Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells

Despite preclinical studies demonstrating the functional benefit of transplanting human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) into damaged myocardium, the ability of these immature cells to adopt a more adult-like cardiomyocyte (CM) phenotype remains uncertain. To address this issue...

Full description

Saved in:
Bibliographic Details
Published inStem cells and development Vol. 22; no. 14; p. 1991
Main Authors Lundy, Scott D, Zhu, Wei-Zhong, Regnier, Michael, Laflamme, Michael A
Format Journal Article
LanguageEnglish
Published United States 15.07.2013
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Despite preclinical studies demonstrating the functional benefit of transplanting human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) into damaged myocardium, the ability of these immature cells to adopt a more adult-like cardiomyocyte (CM) phenotype remains uncertain. To address this issue, we tested the hypothesis that prolonged in vitro culture of human embryonic stem cell (hESC)- and human induced pluripotent stem cell (hiPSC)-derived CMs would result in the maturation of their structural and contractile properties to a more adult-like phenotype. Compared to their early-stage counterparts (PSC-CMs after 20-40 days of in vitro differentiation and culture), late-stage hESC-CMs and hiPSC-CMs (80-120 days) showed dramatic differences in morphology, including increased cell size and anisotropy, greater myofibril density and alignment, sarcomeres visible by bright-field microscopy, and a 10-fold increase in the fraction of multinucleated CMs. Ultrastructural analysis confirmed improvements in the myofibrillar density, alignment, and morphology. We measured the contractile performance of late-stage hESC-CMs and hiPSC-CMs and noted a doubling in shortening magnitude with slowed contraction kinetics compared to the early-stage cells. We then examined changes in the calcium-handling properties of these matured CMs and found an increase in calcium release and reuptake rates with no change in the maximum amplitude. Finally, we performed electrophysiological assessments in hESC-CMs and found that late-stage myocytes have hyperpolarized maximum diastolic potentials, increased action potential amplitudes, and faster upstroke velocities. To correlate these functional changes with gene expression, we performed qPCR and found a robust induction of the key cardiac structural markers, including β-myosin heavy chain and connexin-43, in late-stage hESC-CMs and hiPSC-CMs. These findings suggest that PSC-CMs are capable of slowly maturing to more closely resemble the phenotype of adult CMs and may eventually possess the potential to regenerate the lost myocardium with robust de novo force-producing tissue.
AbstractList Despite preclinical studies demonstrating the functional benefit of transplanting human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) into damaged myocardium, the ability of these immature cells to adopt a more adult-like cardiomyocyte (CM) phenotype remains uncertain. To address this issue, we tested the hypothesis that prolonged in vitro culture of human embryonic stem cell (hESC)- and human induced pluripotent stem cell (hiPSC)-derived CMs would result in the maturation of their structural and contractile properties to a more adult-like phenotype. Compared to their early-stage counterparts (PSC-CMs after 20-40 days of in vitro differentiation and culture), late-stage hESC-CMs and hiPSC-CMs (80-120 days) showed dramatic differences in morphology, including increased cell size and anisotropy, greater myofibril density and alignment, sarcomeres visible by bright-field microscopy, and a 10-fold increase in the fraction of multinucleated CMs. Ultrastructural analysis confirmed improvements in the myofibrillar density, alignment, and morphology. We measured the contractile performance of late-stage hESC-CMs and hiPSC-CMs and noted a doubling in shortening magnitude with slowed contraction kinetics compared to the early-stage cells. We then examined changes in the calcium-handling properties of these matured CMs and found an increase in calcium release and reuptake rates with no change in the maximum amplitude. Finally, we performed electrophysiological assessments in hESC-CMs and found that late-stage myocytes have hyperpolarized maximum diastolic potentials, increased action potential amplitudes, and faster upstroke velocities. To correlate these functional changes with gene expression, we performed qPCR and found a robust induction of the key cardiac structural markers, including β-myosin heavy chain and connexin-43, in late-stage hESC-CMs and hiPSC-CMs. These findings suggest that PSC-CMs are capable of slowly maturing to more closely resemble the phenotype of adult CMs and may eventually possess the potential to regenerate the lost myocardium with robust de novo force-producing tissue.
Author Regnier, Michael
Zhu, Wei-Zhong
Lundy, Scott D
Laflamme, Michael A
Author_xml – sequence: 1
  givenname: Scott D
  surname: Lundy
  fullname: Lundy, Scott D
  organization: Departments of Bioengineering, University of Washington, Seattle, Washington, USA
– sequence: 2
  givenname: Wei-Zhong
  surname: Zhu
  fullname: Zhu, Wei-Zhong
– sequence: 3
  givenname: Michael
  surname: Regnier
  fullname: Regnier, Michael
– sequence: 4
  givenname: Michael A
  surname: Laflamme
  fullname: Laflamme, Michael A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23461462$$D View this record in MEDLINE/PubMed
BookMark eNo1j01LxDAURYMojjO6dCv5Ax3T1yRNljL4BQMu1PWYJq9YaZKSpML8e2dQV5dzOVy4S3IaYkBCrmu2rpnSt9m6NbAa1oxrdkIuaiHaSomGL8gy5y_GQILi52QBDZc1l3BBPl5Lmm2ZkxmpCY72c7BliOGA3hzrI9DYU2uSG6LfR7svmKnDNHzjwU_R08_Zm0CncU7DFAuGQnNBTy2OY74kZ70ZM1795Yq8P9y_bZ6q7cvj8-ZuW1mu21IpEIC9ZQCNU-jaFlF3THArTaOYkLZXQhlmdd0pybpegxVSOqNMo61TElbk5nd3mjuPbjelwZu03_1fhR_TiFgn
CitedBy_id crossref_primary_10_1016_j_biomaterials_2013_10_052
crossref_primary_10_1016_j_scr_2017_01_003
crossref_primary_10_1016_j_scr_2017_01_006
crossref_primary_10_1155_2017_8960236
crossref_primary_10_1016_j_molmed_2019_04_005
crossref_primary_10_3389_fbioe_2020_00455
crossref_primary_10_3390_bioengineering7030105
crossref_primary_10_1517_14712598_2014_922533
crossref_primary_10_1371_journal_pone_0100742
crossref_primary_10_1016_j_celrep_2024_114160
crossref_primary_10_3390_jfb7010001
crossref_primary_10_12998_wjcc_v10_i27_9588
crossref_primary_10_1016_j_addr_2015_11_020
crossref_primary_10_1089_ten_tec_2017_0190
crossref_primary_10_1038_s41598_019_45684_0
crossref_primary_10_1016_j_mayocp_2013_05_003
crossref_primary_10_3390_biom13010069
crossref_primary_10_1016_j_yjmcc_2021_08_011
crossref_primary_10_1186_s13148_019_0679_0
crossref_primary_10_1517_14712598_2015_1064109
crossref_primary_10_1016_j_bbadis_2017_12_025
crossref_primary_10_1016_j_taap_2017_02_020
crossref_primary_10_15283_ijsc21077
crossref_primary_10_1007_s00441_018_2875_1
crossref_primary_10_1115_1_4027145
crossref_primary_10_1155_2016_6193419
crossref_primary_10_1016_j_addr_2015_11_016
crossref_primary_10_1113_jphysiol_2013_256495
crossref_primary_10_3389_fcell_2020_550504
crossref_primary_10_1038_nmeth_2524
crossref_primary_10_1021_acsomega_2c01807
crossref_primary_10_1007_s00395_022_00973_0
crossref_primary_10_1007_s11936_014_0331_4
crossref_primary_10_3390_ijms160818894
crossref_primary_10_1016_j_celrep_2017_09_005
crossref_primary_10_1016_j_yjmcc_2019_10_001
crossref_primary_10_1371_journal_pone_0192652
crossref_primary_10_3390_ijms21124354
crossref_primary_10_1016_j_scr_2019_101662
crossref_primary_10_1016_j_progpolymsci_2016_09_002
crossref_primary_10_1021_acsami_6b14020
crossref_primary_10_1021_acsnano_0c01745
crossref_primary_10_1016_j_biomaterials_2018_11_033
crossref_primary_10_1161_CIRCRESAHA_121_318868
crossref_primary_10_1063_5_0160677
crossref_primary_10_1016_j_jacc_2020_12_060
crossref_primary_10_1016_j_lfs_2019_05_012
crossref_primary_10_1016_j_biomaterials_2014_02_001
crossref_primary_10_1016_j_bios_2018_10_061
crossref_primary_10_1016_j_scr_2013_09_003
crossref_primary_10_1063_5_0137458
crossref_primary_10_1161_CIRCRESAHA_119_315305
crossref_primary_10_1007_s13239_024_00711_8
crossref_primary_10_1080_14712598_2019_1575359
crossref_primary_10_1016_j_cjca_2014_08_027
crossref_primary_10_1016_j_biomaterials_2023_122363
crossref_primary_10_1089_ten_teb_2014_0662
crossref_primary_10_3390_genes12111668
crossref_primary_10_1007_s11936_014_0320_7
crossref_primary_10_1021_acsbiomaterials_8b01256
crossref_primary_10_1089_bioe_2020_0035
crossref_primary_10_1186_s41232_021_00156_9
crossref_primary_10_1038_s41598_017_09217_x
crossref_primary_10_1161_CIRCRESAHA_117_310738
crossref_primary_10_3389_fcvm_2024_1374881
crossref_primary_10_1016_j_stemcr_2014_07_012
crossref_primary_10_1016_j_actbio_2020_12_033
crossref_primary_10_1186_s13287_024_04074_8
crossref_primary_10_1002_sctm_18_0279
crossref_primary_10_3390_cells9102275
crossref_primary_10_3390_life14111370
crossref_primary_10_1038_s41598_017_10094_7
crossref_primary_10_1159_000511382
crossref_primary_10_1016_j_biomaterials_2023_122255
crossref_primary_10_1093_bioinformatics_btab400
crossref_primary_10_1016_j_jacc_2018_04_041
crossref_primary_10_1016_j_stemcr_2022_07_003
crossref_primary_10_3390_ijms21197320
crossref_primary_10_3389_fphys_2022_1030920
crossref_primary_10_1161_CIRCULATIONAHA_117_029607
crossref_primary_10_12750_JARB_37_2_67
crossref_primary_10_1186_s40824_020_00189_0
crossref_primary_10_1007_s12015_020_10061_2
crossref_primary_10_1161_CIRCRESAHA_116_309040
crossref_primary_10_1124_pr_116_013003
crossref_primary_10_1038_s41598_024_68108_0
crossref_primary_10_1186_s12868_025_00931_1
crossref_primary_10_1002_jmr_2602
crossref_primary_10_1016_j_stemcr_2017_04_021
crossref_primary_10_3390_cells8121530
crossref_primary_10_1038_s41598_020_61163_3
crossref_primary_10_3390_cells12040520
crossref_primary_10_1038_s41596_024_00976_2
crossref_primary_10_3389_fcell_2021_787684
crossref_primary_10_1038_s41569_019_0331_x
crossref_primary_10_1089_ten_tec_2021_0023
crossref_primary_10_3390_jpm11050374
crossref_primary_10_1016_j_jacc_2016_01_083
crossref_primary_10_1002_cbin_10421
crossref_primary_10_1016_j_stemcr_2019_08_013
crossref_primary_10_3390_ijms21093404
crossref_primary_10_1016_j_bbamcr_2016_03_003
crossref_primary_10_1186_scrt390
crossref_primary_10_1002_biot_201800725
crossref_primary_10_1002_jcb_28926
crossref_primary_10_4137_BMI_S23912
crossref_primary_10_3390_ijms25179627
crossref_primary_10_1038_s41598_021_87186_y
crossref_primary_10_1038_s41598_020_68373_9
crossref_primary_10_1016_j_stemcr_2018_06_016
crossref_primary_10_1042_BSR20200833
crossref_primary_10_3389_fcell_2024_1472103
crossref_primary_10_1016_j_cmet_2020_04_004
crossref_primary_10_1016_j_biomaterials_2020_120554
crossref_primary_10_1016_j_scr_2020_101831
crossref_primary_10_1177_1535370215589910
crossref_primary_10_1002_stem_2403
crossref_primary_10_1016_j_stemcr_2015_01_020
crossref_primary_10_1016_j_jjcc_2020_03_013
crossref_primary_10_1038_s44161_024_00471_7
crossref_primary_10_1007_s12265_018_9801_5
crossref_primary_10_18632_aging_103088
crossref_primary_10_1186_s13287_024_03961_4
crossref_primary_10_1253_circj_CJ_20_0755
crossref_primary_10_1016_j_semcdb_2021_05_022
crossref_primary_10_1016_j_biopha_2022_113970
crossref_primary_10_1016_j_jtcvs_2019_06_060
crossref_primary_10_1177_1535370220959598
crossref_primary_10_1002_cpz1_320
crossref_primary_10_1016_j_stemcr_2020_06_005
crossref_primary_10_1161_CIRCULATIONAHA_117_024751
crossref_primary_10_1021_acsami_7b08777
crossref_primary_10_1186_s13287_021_02252_6
crossref_primary_10_1002_adhm_202301338
crossref_primary_10_3390_bioengineering6020048
crossref_primary_10_1007_s11886_019_1171_3
crossref_primary_10_1016_j_reth_2023_09_002
crossref_primary_10_1093_eurheartj_ehy249
crossref_primary_10_1016_j_stemcr_2021_01_018
crossref_primary_10_1016_j_biomaterials_2018_09_036
crossref_primary_10_1080_14740338_2016_1223624
crossref_primary_10_3390_ijms251910690
crossref_primary_10_1074_jbc_M116_767384
crossref_primary_10_1016_j_isci_2024_108992
crossref_primary_10_4252_wjsc_v12_i8_761
crossref_primary_10_3389_fcell_2022_986107
crossref_primary_10_1016_j_yjmcc_2021_09_009
crossref_primary_10_1016_j_vascn_2021_107072
crossref_primary_10_3389_fcell_2023_1110271
crossref_primary_10_1016_j_addr_2015_05_010
crossref_primary_10_1038_s41598_018_31772_0
crossref_primary_10_1161_HCG_0000000000000043
crossref_primary_10_3389_fphar_2024_1406247
crossref_primary_10_1016_j_addr_2015_05_004
crossref_primary_10_1016_j_yjmcc_2019_12_012
crossref_primary_10_1016_j_biomaterials_2021_121298
crossref_primary_10_1016_j_drudis_2016_04_013
crossref_primary_10_3389_fphys_2021_710619
crossref_primary_10_3390_ijms20153799
crossref_primary_10_1002_iub_2685
crossref_primary_10_1007_s00018_016_2285_z
crossref_primary_10_1186_s13287_020_01919_w
crossref_primary_10_1038_s41569_021_00603_7
crossref_primary_10_1093_toxsci_kfaa010
crossref_primary_10_1016_j_clinthera_2020_08_008
crossref_primary_10_1016_j_heliyon_2018_e00870
crossref_primary_10_1016_j_lfs_2017_04_013
crossref_primary_10_1007_s11886_023_01857_y
crossref_primary_10_1002_cpsc_40
crossref_primary_10_3389_fcell_2022_850645
crossref_primary_10_1016_j_yjmcc_2018_02_011
crossref_primary_10_1038_srep43210
crossref_primary_10_3390_mi12040386
crossref_primary_10_1089_scd_2018_0210
crossref_primary_10_15252_embj_201490563
crossref_primary_10_2217_rme_15_63
crossref_primary_10_1016_j_celrep_2016_12_040
crossref_primary_10_1021_acsami_5b11671
crossref_primary_10_1007_s00246_019_02165_5
crossref_primary_10_1007_s11936_014_0319_0
crossref_primary_10_1016_j_ymthe_2018_08_012
crossref_primary_10_1016_j_celrep_2015_10_032
crossref_primary_10_1021_acs_chemrestox_0c00100
crossref_primary_10_3390_ani10091561
crossref_primary_10_3389_fphys_2024_1475152
crossref_primary_10_1016_j_bioactmat_2021_05_040
crossref_primary_10_1007_s12015_022_10407_y
crossref_primary_10_1002_stem_1700
crossref_primary_10_1161_CIRCRESAHA_118_313249
crossref_primary_10_1186_s13287_025_04231_7
crossref_primary_10_1016_j_biomaterials_2015_12_011
crossref_primary_10_1016_j_joa_2014_01_001
crossref_primary_10_1161_CIRCULATIONAHA_119_044974
crossref_primary_10_1161_CIRCRESAHA_117_311920
crossref_primary_10_1016_j_addr_2015_04_019
crossref_primary_10_1016_j_bios_2022_114017
crossref_primary_10_1016_j_cjca_2014_08_005
crossref_primary_10_1038_srep24726
crossref_primary_10_1063_1_5070106
crossref_primary_10_1155_2018_6067096
crossref_primary_10_1088_1758_5090_ac1257
crossref_primary_10_1007_s00395_016_0587_9
crossref_primary_10_1016_j_chest_2017_07_021
crossref_primary_10_1039_D0BM01247E
crossref_primary_10_1016_j_biomaterials_2015_06_024
crossref_primary_10_3390_cells11233914
crossref_primary_10_1016_j_cels_2021_05_001
crossref_primary_10_2217_fca_13_71
crossref_primary_10_1016_j_celrep_2022_111146
crossref_primary_10_1177_0963689718779346
crossref_primary_10_1186_s13287_019_1205_1
crossref_primary_10_1098_rstb_2022_0312
crossref_primary_10_1016_j_stemcr_2014_06_002
crossref_primary_10_1016_j_isci_2023_107142
crossref_primary_10_1152_ajpheart_00631_2023
crossref_primary_10_3389_fcell_2021_639699
crossref_primary_10_1038_s41467_024_46928_y
crossref_primary_10_3390_ma12111805
crossref_primary_10_1016_j_devcel_2017_12_012
crossref_primary_10_1016_j_nano_2021_102365
crossref_primary_10_1007_s12015_014_9533_0
crossref_primary_10_1146_annurev_bioeng_092019_034950
crossref_primary_10_1242_dev_091538
crossref_primary_10_1109_TBME_2014_2311387
crossref_primary_10_1016_j_tcb_2016_06_003
crossref_primary_10_1152_ajpcell_00507_2024
crossref_primary_10_4252_wjsc_v11_i1_34
crossref_primary_10_1007_s00424_021_02557_8
crossref_primary_10_1161_CIRCRESAHA_117_305365
crossref_primary_10_1007_s10439_022_02902_7
crossref_primary_10_4252_wjsc_v11_i1_33
crossref_primary_10_1007_s00018_023_04894_6
crossref_primary_10_1016_j_biomaterials_2015_05_019
crossref_primary_10_1161_CIRCULATIONAHA_116_024145
crossref_primary_10_3389_fcell_2024_1298007
crossref_primary_10_1016_j_yjmcc_2018_03_012
crossref_primary_10_1113_JP287569
crossref_primary_10_1242_bio_052381
crossref_primary_10_1021_acsbiomaterials_2c01370
crossref_primary_10_1021_acs_langmuir_6b03138
crossref_primary_10_1016_j_biotechadv_2016_12_002
crossref_primary_10_1161_CIRCRESAHA_115_303810
crossref_primary_10_1016_j_tibtech_2022_12_018
crossref_primary_10_1038_s41467_018_07333_4
crossref_primary_10_1161_CIRCRESAHA_118_313973
crossref_primary_10_1039_D0TB01528H
crossref_primary_10_3390_bioengineering4030071
crossref_primary_10_1002_wnan_1787
crossref_primary_10_1002_9780470559277_ch150035
crossref_primary_10_1016_j_yexcr_2024_113929
crossref_primary_10_1016_j_vascn_2024_107530
crossref_primary_10_1038_s41586_018_0016_3
crossref_primary_10_1002_adhm_202303477
crossref_primary_10_1002_jbm_a_36971
crossref_primary_10_1016_j_imr_2015_12_007
crossref_primary_10_1016_j_stemcr_2024_08_005
crossref_primary_10_1155_2017_5153625
crossref_primary_10_1093_toxsci_kfy274
crossref_primary_10_1016_j_crmeth_2023_100456
crossref_primary_10_1093_cvr_cvab195
crossref_primary_10_1038_s41401_021_00639_y
crossref_primary_10_1016_j_scr_2018_07_020
crossref_primary_10_3390_cells10123483
crossref_primary_10_1007_s11886_020_01303_3
crossref_primary_10_1161_CIRCRESAHA_115_307794
crossref_primary_10_3389_fcell_2019_00164
crossref_primary_10_3389_fcell_2020_00178
crossref_primary_10_1080_17425255_2021_1894122
crossref_primary_10_1016_j_copbio_2017_05_011
crossref_primary_10_15420_aer_2019_1_1
crossref_primary_10_4070_kcj_2018_0312
crossref_primary_10_1111_jcmm_16429
crossref_primary_10_1161_CIRCRESAHA_114_300558
crossref_primary_10_1113_JP284244
crossref_primary_10_1371_journal_pone_0134093
crossref_primary_10_3390_ijms18061173
crossref_primary_10_3390_mps2040083
crossref_primary_10_1016_j_apsusc_2024_159680
crossref_primary_10_3389_fphys_2020_00384
crossref_primary_10_1254_fpj_24043
crossref_primary_10_1016_j_yjmcc_2014_04_010
crossref_primary_10_1002_ehf2_13504
crossref_primary_10_1093_intbio_zyab003
crossref_primary_10_2174_1389201021666200422090952
crossref_primary_10_1007_s12551_023_01099_w
crossref_primary_10_1016_j_sna_2025_116468
crossref_primary_10_1063_1_5129347
crossref_primary_10_3390_ijms222413644
crossref_primary_10_1089_scd_2014_0533
crossref_primary_10_1139_cjpp_2016_0726
crossref_primary_10_1096_fj_15_280982
crossref_primary_10_1186_s13287_023_03470_w
crossref_primary_10_1016_j_isci_2023_106302
crossref_primary_10_1371_journal_pone_0103485
crossref_primary_10_1016_j_ymeth_2021_06_009
crossref_primary_10_3389_fphar_2019_00934
crossref_primary_10_1002_sctm_16_0476
crossref_primary_10_1038_s41598_021_94732_1
crossref_primary_10_1016_j_stemcr_2019_04_002
crossref_primary_10_3389_fcell_2017_00050
crossref_primary_10_1038_s41598_020_73801_x
crossref_primary_10_1016_j_vascn_2023_107282
crossref_primary_10_1113_JP284011
crossref_primary_10_1371_journal_pcbi_1009443
crossref_primary_10_1016_j_yjmcc_2014_04_005
crossref_primary_10_1161_CIRCRESAHA_118_311209
crossref_primary_10_4137_BMI_S20058
crossref_primary_10_1253_circj_CJ_16_1113
crossref_primary_10_3390_ijms23073482
crossref_primary_10_1007_s00424_021_02542_1
crossref_primary_10_1016_j_yexcr_2024_113961
crossref_primary_10_1161_CIRCRESAHA_118_314505
crossref_primary_10_1016_j_yjmcc_2024_11_007
crossref_primary_10_1002_stem_2070
crossref_primary_10_1371_journal_pone_0172671
crossref_primary_10_3389_fbioe_2023_1155052
crossref_primary_10_3389_fsens_2023_1294721
crossref_primary_10_1038_srep18705
crossref_primary_10_1115_1_4062736
crossref_primary_10_1089_scd_2014_0540
crossref_primary_10_1152_ajpheart_00941_2020
crossref_primary_10_1161_CIRCRESAHA_119_314908
crossref_primary_10_1039_C8TB01116H
crossref_primary_10_1186_s13287_022_02905_0
crossref_primary_10_1002_adfm_201707378
crossref_primary_10_3389_fphar_2024_1308217
crossref_primary_10_1152_ajpheart_00439_2022
crossref_primary_10_3390_ijms21020657
crossref_primary_10_3389_fphar_2021_650039
crossref_primary_10_1016_j_addr_2015_07_004
crossref_primary_10_1016_j_yjmcc_2020_09_012
crossref_primary_10_1152_ajpheart_00527_2023
crossref_primary_10_1177_1470320315621225
crossref_primary_10_1155_2015_586908
crossref_primary_10_1016_j_yjmcc_2015_05_003
crossref_primary_10_1161_CIRCRESAHA_117_312177
crossref_primary_10_1186_s13287_022_03138_x
crossref_primary_10_1016_j_jacbts_2018_08_008
crossref_primary_10_1146_annurev_chembioeng_092120_033922
crossref_primary_10_1002_adhm_202303288
crossref_primary_10_1038_s41551_022_00885_3
crossref_primary_10_3389_fphys_2020_00368
crossref_primary_10_1093_intbio_zyaa003
crossref_primary_10_1016_j_stemcr_2017_09_008
crossref_primary_10_1039_C9SM01531K
crossref_primary_10_1016_j_actbio_2019_05_064
crossref_primary_10_1002_adhm_201800490
crossref_primary_10_3390_ijms21020507
crossref_primary_10_1073_pnas_1424042112
crossref_primary_10_1016_j_tcm_2013_05_003
crossref_primary_10_1016_j_xjtc_2022_01_012
crossref_primary_10_3389_fbioe_2022_980393
crossref_primary_10_3390_cells10102608
crossref_primary_10_1016_j_stemcr_2022_03_012
crossref_primary_10_1038_s41598_019_49653_5
crossref_primary_10_1007_s00395_023_00984_5
crossref_primary_10_1038_s41551_018_0253_7
crossref_primary_10_3389_fphys_2023_1191965
crossref_primary_10_1089_ten_tea_2015_0482
crossref_primary_10_1016_j_medntd_2023_100220
crossref_primary_10_1038_nrcardio_2016_36
crossref_primary_10_3389_fcell_2020_00268
crossref_primary_10_1152_ajpheart_00536_2024
crossref_primary_10_1016_j_clinthera_2020_09_001
crossref_primary_10_1089_scd_2020_0184
crossref_primary_10_1371_journal_pone_0158358
crossref_primary_10_3389_fcell_2017_00019
crossref_primary_10_1161_CIRCRESAHA_115_307580
crossref_primary_10_1016_j_ydbio_2014_12_019
crossref_primary_10_1038_s41598_017_14053_0
crossref_primary_10_1016_j_vascn_2022_107184
crossref_primary_10_1016_j_yjmcc_2013_12_011
crossref_primary_10_1161_CIRCULATIONAHA_121_053563
crossref_primary_10_1016_j_ceca_2020_102244
crossref_primary_10_1177_1074248414523676
crossref_primary_10_1016_j_biomaterials_2015_07_004
crossref_primary_10_1155_2017_4528941
crossref_primary_10_3389_fcvm_2022_981982
crossref_primary_10_1038_s41551_022_00884_4
crossref_primary_10_1089_cell_2018_0052
crossref_primary_10_1016_j_coche_2014_11_004
crossref_primary_10_1016_j_stemcr_2016_07_018
crossref_primary_10_1038_s41467_019_12482_1
crossref_primary_10_3390_biom14010061
crossref_primary_10_1002_dvdy_24455
crossref_primary_10_1016_j_scr_2016_04_014
crossref_primary_10_14348_molcells_2022_0077
crossref_primary_10_1007_s10616_024_00630_5
crossref_primary_10_1016_j_ijcard_2018_08_069
crossref_primary_10_1039_C7BM00132K
crossref_primary_10_1039_D3LC00829K
crossref_primary_10_1161_CIRCEP_113_003638
crossref_primary_10_1016_j_vascn_2018_09_002
crossref_primary_10_1113_JP282562
crossref_primary_10_3390_cells7060048
crossref_primary_10_1002_jcb_27094
crossref_primary_10_1016_j_reth_2016_02_009
crossref_primary_10_1093_cvr_cvaa159
crossref_primary_10_3390_bioengineering12020154
crossref_primary_10_3389_fcvm_2018_00052
crossref_primary_10_3389_fmed_2018_00110
crossref_primary_10_3389_fphys_2021_624185
crossref_primary_10_1021_nl502227a
crossref_primary_10_3389_fcell_2021_810232
crossref_primary_10_1038_s41598_024_52453_1
crossref_primary_10_1016_j_stemcr_2017_07_024
crossref_primary_10_1016_j_celrep_2022_110643
crossref_primary_10_1161_CIRCRESAHA_115_306874
crossref_primary_10_3389_fcvm_2024_1435874
crossref_primary_10_1039_C6TB00324A
crossref_primary_10_1093_abbs_gmz090
crossref_primary_10_2217_rme_2016_0132
crossref_primary_10_1038_s41598_017_14198_y
crossref_primary_10_1038_s41598_017_08713_4
crossref_primary_10_1021_acs_chemrev_8b00323
crossref_primary_10_1146_annurev_genet_112414_054911
crossref_primary_10_3389_fcell_2015_00058
crossref_primary_10_1016_j_xpro_2022_101560
crossref_primary_10_1038_s41598_020_76052_y
crossref_primary_10_1371_journal_pone_0227780
crossref_primary_10_1038_s41598_021_87550_y
crossref_primary_10_1016_j_addr_2019_12_002
crossref_primary_10_7554_eLife_19406
crossref_primary_10_1002_jat_3611
crossref_primary_10_1016_j_stemcr_2014_09_017
crossref_primary_10_3390_ijms22063005
crossref_primary_10_1002_stem_3021
crossref_primary_10_1161_CIRCRESAHA_119_315378
crossref_primary_10_1016_j_ppedcard_2017_07_001
crossref_primary_10_2174_1389450119666180801122551
crossref_primary_10_3390_ijms25115772
crossref_primary_10_3390_ncrna7010020
crossref_primary_10_1016_j_biomaterials_2021_120764
crossref_primary_10_1371_journal_pcbi_1007676
crossref_primary_10_1002_adhm_202001175
crossref_primary_10_1113_JP283792
crossref_primary_10_1016_j_bbamcr_2015_11_005
crossref_primary_10_1186_scrt507
crossref_primary_10_3389_fcell_2022_855763
crossref_primary_10_1016_j_ceca_2015_12_002
crossref_primary_10_1089_ten_tea_2016_0027
crossref_primary_10_1093_toxsci_kfw235
crossref_primary_10_1186_scrt406
crossref_primary_10_1186_s12951_024_02383_x
crossref_primary_10_1007_s11936_015_0404_z
crossref_primary_10_1016_j_biomaterials_2015_01_067
crossref_primary_10_1063_1_4941776
crossref_primary_10_1016_j_stemcr_2018_01_039
crossref_primary_10_1517_17460441_2014_863275
crossref_primary_10_1161_CIRCULATIONAHA_114_014998
crossref_primary_10_1016_j_stemcr_2020_03_015
crossref_primary_10_1089_ten_tea_2018_0054
crossref_primary_10_3390_electronics13244985
crossref_primary_10_1007_s11886_022_01666_9
crossref_primary_10_3390_biology10080730
crossref_primary_10_1146_annurev_pharmtox_010617_053110
crossref_primary_10_1038_srep30956
crossref_primary_10_1177_1074248413520343
crossref_primary_10_1038_nrd_2015_34
crossref_primary_10_1126_sciadv_adg1222
crossref_primary_10_1002_cbin_11931
crossref_primary_10_1016_j_stemcr_2016_10_009
crossref_primary_10_1016_j_stemcr_2016_04_011
crossref_primary_10_1016_j_yjmcc_2013_09_009
crossref_primary_10_1016_j_biomaterials_2020_120195
crossref_primary_10_1016_j_yexcr_2021_112508
crossref_primary_10_1177_2472555218775028
crossref_primary_10_1021_acsbiomaterials_0c00788
crossref_primary_10_1371_journal_pone_0198026
crossref_primary_10_1038_s41598_018_27695_5
crossref_primary_10_1242_dmm_030320
crossref_primary_10_1002_adhm_201901373
crossref_primary_10_1038_srep18544
crossref_primary_10_3389_fcell_2023_1129263
crossref_primary_10_3389_fcvm_2023_1162731
crossref_primary_10_1155_2014_512831
crossref_primary_10_1016_j_scr_2017_10_011
crossref_primary_10_1039_C7BM00323D
crossref_primary_10_1161_JAHA_116_005135
crossref_primary_10_1038_s41536_021_00140_4
crossref_primary_10_1091_mbc_E16_01_0038
crossref_primary_10_1038_s41598_023_31144_3
crossref_primary_10_1016_j_stemcr_2016_04_006
crossref_primary_10_3389_fcvm_2018_00119
crossref_primary_10_1088_1758_5090_abce0a
crossref_primary_10_1016_j_ddtec_2018_06_002
crossref_primary_10_1093_toxsci_kfu150
crossref_primary_10_1016_j_vascn_2018_01_003
crossref_primary_10_1038_nmat4782
crossref_primary_10_2217_fca_2020_0234
crossref_primary_10_1016_j_sna_2019_111760
crossref_primary_10_18786_2072_0505_2021_49_036
crossref_primary_10_1016_j_bbrc_2024_150605
crossref_primary_10_1152_ajpheart_00110_2018
crossref_primary_10_1007_s11886_017_0829_y
crossref_primary_10_1002_jbm_a_37298
crossref_primary_10_3390_cells9030554
crossref_primary_10_1088_1758_5090_ab5d3f
crossref_primary_10_1016_j_devcel_2022_01_012
crossref_primary_10_1007_s12195_016_0462_7
crossref_primary_10_1007_s12015_015_9596_6
crossref_primary_10_1080_17460441_2020_1736549
crossref_primary_10_1038_s41390_018_0064_2
crossref_primary_10_1038_s41467_021_21029_2
crossref_primary_10_1113_JP272864
crossref_primary_10_1063_5_0030353
crossref_primary_10_1093_cvr_cvz109
crossref_primary_10_1152_ajpheart_00107_2017
crossref_primary_10_1126_scitranslmed_abd1817
crossref_primary_10_1186_s13287_020_01648_0
crossref_primary_10_3389_fcell_2022_895162
crossref_primary_10_7717_peerj_5805
crossref_primary_10_1016_j_stem_2021_11_007
crossref_primary_10_1038_s41598_020_65681_y
crossref_primary_10_1016_j_addr_2015_09_011
crossref_primary_10_1093_cvr_cvaa125
crossref_primary_10_1089_ten_tea_2018_0258
crossref_primary_10_3390_bioengineering10010106
crossref_primary_10_1038_s41598_024_53571_6
crossref_primary_10_1073_pnas_1322258111
crossref_primary_10_3389_fbioe_2023_1094397
crossref_primary_10_1177_2041731420921482
crossref_primary_10_1186_s13287_023_03468_4
crossref_primary_10_3390_biomedicines11030960
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1089/scd.2012.0490
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1557-8534
ExternalDocumentID 23461462
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: U01-HL09997
– fundername: NHLBI NIH HHS
  grantid: R01-HL111197
– fundername: NHLBI NIH HHS
  grantid: R01 HL111197
– fundername: NHLBI NIH HHS
  grantid: K08 HL080431
– fundername: NHLBI NIH HHS
  grantid: P01-HL094374
– fundername: NHLBI NIH HHS
  grantid: T32 HL007828
– fundername: NHLBI NIH HHS
  grantid: K08-HL80431
– fundername: NHLBI NIH HHS
  grantid: R01 HL064387
– fundername: NIGMS NIH HHS
  grantid: T32 GM007266
– fundername: NIGMS NIH HHS
  grantid: T32-GM 7266-37
GroupedDBID ---
0R~
0VX
123
29Q
34G
39C
4.4
ABBKN
ABJNI
ACGFS
ADBBV
ADNWM
AENEX
ALMA_UNASSIGNED_HOLDINGS
BNQNF
CGR
CS3
CUY
CVF
DU5
ECM
EIF
EJD
F5P
IHR
IM4
MV1
NPM
NQHIM
O9-
RML
UE5
ID FETCH-LOGICAL-c497t-8252efc0223d8ed77ee9b054c6a38056cf858a0c91b860bf92c566da8a39cd862
IngestDate Thu Jan 02 22:54:50 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c497t-8252efc0223d8ed77ee9b054c6a38056cf858a0c91b860bf92c566da8a39cd862
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3699903
PMID 23461462
ParticipantIDs pubmed_primary_23461462
PublicationCentury 2000
PublicationDate 2013-07-15
PublicationDateYYYYMMDD 2013-07-15
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Stem cells and development
PublicationTitleAlternate Stem Cells Dev
PublicationYear 2013
SSID ssj0026284
Score 2.5692203
Snippet Despite preclinical studies demonstrating the functional benefit of transplanting human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) into damaged...
SourceID pubmed
SourceType Index Database
StartPage 1991
SubjectTerms Action Potentials - physiology
Biomarkers - metabolism
Calcium - metabolism
Cell Differentiation
Cells, Cultured
Connexin 43 - genetics
Connexin 43 - metabolism
Embryonic Stem Cells - cytology
Embryonic Stem Cells - physiology
Gene Expression
Humans
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - physiology
Myocytes, Cardiac - cytology
Myocytes, Cardiac - physiology
Myofibrils - physiology
Myofibrils - ultrastructure
Patch-Clamp Techniques
Time Factors
Ventricular Myosins - genetics
Ventricular Myosins - metabolism
Title Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells
URI https://www.ncbi.nlm.nih.gov/pubmed/23461462
Volume 22
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7slEIvIekrjybsobei1F5Jq9UxhBQTSC-OIeSSal-1IZYMsQPOf8h_zszuWlKMW9pchNjF9qL5NPvNePYbQr5yKXlaZH1gbkkewY7HI-x7FBUs1RwIguq5E96XP_lglFxcp9edzlOramkxlyfqceO5ktdYFcbArnhK9j8sW38pDMA92BeuYGG4_pONh0781QlnYP4b96iQ2puiXmfNBpUrOp0uK7XENKuGtT0A0XRHS3yTvtndArxHNcfKAJR2_oYJ_fs2cx3Wo-63dFNsVNf0LErvsYdO76EuJb4ZL1wln5lEN-Mq7JT4H4_5XU48YtrF-04F0t5hRr01FXKuIT-BvSKyyJ_QPDHBp6awEaYhZxmcLmNtcCUtF4q1WBt9e0_krhsl6rtiBjfxfUZbdp5NnaFZnADp8E7-77NrUturqS7pQtCBXVQx9ROidw4beRBphZV8f7EOlJQOn10LTxxNudoh2yG-oKceLLukY8r35K3vOLr8QH41kKFgRtpAhjaQoZWlLyFDA2QoQoY6yNAWZChChjpwfCSjH-dXZ4MoNNmIVJJn80iwlBmrgMrFWhidZcbkEni84kUsgB0rK1JR9FTel4L3pM2ZgghAF6KIc6UhHv5EtsqqNHuEWgnjUivNlUqKvhWmH1uIRwVwbqYztk8--0dzO_NKKrerh3bwx5lD8q4B1RfyxsKra46AB87lsbPPM7wGYf4
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+and+functional+maturation+of+cardiomyocytes+derived+from+human+pluripotent+stem+cells&rft.jtitle=Stem+cells+and+development&rft.au=Lundy%2C+Scott+D&rft.au=Zhu%2C+Wei-Zhong&rft.au=Regnier%2C+Michael&rft.au=Laflamme%2C+Michael+A&rft.date=2013-07-15&rft.eissn=1557-8534&rft.volume=22&rft.issue=14&rft.spage=1991&rft_id=info:doi/10.1089%2Fscd.2012.0490&rft_id=info%3Apmid%2F23461462&rft_id=info%3Apmid%2F23461462&rft.externalDocID=23461462