Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells
Despite preclinical studies demonstrating the functional benefit of transplanting human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) into damaged myocardium, the ability of these immature cells to adopt a more adult-like cardiomyocyte (CM) phenotype remains uncertain. To address this issue...
Saved in:
Published in | Stem cells and development Vol. 22; no. 14; p. 1991 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.07.2013
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Despite preclinical studies demonstrating the functional benefit of transplanting human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) into damaged myocardium, the ability of these immature cells to adopt a more adult-like cardiomyocyte (CM) phenotype remains uncertain. To address this issue, we tested the hypothesis that prolonged in vitro culture of human embryonic stem cell (hESC)- and human induced pluripotent stem cell (hiPSC)-derived CMs would result in the maturation of their structural and contractile properties to a more adult-like phenotype. Compared to their early-stage counterparts (PSC-CMs after 20-40 days of in vitro differentiation and culture), late-stage hESC-CMs and hiPSC-CMs (80-120 days) showed dramatic differences in morphology, including increased cell size and anisotropy, greater myofibril density and alignment, sarcomeres visible by bright-field microscopy, and a 10-fold increase in the fraction of multinucleated CMs. Ultrastructural analysis confirmed improvements in the myofibrillar density, alignment, and morphology. We measured the contractile performance of late-stage hESC-CMs and hiPSC-CMs and noted a doubling in shortening magnitude with slowed contraction kinetics compared to the early-stage cells. We then examined changes in the calcium-handling properties of these matured CMs and found an increase in calcium release and reuptake rates with no change in the maximum amplitude. Finally, we performed electrophysiological assessments in hESC-CMs and found that late-stage myocytes have hyperpolarized maximum diastolic potentials, increased action potential amplitudes, and faster upstroke velocities. To correlate these functional changes with gene expression, we performed qPCR and found a robust induction of the key cardiac structural markers, including β-myosin heavy chain and connexin-43, in late-stage hESC-CMs and hiPSC-CMs. These findings suggest that PSC-CMs are capable of slowly maturing to more closely resemble the phenotype of adult CMs and may eventually possess the potential to regenerate the lost myocardium with robust de novo force-producing tissue. |
---|---|
AbstractList | Despite preclinical studies demonstrating the functional benefit of transplanting human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) into damaged myocardium, the ability of these immature cells to adopt a more adult-like cardiomyocyte (CM) phenotype remains uncertain. To address this issue, we tested the hypothesis that prolonged in vitro culture of human embryonic stem cell (hESC)- and human induced pluripotent stem cell (hiPSC)-derived CMs would result in the maturation of their structural and contractile properties to a more adult-like phenotype. Compared to their early-stage counterparts (PSC-CMs after 20-40 days of in vitro differentiation and culture), late-stage hESC-CMs and hiPSC-CMs (80-120 days) showed dramatic differences in morphology, including increased cell size and anisotropy, greater myofibril density and alignment, sarcomeres visible by bright-field microscopy, and a 10-fold increase in the fraction of multinucleated CMs. Ultrastructural analysis confirmed improvements in the myofibrillar density, alignment, and morphology. We measured the contractile performance of late-stage hESC-CMs and hiPSC-CMs and noted a doubling in shortening magnitude with slowed contraction kinetics compared to the early-stage cells. We then examined changes in the calcium-handling properties of these matured CMs and found an increase in calcium release and reuptake rates with no change in the maximum amplitude. Finally, we performed electrophysiological assessments in hESC-CMs and found that late-stage myocytes have hyperpolarized maximum diastolic potentials, increased action potential amplitudes, and faster upstroke velocities. To correlate these functional changes with gene expression, we performed qPCR and found a robust induction of the key cardiac structural markers, including β-myosin heavy chain and connexin-43, in late-stage hESC-CMs and hiPSC-CMs. These findings suggest that PSC-CMs are capable of slowly maturing to more closely resemble the phenotype of adult CMs and may eventually possess the potential to regenerate the lost myocardium with robust de novo force-producing tissue. |
Author | Regnier, Michael Zhu, Wei-Zhong Lundy, Scott D Laflamme, Michael A |
Author_xml | – sequence: 1 givenname: Scott D surname: Lundy fullname: Lundy, Scott D organization: Departments of Bioengineering, University of Washington, Seattle, Washington, USA – sequence: 2 givenname: Wei-Zhong surname: Zhu fullname: Zhu, Wei-Zhong – sequence: 3 givenname: Michael surname: Regnier fullname: Regnier, Michael – sequence: 4 givenname: Michael A surname: Laflamme fullname: Laflamme, Michael A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23461462$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j01LxDAURYMojjO6dCv5Ax3T1yRNljL4BQMu1PWYJq9YaZKSpML8e2dQV5dzOVy4S3IaYkBCrmu2rpnSt9m6NbAa1oxrdkIuaiHaSomGL8gy5y_GQILi52QBDZc1l3BBPl5Lmm2ZkxmpCY72c7BliOGA3hzrI9DYU2uSG6LfR7svmKnDNHzjwU_R08_Zm0CncU7DFAuGQnNBTy2OY74kZ70ZM1795Yq8P9y_bZ6q7cvj8-ZuW1mu21IpEIC9ZQCNU-jaFlF3THArTaOYkLZXQhlmdd0pybpegxVSOqNMo61TElbk5nd3mjuPbjelwZu03_1fhR_TiFgn |
CitedBy_id | crossref_primary_10_1016_j_biomaterials_2013_10_052 crossref_primary_10_1016_j_scr_2017_01_003 crossref_primary_10_1016_j_scr_2017_01_006 crossref_primary_10_1155_2017_8960236 crossref_primary_10_1016_j_molmed_2019_04_005 crossref_primary_10_3389_fbioe_2020_00455 crossref_primary_10_3390_bioengineering7030105 crossref_primary_10_1517_14712598_2014_922533 crossref_primary_10_1371_journal_pone_0100742 crossref_primary_10_1016_j_celrep_2024_114160 crossref_primary_10_3390_jfb7010001 crossref_primary_10_12998_wjcc_v10_i27_9588 crossref_primary_10_1016_j_addr_2015_11_020 crossref_primary_10_1089_ten_tec_2017_0190 crossref_primary_10_1038_s41598_019_45684_0 crossref_primary_10_1016_j_mayocp_2013_05_003 crossref_primary_10_3390_biom13010069 crossref_primary_10_1016_j_yjmcc_2021_08_011 crossref_primary_10_1186_s13148_019_0679_0 crossref_primary_10_1517_14712598_2015_1064109 crossref_primary_10_1016_j_bbadis_2017_12_025 crossref_primary_10_1016_j_taap_2017_02_020 crossref_primary_10_15283_ijsc21077 crossref_primary_10_1007_s00441_018_2875_1 crossref_primary_10_1115_1_4027145 crossref_primary_10_1155_2016_6193419 crossref_primary_10_1016_j_addr_2015_11_016 crossref_primary_10_1113_jphysiol_2013_256495 crossref_primary_10_3389_fcell_2020_550504 crossref_primary_10_1038_nmeth_2524 crossref_primary_10_1021_acsomega_2c01807 crossref_primary_10_1007_s00395_022_00973_0 crossref_primary_10_1007_s11936_014_0331_4 crossref_primary_10_3390_ijms160818894 crossref_primary_10_1016_j_celrep_2017_09_005 crossref_primary_10_1016_j_yjmcc_2019_10_001 crossref_primary_10_1371_journal_pone_0192652 crossref_primary_10_3390_ijms21124354 crossref_primary_10_1016_j_scr_2019_101662 crossref_primary_10_1016_j_progpolymsci_2016_09_002 crossref_primary_10_1021_acsami_6b14020 crossref_primary_10_1021_acsnano_0c01745 crossref_primary_10_1016_j_biomaterials_2018_11_033 crossref_primary_10_1161_CIRCRESAHA_121_318868 crossref_primary_10_1063_5_0160677 crossref_primary_10_1016_j_jacc_2020_12_060 crossref_primary_10_1016_j_lfs_2019_05_012 crossref_primary_10_1016_j_biomaterials_2014_02_001 crossref_primary_10_1016_j_bios_2018_10_061 crossref_primary_10_1016_j_scr_2013_09_003 crossref_primary_10_1063_5_0137458 crossref_primary_10_1161_CIRCRESAHA_119_315305 crossref_primary_10_1007_s13239_024_00711_8 crossref_primary_10_1080_14712598_2019_1575359 crossref_primary_10_1016_j_cjca_2014_08_027 crossref_primary_10_1016_j_biomaterials_2023_122363 crossref_primary_10_1089_ten_teb_2014_0662 crossref_primary_10_3390_genes12111668 crossref_primary_10_1007_s11936_014_0320_7 crossref_primary_10_1021_acsbiomaterials_8b01256 crossref_primary_10_1089_bioe_2020_0035 crossref_primary_10_1186_s41232_021_00156_9 crossref_primary_10_1038_s41598_017_09217_x crossref_primary_10_1161_CIRCRESAHA_117_310738 crossref_primary_10_3389_fcvm_2024_1374881 crossref_primary_10_1016_j_stemcr_2014_07_012 crossref_primary_10_1016_j_actbio_2020_12_033 crossref_primary_10_1186_s13287_024_04074_8 crossref_primary_10_1002_sctm_18_0279 crossref_primary_10_3390_cells9102275 crossref_primary_10_3390_life14111370 crossref_primary_10_1038_s41598_017_10094_7 crossref_primary_10_1159_000511382 crossref_primary_10_1016_j_biomaterials_2023_122255 crossref_primary_10_1093_bioinformatics_btab400 crossref_primary_10_1016_j_jacc_2018_04_041 crossref_primary_10_1016_j_stemcr_2022_07_003 crossref_primary_10_3390_ijms21197320 crossref_primary_10_3389_fphys_2022_1030920 crossref_primary_10_1161_CIRCULATIONAHA_117_029607 crossref_primary_10_12750_JARB_37_2_67 crossref_primary_10_1186_s40824_020_00189_0 crossref_primary_10_1007_s12015_020_10061_2 crossref_primary_10_1161_CIRCRESAHA_116_309040 crossref_primary_10_1124_pr_116_013003 crossref_primary_10_1038_s41598_024_68108_0 crossref_primary_10_1186_s12868_025_00931_1 crossref_primary_10_1002_jmr_2602 crossref_primary_10_1016_j_stemcr_2017_04_021 crossref_primary_10_3390_cells8121530 crossref_primary_10_1038_s41598_020_61163_3 crossref_primary_10_3390_cells12040520 crossref_primary_10_1038_s41596_024_00976_2 crossref_primary_10_3389_fcell_2021_787684 crossref_primary_10_1038_s41569_019_0331_x crossref_primary_10_1089_ten_tec_2021_0023 crossref_primary_10_3390_jpm11050374 crossref_primary_10_1016_j_jacc_2016_01_083 crossref_primary_10_1002_cbin_10421 crossref_primary_10_1016_j_stemcr_2019_08_013 crossref_primary_10_3390_ijms21093404 crossref_primary_10_1016_j_bbamcr_2016_03_003 crossref_primary_10_1186_scrt390 crossref_primary_10_1002_biot_201800725 crossref_primary_10_1002_jcb_28926 crossref_primary_10_4137_BMI_S23912 crossref_primary_10_3390_ijms25179627 crossref_primary_10_1038_s41598_021_87186_y crossref_primary_10_1038_s41598_020_68373_9 crossref_primary_10_1016_j_stemcr_2018_06_016 crossref_primary_10_1042_BSR20200833 crossref_primary_10_3389_fcell_2024_1472103 crossref_primary_10_1016_j_cmet_2020_04_004 crossref_primary_10_1016_j_biomaterials_2020_120554 crossref_primary_10_1016_j_scr_2020_101831 crossref_primary_10_1177_1535370215589910 crossref_primary_10_1002_stem_2403 crossref_primary_10_1016_j_stemcr_2015_01_020 crossref_primary_10_1016_j_jjcc_2020_03_013 crossref_primary_10_1038_s44161_024_00471_7 crossref_primary_10_1007_s12265_018_9801_5 crossref_primary_10_18632_aging_103088 crossref_primary_10_1186_s13287_024_03961_4 crossref_primary_10_1253_circj_CJ_20_0755 crossref_primary_10_1016_j_semcdb_2021_05_022 crossref_primary_10_1016_j_biopha_2022_113970 crossref_primary_10_1016_j_jtcvs_2019_06_060 crossref_primary_10_1177_1535370220959598 crossref_primary_10_1002_cpz1_320 crossref_primary_10_1016_j_stemcr_2020_06_005 crossref_primary_10_1161_CIRCULATIONAHA_117_024751 crossref_primary_10_1021_acsami_7b08777 crossref_primary_10_1186_s13287_021_02252_6 crossref_primary_10_1002_adhm_202301338 crossref_primary_10_3390_bioengineering6020048 crossref_primary_10_1007_s11886_019_1171_3 crossref_primary_10_1016_j_reth_2023_09_002 crossref_primary_10_1093_eurheartj_ehy249 crossref_primary_10_1016_j_stemcr_2021_01_018 crossref_primary_10_1016_j_biomaterials_2018_09_036 crossref_primary_10_1080_14740338_2016_1223624 crossref_primary_10_3390_ijms251910690 crossref_primary_10_1074_jbc_M116_767384 crossref_primary_10_1016_j_isci_2024_108992 crossref_primary_10_4252_wjsc_v12_i8_761 crossref_primary_10_3389_fcell_2022_986107 crossref_primary_10_1016_j_yjmcc_2021_09_009 crossref_primary_10_1016_j_vascn_2021_107072 crossref_primary_10_3389_fcell_2023_1110271 crossref_primary_10_1016_j_addr_2015_05_010 crossref_primary_10_1038_s41598_018_31772_0 crossref_primary_10_1161_HCG_0000000000000043 crossref_primary_10_3389_fphar_2024_1406247 crossref_primary_10_1016_j_addr_2015_05_004 crossref_primary_10_1016_j_yjmcc_2019_12_012 crossref_primary_10_1016_j_biomaterials_2021_121298 crossref_primary_10_1016_j_drudis_2016_04_013 crossref_primary_10_3389_fphys_2021_710619 crossref_primary_10_3390_ijms20153799 crossref_primary_10_1002_iub_2685 crossref_primary_10_1007_s00018_016_2285_z crossref_primary_10_1186_s13287_020_01919_w crossref_primary_10_1038_s41569_021_00603_7 crossref_primary_10_1093_toxsci_kfaa010 crossref_primary_10_1016_j_clinthera_2020_08_008 crossref_primary_10_1016_j_heliyon_2018_e00870 crossref_primary_10_1016_j_lfs_2017_04_013 crossref_primary_10_1007_s11886_023_01857_y crossref_primary_10_1002_cpsc_40 crossref_primary_10_3389_fcell_2022_850645 crossref_primary_10_1016_j_yjmcc_2018_02_011 crossref_primary_10_1038_srep43210 crossref_primary_10_3390_mi12040386 crossref_primary_10_1089_scd_2018_0210 crossref_primary_10_15252_embj_201490563 crossref_primary_10_2217_rme_15_63 crossref_primary_10_1016_j_celrep_2016_12_040 crossref_primary_10_1021_acsami_5b11671 crossref_primary_10_1007_s00246_019_02165_5 crossref_primary_10_1007_s11936_014_0319_0 crossref_primary_10_1016_j_ymthe_2018_08_012 crossref_primary_10_1016_j_celrep_2015_10_032 crossref_primary_10_1021_acs_chemrestox_0c00100 crossref_primary_10_3390_ani10091561 crossref_primary_10_3389_fphys_2024_1475152 crossref_primary_10_1016_j_bioactmat_2021_05_040 crossref_primary_10_1007_s12015_022_10407_y crossref_primary_10_1002_stem_1700 crossref_primary_10_1161_CIRCRESAHA_118_313249 crossref_primary_10_1186_s13287_025_04231_7 crossref_primary_10_1016_j_biomaterials_2015_12_011 crossref_primary_10_1016_j_joa_2014_01_001 crossref_primary_10_1161_CIRCULATIONAHA_119_044974 crossref_primary_10_1161_CIRCRESAHA_117_311920 crossref_primary_10_1016_j_addr_2015_04_019 crossref_primary_10_1016_j_bios_2022_114017 crossref_primary_10_1016_j_cjca_2014_08_005 crossref_primary_10_1038_srep24726 crossref_primary_10_1063_1_5070106 crossref_primary_10_1155_2018_6067096 crossref_primary_10_1088_1758_5090_ac1257 crossref_primary_10_1007_s00395_016_0587_9 crossref_primary_10_1016_j_chest_2017_07_021 crossref_primary_10_1039_D0BM01247E crossref_primary_10_1016_j_biomaterials_2015_06_024 crossref_primary_10_3390_cells11233914 crossref_primary_10_1016_j_cels_2021_05_001 crossref_primary_10_2217_fca_13_71 crossref_primary_10_1016_j_celrep_2022_111146 crossref_primary_10_1177_0963689718779346 crossref_primary_10_1186_s13287_019_1205_1 crossref_primary_10_1098_rstb_2022_0312 crossref_primary_10_1016_j_stemcr_2014_06_002 crossref_primary_10_1016_j_isci_2023_107142 crossref_primary_10_1152_ajpheart_00631_2023 crossref_primary_10_3389_fcell_2021_639699 crossref_primary_10_1038_s41467_024_46928_y crossref_primary_10_3390_ma12111805 crossref_primary_10_1016_j_devcel_2017_12_012 crossref_primary_10_1016_j_nano_2021_102365 crossref_primary_10_1007_s12015_014_9533_0 crossref_primary_10_1146_annurev_bioeng_092019_034950 crossref_primary_10_1242_dev_091538 crossref_primary_10_1109_TBME_2014_2311387 crossref_primary_10_1016_j_tcb_2016_06_003 crossref_primary_10_1152_ajpcell_00507_2024 crossref_primary_10_4252_wjsc_v11_i1_34 crossref_primary_10_1007_s00424_021_02557_8 crossref_primary_10_1161_CIRCRESAHA_117_305365 crossref_primary_10_1007_s10439_022_02902_7 crossref_primary_10_4252_wjsc_v11_i1_33 crossref_primary_10_1007_s00018_023_04894_6 crossref_primary_10_1016_j_biomaterials_2015_05_019 crossref_primary_10_1161_CIRCULATIONAHA_116_024145 crossref_primary_10_3389_fcell_2024_1298007 crossref_primary_10_1016_j_yjmcc_2018_03_012 crossref_primary_10_1113_JP287569 crossref_primary_10_1242_bio_052381 crossref_primary_10_1021_acsbiomaterials_2c01370 crossref_primary_10_1021_acs_langmuir_6b03138 crossref_primary_10_1016_j_biotechadv_2016_12_002 crossref_primary_10_1161_CIRCRESAHA_115_303810 crossref_primary_10_1016_j_tibtech_2022_12_018 crossref_primary_10_1038_s41467_018_07333_4 crossref_primary_10_1161_CIRCRESAHA_118_313973 crossref_primary_10_1039_D0TB01528H crossref_primary_10_3390_bioengineering4030071 crossref_primary_10_1002_wnan_1787 crossref_primary_10_1002_9780470559277_ch150035 crossref_primary_10_1016_j_yexcr_2024_113929 crossref_primary_10_1016_j_vascn_2024_107530 crossref_primary_10_1038_s41586_018_0016_3 crossref_primary_10_1002_adhm_202303477 crossref_primary_10_1002_jbm_a_36971 crossref_primary_10_1016_j_imr_2015_12_007 crossref_primary_10_1016_j_stemcr_2024_08_005 crossref_primary_10_1155_2017_5153625 crossref_primary_10_1093_toxsci_kfy274 crossref_primary_10_1016_j_crmeth_2023_100456 crossref_primary_10_1093_cvr_cvab195 crossref_primary_10_1038_s41401_021_00639_y crossref_primary_10_1016_j_scr_2018_07_020 crossref_primary_10_3390_cells10123483 crossref_primary_10_1007_s11886_020_01303_3 crossref_primary_10_1161_CIRCRESAHA_115_307794 crossref_primary_10_3389_fcell_2019_00164 crossref_primary_10_3389_fcell_2020_00178 crossref_primary_10_1080_17425255_2021_1894122 crossref_primary_10_1016_j_copbio_2017_05_011 crossref_primary_10_15420_aer_2019_1_1 crossref_primary_10_4070_kcj_2018_0312 crossref_primary_10_1111_jcmm_16429 crossref_primary_10_1161_CIRCRESAHA_114_300558 crossref_primary_10_1113_JP284244 crossref_primary_10_1371_journal_pone_0134093 crossref_primary_10_3390_ijms18061173 crossref_primary_10_3390_mps2040083 crossref_primary_10_1016_j_apsusc_2024_159680 crossref_primary_10_3389_fphys_2020_00384 crossref_primary_10_1254_fpj_24043 crossref_primary_10_1016_j_yjmcc_2014_04_010 crossref_primary_10_1002_ehf2_13504 crossref_primary_10_1093_intbio_zyab003 crossref_primary_10_2174_1389201021666200422090952 crossref_primary_10_1007_s12551_023_01099_w crossref_primary_10_1016_j_sna_2025_116468 crossref_primary_10_1063_1_5129347 crossref_primary_10_3390_ijms222413644 crossref_primary_10_1089_scd_2014_0533 crossref_primary_10_1139_cjpp_2016_0726 crossref_primary_10_1096_fj_15_280982 crossref_primary_10_1186_s13287_023_03470_w crossref_primary_10_1016_j_isci_2023_106302 crossref_primary_10_1371_journal_pone_0103485 crossref_primary_10_1016_j_ymeth_2021_06_009 crossref_primary_10_3389_fphar_2019_00934 crossref_primary_10_1002_sctm_16_0476 crossref_primary_10_1038_s41598_021_94732_1 crossref_primary_10_1016_j_stemcr_2019_04_002 crossref_primary_10_3389_fcell_2017_00050 crossref_primary_10_1038_s41598_020_73801_x crossref_primary_10_1016_j_vascn_2023_107282 crossref_primary_10_1113_JP284011 crossref_primary_10_1371_journal_pcbi_1009443 crossref_primary_10_1016_j_yjmcc_2014_04_005 crossref_primary_10_1161_CIRCRESAHA_118_311209 crossref_primary_10_4137_BMI_S20058 crossref_primary_10_1253_circj_CJ_16_1113 crossref_primary_10_3390_ijms23073482 crossref_primary_10_1007_s00424_021_02542_1 crossref_primary_10_1016_j_yexcr_2024_113961 crossref_primary_10_1161_CIRCRESAHA_118_314505 crossref_primary_10_1016_j_yjmcc_2024_11_007 crossref_primary_10_1002_stem_2070 crossref_primary_10_1371_journal_pone_0172671 crossref_primary_10_3389_fbioe_2023_1155052 crossref_primary_10_3389_fsens_2023_1294721 crossref_primary_10_1038_srep18705 crossref_primary_10_1115_1_4062736 crossref_primary_10_1089_scd_2014_0540 crossref_primary_10_1152_ajpheart_00941_2020 crossref_primary_10_1161_CIRCRESAHA_119_314908 crossref_primary_10_1039_C8TB01116H crossref_primary_10_1186_s13287_022_02905_0 crossref_primary_10_1002_adfm_201707378 crossref_primary_10_3389_fphar_2024_1308217 crossref_primary_10_1152_ajpheart_00439_2022 crossref_primary_10_3390_ijms21020657 crossref_primary_10_3389_fphar_2021_650039 crossref_primary_10_1016_j_addr_2015_07_004 crossref_primary_10_1016_j_yjmcc_2020_09_012 crossref_primary_10_1152_ajpheart_00527_2023 crossref_primary_10_1177_1470320315621225 crossref_primary_10_1155_2015_586908 crossref_primary_10_1016_j_yjmcc_2015_05_003 crossref_primary_10_1161_CIRCRESAHA_117_312177 crossref_primary_10_1186_s13287_022_03138_x crossref_primary_10_1016_j_jacbts_2018_08_008 crossref_primary_10_1146_annurev_chembioeng_092120_033922 crossref_primary_10_1002_adhm_202303288 crossref_primary_10_1038_s41551_022_00885_3 crossref_primary_10_3389_fphys_2020_00368 crossref_primary_10_1093_intbio_zyaa003 crossref_primary_10_1016_j_stemcr_2017_09_008 crossref_primary_10_1039_C9SM01531K crossref_primary_10_1016_j_actbio_2019_05_064 crossref_primary_10_1002_adhm_201800490 crossref_primary_10_3390_ijms21020507 crossref_primary_10_1073_pnas_1424042112 crossref_primary_10_1016_j_tcm_2013_05_003 crossref_primary_10_1016_j_xjtc_2022_01_012 crossref_primary_10_3389_fbioe_2022_980393 crossref_primary_10_3390_cells10102608 crossref_primary_10_1016_j_stemcr_2022_03_012 crossref_primary_10_1038_s41598_019_49653_5 crossref_primary_10_1007_s00395_023_00984_5 crossref_primary_10_1038_s41551_018_0253_7 crossref_primary_10_3389_fphys_2023_1191965 crossref_primary_10_1089_ten_tea_2015_0482 crossref_primary_10_1016_j_medntd_2023_100220 crossref_primary_10_1038_nrcardio_2016_36 crossref_primary_10_3389_fcell_2020_00268 crossref_primary_10_1152_ajpheart_00536_2024 crossref_primary_10_1016_j_clinthera_2020_09_001 crossref_primary_10_1089_scd_2020_0184 crossref_primary_10_1371_journal_pone_0158358 crossref_primary_10_3389_fcell_2017_00019 crossref_primary_10_1161_CIRCRESAHA_115_307580 crossref_primary_10_1016_j_ydbio_2014_12_019 crossref_primary_10_1038_s41598_017_14053_0 crossref_primary_10_1016_j_vascn_2022_107184 crossref_primary_10_1016_j_yjmcc_2013_12_011 crossref_primary_10_1161_CIRCULATIONAHA_121_053563 crossref_primary_10_1016_j_ceca_2020_102244 crossref_primary_10_1177_1074248414523676 crossref_primary_10_1016_j_biomaterials_2015_07_004 crossref_primary_10_1155_2017_4528941 crossref_primary_10_3389_fcvm_2022_981982 crossref_primary_10_1038_s41551_022_00884_4 crossref_primary_10_1089_cell_2018_0052 crossref_primary_10_1016_j_coche_2014_11_004 crossref_primary_10_1016_j_stemcr_2016_07_018 crossref_primary_10_1038_s41467_019_12482_1 crossref_primary_10_3390_biom14010061 crossref_primary_10_1002_dvdy_24455 crossref_primary_10_1016_j_scr_2016_04_014 crossref_primary_10_14348_molcells_2022_0077 crossref_primary_10_1007_s10616_024_00630_5 crossref_primary_10_1016_j_ijcard_2018_08_069 crossref_primary_10_1039_C7BM00132K crossref_primary_10_1039_D3LC00829K crossref_primary_10_1161_CIRCEP_113_003638 crossref_primary_10_1016_j_vascn_2018_09_002 crossref_primary_10_1113_JP282562 crossref_primary_10_3390_cells7060048 crossref_primary_10_1002_jcb_27094 crossref_primary_10_1016_j_reth_2016_02_009 crossref_primary_10_1093_cvr_cvaa159 crossref_primary_10_3390_bioengineering12020154 crossref_primary_10_3389_fcvm_2018_00052 crossref_primary_10_3389_fmed_2018_00110 crossref_primary_10_3389_fphys_2021_624185 crossref_primary_10_1021_nl502227a crossref_primary_10_3389_fcell_2021_810232 crossref_primary_10_1038_s41598_024_52453_1 crossref_primary_10_1016_j_stemcr_2017_07_024 crossref_primary_10_1016_j_celrep_2022_110643 crossref_primary_10_1161_CIRCRESAHA_115_306874 crossref_primary_10_3389_fcvm_2024_1435874 crossref_primary_10_1039_C6TB00324A crossref_primary_10_1093_abbs_gmz090 crossref_primary_10_2217_rme_2016_0132 crossref_primary_10_1038_s41598_017_14198_y crossref_primary_10_1038_s41598_017_08713_4 crossref_primary_10_1021_acs_chemrev_8b00323 crossref_primary_10_1146_annurev_genet_112414_054911 crossref_primary_10_3389_fcell_2015_00058 crossref_primary_10_1016_j_xpro_2022_101560 crossref_primary_10_1038_s41598_020_76052_y crossref_primary_10_1371_journal_pone_0227780 crossref_primary_10_1038_s41598_021_87550_y crossref_primary_10_1016_j_addr_2019_12_002 crossref_primary_10_7554_eLife_19406 crossref_primary_10_1002_jat_3611 crossref_primary_10_1016_j_stemcr_2014_09_017 crossref_primary_10_3390_ijms22063005 crossref_primary_10_1002_stem_3021 crossref_primary_10_1161_CIRCRESAHA_119_315378 crossref_primary_10_1016_j_ppedcard_2017_07_001 crossref_primary_10_2174_1389450119666180801122551 crossref_primary_10_3390_ijms25115772 crossref_primary_10_3390_ncrna7010020 crossref_primary_10_1016_j_biomaterials_2021_120764 crossref_primary_10_1371_journal_pcbi_1007676 crossref_primary_10_1002_adhm_202001175 crossref_primary_10_1113_JP283792 crossref_primary_10_1016_j_bbamcr_2015_11_005 crossref_primary_10_1186_scrt507 crossref_primary_10_3389_fcell_2022_855763 crossref_primary_10_1016_j_ceca_2015_12_002 crossref_primary_10_1089_ten_tea_2016_0027 crossref_primary_10_1093_toxsci_kfw235 crossref_primary_10_1186_scrt406 crossref_primary_10_1186_s12951_024_02383_x crossref_primary_10_1007_s11936_015_0404_z crossref_primary_10_1016_j_biomaterials_2015_01_067 crossref_primary_10_1063_1_4941776 crossref_primary_10_1016_j_stemcr_2018_01_039 crossref_primary_10_1517_17460441_2014_863275 crossref_primary_10_1161_CIRCULATIONAHA_114_014998 crossref_primary_10_1016_j_stemcr_2020_03_015 crossref_primary_10_1089_ten_tea_2018_0054 crossref_primary_10_3390_electronics13244985 crossref_primary_10_1007_s11886_022_01666_9 crossref_primary_10_3390_biology10080730 crossref_primary_10_1146_annurev_pharmtox_010617_053110 crossref_primary_10_1038_srep30956 crossref_primary_10_1177_1074248413520343 crossref_primary_10_1038_nrd_2015_34 crossref_primary_10_1126_sciadv_adg1222 crossref_primary_10_1002_cbin_11931 crossref_primary_10_1016_j_stemcr_2016_10_009 crossref_primary_10_1016_j_stemcr_2016_04_011 crossref_primary_10_1016_j_yjmcc_2013_09_009 crossref_primary_10_1016_j_biomaterials_2020_120195 crossref_primary_10_1016_j_yexcr_2021_112508 crossref_primary_10_1177_2472555218775028 crossref_primary_10_1021_acsbiomaterials_0c00788 crossref_primary_10_1371_journal_pone_0198026 crossref_primary_10_1038_s41598_018_27695_5 crossref_primary_10_1242_dmm_030320 crossref_primary_10_1002_adhm_201901373 crossref_primary_10_1038_srep18544 crossref_primary_10_3389_fcell_2023_1129263 crossref_primary_10_3389_fcvm_2023_1162731 crossref_primary_10_1155_2014_512831 crossref_primary_10_1016_j_scr_2017_10_011 crossref_primary_10_1039_C7BM00323D crossref_primary_10_1161_JAHA_116_005135 crossref_primary_10_1038_s41536_021_00140_4 crossref_primary_10_1091_mbc_E16_01_0038 crossref_primary_10_1038_s41598_023_31144_3 crossref_primary_10_1016_j_stemcr_2016_04_006 crossref_primary_10_3389_fcvm_2018_00119 crossref_primary_10_1088_1758_5090_abce0a crossref_primary_10_1016_j_ddtec_2018_06_002 crossref_primary_10_1093_toxsci_kfu150 crossref_primary_10_1016_j_vascn_2018_01_003 crossref_primary_10_1038_nmat4782 crossref_primary_10_2217_fca_2020_0234 crossref_primary_10_1016_j_sna_2019_111760 crossref_primary_10_18786_2072_0505_2021_49_036 crossref_primary_10_1016_j_bbrc_2024_150605 crossref_primary_10_1152_ajpheart_00110_2018 crossref_primary_10_1007_s11886_017_0829_y crossref_primary_10_1002_jbm_a_37298 crossref_primary_10_3390_cells9030554 crossref_primary_10_1088_1758_5090_ab5d3f crossref_primary_10_1016_j_devcel_2022_01_012 crossref_primary_10_1007_s12195_016_0462_7 crossref_primary_10_1007_s12015_015_9596_6 crossref_primary_10_1080_17460441_2020_1736549 crossref_primary_10_1038_s41390_018_0064_2 crossref_primary_10_1038_s41467_021_21029_2 crossref_primary_10_1113_JP272864 crossref_primary_10_1063_5_0030353 crossref_primary_10_1093_cvr_cvz109 crossref_primary_10_1152_ajpheart_00107_2017 crossref_primary_10_1126_scitranslmed_abd1817 crossref_primary_10_1186_s13287_020_01648_0 crossref_primary_10_3389_fcell_2022_895162 crossref_primary_10_7717_peerj_5805 crossref_primary_10_1016_j_stem_2021_11_007 crossref_primary_10_1038_s41598_020_65681_y crossref_primary_10_1016_j_addr_2015_09_011 crossref_primary_10_1093_cvr_cvaa125 crossref_primary_10_1089_ten_tea_2018_0258 crossref_primary_10_3390_bioengineering10010106 crossref_primary_10_1038_s41598_024_53571_6 crossref_primary_10_1073_pnas_1322258111 crossref_primary_10_3389_fbioe_2023_1094397 crossref_primary_10_1177_2041731420921482 crossref_primary_10_1186_s13287_023_03468_4 crossref_primary_10_3390_biomedicines11030960 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1089/scd.2012.0490 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1557-8534 |
ExternalDocumentID | 23461462 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: U01-HL09997 – fundername: NHLBI NIH HHS grantid: R01-HL111197 – fundername: NHLBI NIH HHS grantid: R01 HL111197 – fundername: NHLBI NIH HHS grantid: K08 HL080431 – fundername: NHLBI NIH HHS grantid: P01-HL094374 – fundername: NHLBI NIH HHS grantid: T32 HL007828 – fundername: NHLBI NIH HHS grantid: K08-HL80431 – fundername: NHLBI NIH HHS grantid: R01 HL064387 – fundername: NIGMS NIH HHS grantid: T32 GM007266 – fundername: NIGMS NIH HHS grantid: T32-GM 7266-37 |
GroupedDBID | --- 0R~ 0VX 123 29Q 34G 39C 4.4 ABBKN ABJNI ACGFS ADBBV ADNWM AENEX ALMA_UNASSIGNED_HOLDINGS BNQNF CGR CS3 CUY CVF DU5 ECM EIF EJD F5P IHR IM4 MV1 NPM NQHIM O9- RML UE5 |
ID | FETCH-LOGICAL-c497t-8252efc0223d8ed77ee9b054c6a38056cf858a0c91b860bf92c566da8a39cd862 |
IngestDate | Thu Jan 02 22:54:50 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c497t-8252efc0223d8ed77ee9b054c6a38056cf858a0c91b860bf92c566da8a39cd862 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3699903 |
PMID | 23461462 |
ParticipantIDs | pubmed_primary_23461462 |
PublicationCentury | 2000 |
PublicationDate | 2013-07-15 |
PublicationDateYYYYMMDD | 2013-07-15 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Stem cells and development |
PublicationTitleAlternate | Stem Cells Dev |
PublicationYear | 2013 |
SSID | ssj0026284 |
Score | 2.5692203 |
Snippet | Despite preclinical studies demonstrating the functional benefit of transplanting human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) into damaged... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1991 |
SubjectTerms | Action Potentials - physiology Biomarkers - metabolism Calcium - metabolism Cell Differentiation Cells, Cultured Connexin 43 - genetics Connexin 43 - metabolism Embryonic Stem Cells - cytology Embryonic Stem Cells - physiology Gene Expression Humans Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - physiology Myocytes, Cardiac - cytology Myocytes, Cardiac - physiology Myofibrils - physiology Myofibrils - ultrastructure Patch-Clamp Techniques Time Factors Ventricular Myosins - genetics Ventricular Myosins - metabolism |
Title | Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23461462 |
Volume | 22 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7slEIvIekrjybsobei1F5Jq9UxhBQTSC-OIeSSal-1IZYMsQPOf8h_zszuWlKMW9pchNjF9qL5NPvNePYbQr5yKXlaZH1gbkkewY7HI-x7FBUs1RwIguq5E96XP_lglFxcp9edzlOramkxlyfqceO5ktdYFcbArnhK9j8sW38pDMA92BeuYGG4_pONh0781QlnYP4b96iQ2puiXmfNBpUrOp0uK7XENKuGtT0A0XRHS3yTvtndArxHNcfKAJR2_oYJ_fs2cx3Wo-63dFNsVNf0LErvsYdO76EuJb4ZL1wln5lEN-Mq7JT4H4_5XU48YtrF-04F0t5hRr01FXKuIT-BvSKyyJ_QPDHBp6awEaYhZxmcLmNtcCUtF4q1WBt9e0_krhsl6rtiBjfxfUZbdp5NnaFZnADp8E7-77NrUturqS7pQtCBXVQx9ROidw4beRBphZV8f7EOlJQOn10LTxxNudoh2yG-oKceLLukY8r35K3vOLr8QH41kKFgRtpAhjaQoZWlLyFDA2QoQoY6yNAWZChChjpwfCSjH-dXZ4MoNNmIVJJn80iwlBmrgMrFWhidZcbkEni84kUsgB0rK1JR9FTel4L3pM2ZgghAF6KIc6UhHv5EtsqqNHuEWgnjUivNlUqKvhWmH1uIRwVwbqYztk8--0dzO_NKKrerh3bwx5lD8q4B1RfyxsKra46AB87lsbPPM7wGYf4 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+and+functional+maturation+of+cardiomyocytes+derived+from+human+pluripotent+stem+cells&rft.jtitle=Stem+cells+and+development&rft.au=Lundy%2C+Scott+D&rft.au=Zhu%2C+Wei-Zhong&rft.au=Regnier%2C+Michael&rft.au=Laflamme%2C+Michael+A&rft.date=2013-07-15&rft.eissn=1557-8534&rft.volume=22&rft.issue=14&rft.spage=1991&rft_id=info:doi/10.1089%2Fscd.2012.0490&rft_id=info%3Apmid%2F23461462&rft_id=info%3Apmid%2F23461462&rft.externalDocID=23461462 |