Small-Area Estimation With State-Space Models Subject to Benchmark Constraints
This article shows how to benchmark small-area estimators, produced by fitting separate state-space models within the areas, to aggregates of the survey direct estimators within a group of areas. State-space models are used by the U.S. Bureau of Labor Statistics (BLS) for the production of all of th...
Saved in:
Published in | Journal of the American Statistical Association Vol. 101; no. 476; pp. 1387 - 1397 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
Taylor & Francis
01.12.2006
American Statistical Association Assoc Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article shows how to benchmark small-area estimators, produced by fitting separate state-space models within the areas, to aggregates of the survey direct estimators within a group of areas. State-space models are used by the U.S. Bureau of Labor Statistics (BLS) for the production of all of the monthly employment and unemployment estimates in census divisions and the states. Computation of the benchmarked estimators and their variances is accomplished by incorporating the benchmark constraints within a joint model for the direct estimators in the different areas, which requires the development of a new filtering algorithm for state-space models with correlated measurement errors. The new filter coincides with the familiar Kalman filter when the measurement errors are uncorrelated. The properties and implications of the use of the benchmarked estimators are discussed and illustrated using BLS unemployment series. The problem of small-area estimation is how to produce reliable estimates of area (domain) characteristics and compute their variances when the sample sizes within the areas are too small to warrant the use of traditional direct survey estimates. This problem is commonly handled by borrowing strength from either neighboring areas and/or from previous surveys, using appropriate cross-sectional/time series models. To protect against possible model breakdowns and for consistency in publication, the area model-dependent estimates often must be benchmarked to an estimate for a group of the areas, which it is sufficiently accurate. The latter estimate is a weighted sum of the direct survey estimates in the various areas, so that the benchmarking process defines another way of borrowing strength across the areas. |
---|---|
AbstractList | This article shows how to benchmark small-area estimators, produced by fitting separate state—space models within the areas, to aggregates of the survey direct estimators within a group of areas. State—space models are used by the U.S. Bureau of Labor Statistics (BLS) for the production of all of the monthly employment and unemployment estimates in census divisions and the states. Computation of the benchmarked estimators and their variances is accomplished by incorporating the benchmark constraints within a joint model for the direct estimators in the different areas, which requires the development of a new filtering algorithm for state—space models with correlated measurement errors. The new filter coincides with the familiar Kalman filter when the measurement errors are uncorrelated. The properties and implications of the use of the benchmarked estimators are discussed and illustrated using BLS unemployment series. The problem of small-area estimation is how to produce reliable estimates of area (domain) characteristics and compute their variances when the sample sizes within the areas are too small to warrant the use of traditional direct survey estimates. This problem is commonly handled by borrowing strength from either neighboring areas and/or from previous surveys, using appropriate cross-sectional/time series models. To protect against possible model breakdowns and for consistency in publication, the area model—dependent estimates often must be benchmarked to an estimate for a group of the areas, which it is sufficiently accurate. The latter estimate is a weighted sum of the direct survey estimates in the various areas, so that the benchmarking process defines another way of borrowing strength across the areas. This article shows how to benchmark small-area estimators, produced by fitting separate state-space models within the areas, to aggregates of the survey direct estimators within a group of areas. State-space models are used by the U.S. Bureau of Labor Statistics (BLS) for the production of all of the monthly employment and unemployment estimates in census divisions and the states. Computation of the benchmarked estimators and their variances is accomplished by incorporating the benchmark constraints within a joint model for the direct estimators in the different areas, which requires the development of a new filtering algorithm for state-space models with correlated measurement errors. The new filter coincides with the familiar Kalman filter when the measurement errors are uncorrelated. The properties and implications of the use of the benchmarked estimators are discussed and illustrated using BLS unemployment series. The problem of small-area estimation is how to produce reliable estimates of area (domain) characteristics and compute their variances when the sample sizes within the areas are too small to warrant the use of traditional direct survey estimates. This problem is commonly handled by borrowing strength from either neighboring areas and/or from previous surveys, using appropriate cross-sectional/time series models. To protect against possible model breakdowns and for consistency in publication, the area model-dependent estimates often must be benchmarked to an estimate for a group of the areas, which it is sufficiently accurate. The latter estimate is a weighted sum of the direct survey estimates in the various areas, so that the benchmarking process defines another way of borrowing strength across the areas. [PUBLICATION ABSTRACT] |
Author | Pfeffermann, Danny Tiller, Richard |
Author_xml | – sequence: 1 givenname: Danny surname: Pfeffermann fullname: Pfeffermann, Danny – sequence: 2 givenname: Richard surname: Tiller fullname: Tiller, Richard |
BackLink | http://www.econis.eu/PPNSET?PPN=523350333$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18368081$$DView record in Pascal Francis |
BookMark | eNp9kU1v1DAQhi1UJLaFP4CEiJDgFrDj-OvAoazKh1TgsCC4Wd6JrWZx7K3tFeq_x2lKhYpUX-Ywzzt-551jdBRisAg9Jfg1IUq-wYR3pGeY4-vHFHmAVoRR0Xai_3mEVjPQVkI9Qsc572ZISLlCXzaT8b49TdY0Z7mMkyljDM2PsVw0m2KKbTd7A7b5HAfrc7M5bHcWSlNi884GuJhM-tWsY8glmTGU_Bg9dMZn--SmnqDv78--rT-2518_fFqfnrfQK1Fa1XE8bDn0g7BAJbGwZcQxaRmjTnbQOVY36SjtJZOcD0AVuMFg5axiBCg9Qa-WufsULw82Fz2NGaz3Jth4yJryOkBJUcEXd8BdPKRQvemajJBKyL5CL28gk8F4l0yAMet9qnGkK00k5RJLUrnnC2chhn8AVp0yTOnsSy4EpJhzsk7DWK4jnQPymmA930v_f68q7e5Ib_-_T_RsEe1yielW0QlOlWCq9t8u_TG4mCbzOyY_6GKufEx_16T3zP8DYIuyQw |
CODEN | JSTNAL |
CitedBy_id | crossref_primary_10_1080_03610926_2011_648000 crossref_primary_10_1111_rssa_12117 crossref_primary_10_1214_16_STS584 crossref_primary_10_1111_rssa_12158 crossref_primary_10_1111_rssa_12950 crossref_primary_10_1007_s11749_014_0398_y crossref_primary_10_1007_s13253_011_0067_5 crossref_primary_10_1111_rssa_12390 crossref_primary_10_3233_SJI_240007 crossref_primary_10_1214_09_AOAS305 crossref_primary_10_2139_ssrn_1285451 crossref_primary_10_21307_stattrans_2016_008 crossref_primary_10_1007_s00148_024_01043_6 crossref_primary_10_1111_rssa_12914 crossref_primary_10_2478_jos_2021_0043 crossref_primary_10_1007_s11749_008_0094_x crossref_primary_10_1186_s12963_022_00286_3 crossref_primary_10_1177_0282423X241286236 crossref_primary_10_1016_j_csda_2009_09_005 crossref_primary_10_1177_0282423X241244670 crossref_primary_10_1093_biomet_ass063 crossref_primary_10_1111_j_1467_9876_2010_00733_x crossref_primary_10_1080_24754269_2020_1719470 crossref_primary_10_1111_insr_12380 crossref_primary_10_1111_rssa_12307 crossref_primary_10_1111_rssa_12869 crossref_primary_10_1080_00324728_2023_2239772 crossref_primary_10_1080_00949655_2010_496726 crossref_primary_10_1214_21_AOAS1592 crossref_primary_10_1111_rssa_12332 crossref_primary_10_2139_ssrn_4468022 crossref_primary_10_1111_anzs_12414 crossref_primary_10_1080_02664760802319709 crossref_primary_10_5604_01_3001_0016_2365 crossref_primary_10_1111_insr_12596 crossref_primary_10_1007_s11749_010_0218_y crossref_primary_10_1007_s12651_016_0206_0 crossref_primary_10_21307_stattrans_2015_030 crossref_primary_10_21307_stattrans_2015_031 crossref_primary_10_1007_s11749_014_0384_4 crossref_primary_10_1080_09332480_2007_10722855 crossref_primary_10_1016_j_jspi_2010_03_043 crossref_primary_10_1515_jos_2018_0012 crossref_primary_10_1177_0282423X241235267 crossref_primary_10_1016_j_csda_2012_02_008 crossref_primary_10_1177_0282423X241248010 crossref_primary_10_1111_rssc_12587 crossref_primary_10_2478_jos_2020_0010 crossref_primary_10_1214_12_STS395 crossref_primary_10_3150_12_BEJ449 |
Cites_doi | 10.1111/j.1751-5823.2002.tb00352.x |
ContentType | Journal Article |
Copyright | American Statistical Association 2006 Copyright 2006 American Statistical Association 2007 INIST-CNRS Copyright American Statistical Association Dec 2006 |
Copyright_xml | – notice: American Statistical Association 2006 – notice: Copyright 2006 American Statistical Association – notice: 2007 INIST-CNRS – notice: Copyright American Statistical Association Dec 2006 |
DBID | AAYXX CITATION OQ6 IQODW 8BJ FQK JBE K9. |
DOI | 10.1198/016214506000000591 |
DatabaseName | CrossRef ECONIS Pascal-Francis International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-274X |
EndPage | 1397 |
ExternalDocumentID | 1201088821 18368081 523350333 10_1198_016214506000000591 27639759 10710099 |
Genre | Article Feature |
GroupedDBID | -DZ -~X ..I .7F .GJ .QJ 0BK 0R~ 29L 2AX 30N 3R3 4.4 5GY 5RE 692 7WY 85S 8FL AABCJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABTAI ABXSQ ABXUL ABXYU ABYAD ABYWD ACAGQ ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACTWD ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADULT AEISY AELPN AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFSUE AFVYC AFXHP AGDLA AGMYJ AGROQ AHDZW AHMOU AI. AIJEM AKBVH AKOOK ALCKM ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMEWO AQRUH AVBZW AWYRJ BLEHA CCCUG CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FEDTE FJW FVMVE GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HQ6 HVGLF HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K60 K6~ KYCEM LU7 M4Z MS~ MVM MW2 N95 NA5 NY~ O9- OFU OK1 P2P QCRFL RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T SA0 SJN SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 VH1 WH7 WZA YQT YYM YYP ZGOLN ~S~ AAGDL AAHIA AAWIL ABAWQ ACHJO ADYSH AFRVT AGLNM AIHAF AIYEW AMPGV AAYXX CITATION .-4 07G 1OL 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAAVZ AAFWJ AAIKQ AAKBW ABEFU ABJCF ABRLO ABUWG ACGEE ADBBV AEUMN AFKRA AFQQW AGCQS AGLEN AMATQ AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU DWIFK DWQXO E.L FRNLG FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK IVXBP K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S NHB NUSFT OQ6 P-O PADUT PHGZT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X S0X TAQ TFMCV UB9 UKHRP UQL VOH WHG YXB ZCG ZGI ZUP ZXP ADXHL AMVHM IQODW PHGZM PJZUB PPXIY PQGLB TASJS 8BJ FQK JBE K9. |
ID | FETCH-LOGICAL-c497t-9260db6c4d7ec381ecb51f58e553f82c2f5600233485866dc39cfda09fe951c33 |
ISSN | 0162-1459 |
IngestDate | Thu Jul 10 22:27:46 EDT 2025 Wed Aug 13 08:58:50 EDT 2025 Mon Jul 21 09:15:36 EDT 2025 Sat Mar 08 17:16:12 EST 2025 Thu Apr 24 23:13:03 EDT 2025 Tue Jul 01 03:15:08 EDT 2025 Thu May 29 08:44:08 EDT 2025 Wed Dec 25 09:04:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 476 |
Keywords | Filtering Generalized least squares Sampling errors Error estimation Sample size Variance estimation Kalman filter Time series State space State space method Algorithm Unemployment Autocorrelated measurement errors Variance Recursive filtering Statistical method Census Model matching Correlation analysis Cross sectional study Sample survey Application State estimation Measurement error |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c497t-9260db6c4d7ec381ecb51f58e553f82c2f5600233485866dc39cfda09fe951c33 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 274789784 |
PQPubID | 41715 |
PageCount | 11 |
ParticipantIDs | informaworld_taylorfrancis_310_1198_016214506000000591 crossref_primary_10_1198_016214506000000591 jstor_primary_27639759 proquest_miscellaneous_36560987 pascalfrancis_primary_18368081 crossref_citationtrail_10_1198_016214506000000591 proquest_journals_274789784 econis_primary_523350333 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-12-01 |
PublicationDateYYYYMMDD | 2006-12-01 |
PublicationDate_xml | – month: 12 year: 2006 text: 2006-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2006 |
Publisher | Taylor & Francis American Statistical Association Assoc Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: American Statistical Association – name: Assoc – name: Taylor & Francis Ltd |
References | (p_13); 70 Journal (p_3); 83 Current Population Survey (p_20); 8 (p_8); 74 Business (p_15); 9 Case (p_11); 46 (p_19); 26 |
References_xml | – volume: 74 start-page: 269 ident: p_8 publication-title: Statistical Association – volume: 8 start-page: 149 ident: p_20 publication-title: Official Statistics – volume: 70 start-page: 125 ident: p_13 publication-title: International Statistical Review doi: 10.1111/j.1751-5823.2002.tb00352.x – volume: 83 start-page: 28 ident: p_3 publication-title: American Statistical Association – volume: 46 start-page: 139 ident: p_11 publication-title: Ser. B – volume: 9 start-page: 73 ident: p_15 publication-title: Economic Statistics – volume: 26 start-page: 893 ident: p_19 publication-title: Time Series Analysis |
SSID | ssj0000788 |
Score | 2.0925057 |
Snippet | This article shows how to benchmark small-area estimators, produced by fitting separate state-space models within the areas, to aggregates of the survey direct... This article shows how to benchmark small-area estimators, produced by fitting separate state—space models within the areas, to aggregates of the survey direct... |
SourceID | proquest pascalfrancis econis crossref jstor informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1387 |
SubjectTerms | Algorithms Applications Applications and Case Studies Autocorrelated measurement errors Benchmarking Benchmarks Covariance matrices Employment Error Error rates Estimates Estimating techniques Estimation Estimators Exact sciences and technology General topics Generalized least squares Insurance, economics, finance Kalman filters Linear inference, regression Mathematics Modeling Probability and statistics Recursive filtering Sampling Sampling errors Sampling theory, sample surveys Sciences and techniques of general use State vectors Statistical discrepancies Statistical models Statistics Time series models U.S.A Unemployment Variance |
Title | Small-Area Estimation With State-Space Models Subject to Benchmark Constraints |
URI | https://www.tandfonline.com/doi/abs/10.1198/016214506000000591 https://www.jstor.org/stable/27639759 http://www.econis.eu/PPNSET?PPN=523350333 https://www.proquest.com/docview/274789784 https://www.proquest.com/docview/36560987 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgcOgF8VU1FIoP3KpAEju201tBRRUS5dCtxC1KHEcgtlnUpBd-fWdsx0m7S1W4RLvZ7MTxexmPx54ZQt6ByV2pnGdx2oIK5K1kcS05rrILzQqlmlRhvPPXU3Fyzr98z2cL7Ta6ZKjf6z8b40r-B1U4B7hilOw_IBuEwgn4DPjCERCG470wPruolsv4COy-g2N4VV0UonOtWiMSp_tnMCk2tuTZskc1gX4XNDg_woP8uKguf9manbZShEvqtMFUnYWf2IK_g83uvAFc1LEtbhHBUITOh7B3wWu_CIGHs3j-mc_h1v6N-9zR-ysF0ID7pN-jwvWiHLO4nCvQlPnx1_ivbvfuuqIvXPCCwEzribBzHbAU02lYC5sNM4mLl3nxkDzKYC6BZS5YcjoN19IWJw0tHSOrCvVhXfwN6-Uxuix-9reS3I4bW3GXbdVDz7SuQsraYG8tmMVT8sTjSY8cj56RB6Z7TrZD5_YvyLeJUHQiFEVCUUuoQ2rpRB2dqKcTHVY00InO6PSSnH8-Xnw6iX3FjVjzQg5xAbPbphaaN9JosOWMrvO0zZXJc9aqTGctGsgZRm_nSogGXmfdNlVStAYsdc3YDtnqVp3ZJRRMeZ2oVhjBKpBtqiStKslrEAczXMkjko49WWqfjh4btyzttLRQ5XrvR-Qg_Oe3S8Zy59W7DqBwbQ4tx2V7FhExh6wcrHfMA1Wyu2TuWHCDyJFcEdm_gfbUPsVsdZuI7I3wl16F9CW6hFQhFfTG2_Ar6HdctKs6s7qCxmB2rELJV3-78x7Znl7R12RruLwyb8BQHup9S_RrhA-2JQ |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqWqlcKH0gUgr40FsVmsTx60gr0JbCXgCVW-o4tkAsuxXJXvj1zNjJUqDiUK6JPXKcmfE3tmc-Qj4D5DaKl0Wae3CBpZcsrWWJp-zCMq1UkyvMdz4ai9FpeXDGz3qe07a_VokxtI-FIoKvRuPGzeho4Vp9BZiCBbYzESAuAAQIf15yLSRSGLBsfOeKZSCexPYpdNBD1sw_ZdxbmV5hOHrRPihgOlxaxBuUpoVJ9JH94pEjD6vT_hvye_iueCnlcmfe1Tv25kHJx2d8-CpZ6ZEr3Y2q9pa8cNN3ZBnBaqz1_J6Mj6_MZJLuAg6le_AsZkXSXxfdOQ2gNj2GCN1R5F-btBR8Fm4C0W5Gv4GtnF-Z60uKBKKBtqJrP5DT_b2T76O052tIballl2qIjZpa2LKRzgIScLbmuefKcc68KmzhEV4VmPvLlRANKIP1jcm0d4DzLGNrZGk6m7p1QgEI2kx54QQzINuZLDdGljWIg_hIlgnJh39V2b6YOQ5uUoWgRqvq8VQl5Muiz59YyuPJ1utRBRZtIWRneOjLEiL-VoqqC3srvSpU7CmZa0F9FiILieeqXCdk654-3Y1PscCNkpCNQcGq3sm0FW4oKC0VzMb24i14BzzyMVM3m8NgsLaSVvLj_w55m7wenRwdVoc_xj83yHLR0zZl-Sey1F3P3SZAsq7eCmZ3C29hI9c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5VtKq49I1IacGH3qrQJE78ONKWFX2tKlFUbpHj2AKx7CKSvfTXd8ZOlgIVB66JPXKc8fgbj-cbgHcIuY2qyiLNPZrA0kueNrKkKLuwXCvV5orynX9MxcFR-fW4Oh4O3LrhWiX50D4SRQRbTYv7ovVxgWv1AVEK8WtnIiBcxAfo_TwUxBxOKRzZ9MoSy1B3ktqn2EGPSTP_lXFtY3pE3uhpd4O_dLyzSBcoTYdz6GPxi1t2PGxOk6dQj58V76Sc7S77Ztf-ucH4eP_vfgZPBtzK9qKiPYcHbv4C1gmqRqbnlzA9PDezWbqHKJTt47OYE8l-n_YnLEDa9BD9c8eo-tqsY2ix6AiI9Qv2EVfKybm5PGNUPjQUrei7V3A02f_16SAdqjWkttSyTzV6Rm0jbNlKZxEHONtUua-UqyruVWELT-CqoMzfSgnRoipY35pMe4coz3K-AWvzxdxtAkMYaDPlhRPcoGxnstwYWTYoDr0jWSaQj7-qtgOVOQ1uVgeXRqv69lQl8H7V5yISedzZejNqwKotOuycQr48AfGvTtR9OFkZNKHmd8ncCNqzEllIiqpWOoHta-p0NT7FQ2WUBLZG_aoHE9PVdJygtFQ4Gzurt2gbKOBj5m6xxMEQs5JW8vV9h7wDj39-ntTfv0y_bcF6MdRsyvI3sNZfLt1bxGN9sx0W3V-pGCJ7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small-Area+Estimation+with+State%3A+Space+Models+Subject+to+Benchmark+Constraints&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Pfeffermann%2C+Danny&rft.au=Tiller%2C+Richard&rft.date=2006-12-01&rft.pub=American+Statistical+Association&rft.issn=0162-1459&rft.volume=101&rft.issue=476&rft.spage=1387&rft.epage=1397&rft_id=info:doi/10.1198%2F016214506000000591&rft.externalDocID=27639759 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |