Review of the Impact of Apple Fruit Ripening, Texture and Chemical Contents on Genetically Determined Susceptibility to Storage Rots
Fungal storage rots like blue mould, grey mould, bull’s eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world. Application of fungicides is nowadays severely restricted in many countries and production systems, and these problems are therefore likely to...
Saved in:
Published in | Plants (Basel) Vol. 9; no. 7; p. 831 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
02.07.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fungal storage rots like blue mould, grey mould, bull’s eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world. Application of fungicides is nowadays severely restricted in many countries and production systems, and these problems are therefore likely to increase. Considerable variation among apple cultivars in resistance/susceptibility has been reported, suggesting that efficient defence mechanisms can be selected for and used in plant breeding. These are, however, likely to vary between pathogens, since some fungi are mainly wound-mediated while others attack through lenticels or by infecting blossoms. Since mature fruits are considerably more susceptible than immature fruits, mechanisms involving fruit-ripening processes are likely to play an important role. Significant associations have been detected between the susceptibility to rots in harvested fruit and various fruit maturation-related traits like ripening time, fruit firmness at harvest and rate of fruit softening during storage, as well as fruit biochemical contents like acidity, sugars and polyphenols. Some sources of resistance to blue mould have been described, but more research is needed on the development of spore inoculation methods that produce reproducible data and can be used for large screenings, especially for lenticel-infecting fungi. |
---|---|
AbstractList | Fungal storage rots like blue mould, grey mould, bull’s eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world. Application of fungicides is nowadays severely restricted in many countries and production systems, and these problems are therefore likely to increase. Considerable variation among apple cultivars in resistance/susceptibility has been reported, suggesting that efficient defence mechanisms can be selected for and used in plant breeding. These are, however, likely to vary between pathogens, since some fungi are mainly wound-mediated while others attack through lenticels or by infecting blossoms. Since mature fruits are considerably more susceptible than immature fruits, mechanisms involving fruit-ripening processes are likely to play an important role. Significant associations have been detected between the susceptibility to rots in harvested fruit and various fruit maturation-related traits like ripening time, fruit firmness at harvest and rate of fruit softening during storage, as well as fruit biochemical contents like acidity, sugars and polyphenols. Some sources of resistance to blue mould have been described, but more research is needed on the development of spore inoculation methods that produce reproducible data and can be used for large screenings, especially for lenticel-infecting fungi. Fungal storage rots like blue mould, grey mould, bull's eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world. Application of fungicides is nowadays severely restricted in many countries and production systems, and these problems are therefore likely to increase. Considerable variation among apple cultivars in resistance/susceptibility has been reported, suggesting that efficient defence mechanisms can be selected for and used in plant breeding. These are, however, likely to vary between pathogens, since some fungi are mainly wound-mediated while others attack through lenticels or by infecting blossoms. Since mature fruits are considerably more susceptible than immature fruits, mechanisms involving fruit-ripening processes are likely to play an important role. Significant associations have been detected between the susceptibility to rots in harvested fruit and various fruit maturation-related traits like ripening time, fruit firmness at harvest and rate of fruit softening during storage, as well as fruit biochemical contents like acidity, sugars and polyphenols. Some sources of resistance to blue mould have been described, but more research is needed on the development of spore inoculation methods that produce reproducible data and can be used for large screenings, especially for lenticel-infecting fungi.Fungal storage rots like blue mould, grey mould, bull's eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world. Application of fungicides is nowadays severely restricted in many countries and production systems, and these problems are therefore likely to increase. Considerable variation among apple cultivars in resistance/susceptibility has been reported, suggesting that efficient defence mechanisms can be selected for and used in plant breeding. These are, however, likely to vary between pathogens, since some fungi are mainly wound-mediated while others attack through lenticels or by infecting blossoms. Since mature fruits are considerably more susceptible than immature fruits, mechanisms involving fruit-ripening processes are likely to play an important role. Significant associations have been detected between the susceptibility to rots in harvested fruit and various fruit maturation-related traits like ripening time, fruit firmness at harvest and rate of fruit softening during storage, as well as fruit biochemical contents like acidity, sugars and polyphenols. Some sources of resistance to blue mould have been described, but more research is needed on the development of spore inoculation methods that produce reproducible data and can be used for large screenings, especially for lenticel-infecting fungi. |
Author | Rumpunen, Kimmo Tahir, Ibrahim Nybom, Hilde Ahmadi-Afzadi, Masoud |
AuthorAffiliation | 2 Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran; m.ahmadiafzadi@kgut.ac.ir 1 Department of Plant Breeding–Balsgård, Swedish University of Agricultural Sciences, Fjälkestadsvägen 459, 29194 Kristianstad, Sweden; kimmo.rumpunen@slu.se 3 Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, 23053 Alnarp, Sweden; ibrahim.tahir@slu.se |
AuthorAffiliation_xml | – name: 2 Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran; m.ahmadiafzadi@kgut.ac.ir – name: 3 Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, 23053 Alnarp, Sweden; ibrahim.tahir@slu.se – name: 1 Department of Plant Breeding–Balsgård, Swedish University of Agricultural Sciences, Fjälkestadsvägen 459, 29194 Kristianstad, Sweden; kimmo.rumpunen@slu.se |
Author_xml | – sequence: 1 givenname: Hilde orcidid: 0000-0002-4355-8106 surname: Nybom fullname: Nybom, Hilde – sequence: 2 givenname: Masoud orcidid: 0000-0002-4226-5643 surname: Ahmadi-Afzadi fullname: Ahmadi-Afzadi, Masoud – sequence: 3 givenname: Kimmo orcidid: 0000-0003-3229-5010 surname: Rumpunen fullname: Rumpunen, Kimmo – sequence: 4 givenname: Ibrahim surname: Tahir fullname: Tahir, Ibrahim |
BackLink | https://res.slu.se/id/publ/107347$$DView record from Swedish Publication Index |
BookMark | eNptUkFrHCEYHUpKk6Y59i700kM31XFm1EshbJt0IVDY7F0c_WbXMKNTdZLsvT-8TjeFbqgI6ud7z8_He1ucOO-gKN4TfEmpwJ_HXrkUBWaYU_KqOCvLki4Yq9jJP_vT4iLGe5wHz5M0b4pTWjYUM9qcFb_W8GDhEfkOpR2g1TAqnebT1Tj2gK7DZBNa2xGcddtPaANPaQqAlDNouYPBatWjpXcJch_IO3QDDtJc7ffoKyQIg3Vg0N0UNYzJtra3aY-SR3fJB7UFtPYpvited6qPcPG8nheb62-b5ffF7Y-b1fLqdqErwdJCUFIDxoIQwrXRXacqo-tWtIJrDiVvG1a2hABWRhFqWkwE57XpeGUYK4GeF6uDrPHqXo7BDirspVdW_in4sJUq5OZ7kJhi6IxWROG6MrVSuKl1UzUdlNSAEVnr8qAVH2Gc2iO12E-tCvMiI0iSja5YJnw5EDJ6AKOzYUH1R7zjG2d3cusfJKsIEaLMAh-fBYL_OUFMcrDZ1D5HAPwUZVmVszGY8wz98AJ676fgsrUzCnORE1NlFD2gdPAxBuiktkkl6-f3bZ8bl3PI5FHIMmvxgvX3C__H_wa2X9hs |
CitedBy_id | crossref_primary_10_1080_14620316_2024_2356059 crossref_primary_10_17660_ActaHortic_2022_1344_32 crossref_primary_10_3390_horticulturae8020086 crossref_primary_10_1590_0100_29452022905 crossref_primary_10_1093_jxb_erac093 crossref_primary_10_3390_jof10090660 crossref_primary_10_3389_fpls_2022_918202 crossref_primary_10_1128_spectrum_01455_22 crossref_primary_10_1016_j_postharvbio_2021_111646 crossref_primary_10_55230_mabjournal_v53i5_3140 crossref_primary_10_1002_fft2_535 crossref_primary_10_1016_j_jfca_2024_107000 crossref_primary_10_1016_j_postharvbio_2023_112532 crossref_primary_10_1016_j_scienta_2024_112853 crossref_primary_10_17660_ActaHortic_2023_1364_10 crossref_primary_10_1016_j_scienta_2021_110159 crossref_primary_10_21273_HORTSCI15828_21 crossref_primary_10_3390_plants10020415 crossref_primary_10_3390_jof11010026 crossref_primary_10_35868_1997_3004_39_49_59 crossref_primary_10_1016_j_postharvbio_2024_112889 crossref_primary_10_3390_toxins13100703 crossref_primary_10_1094_PDIS_12_22_2947_RE crossref_primary_10_1016_j_foodcont_2024_110907 crossref_primary_10_3389_fpls_2021_644255 crossref_primary_10_3390_foods12193673 crossref_primary_10_1007_s11947_024_03467_0 crossref_primary_10_1016_j_jare_2022_12_004 |
Cites_doi | 10.1016/j.funbio.2016.07.001 10.1111/pbr.12399 10.3390/microorganisms7110495 10.1146/annurev-phyto-082712-102349 10.1186/s12864-018-4934-0 10.1094/9780890544334 10.1007/s10725-018-0388-2 10.1016/j.ijfoodmicro.2019.108377 10.33585/cmy.71107 10.21273/HORTSCI.48.1.92 10.1111/mpp.12355 10.1016/S0007-1536(59)80052-8 10.21273/HORTSCI.43.2.420 10.17221/1890-HORTSCI 10.17660/ActaHortic.2019.1256.66 10.1007/s10658-015-0682-z 10.1016/S0925-5214(97)01416-6 10.1038/hortres.2014.46 10.1094/PDIS-05-16-0615-RE 10.1007/s10658-018-1539-z 10.3835/plantgenome2015.11.0113 10.1270/jsbbs.64.240 10.17660/eJHS.2019/84.3.4 10.3389/fpls.2017.01981 10.1186/s12864-015-1946-x 10.1007/s11295-012-0526-3 10.1038/s41438-018-0114-2 10.1094/PHYTO.2004.94.1.44 10.17660/eJHS.2019/84.3.3 10.1016/j.pmpp.2019.02.001 10.1093/jxb/erq130 10.1016/j.postharvbio.2015.08.008 10.1002/jsfa.2777 10.1093/jxb/err326 10.1093/jxb/erx017 10.1007/s10658-019-01812-0 10.3389/fpls.2017.01923 10.1002/jsfa.9827 10.17660/ActaHortic.2010.877.27 10.1016/j.plaphy.2017.09.024 10.1007/s11295-012-0554-z 10.1016/j.postharvbio.2018.12.018 10.1007/s10658-018-1481-0 10.1016/j.postharvbio.2018.10.011 10.2503/jjshs1.82.97 10.1016/j.mycres.2009.08.013 10.1021/jf010255b 10.1016/j.postharvbio.2013.03.001 10.1371/journal.pone.0172949 10.1007/s10681-005-6805-4 10.1186/s12864-016-2665-7 10.1007/s11295-008-0140-6 10.17221/42/2010-HORTSCI 10.1016/j.scienta.2014.10.014 10.1111/j.1574-6968.2006.00603.x 10.1080/07060661.2017.1421588 10.1094/PDIS.2001.85.6.657 10.1094/PDIS-11-10-0856 10.1111/j.1439-0523.2011.01849.x 10.1111/mpp.12734 10.1094/PDIS-11-16-1637-RE 10.1094/PHYTO-97-3-0384 10.1093/jxb/erx018 10.1016/j.postharvbio.2008.07.012 10.1111/ppa.13074 10.1007/s11032-017-0684-y 10.4141/cjps93-036 10.1080/07060660509507202 10.1111/j.1365-3059.2009.02232.x 10.1094/PDIS.1999.83.11.1051 10.1016/j.postharvbio.2015.12.004 10.1016/j.postharvbio.2011.02.006 10.21273/HORTSCI11209-16 10.1270/jsbbs.16018 10.1093/jxb/erp122 10.1016/S0925-5214(02)00110-2 10.3390/toxins10110475 10.1186/1471-2229-12-12 10.1016/j.scienta.2017.11.007 10.1094/PHYTO-96-0982 10.1016/j.ijfoodmicro.2014.02.022 10.1016/j.scienta.2006.12.018 10.17660/eJHS.2015/80.3.4 10.1007/s00438-012-0707-7 10.1371/journal.pgen.1004269 10.1023/A:1024886500979 10.2503/hortj.UTD-001 10.1016/j.postharvbio.2017.01.006 10.1016/j.ijfoodmicro.2016.01.007 10.1111/tpj.13145 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | AAYXX CITATION 3V. 7SN 7SS 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 5PM ADTPV AOWAS D8T ZZAVC DOA |
DOI | 10.3390/plants9070831 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science Database ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student ProQuest SciTech Premium Collection Biological Sciences Agriculture Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2223-7747 |
ExternalDocumentID | oai_doaj_org_article_030efdca1a054d5aa065c646fe23ded9 oai_slubar_slu_se_107347 PMC7411992 10_3390_plants9070831 |
GroupedDBID | 53G 5VS 7X2 7XC 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BBNVY BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ HYE KQ8 LK8 M0K M48 M7P MODMG M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RPM 3V. 7SN 7SS 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADRAZ ADTPV AOWAS D8T IAG IAO IGH IPNFZ ISR ITC OZF RIG ZZAVC PUEGO |
ID | FETCH-LOGICAL-c497t-9315e0091118cdcffa4dc5b9b98c8e28b672b11e0ada13db019885df84d772e3 |
IEDL.DBID | M48 |
ISSN | 2223-7747 |
IngestDate | Wed Aug 27 01:27:20 EDT 2025 Thu Aug 21 06:37:07 EDT 2025 Thu Aug 21 18:20:11 EDT 2025 Thu Jul 10 22:45:25 EDT 2025 Fri Jul 25 11:59:11 EDT 2025 Tue Jul 01 00:40:08 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-9315e0091118cdcffa4dc5b9b98c8e28b672b11e0ada13db019885df84d772e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3229-5010 0000-0002-4355-8106 0000-0002-4226-5643 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/plants9070831 |
PMID | 32630736 |
PQID | 2420899074 |
PQPubID | 2032347 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_030efdca1a054d5aa065c646fe23ded9 swepub_primary_oai_slubar_slu_se_107347 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7411992 proquest_miscellaneous_2421118088 proquest_journals_2420899074 crossref_citationtrail_10_3390_plants9070831 crossref_primary_10_3390_plants9070831 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200702 |
PublicationDateYYYYMMDD | 2020-07-02 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200702 day: 2 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Plants (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Tannous (ref_62) 2018; 19 Stensvand (ref_72) 2013; 78 Cameldi (ref_41) 2016; 100 Everett (ref_67) 2018; 152 Kondo (ref_75) 2009; 51 Bui (ref_23) 2019; 99 Prusky (ref_14) 2013; 51 ref_97 Levin (ref_79) 2019; 149 Kenis (ref_92) 2008; 4 Guthrie (ref_45) 1959; 42 Spotts (ref_25) 1999; 83 ref_18 Liu (ref_35) 2017; 37 (ref_40) 2007; 34 Vilanova (ref_64) 2017; 120 Torres (ref_73) 2003; 27 Vico (ref_66) 2019; 106 Gariepy (ref_44) 2005; 27 Brookfield (ref_86) 1997; 11 Tahir (ref_15) 2015; 80 Janisiewicz (ref_57) 2016; 117 Bink (ref_82) 2017; 68 Bai (ref_101) 2012; 287 Sun (ref_61) 2017; 127 Velho (ref_37) 2016; 120 Vilanova (ref_63) 2014; 178 Tahir (ref_48) 2014; 79 Konstantinou (ref_21) 2011; 95 Da (ref_90) 2016; 221 Zhu (ref_87) 2012; 8 Keshavarzi (ref_58) 2014; 16 Guan (ref_22) 2015; 143 Lv (ref_76) 2018; 229 Bogo (ref_39) 2018; 40 Janisiewicz (ref_56) 2008; 43 Aguilar (ref_46) 2017; 101 Everett (ref_28) 2017; 70 Xu (ref_50) 2010; 59 Jurick (ref_31) 2011; 130 Peniche (ref_53) 2014; 180 Bianco (ref_83) 2016; 86 Nybom (ref_6) 2015; 110 Coton (ref_68) 2020; 313 Cameldi (ref_42) 2017; 51 DeEll (ref_1) 1993; 73 Nybom (ref_2) 2010; 34 Costa (ref_88) 2011; 61 Gong (ref_54) 2019; 150 ref_80 Dayatilake (ref_91) 2014; 1 Orsel (ref_51) 2018; 85 Spotts (ref_17) 2009; 113 ref_85 Lattanzio (ref_11) 2001; 49 Suktawee (ref_26) 2019; 88 (ref_3) 2019; 71 Liu (ref_36) 2017; 136 Biggs (ref_27) 2001; 85 Grammen (ref_9) 2019; 153 (ref_38) 2011; 38 Prusky (ref_13) 2007; 268 Costa (ref_77) 2005; 141 Sutton (ref_29) 2006; 96 Ma (ref_24) 2017; 66 Cameldi (ref_43) 2019; 68 ref_59 Vanderzande (ref_98) 2019; 6 Kviklys (ref_74) 2006; 4 Nybom (ref_78) 2013; 9 Tahir (ref_4) 2013; 48 Longhi (ref_100) 2012; 63 ref_69 Kunihisa (ref_94) 2016; 66 Tahir (ref_47) 2010; 877 ref_65 Ballester (ref_52) 2017; 8 Tahir (ref_49) 2019; 84 Davey (ref_8) 2007; 87 Weber (ref_20) 2013; 78 Tahir (ref_70) 2004; 12 Costa (ref_99) 2010; 61 Urrestarazu (ref_84) 2017; 8 Liebhard (ref_95) 2003; 52 ref_34 Spoor (ref_60) 2019; 84 ref_32 Tahir (ref_71) 2007; 112 Alexander (ref_89) 2016; 51 Kunihisa (ref_93) 2014; 64 Hadas (ref_55) 2007; 97 Johnston (ref_10) 2009; 60 Prusky (ref_12) 2004; 94 Farneti (ref_81) 2017; 68 Bi (ref_33) 2016; 17 Tahir (ref_19) 2019; 1256 ref_102 Tahir (ref_5) 2013; 82 Morimoto (ref_96) 2013; 82 Grammen (ref_30) 2019; 155 ref_7 (ref_16) 2015; 34 |
References_xml | – volume: 120 start-page: 1184 year: 2016 ident: ref_37 article-title: Modulation of oxidative responses by a virulent isolate of Colletotrichum fructicola in apple leaves publication-title: Fungal Biol. doi: 10.1016/j.funbio.2016.07.001 – volume: 136 start-page: 119 year: 2017 ident: ref_36 article-title: Investigation and genetic mapping of a Glomerella leaf spot resistance locus in apple publication-title: Plant Breed. doi: 10.1111/pbr.12399 – ident: ref_65 doi: 10.3390/microorganisms7110495 – volume: 51 start-page: 155 year: 2013 ident: ref_14 article-title: Quiescent and necrotrophic lifestyle choice during postharvest disease development publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-082712-102349 – ident: ref_34 doi: 10.1186/s12864-018-4934-0 – ident: ref_18 doi: 10.1094/9780890544334 – volume: 85 start-page: 375 year: 2018 ident: ref_51 article-title: Genome-wide expression analysis suggests a role for jasmonates in the resistance to blue mold in apple publication-title: Plant Growth Regul. doi: 10.1007/s10725-018-0388-2 – volume: 313 start-page: 108377 year: 2020 ident: ref_68 article-title: Production and migration of patulin in Penicillium expansum molded apples during cold and ambient storage publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2019.108377 – volume: 71 start-page: 99 year: 2019 ident: ref_3 article-title: Comparison of the occurrence of fungi causing postharvest diseases in apples grown in organic and integrated production systems in orchards in the Czech Republic publication-title: Czech Mycol. doi: 10.33585/cmy.71107 – volume: 48 start-page: 92 year: 2013 ident: ref_4 article-title: Tailoring organic apples by cultivar selection, production system, and postharvest treatment to improve quality and storage life publication-title: HortScience doi: 10.21273/HORTSCI.48.1.92 – volume: 17 start-page: 1178 year: 2016 ident: ref_33 article-title: Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12355 – volume: 42 start-page: 502 year: 1959 ident: ref_45 article-title: The occurrence of Pezicula alba sp.nov. and P. malicorticis, the perfect state of Gloeosporium album and G. perennans, in England publication-title: Trans. Brit. Mycol. Soc. doi: 10.1016/S0007-1536(59)80052-8 – volume: 43 start-page: 420 year: 2008 ident: ref_56 article-title: Preliminary evaluation of apple germplasm from Kazakhstan for resistance to postharvest blue mold in fruit caused by Penicillium expansum publication-title: HortScience doi: 10.21273/HORTSCI.43.2.420 – volume: 34 start-page: 107 year: 2007 ident: ref_40 article-title: Ideotype of apples with resistance to storage diseases publication-title: Hort. Sci. (Prague) doi: 10.17221/1890-HORTSCI – volume: 1256 start-page: 463 year: 2019 ident: ref_19 article-title: What spoils Swedish apples during storage? publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2019.1256.66 – volume: 143 start-page: 317 year: 2015 ident: ref_22 article-title: Role of lenticels and microcracks on susceptibility of apple fruit to Botryosphaeria dothidea publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-015-0682-z – volume: 11 start-page: 23 year: 1997 ident: ref_86 article-title: Starch degradation and starch pattern indices; interpretation and relationship to maturity publication-title: Postharvest Biol. Technol. doi: 10.1016/S0925-5214(97)01416-6 – volume: 1 start-page: 14046 year: 2014 ident: ref_91 article-title: Genetic and environmental control of fruit maturation, dry matter and firmness in apple (Malus × domestica Borkh.) publication-title: Hortic. Res. doi: 10.1038/hortres.2014.46 – volume: 100 start-page: 11 year: 2016 ident: ref_41 article-title: Influence of harvest date on bull’s eye rot of ‘Cripps Pink’ apple and control chemcial strategies publication-title: Plant Dis. doi: 10.1094/PDIS-05-16-0615-RE – volume: 153 start-page: 47 year: 2019 ident: ref_9 article-title: Identification and pathogenicity assessment of Colletotrichum isolates causing bitter rot of apple fruit in Belgium publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-018-1539-z – ident: ref_97 doi: 10.3835/plantgenome2015.11.0113 – volume: 64 start-page: 240 year: 2014 ident: ref_93 article-title: Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop publication-title: Breed. Sci. doi: 10.1270/jsbbs.64.240 – volume: 84 start-page: 142 year: 2019 ident: ref_49 article-title: Application of alkylresorcinols in an organic apple orchard for protection against storage diseases publication-title: Eur. J. Horticult. Sci. doi: 10.17660/eJHS.2019/84.3.4 – volume: 8 start-page: 1981 year: 2017 ident: ref_52 article-title: Transcriptomic response of resistant (PI613981–Malus sieversii) and susceptible (Royal Gala) genotypes of apple to blue mold (Penicillium expansum) infection publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01981 – ident: ref_80 doi: 10.1186/s12864-015-1946-x – volume: 8 start-page: 1389 year: 2012 ident: ref_87 article-title: Multiple plant hormones and cell wall metabolism regulate apple fruit maturation patterns and texture attributes publication-title: Tree Genet. Genomes doi: 10.1007/s11295-012-0526-3 – volume: 6 start-page: 30 year: 2019 ident: ref_98 article-title: Validation of SNP markers for fruit quality and disease resistance loci in apple (Malus × domestica Borkh.) using the OpenArray® platform publication-title: Hortic. Res. doi: 10.1038/s41438-018-0114-2 – volume: 94 start-page: 44 year: 2004 ident: ref_12 article-title: Relationship between host acidification and virulence of Penicillium spp. on apple and citrus fruit publication-title: Phytopathology doi: 10.1094/PHYTO.2004.94.1.44 – volume: 84 start-page: 131 year: 2019 ident: ref_60 article-title: Chemical contents and blue mould susceptibility in Swedish-grown cider apple cultivars publication-title: Eur. J. Hortic. Sci. doi: 10.17660/eJHS.2019/84.3.3 – volume: 106 start-page: 166 year: 2019 ident: ref_66 article-title: Dynamic changes in common metabolites and antioxidants during Penicillium expansum-apple fruit interactions publication-title: Physiol. Molec. Plant Pathol. doi: 10.1016/j.pmpp.2019.02.001 – volume: 61 start-page: 3029 year: 2010 ident: ref_99 article-title: QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus × domestica Borkh.) publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq130 – volume: 110 start-page: 173 year: 2015 ident: ref_6 article-title: Biochemical contents of apple peel and flesh affect level of partial resistance to blue mold publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2015.08.008 – volume: 87 start-page: 802 year: 2007 ident: ref_8 article-title: Relation of apple vitamin C and antioxidant contents to harvest date and postharvest pathogen infection publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.2777 – volume: 63 start-page: 1107 year: 2012 ident: ref_100 article-title: Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus × domestica Borkh.) publication-title: J. Exp. Bot. doi: 10.1093/jxb/err326 – volume: 78 start-page: 97 year: 2013 ident: ref_20 article-title: Fungi associated with blossom-end rot of apples in Germany publication-title: Eur. J. Hortic. Sci. – volume: 68 start-page: 1451 year: 2017 ident: ref_82 article-title: Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx017 – volume: 155 start-page: 801 year: 2019 ident: ref_30 article-title: Susceptibility of apple fruits (Malus × domestica Borkh.) to the postharvest pathogen Colletotrichum fioriniae: Cultivar differences and correlation with fruit ripening characteristics publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-019-01812-0 – volume: 8 start-page: 1923 year: 2017 ident: ref_84 article-title: Genome-wide association mapping of flowering and ripening periods in apple publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01923 – volume: 99 start-page: 5662 year: 2019 ident: ref_23 article-title: Botrytis cinereal differentially induces postharvest antioxidant responses in ‘Braeburn’ and ‘Golden Delicious’ apple fruit publication-title: J. Sci. Food Agricult. doi: 10.1002/jsfa.9827 – volume: 4 start-page: 427 year: 2006 ident: ref_74 article-title: Post-harvest fruit rot incidence depending on apple maturity publication-title: Agron. Res. – volume: 877 start-page: 245 year: 2010 ident: ref_47 article-title: Improving quality and storability of apples by a combination of aluminum reflective mulch, summer pruning and controlled nitrogen fertilization publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2010.877.27 – volume: 120 start-page: 132 year: 2017 ident: ref_64 article-title: Penicillium expansum (compatible) and Penicillium digitatum (non-host) pathogen infection differentially alter ethylene biosynthesis in apple fruit publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2017.09.024 – volume: 9 start-page: 279 year: 2013 ident: ref_78 article-title: DNA marker-assisted evaluation of fruit firmness at harvest and post-harvest fruit softening in a diverse apple germplasm publication-title: Tree Genet. Genomes doi: 10.1007/s11295-012-0554-z – volume: 150 start-page: 95 year: 2019 ident: ref_54 article-title: A comparison of postharvest physiology, quality and volatile compounds of ‘Fuji’ and ‘Delicious’ apples inoculated with Penicillium expansum publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2018.12.018 – volume: 152 start-page: 367 year: 2018 ident: ref_67 article-title: Infection criteria, inoculum sources and splash dispersal pattern of Colletotrichum acutatum causing bitter rot of apple in New Zealand publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-018-1481-0 – volume: 149 start-page: 209 year: 2019 ident: ref_79 article-title: Identification of pathogenicity-related genes and the role of a subtilisin-related peptidase S8 (PePRT) in authophagy and virulence of Penicillium expansum on apples publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2018.10.011 – volume: 82 start-page: 97 year: 2013 ident: ref_96 article-title: A major QTL controlling earliness of fruit maturity linked to the red leaf/red flesh trait in apple cv. ‘Maypole’ publication-title: J. Jpn. Soc. Hortic. Sci. doi: 10.2503/jjshs1.82.97 – volume: 113 start-page: 1301 year: 2009 ident: ref_17 article-title: Description of Cryptosporiopsis kienholzii and species profiles of Neofabraea in major pome fruit growing districts in the Pacific Northwest USA publication-title: Mycol. Res. doi: 10.1016/j.mycres.2009.08.013 – volume: 49 start-page: 5817 year: 2001 ident: ref_11 article-title: Low temperature metabolism of apple phenolics and quiescence of Phlyctaena vagabunda publication-title: J. Agric. Food Chem. doi: 10.1021/jf010255b – volume: 82 start-page: 51 year: 2013 ident: ref_5 article-title: Impact of harvesting time and fruit firmness on the tolerance to fungal storage diseases in an apple germplasm collection publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2013.03.001 – ident: ref_59 doi: 10.1371/journal.pone.0172949 – volume: 141 start-page: 181 year: 2005 ident: ref_77 article-title: Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh) publication-title: Euphytica doi: 10.1007/s10681-005-6805-4 – ident: ref_32 doi: 10.1186/s12864-016-2665-7 – volume: 4 start-page: 647 year: 2008 ident: ref_92 article-title: Identifiction and stability of QTLs for fruit quality traits in apple publication-title: Tree Genet. Genomes doi: 10.1007/s11295-008-0140-6 – volume: 38 start-page: 1 year: 2011 ident: ref_38 article-title: Changes in phenols composition and activity of phenylalanine-ammonia lyase in apples after fungal infections publication-title: Hortic. Sci. (Prague) doi: 10.17221/42/2010-HORTSCI – volume: 180 start-page: 86 year: 2014 ident: ref_53 article-title: Effect of maturity stage, ripening time, harvest year and fruit characteristics on the susceptibility to Penicillium expansum link. of apple genotypes from Queretaro, Mexico publication-title: Scientia Hortic. doi: 10.1016/j.scienta.2014.10.014 – volume: 268 start-page: 1 year: 2007 ident: ref_13 article-title: Activation of quiescent infections by postharvest pathogens during transition from the biotrophic to the necrotrophic stage publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2006.00603.x – volume: 40 start-page: 229 year: 2018 ident: ref_39 article-title: Characterization of Neofabraea actinidiae and N. brasiliensis as causal agents of apple bull’s-eye rot in southern Brazil publication-title: Can. J. Plant Pathol. doi: 10.1080/07060661.2017.1421588 – volume: 12 start-page: 223 year: 2004 ident: ref_70 article-title: Evaluation of scab resistant apple cultivars in Sweden publication-title: J. Fruit Ornament. Plant Res. – volume: 34 start-page: 15 year: 2010 ident: ref_2 article-title: Fungal disease and fruit quality in an apple orchard converted from integrated production to organic production publication-title: J. Sustain. Agric. – volume: 34 start-page: 2 year: 2015 ident: ref_16 article-title: Fungi causing storage rot of apple fruit in integrated pest management system and their sensitivity to fungicides publication-title: Rural Sustain. Res. – volume: 85 start-page: 657 year: 2001 ident: ref_27 article-title: Relative susceptibility of selected apple cultivars to Colletotrichum acutatum publication-title: Plant Dis. doi: 10.1094/PDIS.2001.85.6.657 – volume: 95 start-page: 666 year: 2011 ident: ref_21 article-title: Postharvest fruit rots of apple in Greece: Pathogen incidence and relationships between fruit quality parameters, cultivar susceptibility, and patulin production publication-title: Plant Dis. doi: 10.1094/PDIS-11-10-0856 – volume: 130 start-page: 481 year: 2011 ident: ref_31 article-title: Identification of wild apple germplasm (Malus spp.) accessions with resistance to the postharvest decay pathogens Penicillium expansum and Colletotrichum acutatum publication-title: Plant Breed. doi: 10.1111/j.1439-0523.2011.01849.x – volume: 19 start-page: 2635 year: 2018 ident: ref_62 article-title: Fungal attack and host defence pathways unveiled in near-avirulent interactions of Penicillium expansum creA mutants on apples publication-title: Molec. Plant Pathol. doi: 10.1111/mpp.12734 – volume: 101 start-page: 800 year: 2017 ident: ref_46 article-title: Timing of apple fruit infection by Neofabraea perennans and Neofabraea kienholzii in relation to bull’s-eye rot development in stored apple fruit publication-title: Plant Dis. doi: 10.1094/PDIS-11-16-1637-RE – volume: 97 start-page: 384 year: 2007 ident: ref_55 article-title: Involvement of gluconic acid and glucose oxidase in the pathogenicity of Penicillium expansum in apples publication-title: Phytopathology doi: 10.1094/PHYTO-97-3-0384 – volume: 70 start-page: 106 year: 2017 ident: ref_28 article-title: A simple method for conidial production and establishing latent infections of apples by Phlyctema vagabunda (syn: Neofabraea alba) publication-title: N. Z. Plant Protect. – volume: 68 start-page: 1467 year: 2017 ident: ref_81 article-title: Genome-wide association study unravels the genetic control of the apple volatilome and its interplay with fruit texture publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx018 – volume: 51 start-page: 281 year: 2009 ident: ref_75 article-title: Effects of auxin and jasmonates on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase gene expression during ripening on apple fruit publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2008.07.012 – volume: 68 start-page: 1525 year: 2019 ident: ref_43 article-title: Effect of apple cultivars and storage periods on the virulence of Neofabraea spp. publication-title: Plant Pathol. doi: 10.1111/ppa.13074 – volume: 37 start-page: 96 year: 2017 ident: ref_35 article-title: Rapid location of Glomerella leaf spot resistance gene locus in apple by whole genome re-sequencing publication-title: Mol. Breed. doi: 10.1007/s11032-017-0684-y – volume: 73 start-page: 223 year: 1993 ident: ref_1 article-title: Postharvest physiological disorders, diseases and mineral concentrations of organically and conventionally grown Mclntosh and Cortland apples publication-title: Can. J. Plant Sci. doi: 10.4141/cjps93-036 – volume: 27 start-page: 118 year: 2005 ident: ref_44 article-title: Neofabraea species associated with bull’s-eye rot and cankers of apple and pear in the Pacific Northwest publication-title: Can. J. Plant Pathol. doi: 10.1080/07060660509507202 – volume: 59 start-page: 542 year: 2010 ident: ref_50 article-title: Effects of fruit maturity and wetness on the infection of apple fruit by Neonectria galligena publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.2009.02232.x – volume: 78 start-page: 232 year: 2013 ident: ref_72 article-title: Harvest time influences incidence of storage diseases and fruit quality in organically grown ‘Aroma’ apples publication-title: Eur. J. Hortic. Sci. – volume: 83 start-page: 1051 year: 1999 ident: ref_25 article-title: Variability in postharvest decay among apple cultivars publication-title: Plant Dis. doi: 10.1094/PDIS.1999.83.11.1051 – volume: 117 start-page: 132 year: 2016 ident: ref_57 article-title: Wound responses of wild apples suggest multiple resistance mechanism against blue mold decay publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2015.12.004 – volume: 61 start-page: 21 year: 2011 ident: ref_88 article-title: Assessment of apple (Malus × domestica Borkh.) fruit texture by a combined acoustic-mechanical profiling strategy publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2011.02.006 – volume: 51 start-page: 1489 year: 2016 ident: ref_89 article-title: Regional variation in juice quality characteristics of four cider apple (Malus × domestica Borkh.) cultivars in Northwest and Central Washington publication-title: HortScience doi: 10.21273/HORTSCI11209-16 – volume: 66 start-page: 499 year: 2016 ident: ref_94 article-title: Genomic dissection of a ‘Fuji’ apple cultivar: Re-sequencing, SNP marker development, definition of haplotypes, and QTL detection publication-title: Breed Sci. doi: 10.1270/jsbbs.16018 – volume: 79 start-page: 218 year: 2014 ident: ref_48 article-title: Alkylresorcinols isolated from rye bran inhibit growth of Penicillium expansum and Neofabraea perennans in vitro and on fungal-inoculated fruits of four apple cultivars publication-title: Eur. J. Hortic. Sci. – volume: 60 start-page: 2689 year: 2009 ident: ref_10 article-title: Coordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp122 – volume: 27 start-page: 235 year: 2003 ident: ref_73 article-title: Possible involvement of hydrogen peroxide in the development of resistance mechanisms in ‘Golden Delicious’ apple fruit publication-title: Postharvest Biol. Technol. doi: 10.1016/S0925-5214(02)00110-2 – ident: ref_69 doi: 10.3390/toxins10110475 – volume: 66 start-page: 206 year: 2017 ident: ref_24 article-title: The phenylpropanoid pathway affects apple fruit resistance to Botrytis cinerea publication-title: J. Phytopathol. – ident: ref_7 doi: 10.1186/1471-2229-12-12 – volume: 229 start-page: 157 year: 2018 ident: ref_76 article-title: Effects of methyl jasmonate on expression of genes involved in ethylene biosynthesis and signaling pathway during postharvest ripening of apple fruit publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2017.11.007 – volume: 96 start-page: 982 year: 2006 ident: ref_29 article-title: Clarification of the etiology of Glomerella leaf spot and bitter rot of apple caused by Colletotrichum spp. based on morphology and genetic, molecular, and pathogenicity tests publication-title: Phytopathology doi: 10.1094/PHYTO-96-0982 – ident: ref_102 – volume: 51 start-page: 155 year: 2017 ident: ref_42 article-title: Characterization of Neofabraea vagabunda isolates causing apple bull’s eye rot in Italy (Emilia-Romagna region) publication-title: Plant Pathol. – volume: 16 start-page: 635 year: 2014 ident: ref_58 article-title: Blue mold (Penicillium expansum) decay resistance in apple cultivars, and its association with fruit physicochemical traits publication-title: J. Agric. Sci. Technol. – volume: 178 start-page: 39 year: 2014 ident: ref_63 article-title: Acidification of apple and orange hosts by Penicillium digitatum and Penicillium expansum publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2014.02.022 – volume: 112 start-page: 164 year: 2007 ident: ref_71 article-title: Improvement of quality and storability of apple cv. Aroma by adjustment of some pre-harvest conditions publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2006.12.018 – volume: 80 start-page: 117 year: 2015 ident: ref_15 article-title: Susceptibility to blue mold caused by Penicillium expansum in apple cultivars adapted to a cool climate publication-title: Eur. J. Hort. Sci. doi: 10.17660/eJHS.2015/80.3.4 – volume: 287 start-page: 663 year: 2012 ident: ref_101 article-title: A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple publication-title: Mol. Genet. Genom. doi: 10.1007/s00438-012-0707-7 – ident: ref_85 doi: 10.1371/journal.pgen.1004269 – volume: 52 start-page: 511 year: 2003 ident: ref_95 article-title: Mapping quantitative physiological traits in apple (Malus × domestica Borkh.) publication-title: Plant Mol. Biol. doi: 10.1023/A:1024886500979 – volume: 88 start-page: 41 year: 2019 ident: ref_26 article-title: n-Propyl dihydrojasmonates influence ethylene signal transduction in infected apple fruit by Botrytis cinerea publication-title: Hortic. J. doi: 10.2503/hortj.UTD-001 – volume: 127 start-page: 68 year: 2017 ident: ref_61 article-title: Composition of phenolic compounds in wild apple with multiple resistance mechanisms against postharvest blue mold decay publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2017.01.006 – volume: 221 start-page: 54 year: 2016 ident: ref_90 article-title: Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2016.01.007 – volume: 86 start-page: 62 year: 2016 ident: ref_83 article-title: Development and validation of the Axiom®Apple 480 K SNP genotyping array publication-title: Plant J. doi: 10.1111/tpj.13145 |
SSID | ssj0000800816 |
Score | 2.2914586 |
SecondaryResourceType | review_article |
Snippet | Fungal storage rots like blue mould, grey mould, bull’s eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world.... Fungal storage rots like blue mould, grey mould, bull's eye rot, bitter rot and brown rot destroy large amounts of the harvested apple crop around the world.... |
SourceID | doaj swepub pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 831 |
SubjectTerms | Acidity Apples Bitter rot Blue mold Botrytis cinerea Brown rot Colletotrichum Crop diseases Cultivars disease resistance Fruits Fungi Fungicides Genetics and Breeding Genetik och förädling Grey mold Harvesting Infections Inoculation Malus × domestica Marketing Maturation Methods Mold Monilinia Neofabraea Pathogens Pesticides Physiology Plant breeding Polyphenols Production methods Review Ripening Sugar |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pq9QwEA7y8OBF_InVp4wgennlbZu0TY8-dXkKenhvhXcraTLBlaVdtu1h7_7hzqTd5VUQL55K2ykkmUnmm-nkixBvyKNamaGMM79QTKrNU8rL2GeItS7zMsl4o_DXb_nld_XlJru5ddQX14SN9MDjwJ2TEaJ31iSGwIXLjCGfaXOVe0ylQxe27pHPuxVM_ZxwkE7ykVRTUlx_vt1wXQmFgny01swJBa7-GcD8szxyRiIaHM_ygbg_IUZ4P7b0obiDzSNx96IlVLd_LH6NyX1oPRCUg89h0yPfMbxEWO6GdQ9X6y1y_uMMVrQWDzsE0zg4cAVAYKiiZkPbANNQh_T2Zg8fp1IZdHA9dKH-JZTS7qFv4ZqCdVqL4Krtuyditfy0-nAZTycrxFaVRR-XklRA6IoWOm2d9d4oZ7O6rEttNaa6zou0ThJcGGcS6WrCgVpnzmvlCI2jfCpOmrbBZwIMA5Y0Z9illKXgI_ELjbbw1ruSFBOJs8NIV3ZiHefDLzYVRR-smGqmmEi8PYpvR7qNvwlesNqOQsySHR6Q7VST7VT_sp1InB6UXk1Tt6tSLjgoOWcQidfH1zTp-E-KabAdggwPHa3QkShmxjJr0PxNs_4R6LsJw3HNbyTejWY1-6TbDLXZ8aXqkLpeSFU8_x99fSHupZwq4Mx0eipO-t2ALwlP9fWrMHV-AzSJJDI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELag5cAF8RShBRkJwaVRN2_nhFjoqiBRoe0i9RY59hhWWsXbPA5754cz43gXBQlOUWIncjKe8TfjyTeMvcEVVSUZJGFmZimRapNKmSQ0GUAtyryMMvpR-OtVfvk9_XKT3fiAW-fTKvc20RlqbRXFyM9j2gcuyZV7v70NqWoU7a76Ehp32TGaYIHO1_H84urb8hBlITwkonwk10zQvz_fbii_BJ9DJbYmi5Hj7J8Azb_TJCdkom4BWjxkDzxy5B9GUT9id6B5zO7NLaK73RP2awzyc2s4Qjr-2f38SGcEM4Ev2mHd8-V6CxQHOeMrtMlDC1w2mu85A7hjqsJhc9twoqN2Ye7Njn_yKTOg-fXQuTwYl1K7473l1-i0o03iS9t3T9lqcbH6eBn6CguhSsuiD8sERYEoCw2eUFoZI1OtsrqsS6EExKLOi7iOIphJLaNE14gHhci0EalGVA7JM3bU2AaeMy4JuMQ5wa80VeiERGYmQBVGGV3GszJgZ_svXSnPPk5FMDYVeiEkmGoimIC9PXTfjrQb_-o4J7EdOhFbtrtg2x-VV74KDRkYrWQkEaDqTErEXSpPcwNxokHj4E73Qq-8CnfVnwkXsNeHZlQ-2lGRDdjB9aFPh5Y6YMVkskwGNG1p1j8djTdiOcr9Ddi7cVpNbuk2Qy1bOlQd4KsXSVq8-P8wT9j9mIIBFHuOT9lR3w7wEhFTX7_yavEbEd0cCQ priority: 102 providerName: ProQuest |
Title | Review of the Impact of Apple Fruit Ripening, Texture and Chemical Contents on Genetically Determined Susceptibility to Storage Rots |
URI | https://www.proquest.com/docview/2420899074 https://www.proquest.com/docview/2421118088 https://pubmed.ncbi.nlm.nih.gov/PMC7411992 https://res.slu.se/id/publ/107347 https://doaj.org/article/030efdca1a054d5aa065c646fe23ded9 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5By4FLxVMYSrRICC41xPba3j0gREqjgtQKpanUm7XeBwRZduuH1Nz7w5lZO6nMQ-IUJZ5E652dmW8m428IeQ0RVUWxifzYThmSaqNJ2ci3sTE5F4kIYnxQ-OQ0OT5nXy_ii1tKoWEDm7-mdjhP6rwu3l1frT-CwX_AjBNS9veXBbaMQJaHU7Pukl0ISina6MmA9H8OwIi7QagYEAFTsrRn3PzzF0YRyhH5j9Dn772TI4ZRF5XmD8jeACfpp17_D8kdUz4i92YVQL71Y3LTV_5pZSngPPrFPRGJ7xB7Gjqvu1VLFyu4YQhgB3QJjrqrDZWlphsiAeroq2DZtCopclS72nexpp-HPhqj6VnXuOYY12e7pm1FzyCTB0dFF1XbPCHL-dHy8Ngfxi74iom09UUE-gHoBV6QK62slUyrOBe54IqbkOdJGuZBYKZSyyDSOYBEzmNtOdMA1U30lOyUVWmeESoRzYQJYjLGFGQmgZ1yo1KrrBbhVHjkYLPTmRooyXEyRpFBaoKKyUaK8cibrfhlz8XxL8EZqm0rhBTa7oOq_p4NFpmBdzNWKxlIQK06lhLAmEpYYk0YaaNhcfsbpWebY5mF2I0gsKDgkVfby2CR-DeLLE3VORncOnDfHklHh2W0oPGVcvXDcXsDwMOGYI-87Y_V6CtN0eWyxpesMXDracTS5_8t-YLcD7FYgLXpcJ_stHVnXgKiavMJ2Z0dnX5bTFxFYuIs5xeduyew |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VFAkuiKdqKLBIPC61anv9PCBEaKOEthFKg9Sbtd5HiRTZwQ-h3Pk7_Edm1naQkeDWU-R4E493Zna-mZ2dIeQ1WFTBAsXsQDs-FtVGldLM1oFSWZyEiRvgQeGLeTj96n--Cq72yK_-LAymVfZrolmoZSEwRn7s4T5wgq7ch813G7tG4e5q30KjFYsztf0BLlv1fnYC_H3jeZPT5aep3XUVsIWfRLWdMHg8IAtQ8lhIoTX3pQiyJEtiESsvzsLIy1xXOVxyl8kMMFAcB1LHvgQkqhj87S2y7zPwZEZkf3w6_7LYBXUQfsVu2NbyZCxxjjdrTGcBsrGj18D2mRYBA1z7d1bmoHapsXeT--ReB1Tpx1ayHpA9lT8kt8cFgMntI_Kz3VOghaaAIOnMnLXEK0S1ik7KZlXTxWqjMOxyRJdgAppSUZ5L2pcooKYwFpBNi5xi9WsTVV9v6UmXoaMkvWwqk3ZjMni3tC7oZQ0ye63ooqirx2R5E1P_hIzyIlcHhHLESV6IaM_3Bfg8rnZiJSIttEw8J7HIUT_TqeiKnWPPjXUKTg8yJh0wxiJvd8M3bZWPfw0cI9t2g7A4t_miKK_TTtdTWDeVloK7HPCwDDgHmCdCP9TKY1JJIO6wZ3rarRhV-ke-LfJqdxt0HTdweK6KxozBqQPDYJFoICwDgoZ38tU3UzUcoCOmGlvkXStWg59U6ybjJX6klYJXj5gfPf0_mS_Jneny4jw9n83PnpG7HsYhMOztHZJRXTbqOYC1OnvRqQgl6Q0r5W8T71i0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWLkJcEE9RWMBIPC4bNe_HASFKt9qyUK26Rdpb5NjjpVKVlCYR6p0_xb9jxkmKggS3PVVpnGhiz9jfjMffMPYKV1TpBeBZgbZ9ItUmk9KepQOALE7CxAnooPCXeXj61f90GVwesF_dWRhKq-zmRDNRq0JSjHzk0j5wQq7cSLdpEeeT6fvNd4sqSNFOa1dOo1GRM9j9QPetfDeb4Fi_dt3pyfLjqdVWGLCkn0SVlXgoCqIMNPhYKqm18JUMsiRLYhmDG2dh5GaOA7ZQwvFUhngojgOlY18hKgUPX3uDHUboFNkDdjg-mZ8v9gEegmKxEza8np6X2KPNmlJb8BOouldvHTTlAnoY9-8MzR6PqVn7pnfZnRa08g-Nlt1jB5DfZzfHBQLL3QP2s9lf4IXmiCb5zJy7pCtCuMCn23pV8cVqAxSCOeZL7NN6C1zkind0BdyQZKHYvMg5MWGbCPt6xydttg4oflGXJgXHZPPueFXwiwr19wr4oqjKh2x5HV3_iA3yIofHjAvCTG5IyM_3Jfo_jrZjkJGWWiWunQzZcdfTqWyJz6n-xjpFB4gGJu0NzJC92TffNIwf_2o4pmHbNyKibvNHsb1KW7tPcQ4FraRwBGJjFQiBkE-GfqjB9RQoFO6oG_S0nT3K9I-uD9nL_W20e9rMETkUtWlDXYeLxJBFPWXpCdS_k6--GQZxhJGUdjxkbxu16j1SrutMbOknLQE_PfL86Mn_xXzBbqExpp9n87On7LZLIQmKgLtHbFBta3iGuK3KnrcWwll6zTb5G7wWXOk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+the+Impact+of+Apple+Fruit+Ripening%2C+Texture+and+Chemical+Contents+on+Genetically+Determined+Susceptibility+to+Storage+Rots&rft.jtitle=Plants+%28Basel%29&rft.au=Nybom%2C+Hilde&rft.au=Ahmadi+Afzadi%2C+Masoud&rft.au=Rumpunen%2C+Kimmo&rft.au=Tahir%2C+Ibrahim&rft.date=2020-07-02&rft.issn=2223-7747&rft.eissn=2223-7747&rft.volume=9&rft_id=info:doi/10.3390%2Fplants9070831&rft.externalDocID=oai_slubar_slu_se_107347 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon |