Review of the Impact of Apple Fruit Ripening, Texture and Chemical Contents on Genetically Determined Susceptibility to Storage Rots

Fungal storage rots like blue mould, grey mould, bull’s eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world. Application of fungicides is nowadays severely restricted in many countries and production systems, and these problems are therefore likely to...

Full description

Saved in:
Bibliographic Details
Published inPlants (Basel) Vol. 9; no. 7; p. 831
Main Authors Nybom, Hilde, Ahmadi-Afzadi, Masoud, Rumpunen, Kimmo, Tahir, Ibrahim
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 02.07.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fungal storage rots like blue mould, grey mould, bull’s eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world. Application of fungicides is nowadays severely restricted in many countries and production systems, and these problems are therefore likely to increase. Considerable variation among apple cultivars in resistance/susceptibility has been reported, suggesting that efficient defence mechanisms can be selected for and used in plant breeding. These are, however, likely to vary between pathogens, since some fungi are mainly wound-mediated while others attack through lenticels or by infecting blossoms. Since mature fruits are considerably more susceptible than immature fruits, mechanisms involving fruit-ripening processes are likely to play an important role. Significant associations have been detected between the susceptibility to rots in harvested fruit and various fruit maturation-related traits like ripening time, fruit firmness at harvest and rate of fruit softening during storage, as well as fruit biochemical contents like acidity, sugars and polyphenols. Some sources of resistance to blue mould have been described, but more research is needed on the development of spore inoculation methods that produce reproducible data and can be used for large screenings, especially for lenticel-infecting fungi.
AbstractList Fungal storage rots like blue mould, grey mould, bull’s eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world. Application of fungicides is nowadays severely restricted in many countries and production systems, and these problems are therefore likely to increase. Considerable variation among apple cultivars in resistance/susceptibility has been reported, suggesting that efficient defence mechanisms can be selected for and used in plant breeding. These are, however, likely to vary between pathogens, since some fungi are mainly wound-mediated while others attack through lenticels or by infecting blossoms. Since mature fruits are considerably more susceptible than immature fruits, mechanisms involving fruit-ripening processes are likely to play an important role. Significant associations have been detected between the susceptibility to rots in harvested fruit and various fruit maturation-related traits like ripening time, fruit firmness at harvest and rate of fruit softening during storage, as well as fruit biochemical contents like acidity, sugars and polyphenols. Some sources of resistance to blue mould have been described, but more research is needed on the development of spore inoculation methods that produce reproducible data and can be used for large screenings, especially for lenticel-infecting fungi.
Fungal storage rots like blue mould, grey mould, bull's eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world. Application of fungicides is nowadays severely restricted in many countries and production systems, and these problems are therefore likely to increase. Considerable variation among apple cultivars in resistance/susceptibility has been reported, suggesting that efficient defence mechanisms can be selected for and used in plant breeding. These are, however, likely to vary between pathogens, since some fungi are mainly wound-mediated while others attack through lenticels or by infecting blossoms. Since mature fruits are considerably more susceptible than immature fruits, mechanisms involving fruit-ripening processes are likely to play an important role. Significant associations have been detected between the susceptibility to rots in harvested fruit and various fruit maturation-related traits like ripening time, fruit firmness at harvest and rate of fruit softening during storage, as well as fruit biochemical contents like acidity, sugars and polyphenols. Some sources of resistance to blue mould have been described, but more research is needed on the development of spore inoculation methods that produce reproducible data and can be used for large screenings, especially for lenticel-infecting fungi.Fungal storage rots like blue mould, grey mould, bull's eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world. Application of fungicides is nowadays severely restricted in many countries and production systems, and these problems are therefore likely to increase. Considerable variation among apple cultivars in resistance/susceptibility has been reported, suggesting that efficient defence mechanisms can be selected for and used in plant breeding. These are, however, likely to vary between pathogens, since some fungi are mainly wound-mediated while others attack through lenticels or by infecting blossoms. Since mature fruits are considerably more susceptible than immature fruits, mechanisms involving fruit-ripening processes are likely to play an important role. Significant associations have been detected between the susceptibility to rots in harvested fruit and various fruit maturation-related traits like ripening time, fruit firmness at harvest and rate of fruit softening during storage, as well as fruit biochemical contents like acidity, sugars and polyphenols. Some sources of resistance to blue mould have been described, but more research is needed on the development of spore inoculation methods that produce reproducible data and can be used for large screenings, especially for lenticel-infecting fungi.
Author Rumpunen, Kimmo
Tahir, Ibrahim
Nybom, Hilde
Ahmadi-Afzadi, Masoud
AuthorAffiliation 2 Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran; m.ahmadiafzadi@kgut.ac.ir
1 Department of Plant Breeding–Balsgård, Swedish University of Agricultural Sciences, Fjälkestadsvägen 459, 29194 Kristianstad, Sweden; kimmo.rumpunen@slu.se
3 Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, 23053 Alnarp, Sweden; ibrahim.tahir@slu.se
AuthorAffiliation_xml – name: 2 Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran; m.ahmadiafzadi@kgut.ac.ir
– name: 3 Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, 23053 Alnarp, Sweden; ibrahim.tahir@slu.se
– name: 1 Department of Plant Breeding–Balsgård, Swedish University of Agricultural Sciences, Fjälkestadsvägen 459, 29194 Kristianstad, Sweden; kimmo.rumpunen@slu.se
Author_xml – sequence: 1
  givenname: Hilde
  orcidid: 0000-0002-4355-8106
  surname: Nybom
  fullname: Nybom, Hilde
– sequence: 2
  givenname: Masoud
  orcidid: 0000-0002-4226-5643
  surname: Ahmadi-Afzadi
  fullname: Ahmadi-Afzadi, Masoud
– sequence: 3
  givenname: Kimmo
  orcidid: 0000-0003-3229-5010
  surname: Rumpunen
  fullname: Rumpunen, Kimmo
– sequence: 4
  givenname: Ibrahim
  surname: Tahir
  fullname: Tahir, Ibrahim
BackLink https://res.slu.se/id/publ/107347$$DView record from Swedish Publication Index
BookMark eNptUkFrHCEYHUpKk6Y59i700kM31XFm1EshbJt0IVDY7F0c_WbXMKNTdZLsvT-8TjeFbqgI6ud7z8_He1ucOO-gKN4TfEmpwJ_HXrkUBWaYU_KqOCvLki4Yq9jJP_vT4iLGe5wHz5M0b4pTWjYUM9qcFb_W8GDhEfkOpR2g1TAqnebT1Tj2gK7DZBNa2xGcddtPaANPaQqAlDNouYPBatWjpXcJch_IO3QDDtJc7ffoKyQIg3Vg0N0UNYzJtra3aY-SR3fJB7UFtPYpvited6qPcPG8nheb62-b5ffF7Y-b1fLqdqErwdJCUFIDxoIQwrXRXacqo-tWtIJrDiVvG1a2hABWRhFqWkwE57XpeGUYK4GeF6uDrPHqXo7BDirspVdW_in4sJUq5OZ7kJhi6IxWROG6MrVSuKl1UzUdlNSAEVnr8qAVH2Gc2iO12E-tCvMiI0iSja5YJnw5EDJ6AKOzYUH1R7zjG2d3cusfJKsIEaLMAh-fBYL_OUFMcrDZ1D5HAPwUZVmVszGY8wz98AJ676fgsrUzCnORE1NlFD2gdPAxBuiktkkl6-f3bZ8bl3PI5FHIMmvxgvX3C__H_wa2X9hs
CitedBy_id crossref_primary_10_1080_14620316_2024_2356059
crossref_primary_10_17660_ActaHortic_2022_1344_32
crossref_primary_10_3390_horticulturae8020086
crossref_primary_10_1590_0100_29452022905
crossref_primary_10_1093_jxb_erac093
crossref_primary_10_3390_jof10090660
crossref_primary_10_3389_fpls_2022_918202
crossref_primary_10_1128_spectrum_01455_22
crossref_primary_10_1016_j_postharvbio_2021_111646
crossref_primary_10_55230_mabjournal_v53i5_3140
crossref_primary_10_1002_fft2_535
crossref_primary_10_1016_j_jfca_2024_107000
crossref_primary_10_1016_j_postharvbio_2023_112532
crossref_primary_10_1016_j_scienta_2024_112853
crossref_primary_10_17660_ActaHortic_2023_1364_10
crossref_primary_10_1016_j_scienta_2021_110159
crossref_primary_10_21273_HORTSCI15828_21
crossref_primary_10_3390_plants10020415
crossref_primary_10_3390_jof11010026
crossref_primary_10_35868_1997_3004_39_49_59
crossref_primary_10_1016_j_postharvbio_2024_112889
crossref_primary_10_3390_toxins13100703
crossref_primary_10_1094_PDIS_12_22_2947_RE
crossref_primary_10_1016_j_foodcont_2024_110907
crossref_primary_10_3389_fpls_2021_644255
crossref_primary_10_3390_foods12193673
crossref_primary_10_1007_s11947_024_03467_0
crossref_primary_10_1016_j_jare_2022_12_004
Cites_doi 10.1016/j.funbio.2016.07.001
10.1111/pbr.12399
10.3390/microorganisms7110495
10.1146/annurev-phyto-082712-102349
10.1186/s12864-018-4934-0
10.1094/9780890544334
10.1007/s10725-018-0388-2
10.1016/j.ijfoodmicro.2019.108377
10.33585/cmy.71107
10.21273/HORTSCI.48.1.92
10.1111/mpp.12355
10.1016/S0007-1536(59)80052-8
10.21273/HORTSCI.43.2.420
10.17221/1890-HORTSCI
10.17660/ActaHortic.2019.1256.66
10.1007/s10658-015-0682-z
10.1016/S0925-5214(97)01416-6
10.1038/hortres.2014.46
10.1094/PDIS-05-16-0615-RE
10.1007/s10658-018-1539-z
10.3835/plantgenome2015.11.0113
10.1270/jsbbs.64.240
10.17660/eJHS.2019/84.3.4
10.3389/fpls.2017.01981
10.1186/s12864-015-1946-x
10.1007/s11295-012-0526-3
10.1038/s41438-018-0114-2
10.1094/PHYTO.2004.94.1.44
10.17660/eJHS.2019/84.3.3
10.1016/j.pmpp.2019.02.001
10.1093/jxb/erq130
10.1016/j.postharvbio.2015.08.008
10.1002/jsfa.2777
10.1093/jxb/err326
10.1093/jxb/erx017
10.1007/s10658-019-01812-0
10.3389/fpls.2017.01923
10.1002/jsfa.9827
10.17660/ActaHortic.2010.877.27
10.1016/j.plaphy.2017.09.024
10.1007/s11295-012-0554-z
10.1016/j.postharvbio.2018.12.018
10.1007/s10658-018-1481-0
10.1016/j.postharvbio.2018.10.011
10.2503/jjshs1.82.97
10.1016/j.mycres.2009.08.013
10.1021/jf010255b
10.1016/j.postharvbio.2013.03.001
10.1371/journal.pone.0172949
10.1007/s10681-005-6805-4
10.1186/s12864-016-2665-7
10.1007/s11295-008-0140-6
10.17221/42/2010-HORTSCI
10.1016/j.scienta.2014.10.014
10.1111/j.1574-6968.2006.00603.x
10.1080/07060661.2017.1421588
10.1094/PDIS.2001.85.6.657
10.1094/PDIS-11-10-0856
10.1111/j.1439-0523.2011.01849.x
10.1111/mpp.12734
10.1094/PDIS-11-16-1637-RE
10.1094/PHYTO-97-3-0384
10.1093/jxb/erx018
10.1016/j.postharvbio.2008.07.012
10.1111/ppa.13074
10.1007/s11032-017-0684-y
10.4141/cjps93-036
10.1080/07060660509507202
10.1111/j.1365-3059.2009.02232.x
10.1094/PDIS.1999.83.11.1051
10.1016/j.postharvbio.2015.12.004
10.1016/j.postharvbio.2011.02.006
10.21273/HORTSCI11209-16
10.1270/jsbbs.16018
10.1093/jxb/erp122
10.1016/S0925-5214(02)00110-2
10.3390/toxins10110475
10.1186/1471-2229-12-12
10.1016/j.scienta.2017.11.007
10.1094/PHYTO-96-0982
10.1016/j.ijfoodmicro.2014.02.022
10.1016/j.scienta.2006.12.018
10.17660/eJHS.2015/80.3.4
10.1007/s00438-012-0707-7
10.1371/journal.pgen.1004269
10.1023/A:1024886500979
10.2503/hortj.UTD-001
10.1016/j.postharvbio.2017.01.006
10.1016/j.ijfoodmicro.2016.01.007
10.1111/tpj.13145
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID AAYXX
CITATION
3V.
7SN
7SS
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.3390/plants9070831
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
ProQuest SciTech Premium Collection
Biological Sciences
Agriculture Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2223-7747
ExternalDocumentID oai_doaj_org_article_030efdca1a054d5aa065c646fe23ded9
oai_slubar_slu_se_107347
PMC7411992
10_3390_plants9070831
GroupedDBID 53G
5VS
7X2
7XC
8FE
8FH
AADQD
AAHBH
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
HYE
KQ8
LK8
M0K
M48
M7P
MODMG
M~E
OK1
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RPM
3V.
7SN
7SS
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADRAZ
ADTPV
AOWAS
D8T
IAG
IAO
IGH
IPNFZ
ISR
ITC
OZF
RIG
ZZAVC
PUEGO
ID FETCH-LOGICAL-c497t-9315e0091118cdcffa4dc5b9b98c8e28b672b11e0ada13db019885df84d772e3
IEDL.DBID M48
ISSN 2223-7747
IngestDate Wed Aug 27 01:27:20 EDT 2025
Thu Aug 21 06:37:07 EDT 2025
Thu Aug 21 18:20:11 EDT 2025
Thu Jul 10 22:45:25 EDT 2025
Fri Jul 25 11:59:11 EDT 2025
Tue Jul 01 00:40:08 EDT 2025
Thu Apr 24 22:58:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-9315e0091118cdcffa4dc5b9b98c8e28b672b11e0ada13db019885df84d772e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3229-5010
0000-0002-4355-8106
0000-0002-4226-5643
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/plants9070831
PMID 32630736
PQID 2420899074
PQPubID 2032347
ParticipantIDs doaj_primary_oai_doaj_org_article_030efdca1a054d5aa065c646fe23ded9
swepub_primary_oai_slubar_slu_se_107347
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7411992
proquest_miscellaneous_2421118088
proquest_journals_2420899074
crossref_citationtrail_10_3390_plants9070831
crossref_primary_10_3390_plants9070831
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200702
PublicationDateYYYYMMDD 2020-07-02
PublicationDate_xml – month: 7
  year: 2020
  text: 20200702
  day: 2
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Plants (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tannous (ref_62) 2018; 19
Stensvand (ref_72) 2013; 78
Cameldi (ref_41) 2016; 100
Everett (ref_67) 2018; 152
Kondo (ref_75) 2009; 51
Bui (ref_23) 2019; 99
Prusky (ref_14) 2013; 51
ref_97
Levin (ref_79) 2019; 149
Kenis (ref_92) 2008; 4
Guthrie (ref_45) 1959; 42
Spotts (ref_25) 1999; 83
ref_18
Liu (ref_35) 2017; 37
(ref_40) 2007; 34
Vilanova (ref_64) 2017; 120
Torres (ref_73) 2003; 27
Vico (ref_66) 2019; 106
Gariepy (ref_44) 2005; 27
Brookfield (ref_86) 1997; 11
Tahir (ref_15) 2015; 80
Janisiewicz (ref_57) 2016; 117
Bink (ref_82) 2017; 68
Bai (ref_101) 2012; 287
Sun (ref_61) 2017; 127
Velho (ref_37) 2016; 120
Vilanova (ref_63) 2014; 178
Tahir (ref_48) 2014; 79
Konstantinou (ref_21) 2011; 95
Da (ref_90) 2016; 221
Zhu (ref_87) 2012; 8
Keshavarzi (ref_58) 2014; 16
Guan (ref_22) 2015; 143
Lv (ref_76) 2018; 229
Bogo (ref_39) 2018; 40
Janisiewicz (ref_56) 2008; 43
Aguilar (ref_46) 2017; 101
Everett (ref_28) 2017; 70
Xu (ref_50) 2010; 59
Jurick (ref_31) 2011; 130
Peniche (ref_53) 2014; 180
Bianco (ref_83) 2016; 86
Nybom (ref_6) 2015; 110
Coton (ref_68) 2020; 313
Cameldi (ref_42) 2017; 51
DeEll (ref_1) 1993; 73
Nybom (ref_2) 2010; 34
Costa (ref_88) 2011; 61
Gong (ref_54) 2019; 150
ref_80
Dayatilake (ref_91) 2014; 1
Orsel (ref_51) 2018; 85
Spotts (ref_17) 2009; 113
ref_85
Lattanzio (ref_11) 2001; 49
Suktawee (ref_26) 2019; 88
(ref_3) 2019; 71
Liu (ref_36) 2017; 136
Biggs (ref_27) 2001; 85
Grammen (ref_9) 2019; 153
(ref_38) 2011; 38
Prusky (ref_13) 2007; 268
Costa (ref_77) 2005; 141
Sutton (ref_29) 2006; 96
Ma (ref_24) 2017; 66
Cameldi (ref_43) 2019; 68
ref_59
Vanderzande (ref_98) 2019; 6
Kviklys (ref_74) 2006; 4
Nybom (ref_78) 2013; 9
Tahir (ref_4) 2013; 48
Longhi (ref_100) 2012; 63
ref_69
Kunihisa (ref_94) 2016; 66
Tahir (ref_47) 2010; 877
ref_65
Ballester (ref_52) 2017; 8
Tahir (ref_49) 2019; 84
Davey (ref_8) 2007; 87
Weber (ref_20) 2013; 78
Tahir (ref_70) 2004; 12
Costa (ref_99) 2010; 61
Urrestarazu (ref_84) 2017; 8
Liebhard (ref_95) 2003; 52
ref_34
Spoor (ref_60) 2019; 84
ref_32
Tahir (ref_71) 2007; 112
Alexander (ref_89) 2016; 51
Kunihisa (ref_93) 2014; 64
Hadas (ref_55) 2007; 97
Johnston (ref_10) 2009; 60
Prusky (ref_12) 2004; 94
Farneti (ref_81) 2017; 68
Bi (ref_33) 2016; 17
Tahir (ref_19) 2019; 1256
ref_102
Tahir (ref_5) 2013; 82
Morimoto (ref_96) 2013; 82
Grammen (ref_30) 2019; 155
ref_7
(ref_16) 2015; 34
References_xml – volume: 120
  start-page: 1184
  year: 2016
  ident: ref_37
  article-title: Modulation of oxidative responses by a virulent isolate of Colletotrichum fructicola in apple leaves
  publication-title: Fungal Biol.
  doi: 10.1016/j.funbio.2016.07.001
– volume: 136
  start-page: 119
  year: 2017
  ident: ref_36
  article-title: Investigation and genetic mapping of a Glomerella leaf spot resistance locus in apple
  publication-title: Plant Breed.
  doi: 10.1111/pbr.12399
– ident: ref_65
  doi: 10.3390/microorganisms7110495
– volume: 51
  start-page: 155
  year: 2013
  ident: ref_14
  article-title: Quiescent and necrotrophic lifestyle choice during postharvest disease development
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-082712-102349
– ident: ref_34
  doi: 10.1186/s12864-018-4934-0
– ident: ref_18
  doi: 10.1094/9780890544334
– volume: 85
  start-page: 375
  year: 2018
  ident: ref_51
  article-title: Genome-wide expression analysis suggests a role for jasmonates in the resistance to blue mold in apple
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-018-0388-2
– volume: 313
  start-page: 108377
  year: 2020
  ident: ref_68
  article-title: Production and migration of patulin in Penicillium expansum molded apples during cold and ambient storage
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2019.108377
– volume: 71
  start-page: 99
  year: 2019
  ident: ref_3
  article-title: Comparison of the occurrence of fungi causing postharvest diseases in apples grown in organic and integrated production systems in orchards in the Czech Republic
  publication-title: Czech Mycol.
  doi: 10.33585/cmy.71107
– volume: 48
  start-page: 92
  year: 2013
  ident: ref_4
  article-title: Tailoring organic apples by cultivar selection, production system, and postharvest treatment to improve quality and storage life
  publication-title: HortScience
  doi: 10.21273/HORTSCI.48.1.92
– volume: 17
  start-page: 1178
  year: 2016
  ident: ref_33
  article-title: Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12355
– volume: 42
  start-page: 502
  year: 1959
  ident: ref_45
  article-title: The occurrence of Pezicula alba sp.nov. and P. malicorticis, the perfect state of Gloeosporium album and G. perennans, in England
  publication-title: Trans. Brit. Mycol. Soc.
  doi: 10.1016/S0007-1536(59)80052-8
– volume: 43
  start-page: 420
  year: 2008
  ident: ref_56
  article-title: Preliminary evaluation of apple germplasm from Kazakhstan for resistance to postharvest blue mold in fruit caused by Penicillium expansum
  publication-title: HortScience
  doi: 10.21273/HORTSCI.43.2.420
– volume: 34
  start-page: 107
  year: 2007
  ident: ref_40
  article-title: Ideotype of apples with resistance to storage diseases
  publication-title: Hort. Sci. (Prague)
  doi: 10.17221/1890-HORTSCI
– volume: 1256
  start-page: 463
  year: 2019
  ident: ref_19
  article-title: What spoils Swedish apples during storage?
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2019.1256.66
– volume: 143
  start-page: 317
  year: 2015
  ident: ref_22
  article-title: Role of lenticels and microcracks on susceptibility of apple fruit to Botryosphaeria dothidea
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-015-0682-z
– volume: 11
  start-page: 23
  year: 1997
  ident: ref_86
  article-title: Starch degradation and starch pattern indices; interpretation and relationship to maturity
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(97)01416-6
– volume: 1
  start-page: 14046
  year: 2014
  ident: ref_91
  article-title: Genetic and environmental control of fruit maturation, dry matter and firmness in apple (Malus × domestica Borkh.)
  publication-title: Hortic. Res.
  doi: 10.1038/hortres.2014.46
– volume: 100
  start-page: 11
  year: 2016
  ident: ref_41
  article-title: Influence of harvest date on bull’s eye rot of ‘Cripps Pink’ apple and control chemcial strategies
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-05-16-0615-RE
– volume: 153
  start-page: 47
  year: 2019
  ident: ref_9
  article-title: Identification and pathogenicity assessment of Colletotrichum isolates causing bitter rot of apple fruit in Belgium
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-018-1539-z
– ident: ref_97
  doi: 10.3835/plantgenome2015.11.0113
– volume: 64
  start-page: 240
  year: 2014
  ident: ref_93
  article-title: Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop
  publication-title: Breed. Sci.
  doi: 10.1270/jsbbs.64.240
– volume: 84
  start-page: 142
  year: 2019
  ident: ref_49
  article-title: Application of alkylresorcinols in an organic apple orchard for protection against storage diseases
  publication-title: Eur. J. Horticult. Sci.
  doi: 10.17660/eJHS.2019/84.3.4
– volume: 8
  start-page: 1981
  year: 2017
  ident: ref_52
  article-title: Transcriptomic response of resistant (PI613981–Malus sieversii) and susceptible (Royal Gala) genotypes of apple to blue mold (Penicillium expansum) infection
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01981
– ident: ref_80
  doi: 10.1186/s12864-015-1946-x
– volume: 8
  start-page: 1389
  year: 2012
  ident: ref_87
  article-title: Multiple plant hormones and cell wall metabolism regulate apple fruit maturation patterns and texture attributes
  publication-title: Tree Genet. Genomes
  doi: 10.1007/s11295-012-0526-3
– volume: 6
  start-page: 30
  year: 2019
  ident: ref_98
  article-title: Validation of SNP markers for fruit quality and disease resistance loci in apple (Malus × domestica Borkh.) using the OpenArray® platform
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-018-0114-2
– volume: 94
  start-page: 44
  year: 2004
  ident: ref_12
  article-title: Relationship between host acidification and virulence of Penicillium spp. on apple and citrus fruit
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.2004.94.1.44
– volume: 84
  start-page: 131
  year: 2019
  ident: ref_60
  article-title: Chemical contents and blue mould susceptibility in Swedish-grown cider apple cultivars
  publication-title: Eur. J. Hortic. Sci.
  doi: 10.17660/eJHS.2019/84.3.3
– volume: 106
  start-page: 166
  year: 2019
  ident: ref_66
  article-title: Dynamic changes in common metabolites and antioxidants during Penicillium expansum-apple fruit interactions
  publication-title: Physiol. Molec. Plant Pathol.
  doi: 10.1016/j.pmpp.2019.02.001
– volume: 61
  start-page: 3029
  year: 2010
  ident: ref_99
  article-title: QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus × domestica Borkh.)
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq130
– volume: 110
  start-page: 173
  year: 2015
  ident: ref_6
  article-title: Biochemical contents of apple peel and flesh affect level of partial resistance to blue mold
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2015.08.008
– volume: 87
  start-page: 802
  year: 2007
  ident: ref_8
  article-title: Relation of apple vitamin C and antioxidant contents to harvest date and postharvest pathogen infection
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.2777
– volume: 63
  start-page: 1107
  year: 2012
  ident: ref_100
  article-title: Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus × domestica Borkh.)
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err326
– volume: 78
  start-page: 97
  year: 2013
  ident: ref_20
  article-title: Fungi associated with blossom-end rot of apples in Germany
  publication-title: Eur. J. Hortic. Sci.
– volume: 68
  start-page: 1451
  year: 2017
  ident: ref_82
  article-title: Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx017
– volume: 155
  start-page: 801
  year: 2019
  ident: ref_30
  article-title: Susceptibility of apple fruits (Malus × domestica Borkh.) to the postharvest pathogen Colletotrichum fioriniae: Cultivar differences and correlation with fruit ripening characteristics
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-019-01812-0
– volume: 8
  start-page: 1923
  year: 2017
  ident: ref_84
  article-title: Genome-wide association mapping of flowering and ripening periods in apple
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01923
– volume: 99
  start-page: 5662
  year: 2019
  ident: ref_23
  article-title: Botrytis cinereal differentially induces postharvest antioxidant responses in ‘Braeburn’ and ‘Golden Delicious’ apple fruit
  publication-title: J. Sci. Food Agricult.
  doi: 10.1002/jsfa.9827
– volume: 4
  start-page: 427
  year: 2006
  ident: ref_74
  article-title: Post-harvest fruit rot incidence depending on apple maturity
  publication-title: Agron. Res.
– volume: 877
  start-page: 245
  year: 2010
  ident: ref_47
  article-title: Improving quality and storability of apples by a combination of aluminum reflective mulch, summer pruning and controlled nitrogen fertilization
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2010.877.27
– volume: 120
  start-page: 132
  year: 2017
  ident: ref_64
  article-title: Penicillium expansum (compatible) and Penicillium digitatum (non-host) pathogen infection differentially alter ethylene biosynthesis in apple fruit
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2017.09.024
– volume: 9
  start-page: 279
  year: 2013
  ident: ref_78
  article-title: DNA marker-assisted evaluation of fruit firmness at harvest and post-harvest fruit softening in a diverse apple germplasm
  publication-title: Tree Genet. Genomes
  doi: 10.1007/s11295-012-0554-z
– volume: 150
  start-page: 95
  year: 2019
  ident: ref_54
  article-title: A comparison of postharvest physiology, quality and volatile compounds of ‘Fuji’ and ‘Delicious’ apples inoculated with Penicillium expansum
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2018.12.018
– volume: 152
  start-page: 367
  year: 2018
  ident: ref_67
  article-title: Infection criteria, inoculum sources and splash dispersal pattern of Colletotrichum acutatum causing bitter rot of apple in New Zealand
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-018-1481-0
– volume: 149
  start-page: 209
  year: 2019
  ident: ref_79
  article-title: Identification of pathogenicity-related genes and the role of a subtilisin-related peptidase S8 (PePRT) in authophagy and virulence of Penicillium expansum on apples
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2018.10.011
– volume: 82
  start-page: 97
  year: 2013
  ident: ref_96
  article-title: A major QTL controlling earliness of fruit maturity linked to the red leaf/red flesh trait in apple cv. ‘Maypole’
  publication-title: J. Jpn. Soc. Hortic. Sci.
  doi: 10.2503/jjshs1.82.97
– volume: 113
  start-page: 1301
  year: 2009
  ident: ref_17
  article-title: Description of Cryptosporiopsis kienholzii and species profiles of Neofabraea in major pome fruit growing districts in the Pacific Northwest USA
  publication-title: Mycol. Res.
  doi: 10.1016/j.mycres.2009.08.013
– volume: 49
  start-page: 5817
  year: 2001
  ident: ref_11
  article-title: Low temperature metabolism of apple phenolics and quiescence of Phlyctaena vagabunda
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf010255b
– volume: 82
  start-page: 51
  year: 2013
  ident: ref_5
  article-title: Impact of harvesting time and fruit firmness on the tolerance to fungal storage diseases in an apple germplasm collection
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2013.03.001
– ident: ref_59
  doi: 10.1371/journal.pone.0172949
– volume: 141
  start-page: 181
  year: 2005
  ident: ref_77
  article-title: Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh)
  publication-title: Euphytica
  doi: 10.1007/s10681-005-6805-4
– ident: ref_32
  doi: 10.1186/s12864-016-2665-7
– volume: 4
  start-page: 647
  year: 2008
  ident: ref_92
  article-title: Identifiction and stability of QTLs for fruit quality traits in apple
  publication-title: Tree Genet. Genomes
  doi: 10.1007/s11295-008-0140-6
– volume: 38
  start-page: 1
  year: 2011
  ident: ref_38
  article-title: Changes in phenols composition and activity of phenylalanine-ammonia lyase in apples after fungal infections
  publication-title: Hortic. Sci. (Prague)
  doi: 10.17221/42/2010-HORTSCI
– volume: 180
  start-page: 86
  year: 2014
  ident: ref_53
  article-title: Effect of maturity stage, ripening time, harvest year and fruit characteristics on the susceptibility to Penicillium expansum link. of apple genotypes from Queretaro, Mexico
  publication-title: Scientia Hortic.
  doi: 10.1016/j.scienta.2014.10.014
– volume: 268
  start-page: 1
  year: 2007
  ident: ref_13
  article-title: Activation of quiescent infections by postharvest pathogens during transition from the biotrophic to the necrotrophic stage
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2006.00603.x
– volume: 40
  start-page: 229
  year: 2018
  ident: ref_39
  article-title: Characterization of Neofabraea actinidiae and N. brasiliensis as causal agents of apple bull’s-eye rot in southern Brazil
  publication-title: Can. J. Plant Pathol.
  doi: 10.1080/07060661.2017.1421588
– volume: 12
  start-page: 223
  year: 2004
  ident: ref_70
  article-title: Evaluation of scab resistant apple cultivars in Sweden
  publication-title: J. Fruit Ornament. Plant Res.
– volume: 34
  start-page: 15
  year: 2010
  ident: ref_2
  article-title: Fungal disease and fruit quality in an apple orchard converted from integrated production to organic production
  publication-title: J. Sustain. Agric.
– volume: 34
  start-page: 2
  year: 2015
  ident: ref_16
  article-title: Fungi causing storage rot of apple fruit in integrated pest management system and their sensitivity to fungicides
  publication-title: Rural Sustain. Res.
– volume: 85
  start-page: 657
  year: 2001
  ident: ref_27
  article-title: Relative susceptibility of selected apple cultivars to Colletotrichum acutatum
  publication-title: Plant Dis.
  doi: 10.1094/PDIS.2001.85.6.657
– volume: 95
  start-page: 666
  year: 2011
  ident: ref_21
  article-title: Postharvest fruit rots of apple in Greece: Pathogen incidence and relationships between fruit quality parameters, cultivar susceptibility, and patulin production
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-11-10-0856
– volume: 130
  start-page: 481
  year: 2011
  ident: ref_31
  article-title: Identification of wild apple germplasm (Malus spp.) accessions with resistance to the postharvest decay pathogens Penicillium expansum and Colletotrichum acutatum
  publication-title: Plant Breed.
  doi: 10.1111/j.1439-0523.2011.01849.x
– volume: 19
  start-page: 2635
  year: 2018
  ident: ref_62
  article-title: Fungal attack and host defence pathways unveiled in near-avirulent interactions of Penicillium expansum creA mutants on apples
  publication-title: Molec. Plant Pathol.
  doi: 10.1111/mpp.12734
– volume: 101
  start-page: 800
  year: 2017
  ident: ref_46
  article-title: Timing of apple fruit infection by Neofabraea perennans and Neofabraea kienholzii in relation to bull’s-eye rot development in stored apple fruit
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-11-16-1637-RE
– volume: 97
  start-page: 384
  year: 2007
  ident: ref_55
  article-title: Involvement of gluconic acid and glucose oxidase in the pathogenicity of Penicillium expansum in apples
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-97-3-0384
– volume: 70
  start-page: 106
  year: 2017
  ident: ref_28
  article-title: A simple method for conidial production and establishing latent infections of apples by Phlyctema vagabunda (syn: Neofabraea alba)
  publication-title: N. Z. Plant Protect.
– volume: 68
  start-page: 1467
  year: 2017
  ident: ref_81
  article-title: Genome-wide association study unravels the genetic control of the apple volatilome and its interplay with fruit texture
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx018
– volume: 51
  start-page: 281
  year: 2009
  ident: ref_75
  article-title: Effects of auxin and jasmonates on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase gene expression during ripening on apple fruit
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2008.07.012
– volume: 68
  start-page: 1525
  year: 2019
  ident: ref_43
  article-title: Effect of apple cultivars and storage periods on the virulence of Neofabraea spp.
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.13074
– volume: 37
  start-page: 96
  year: 2017
  ident: ref_35
  article-title: Rapid location of Glomerella leaf spot resistance gene locus in apple by whole genome re-sequencing
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-017-0684-y
– volume: 73
  start-page: 223
  year: 1993
  ident: ref_1
  article-title: Postharvest physiological disorders, diseases and mineral concentrations of organically and conventionally grown Mclntosh and Cortland apples
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/cjps93-036
– volume: 27
  start-page: 118
  year: 2005
  ident: ref_44
  article-title: Neofabraea species associated with bull’s-eye rot and cankers of apple and pear in the Pacific Northwest
  publication-title: Can. J. Plant Pathol.
  doi: 10.1080/07060660509507202
– volume: 59
  start-page: 542
  year: 2010
  ident: ref_50
  article-title: Effects of fruit maturity and wetness on the infection of apple fruit by Neonectria galligena
  publication-title: Plant Pathol.
  doi: 10.1111/j.1365-3059.2009.02232.x
– volume: 78
  start-page: 232
  year: 2013
  ident: ref_72
  article-title: Harvest time influences incidence of storage diseases and fruit quality in organically grown ‘Aroma’ apples
  publication-title: Eur. J. Hortic. Sci.
– volume: 83
  start-page: 1051
  year: 1999
  ident: ref_25
  article-title: Variability in postharvest decay among apple cultivars
  publication-title: Plant Dis.
  doi: 10.1094/PDIS.1999.83.11.1051
– volume: 117
  start-page: 132
  year: 2016
  ident: ref_57
  article-title: Wound responses of wild apples suggest multiple resistance mechanism against blue mold decay
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2015.12.004
– volume: 61
  start-page: 21
  year: 2011
  ident: ref_88
  article-title: Assessment of apple (Malus × domestica Borkh.) fruit texture by a combined acoustic-mechanical profiling strategy
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2011.02.006
– volume: 51
  start-page: 1489
  year: 2016
  ident: ref_89
  article-title: Regional variation in juice quality characteristics of four cider apple (Malus × domestica Borkh.) cultivars in Northwest and Central Washington
  publication-title: HortScience
  doi: 10.21273/HORTSCI11209-16
– volume: 66
  start-page: 499
  year: 2016
  ident: ref_94
  article-title: Genomic dissection of a ‘Fuji’ apple cultivar: Re-sequencing, SNP marker development, definition of haplotypes, and QTL detection
  publication-title: Breed Sci.
  doi: 10.1270/jsbbs.16018
– volume: 79
  start-page: 218
  year: 2014
  ident: ref_48
  article-title: Alkylresorcinols isolated from rye bran inhibit growth of Penicillium expansum and Neofabraea perennans in vitro and on fungal-inoculated fruits of four apple cultivars
  publication-title: Eur. J. Hortic. Sci.
– volume: 60
  start-page: 2689
  year: 2009
  ident: ref_10
  article-title: Coordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp122
– volume: 27
  start-page: 235
  year: 2003
  ident: ref_73
  article-title: Possible involvement of hydrogen peroxide in the development of resistance mechanisms in ‘Golden Delicious’ apple fruit
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(02)00110-2
– ident: ref_69
  doi: 10.3390/toxins10110475
– volume: 66
  start-page: 206
  year: 2017
  ident: ref_24
  article-title: The phenylpropanoid pathway affects apple fruit resistance to Botrytis cinerea
  publication-title: J. Phytopathol.
– ident: ref_7
  doi: 10.1186/1471-2229-12-12
– volume: 229
  start-page: 157
  year: 2018
  ident: ref_76
  article-title: Effects of methyl jasmonate on expression of genes involved in ethylene biosynthesis and signaling pathway during postharvest ripening of apple fruit
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2017.11.007
– volume: 96
  start-page: 982
  year: 2006
  ident: ref_29
  article-title: Clarification of the etiology of Glomerella leaf spot and bitter rot of apple caused by Colletotrichum spp. based on morphology and genetic, molecular, and pathogenicity tests
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-96-0982
– ident: ref_102
– volume: 51
  start-page: 155
  year: 2017
  ident: ref_42
  article-title: Characterization of Neofabraea vagabunda isolates causing apple bull’s eye rot in Italy (Emilia-Romagna region)
  publication-title: Plant Pathol.
– volume: 16
  start-page: 635
  year: 2014
  ident: ref_58
  article-title: Blue mold (Penicillium expansum) decay resistance in apple cultivars, and its association with fruit physicochemical traits
  publication-title: J. Agric. Sci. Technol.
– volume: 178
  start-page: 39
  year: 2014
  ident: ref_63
  article-title: Acidification of apple and orange hosts by Penicillium digitatum and Penicillium expansum
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2014.02.022
– volume: 112
  start-page: 164
  year: 2007
  ident: ref_71
  article-title: Improvement of quality and storability of apple cv. Aroma by adjustment of some pre-harvest conditions
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2006.12.018
– volume: 80
  start-page: 117
  year: 2015
  ident: ref_15
  article-title: Susceptibility to blue mold caused by Penicillium expansum in apple cultivars adapted to a cool climate
  publication-title: Eur. J. Hort. Sci.
  doi: 10.17660/eJHS.2015/80.3.4
– volume: 287
  start-page: 663
  year: 2012
  ident: ref_101
  article-title: A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple
  publication-title: Mol. Genet. Genom.
  doi: 10.1007/s00438-012-0707-7
– ident: ref_85
  doi: 10.1371/journal.pgen.1004269
– volume: 52
  start-page: 511
  year: 2003
  ident: ref_95
  article-title: Mapping quantitative physiological traits in apple (Malus × domestica Borkh.)
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1024886500979
– volume: 88
  start-page: 41
  year: 2019
  ident: ref_26
  article-title: n-Propyl dihydrojasmonates influence ethylene signal transduction in infected apple fruit by Botrytis cinerea
  publication-title: Hortic. J.
  doi: 10.2503/hortj.UTD-001
– volume: 127
  start-page: 68
  year: 2017
  ident: ref_61
  article-title: Composition of phenolic compounds in wild apple with multiple resistance mechanisms against postharvest blue mold decay
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2017.01.006
– volume: 221
  start-page: 54
  year: 2016
  ident: ref_90
  article-title: Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2016.01.007
– volume: 86
  start-page: 62
  year: 2016
  ident: ref_83
  article-title: Development and validation of the Axiom®Apple 480 K SNP genotyping array
  publication-title: Plant J.
  doi: 10.1111/tpj.13145
SSID ssj0000800816
Score 2.2914586
SecondaryResourceType review_article
Snippet Fungal storage rots like blue mould, grey mould, bull’s eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world....
Fungal storage rots like blue mould, grey mould, bull's eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world....
SourceID doaj
swepub
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 831
SubjectTerms Acidity
Apples
Bitter rot
Blue mold
Botrytis cinerea
Brown rot
Colletotrichum
Crop diseases
Cultivars
disease resistance
Fruits
Fungi
Fungicides
Genetics and Breeding
Genetik och förädling
Grey mold
Harvesting
Infections
Inoculation
Malus × domestica
Marketing
Maturation
Methods
Mold
Monilinia
Neofabraea
Pathogens
Pesticides
Physiology
Plant breeding
Polyphenols
Production methods
Review
Ripening
Sugar
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pq9QwEA7y8OBF_InVp4wgennlbZu0TY8-dXkKenhvhXcraTLBlaVdtu1h7_7hzqTd5VUQL55K2ykkmUnmm-nkixBvyKNamaGMM79QTKrNU8rL2GeItS7zMsl4o_DXb_nld_XlJru5ddQX14SN9MDjwJ2TEaJ31iSGwIXLjCGfaXOVe0ylQxe27pHPuxVM_ZxwkE7ykVRTUlx_vt1wXQmFgny01swJBa7-GcD8szxyRiIaHM_ygbg_IUZ4P7b0obiDzSNx96IlVLd_LH6NyX1oPRCUg89h0yPfMbxEWO6GdQ9X6y1y_uMMVrQWDzsE0zg4cAVAYKiiZkPbANNQh_T2Zg8fp1IZdHA9dKH-JZTS7qFv4ZqCdVqL4Krtuyditfy0-nAZTycrxFaVRR-XklRA6IoWOm2d9d4oZ7O6rEttNaa6zou0ThJcGGcS6WrCgVpnzmvlCI2jfCpOmrbBZwIMA5Y0Z9illKXgI_ELjbbw1ruSFBOJs8NIV3ZiHefDLzYVRR-smGqmmEi8PYpvR7qNvwlesNqOQsySHR6Q7VST7VT_sp1InB6UXk1Tt6tSLjgoOWcQidfH1zTp-E-KabAdggwPHa3QkShmxjJr0PxNs_4R6LsJw3HNbyTejWY1-6TbDLXZ8aXqkLpeSFU8_x99fSHupZwq4Mx0eipO-t2ALwlP9fWrMHV-AzSJJDI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELag5cAF8RShBRkJwaVRN2_nhFjoqiBRoe0i9RY59hhWWsXbPA5754cz43gXBQlOUWIncjKe8TfjyTeMvcEVVSUZJGFmZimRapNKmSQ0GUAtyryMMvpR-OtVfvk9_XKT3fiAW-fTKvc20RlqbRXFyM9j2gcuyZV7v70NqWoU7a76Ehp32TGaYIHO1_H84urb8hBlITwkonwk10zQvz_fbii_BJ9DJbYmi5Hj7J8Azb_TJCdkom4BWjxkDzxy5B9GUT9id6B5zO7NLaK73RP2awzyc2s4Qjr-2f38SGcEM4Ev2mHd8-V6CxQHOeMrtMlDC1w2mu85A7hjqsJhc9twoqN2Ye7Njn_yKTOg-fXQuTwYl1K7473l1-i0o03iS9t3T9lqcbH6eBn6CguhSsuiD8sERYEoCw2eUFoZI1OtsrqsS6EExKLOi7iOIphJLaNE14gHhci0EalGVA7JM3bU2AaeMy4JuMQ5wa80VeiERGYmQBVGGV3GszJgZ_svXSnPPk5FMDYVeiEkmGoimIC9PXTfjrQb_-o4J7EdOhFbtrtg2x-VV74KDRkYrWQkEaDqTErEXSpPcwNxokHj4E73Qq-8CnfVnwkXsNeHZlQ-2lGRDdjB9aFPh5Y6YMVkskwGNG1p1j8djTdiOcr9Ddi7cVpNbuk2Qy1bOlQd4KsXSVq8-P8wT9j9mIIBFHuOT9lR3w7wEhFTX7_yavEbEd0cCQ
  priority: 102
  providerName: ProQuest
Title Review of the Impact of Apple Fruit Ripening, Texture and Chemical Contents on Genetically Determined Susceptibility to Storage Rots
URI https://www.proquest.com/docview/2420899074
https://www.proquest.com/docview/2421118088
https://pubmed.ncbi.nlm.nih.gov/PMC7411992
https://res.slu.se/id/publ/107347
https://doaj.org/article/030efdca1a054d5aa065c646fe23ded9
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5By4FLxVMYSrRICC41xPba3j0gREqjgtQKpanUm7XeBwRZduuH1Nz7w5lZO6nMQ-IUJZ5E652dmW8m428IeQ0RVUWxifzYThmSaqNJ2ci3sTE5F4kIYnxQ-OQ0OT5nXy_ii1tKoWEDm7-mdjhP6rwu3l1frT-CwX_AjBNS9veXBbaMQJaHU7Pukl0ISina6MmA9H8OwIi7QagYEAFTsrRn3PzzF0YRyhH5j9Dn772TI4ZRF5XmD8jeACfpp17_D8kdUz4i92YVQL71Y3LTV_5pZSngPPrFPRGJ7xB7Gjqvu1VLFyu4YQhgB3QJjrqrDZWlphsiAeroq2DZtCopclS72nexpp-HPhqj6VnXuOYY12e7pm1FzyCTB0dFF1XbPCHL-dHy8Ngfxi74iom09UUE-gHoBV6QK62slUyrOBe54IqbkOdJGuZBYKZSyyDSOYBEzmNtOdMA1U30lOyUVWmeESoRzYQJYjLGFGQmgZ1yo1KrrBbhVHjkYLPTmRooyXEyRpFBaoKKyUaK8cibrfhlz8XxL8EZqm0rhBTa7oOq_p4NFpmBdzNWKxlIQK06lhLAmEpYYk0YaaNhcfsbpWebY5mF2I0gsKDgkVfby2CR-DeLLE3VORncOnDfHklHh2W0oPGVcvXDcXsDwMOGYI-87Y_V6CtN0eWyxpesMXDracTS5_8t-YLcD7FYgLXpcJ_stHVnXgKiavMJ2Z0dnX5bTFxFYuIs5xeduyew
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VFAkuiKdqKLBIPC61anv9PCBEaKOEthFKg9Sbtd5HiRTZwQ-h3Pk7_Edm1naQkeDWU-R4E493Zna-mZ2dIeQ1WFTBAsXsQDs-FtVGldLM1oFSWZyEiRvgQeGLeTj96n--Cq72yK_-LAymVfZrolmoZSEwRn7s4T5wgq7ch813G7tG4e5q30KjFYsztf0BLlv1fnYC_H3jeZPT5aep3XUVsIWfRLWdMHg8IAtQ8lhIoTX3pQiyJEtiESsvzsLIy1xXOVxyl8kMMFAcB1LHvgQkqhj87S2y7zPwZEZkf3w6_7LYBXUQfsVu2NbyZCxxjjdrTGcBsrGj18D2mRYBA1z7d1bmoHapsXeT--ReB1Tpx1ayHpA9lT8kt8cFgMntI_Kz3VOghaaAIOnMnLXEK0S1ik7KZlXTxWqjMOxyRJdgAppSUZ5L2pcooKYwFpBNi5xi9WsTVV9v6UmXoaMkvWwqk3ZjMni3tC7oZQ0ye63ooqirx2R5E1P_hIzyIlcHhHLESV6IaM_3Bfg8rnZiJSIttEw8J7HIUT_TqeiKnWPPjXUKTg8yJh0wxiJvd8M3bZWPfw0cI9t2g7A4t_miKK_TTtdTWDeVloK7HPCwDDgHmCdCP9TKY1JJIO6wZ3rarRhV-ke-LfJqdxt0HTdweK6KxozBqQPDYJFoICwDgoZ38tU3UzUcoCOmGlvkXStWg59U6ybjJX6klYJXj5gfPf0_mS_Jneny4jw9n83PnpG7HsYhMOztHZJRXTbqOYC1OnvRqQgl6Q0r5W8T71i0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWLkJcEE9RWMBIPC4bNe_HASFKt9qyUK26Rdpb5NjjpVKVlCYR6p0_xb9jxkmKggS3PVVpnGhiz9jfjMffMPYKV1TpBeBZgbZ9ItUmk9KepQOALE7CxAnooPCXeXj61f90GVwesF_dWRhKq-zmRDNRq0JSjHzk0j5wQq7cSLdpEeeT6fvNd4sqSNFOa1dOo1GRM9j9QPetfDeb4Fi_dt3pyfLjqdVWGLCkn0SVlXgoCqIMNPhYKqm18JUMsiRLYhmDG2dh5GaOA7ZQwvFUhngojgOlY18hKgUPX3uDHUboFNkDdjg-mZ8v9gEegmKxEza8np6X2KPNmlJb8BOouldvHTTlAnoY9-8MzR6PqVn7pnfZnRa08g-Nlt1jB5DfZzfHBQLL3QP2s9lf4IXmiCb5zJy7pCtCuMCn23pV8cVqAxSCOeZL7NN6C1zkind0BdyQZKHYvMg5MWGbCPt6xydttg4oflGXJgXHZPPueFXwiwr19wr4oqjKh2x5HV3_iA3yIofHjAvCTG5IyM_3Jfo_jrZjkJGWWiWunQzZcdfTqWyJz6n-xjpFB4gGJu0NzJC92TffNIwf_2o4pmHbNyKibvNHsb1KW7tPcQ4FraRwBGJjFQiBkE-GfqjB9RQoFO6oG_S0nT3K9I-uD9nL_W20e9rMETkUtWlDXYeLxJBFPWXpCdS_k6--GQZxhJGUdjxkbxu16j1SrutMbOknLQE_PfL86Mn_xXzBbqExpp9n87On7LZLIQmKgLtHbFBta3iGuK3KnrcWwll6zTb5G7wWXOk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+the+Impact+of+Apple+Fruit+Ripening%2C+Texture+and+Chemical+Contents+on+Genetically+Determined+Susceptibility+to+Storage+Rots&rft.jtitle=Plants+%28Basel%29&rft.au=Nybom%2C+Hilde&rft.au=Ahmadi+Afzadi%2C+Masoud&rft.au=Rumpunen%2C+Kimmo&rft.au=Tahir%2C+Ibrahim&rft.date=2020-07-02&rft.issn=2223-7747&rft.eissn=2223-7747&rft.volume=9&rft_id=info:doi/10.3390%2Fplants9070831&rft.externalDocID=oai_slubar_slu_se_107347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon