Small-Area Estimation With State-Space Models Subject to Benchmark Constraints

This article shows how to benchmark small-area estimators, produced by fitting separate state-space models within the areas, to aggregates of the survey direct estimators within a group of areas. State-space models are used by the U.S. Bureau of Labor Statistics (BLS) for the production of all of th...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 101; no. 476; pp. 1387 - 1397
Main Authors Pfeffermann, Danny, Tiller, Richard
Format Journal Article
LanguageEnglish
Published Alexandria, VA Taylor & Francis 01.12.2006
American Statistical Association
Assoc
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article shows how to benchmark small-area estimators, produced by fitting separate state-space models within the areas, to aggregates of the survey direct estimators within a group of areas. State-space models are used by the U.S. Bureau of Labor Statistics (BLS) for the production of all of the monthly employment and unemployment estimates in census divisions and the states. Computation of the benchmarked estimators and their variances is accomplished by incorporating the benchmark constraints within a joint model for the direct estimators in the different areas, which requires the development of a new filtering algorithm for state-space models with correlated measurement errors. The new filter coincides with the familiar Kalman filter when the measurement errors are uncorrelated. The properties and implications of the use of the benchmarked estimators are discussed and illustrated using BLS unemployment series. The problem of small-area estimation is how to produce reliable estimates of area (domain) characteristics and compute their variances when the sample sizes within the areas are too small to warrant the use of traditional direct survey estimates. This problem is commonly handled by borrowing strength from either neighboring areas and/or from previous surveys, using appropriate cross-sectional/time series models. To protect against possible model breakdowns and for consistency in publication, the area model-dependent estimates often must be benchmarked to an estimate for a group of the areas, which it is sufficiently accurate. The latter estimate is a weighted sum of the direct survey estimates in the various areas, so that the benchmarking process defines another way of borrowing strength across the areas.
AbstractList This article shows how to benchmark small-area estimators, produced by fitting separate state—space models within the areas, to aggregates of the survey direct estimators within a group of areas. State—space models are used by the U.S. Bureau of Labor Statistics (BLS) for the production of all of the monthly employment and unemployment estimates in census divisions and the states. Computation of the benchmarked estimators and their variances is accomplished by incorporating the benchmark constraints within a joint model for the direct estimators in the different areas, which requires the development of a new filtering algorithm for state—space models with correlated measurement errors. The new filter coincides with the familiar Kalman filter when the measurement errors are uncorrelated. The properties and implications of the use of the benchmarked estimators are discussed and illustrated using BLS unemployment series. The problem of small-area estimation is how to produce reliable estimates of area (domain) characteristics and compute their variances when the sample sizes within the areas are too small to warrant the use of traditional direct survey estimates. This problem is commonly handled by borrowing strength from either neighboring areas and/or from previous surveys, using appropriate cross-sectional/time series models. To protect against possible model breakdowns and for consistency in publication, the area model—dependent estimates often must be benchmarked to an estimate for a group of the areas, which it is sufficiently accurate. The latter estimate is a weighted sum of the direct survey estimates in the various areas, so that the benchmarking process defines another way of borrowing strength across the areas.
This article shows how to benchmark small-area estimators, produced by fitting separate state-space models within the areas, to aggregates of the survey direct estimators within a group of areas. State-space models are used by the U.S. Bureau of Labor Statistics (BLS) for the production of all of the monthly employment and unemployment estimates in census divisions and the states. Computation of the benchmarked estimators and their variances is accomplished by incorporating the benchmark constraints within a joint model for the direct estimators in the different areas, which requires the development of a new filtering algorithm for state-space models with correlated measurement errors. The new filter coincides with the familiar Kalman filter when the measurement errors are uncorrelated. The properties and implications of the use of the benchmarked estimators are discussed and illustrated using BLS unemployment series. The problem of small-area estimation is how to produce reliable estimates of area (domain) characteristics and compute their variances when the sample sizes within the areas are too small to warrant the use of traditional direct survey estimates. This problem is commonly handled by borrowing strength from either neighboring areas and/or from previous surveys, using appropriate cross-sectional/time series models. To protect against possible model breakdowns and for consistency in publication, the area model-dependent estimates often must be benchmarked to an estimate for a group of the areas, which it is sufficiently accurate. The latter estimate is a weighted sum of the direct survey estimates in the various areas, so that the benchmarking process defines another way of borrowing strength across the areas. [PUBLICATION ABSTRACT]
Author Pfeffermann, Danny
Tiller, Richard
Author_xml – sequence: 1
  givenname: Danny
  surname: Pfeffermann
  fullname: Pfeffermann, Danny
– sequence: 2
  givenname: Richard
  surname: Tiller
  fullname: Tiller, Richard
BackLink http://www.econis.eu/PPNSET?PPN=523350333$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18368081$$DView record in Pascal Francis
BookMark eNp9kU1v1DAQhi1UJLaFP4CEiJDgFrDj-OvAoazKh1TgsCC4Wd6JrWZx7K3tFeq_x2lKhYpUX-Ywzzt-551jdBRisAg9Jfg1IUq-wYR3pGeY4-vHFHmAVoRR0Xai_3mEVjPQVkI9Qsc572ZISLlCXzaT8b49TdY0Z7mMkyljDM2PsVw0m2KKbTd7A7b5HAfrc7M5bHcWSlNi884GuJhM-tWsY8glmTGU_Bg9dMZn--SmnqDv78--rT-2518_fFqfnrfQK1Fa1XE8bDn0g7BAJbGwZcQxaRmjTnbQOVY36SjtJZOcD0AVuMFg5axiBCg9Qa-WufsULw82Fz2NGaz3Jth4yJryOkBJUcEXd8BdPKRQvemajJBKyL5CL28gk8F4l0yAMet9qnGkK00k5RJLUrnnC2chhn8AVp0yTOnsSy4EpJhzsk7DWK4jnQPymmA930v_f68q7e5Ib_-_T_RsEe1yielW0QlOlWCq9t8u_TG4mCbzOyY_6GKufEx_16T3zP8DYIuyQw
CODEN JSTNAL
CitedBy_id crossref_primary_10_1080_03610926_2011_648000
crossref_primary_10_1111_rssa_12117
crossref_primary_10_1214_16_STS584
crossref_primary_10_1111_rssa_12158
crossref_primary_10_1111_rssa_12950
crossref_primary_10_1007_s11749_014_0398_y
crossref_primary_10_1007_s13253_011_0067_5
crossref_primary_10_1111_rssa_12390
crossref_primary_10_3233_SJI_240007
crossref_primary_10_1214_09_AOAS305
crossref_primary_10_2139_ssrn_1285451
crossref_primary_10_21307_stattrans_2016_008
crossref_primary_10_1007_s00148_024_01043_6
crossref_primary_10_1111_rssa_12914
crossref_primary_10_2478_jos_2021_0043
crossref_primary_10_1007_s11749_008_0094_x
crossref_primary_10_1186_s12963_022_00286_3
crossref_primary_10_1177_0282423X241286236
crossref_primary_10_1016_j_csda_2009_09_005
crossref_primary_10_1177_0282423X241244670
crossref_primary_10_1093_biomet_ass063
crossref_primary_10_1111_j_1467_9876_2010_00733_x
crossref_primary_10_1080_24754269_2020_1719470
crossref_primary_10_1111_insr_12380
crossref_primary_10_1111_rssa_12307
crossref_primary_10_1111_rssa_12869
crossref_primary_10_1080_00324728_2023_2239772
crossref_primary_10_1080_00949655_2010_496726
crossref_primary_10_1214_21_AOAS1592
crossref_primary_10_1111_rssa_12332
crossref_primary_10_2139_ssrn_4468022
crossref_primary_10_1111_anzs_12414
crossref_primary_10_1080_02664760802319709
crossref_primary_10_5604_01_3001_0016_2365
crossref_primary_10_1111_insr_12596
crossref_primary_10_1007_s11749_010_0218_y
crossref_primary_10_1007_s12651_016_0206_0
crossref_primary_10_21307_stattrans_2015_030
crossref_primary_10_21307_stattrans_2015_031
crossref_primary_10_1007_s11749_014_0384_4
crossref_primary_10_1080_09332480_2007_10722855
crossref_primary_10_1016_j_jspi_2010_03_043
crossref_primary_10_1515_jos_2018_0012
crossref_primary_10_1177_0282423X241235267
crossref_primary_10_1016_j_csda_2012_02_008
crossref_primary_10_1177_0282423X241248010
crossref_primary_10_1111_rssc_12587
crossref_primary_10_2478_jos_2020_0010
crossref_primary_10_1214_12_STS395
crossref_primary_10_3150_12_BEJ449
Cites_doi 10.1111/j.1751-5823.2002.tb00352.x
ContentType Journal Article
Copyright American Statistical Association 2006
Copyright 2006 American Statistical Association
2007 INIST-CNRS
Copyright American Statistical Association Dec 2006
Copyright_xml – notice: American Statistical Association 2006
– notice: Copyright 2006 American Statistical Association
– notice: 2007 INIST-CNRS
– notice: Copyright American Statistical Association Dec 2006
DBID AAYXX
CITATION
OQ6
IQODW
8BJ
FQK
JBE
K9.
DOI 10.1198/016214506000000591
DatabaseName CrossRef
ECONIS
Pascal-Francis
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList

International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 1397
ExternalDocumentID 1201088821
18368081
523350333
10_1198_016214506000000591
27639759
10710099
Genre Article
Feature
GroupedDBID -DZ
-~X
..I
.7F
.GJ
.QJ
0BK
0R~
29L
2AX
30N
3R3
4.4
5GY
5RE
692
7WY
85S
8FL
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABTAI
ABXSQ
ABXUL
ABXYU
ABYAD
ABYWD
ACAGQ
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AELPN
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFSUE
AFVYC
AFXHP
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIJEM
AKBVH
AKOOK
ALCKM
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMEWO
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FEDTE
FJW
FVMVE
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HQ6
HVGLF
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MVM
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
QCRFL
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SJN
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
VH1
WH7
WZA
YQT
YYM
YYP
ZGOLN
~S~
AAGDL
AAHIA
AAWIL
ABAWQ
ACHJO
ADYSH
AFRVT
AGLNM
AIHAF
AIYEW
AMPGV
AAYXX
CITATION
.-4
07G
1OL
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAAVZ
AAFWJ
AAIKQ
AAKBW
ABEFU
ABJCF
ABRLO
ABUWG
ACGEE
ADBBV
AEUMN
AFKRA
AFQQW
AGCQS
AGLEN
AMATQ
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
DWIFK
DWQXO
E.L
FRNLG
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
NHB
NUSFT
OQ6
P-O
PADUT
PHGZT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
S0X
TAQ
TFMCV
UB9
UKHRP
UQL
VOH
WHG
YXB
ZCG
ZGI
ZUP
ZXP
ADXHL
AMVHM
IQODW
PHGZM
PJZUB
PPXIY
PQGLB
TASJS
8BJ
FQK
JBE
K9.
ID FETCH-LOGICAL-c497t-9260db6c4d7ec381ecb51f58e553f82c2f5600233485866dc39cfda09fe951c33
ISSN 0162-1459
IngestDate Thu Jul 10 22:27:46 EDT 2025
Wed Aug 13 08:58:50 EDT 2025
Mon Jul 21 09:15:36 EDT 2025
Sat Mar 08 17:16:12 EST 2025
Thu Apr 24 23:13:03 EDT 2025
Tue Jul 01 03:15:08 EDT 2025
Thu May 29 08:44:08 EDT 2025
Wed Dec 25 09:04:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 476
Keywords Filtering
Generalized least squares
Sampling errors
Error estimation
Sample size
Variance estimation
Kalman filter
Time series
State space
State space method
Algorithm
Unemployment
Autocorrelated measurement errors
Variance
Recursive filtering
Statistical method
Census
Model matching
Correlation analysis
Cross sectional study
Sample survey
Application
State estimation
Measurement error
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c497t-9260db6c4d7ec381ecb51f58e553f82c2f5600233485866dc39cfda09fe951c33
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 274789784
PQPubID 41715
PageCount 11
ParticipantIDs informaworld_taylorfrancis_310_1198_016214506000000591
crossref_primary_10_1198_016214506000000591
jstor_primary_27639759
proquest_miscellaneous_36560987
pascalfrancis_primary_18368081
crossref_citationtrail_10_1198_016214506000000591
proquest_journals_274789784
econis_primary_523350333
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-12-01
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2006
Publisher Taylor & Francis
American Statistical Association
Assoc
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Assoc
– name: Taylor & Francis Ltd
References (p_13); 70
Journal (p_3); 83
Current Population Survey (p_20); 8
(p_8); 74
Business (p_15); 9
Case (p_11); 46
(p_19); 26
References_xml – volume: 74
  start-page: 269
  ident: p_8
  publication-title: Statistical Association
– volume: 8
  start-page: 149
  ident: p_20
  publication-title: Official Statistics
– volume: 70
  start-page: 125
  ident: p_13
  publication-title: International Statistical Review
  doi: 10.1111/j.1751-5823.2002.tb00352.x
– volume: 83
  start-page: 28
  ident: p_3
  publication-title: American Statistical Association
– volume: 46
  start-page: 139
  ident: p_11
  publication-title: Ser. B
– volume: 9
  start-page: 73
  ident: p_15
  publication-title: Economic Statistics
– volume: 26
  start-page: 893
  ident: p_19
  publication-title: Time Series Analysis
SSID ssj0000788
Score 2.0925057
Snippet This article shows how to benchmark small-area estimators, produced by fitting separate state-space models within the areas, to aggregates of the survey direct...
This article shows how to benchmark small-area estimators, produced by fitting separate state—space models within the areas, to aggregates of the survey direct...
SourceID proquest
pascalfrancis
econis
crossref
jstor
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1387
SubjectTerms Algorithms
Applications
Applications and Case Studies
Autocorrelated measurement errors
Benchmarking
Benchmarks
Covariance matrices
Employment
Error
Error rates
Estimates
Estimating techniques
Estimation
Estimators
Exact sciences and technology
General topics
Generalized least squares
Insurance, economics, finance
Kalman filters
Linear inference, regression
Mathematics
Modeling
Probability and statistics
Recursive filtering
Sampling
Sampling errors
Sampling theory, sample surveys
Sciences and techniques of general use
State vectors
Statistical discrepancies
Statistical models
Statistics
Time series models
U.S.A
Unemployment
Variance
Title Small-Area Estimation With State-Space Models Subject to Benchmark Constraints
URI https://www.tandfonline.com/doi/abs/10.1198/016214506000000591
https://www.jstor.org/stable/27639759
http://www.econis.eu/PPNSET?PPN=523350333
https://www.proquest.com/docview/274789784
https://www.proquest.com/docview/36560987
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgcOgF8VU1FIoP3KpAEju201tBRRUS5dCtxC1KHEcgtlnUpBd-fWdsx0m7S1W4RLvZ7MTxexmPx54ZQt6ByV2pnGdx2oIK5K1kcS05rrILzQqlmlRhvPPXU3Fyzr98z2cL7Ta6ZKjf6z8b40r-B1U4B7hilOw_IBuEwgn4DPjCERCG470wPruolsv4COy-g2N4VV0UonOtWiMSp_tnMCk2tuTZskc1gX4XNDg_woP8uKguf9manbZShEvqtMFUnYWf2IK_g83uvAFc1LEtbhHBUITOh7B3wWu_CIGHs3j-mc_h1v6N-9zR-ysF0ID7pN-jwvWiHLO4nCvQlPnx1_ivbvfuuqIvXPCCwEzribBzHbAU02lYC5sNM4mLl3nxkDzKYC6BZS5YcjoN19IWJw0tHSOrCvVhXfwN6-Uxuix-9reS3I4bW3GXbdVDz7SuQsraYG8tmMVT8sTjSY8cj56RB6Z7TrZD5_YvyLeJUHQiFEVCUUuoQ2rpRB2dqKcTHVY00InO6PSSnH8-Xnw6iX3FjVjzQg5xAbPbphaaN9JosOWMrvO0zZXJc9aqTGctGsgZRm_nSogGXmfdNlVStAYsdc3YDtnqVp3ZJRRMeZ2oVhjBKpBtqiStKslrEAczXMkjko49WWqfjh4btyzttLRQ5XrvR-Qg_Oe3S8Zy59W7DqBwbQ4tx2V7FhExh6wcrHfMA1Wyu2TuWHCDyJFcEdm_gfbUPsVsdZuI7I3wl16F9CW6hFQhFfTG2_Ar6HdctKs6s7qCxmB2rELJV3-78x7Znl7R12RruLwyb8BQHup9S_RrhA-2JQ
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqWqlcKH0gUgr40FsVmsTx60gr0JbCXgCVW-o4tkAsuxXJXvj1zNjJUqDiUK6JPXKcmfE3tmc-Qj4D5DaKl0Wae3CBpZcsrWWJp-zCMq1UkyvMdz4ai9FpeXDGz3qe07a_VokxtI-FIoKvRuPGzeho4Vp9BZiCBbYzESAuAAQIf15yLSRSGLBsfOeKZSCexPYpdNBD1sw_ZdxbmV5hOHrRPihgOlxaxBuUpoVJ9JH94pEjD6vT_hvye_iueCnlcmfe1Tv25kHJx2d8-CpZ6ZEr3Y2q9pa8cNN3ZBnBaqz1_J6Mj6_MZJLuAg6le_AsZkXSXxfdOQ2gNj2GCN1R5F-btBR8Fm4C0W5Gv4GtnF-Z60uKBKKBtqJrP5DT_b2T76O052tIballl2qIjZpa2LKRzgIScLbmuefKcc68KmzhEV4VmPvLlRANKIP1jcm0d4DzLGNrZGk6m7p1QgEI2kx54QQzINuZLDdGljWIg_hIlgnJh39V2b6YOQ5uUoWgRqvq8VQl5Muiz59YyuPJ1utRBRZtIWRneOjLEiL-VoqqC3srvSpU7CmZa0F9FiILieeqXCdk654-3Y1PscCNkpCNQcGq3sm0FW4oKC0VzMb24i14BzzyMVM3m8NgsLaSVvLj_w55m7wenRwdVoc_xj83yHLR0zZl-Sey1F3P3SZAsq7eCmZ3C29hI9c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5VtKq49I1IacGH3qrQJE78ONKWFX2tKlFUbpHj2AKx7CKSvfTXd8ZOlgIVB66JPXKc8fgbj-cbgHcIuY2qyiLNPZrA0kueNrKkKLuwXCvV5orynX9MxcFR-fW4Oh4O3LrhWiX50D4SRQRbTYv7ovVxgWv1AVEK8WtnIiBcxAfo_TwUxBxOKRzZ9MoSy1B3ktqn2EGPSTP_lXFtY3pE3uhpd4O_dLyzSBcoTYdz6GPxi1t2PGxOk6dQj58V76Sc7S77Ztf-ucH4eP_vfgZPBtzK9qKiPYcHbv4C1gmqRqbnlzA9PDezWbqHKJTt47OYE8l-n_YnLEDa9BD9c8eo-tqsY2ix6AiI9Qv2EVfKybm5PGNUPjQUrei7V3A02f_16SAdqjWkttSyTzV6Rm0jbNlKZxEHONtUua-UqyruVWELT-CqoMzfSgnRoipY35pMe4coz3K-AWvzxdxtAkMYaDPlhRPcoGxnstwYWTYoDr0jWSaQj7-qtgOVOQ1uVgeXRqv69lQl8H7V5yISedzZejNqwKotOuycQr48AfGvTtR9OFkZNKHmd8ncCNqzEllIiqpWOoHta-p0NT7FQ2WUBLZG_aoHE9PVdJygtFQ4Gzurt2gbKOBj5m6xxMEQs5JW8vV9h7wDj39-ntTfv0y_bcF6MdRsyvI3sNZfLt1bxGN9sx0W3V-pGCJ7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small-Area+Estimation+with+State%3A+Space+Models+Subject+to+Benchmark+Constraints&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Pfeffermann%2C+Danny&rft.au=Tiller%2C+Richard&rft.date=2006-12-01&rft.pub=American+Statistical+Association&rft.issn=0162-1459&rft.volume=101&rft.issue=476&rft.spage=1387&rft.epage=1397&rft_id=info:doi/10.1198%2F016214506000000591&rft.externalDocID=27639759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon