: 10.1016/j.biombioe.2010.12.008_bib25
  article-title: The art, science, and technology of charcoal production
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie0207919
– volume: 39
  start-page: 295
  year: 2004
  ident: 10.1016/j.biombioe.2010.12.008_bib8
  article-title: Effects of charcoal production on maize yield, chemical properties and texture of soil
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-003-0707-1
– volume: 57
  start-page: 539
  year: 2006
  ident: 10.1016/j.biombioe.2010.12.008_bib32
  article-title: Aggregate-occluded black carbon in soil
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.2006.00807.x
– volume: 4
  start-page: 311
  issue: 4
  year: 1984
  ident: 10.1016/j.biombioe.2010.12.008_bib19
  article-title: Definition of biomass samples involving wood, bark and foliage
  publication-title: Biomass
  doi: 10.1016/0144-4565(84)90044-1
– volume: 189
  start-page: 197
  year: 1997
  ident: 10.1016/j.biombioe.2010.12.008_bib28
  article-title: Decomposition of wheat straw and rye residues as affected by particle size
  publication-title: Plant Soil
  doi: 10.1023/A:1004207219678
– volume: 99
  start-page: 4221
  year: 2008
  ident: 10.1016/j.biombioe.2010.12.008_bib20
  article-title: Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2007.08.054
– volume: 11
  start-page: 447
  year: 1991
  ident: 10.1016/j.biombioe.2010.12.008_bib21
  article-title: The complete analysis of wood polysaccharides using HPLC
  publication-title: J Wood Chem Technol
  doi: 10.1080/02773819108051086
– volume: 171
  start-page: 886
  year: 2008
  ident: 10.1016/j.biombioe.2010.12.008_bib27
  article-title: Decomposition of wheat straw differing in nitrogen content in soils under conventional and organic farming management
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.200700272
– volume: 35
  start-page: 823
  year: 2004
  ident: 10.1016/j.biombioe.2010.12.008_bib17
  article-title: Interactive priming of black carbon and glucose mineralisation
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2004.03.003
– volume: 447
  start-page: 143
  year: 2007
  ident: 10.1016/j.biombioe.2010.12.008_bib3
  article-title: A handful of carbon
  publication-title: Nature
  doi: 10.1038/447143a
– volume: 333
  start-page: 443
  year: 2010
  ident: 10.1016/j.biombioe.2010.12.008_bib13
  article-title: Ethylene: potential key for biochar amendment impacts
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0359-5
– volume: 87
  year: 2008
  ident: 10.1016/j.biombioe.2010.12.008_bib6
  article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis
  publication-title: Fuel
– start-page: 183
  year: 2009
  ident: 10.1016/j.biombioe.2010.12.008_bib4
  article-title: Stability of biochar in the soil
– volume: 31
  start-page: 426
  year: 2007
  ident: 10.1016/j.biombioe.2010.12.008_bib38
  article-title: Black carbon sequestration as an alternative to bioenergy
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2007.01.012
– volume: 51
  start-page: 359
  year: 2008
  ident: 10.1016/j.biombioe.2010.12.008_bib29
  article-title: Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2007.08.002
– volume: 74
  start-page: 852
  year: 2010
  ident: 10.1016/j.biombioe.2010.12.008_bib15
  article-title: Unweathered wood biochar impact on nitrous oxide emissions from a Bovine-Urine-Amended Pasture soil
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2009.0185
– volume: 320
  start-page: 629
  year: 2008
  ident: 10.1016/j.biombioe.2010.12.008_bib36
  article-title: Fire-derived charcoal causes loss of forest humus
  publication-title: Science
  doi: 10.1126/science.1154960
– volume: 11
  start-page: 403
  year: 2006
  ident: 10.1016/j.biombioe.2010.12.008_bib1
  article-title: Bio-char sequestration in terrestrial ecosystems - a review
  publication-title: Mitigat Adapt Strateg Glob Change
  doi: 10.1007/s11027-005-9006-5
– volume: 15
  start-page: 1295
  issue: 44
  year: 2010
  ident: 10.1016/j.biombioe.2010.12.008_bib5
  article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (Biochar)
  publication-title: Environ Sci Technol
  doi: 10.1021/es903140c
– volume: 171
  start-page: 893
  year: 2008
  ident: 10.1016/j.biombioe.2010.12.008_bib11
  article-title: Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.200625199
– volume: 28
  start-page: 35
  year: 2005
  ident: 10.1016/j.biombioe.2010.12.008_bib37
  article-title: Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2004.04.009
– volume: 39
  start-page: 839
  year: 2008
  ident: 10.1016/j.biombioe.2010.12.008_bib16
  article-title: Microbial mineralization and assimilation of black carbon: dependency on degree of thermal alteration
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2008.04.020
– volume: 72
  start-page: 185
  year: 2001
  ident: 10.1016/j.biombioe.2010.12.008_bib22
  article-title: Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability
  publication-title: Field Crops Res
  doi: 10.1016/S0378-4290(01)00176-9
– volume: 70
  start-page: 1719
  year: 2006
  ident: 10.1016/j.biombioe.2010.12.008_bib33
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2005.0383
– volume: 3
  start-page: 397
  year: 2006
  ident: 10.1016/j.biombioe.2010.12.008_bib2
  article-title: Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions
  publication-title: Biogeosciences
  doi: 10.5194/bg-3-397-2006
– ident: 10.1016/j.biombioe.2010.12.008_bib23
– volume: 40
  start-page: 846
  year: 2009
  ident: 10.1016/j.biombioe.2010.12.008_bib34
  article-title: Black carbon decomposition under varying water regimes
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2009.05.004
– volume: 38
  start-page: 3387
  year: 2004
  ident: 10.1016/j.biombioe.2010.12.008_bib35
  article-title: Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry
  publication-title: Environ Sci Technol
  doi: 10.1021/es030124m
– start-page: 67
  year: 2009
  ident: 10.1016/j.biombioe.2010.12.008_bib26
  article-title: Biochar: nutrient properties and their Enhancement
– volume: 30
  start-page: 1479
  year: 1999
  ident: 10.1016/j.biombioe.2010.12.008_bib24
  article-title: An overview of fast pyrolysis of biomass
  publication-title: Org Geochem
  doi: 10.1016/S0146-6380(99)00120-5
– volume: 33
  start-page: 999
  year: 2009
  ident: 10.1016/j.biombioe.2010.12.008_bib18
  article-title: Modelling solid-convective flash pyrolysis of straw and wood in the pyrolysis centrifuge reactor
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2009.03.009
– volume: 89
  start-page: 231
  year: 2000
  ident: 10.1016/j.biombioe.2010.12.008_bib12
  article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus
  publication-title: Oikos
  doi: 10.1034/j.1600-0706.2000.890203.x
SSID ssj0014041
Score 2.4745812
Snippet Production of bio-oil, gas and biochar from pyrolysis of biomass is considered a promising technology for combined production of bioenergy and recalcitrant...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1182
SubjectTerms Applied sciences
Biochar
Biochar stability
biofuels
Biomass
carbon
carbon dioxide
Carbon sequestration
Charcoal
chemical analysis
climate change
Energy
Exact sciences and technology
Fuel processing. Carbochemistry and petrochemistry
Fuels
heat transfer
heat treatment
loam soils
polymerase chain reaction
pyrolysis
Pyrolysis centrifuge reactor
soil degradation
Solid fuel processing (coal, coke, brown coal, peat, wood, etc.)
temperature
Triticum aestivum
wheat straw
Title Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil
URI https://dx.doi.org/10.1016/j.biombioe.2010.12.008
https://www.proquest.com/docview/1524168940
https://www.proquest.com/docview/954603942
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VcoEDgkLV0LIyEtd0d23HsY9V1WoLopeyUm-WE9uw1TZZbbaHXvjtzORjaQWoB6REihw7cuzx-NmeeQPwScRC45WnwXuZyhL1oHPRpJPMB8ULCotCC8Wvl2o2l5-vs-sdOB18Ycisstf9nU5vtXWfMu5bc7xaLMZXFKzEZKiFu-Os1oNd5iTlxz-3Zh7EHtNGzcPMdFQpH3gJ3xyTizveoTPxom1BCjP59wnqWXQ1WU66BhsvdlEv_lDg7ax0_hpe9XCSnXQ1fgM7odqDlw9IBvdg_-y3Lxtm7Qdz8xZuL4YAJayOLLpmw1b367rlKGFEWdXzLbO6Ylh98s9iSyLkDSyuO38I5irPmh8I4VNS8ax06wJTl_hjbIFv8cnd3rOmXizfwfz87NvpLO2jL6SlNPkmNXrqYi4Cd8oUhkeDwCcGKXLvSld6EYUrp4roBsugTDQesUvUpQo-i9J7LfZht6qrcAAMMUjgHLNPPQK2EHXA7-VFppXIY9R5AtnQ5LbsqckpQsbSDjZoN3boKktdZafcYlclMN6WW3XkHE-WMEOP2kdiZnEGebLsAYqAdd9R-9r5FSfZaul9hEpg9EgutrXhCD81rhgT-DgIisXxS4cyrgr1XWMRPyEm1kZOEmD_yGMyqSbCSP7-P6p_CC-6_XCynzuC3c36LnxAQLUpRu2IGcHzk4svs8tfRDUhhA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH8a3QE4IBhMCx_DSFxD28Rx4uM0bWrZ1stWaTfL8Qd06pKq6Q7773kvccomQDsgJVLk2JFjPz__bL_3ewBfU18WeOWxs5bH3KAe1NrLeJRZJ5KSwqLQQvFiJiZz_v06u96B494Xhswqg-7vdHqrrUPKMLTmcLVYDC8pWInMUAt3x1m4BNoldqpsALtH07PJbHuYwEdtAEvKT6eV_IGj8M038nLH23VWXrQzSJEm_z5HPfO6JuNJ3WD7-S7wxR86vJ2YTl_Dq4Ao2VFX6Tew46o9ePmAZ3AP9k9-u7Nh1jCem7dwO-1jlLDaM6-bDVvdr-uWpoQRa1WgXGZ1xbD65KLFlsTJ65hfdy4RTFeWNT8Rxcek5ZnR6xJTl_hjbIFv8Unf3rOmXizfwfz05Op4EocADLHhMt_Eshhrn6cu0UKWMvESsY93PM2tNtrY1KfajAUxDhonpJcW4YsvjHA289zaIt2HQVVX7gAYwhCXJJh9bBGzOV84_F5eZoVIc--LPIKsb3JlAjs5BclYqt4M7Ub1XaWoq9Q4UdhVEQy35VYdP8eTJWTfo-qRpCmcRJ4se4AioPQPVMBqfpmQbLUMP6mI4PCRXGxrkyACLXDRGMGXXlAUDmE6l9GVq-8ahRAKYXEh-SgC9o88MuNilEqevP-P6n-G55Ori3N1Pp2dfYAX3fY4mdN9hMFmfec-Ib7alIdh_PwCGHskNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+fast+pyrolysis+temperature+on+biochar+labile+fraction+and+short-term+carbon+loss+in+a+loamy+soil&rft.jtitle=Biomass+%26+bioenergy&rft.au=Bruun%2C+Esben+W&rft.au=Hauggaard-Nielsen%2C+Henrik&rft.au=Ibrahim%2C+Norazana&rft.au=Egsgaard%2C+Helge&rft.date=2011-03-01&rft.issn=0961-9534&rft.volume=35&rft.issue=3&rft.spage=1182&rft.epage=1189&rft_id=info:doi/10.1016%2Fj.biombioe.2010.12.008&rft.externalDocID=US201400034936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon