Besov regularity for operator equations on patchwise smooth manifolds

We study regularity properties of solutions to operator equations on patchwise smooth manifolds  ∂ Ω , e.g., boundaries of polyhedral domains Ω ⊂ R 3 . Using suitable biorthogonal wavelet bases Ψ , we introduce a new class of Besov-type spaces B Ψ , q α ( L p ( ∂ Ω ) ) of functions u : ∂ Ω → C . Spe...

Full description

Saved in:
Bibliographic Details
Published inFoundations of computational mathematics Vol. 15; no. 6; pp. 1533 - 1569
Main Authors Dahlke, Stephan, Weimar, Markus
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2015
Springer
Subjects
Online AccessGet full text
ISSN1615-3375
1615-3383
DOI10.1007/s10208-015-9273-9

Cover

Abstract We study regularity properties of solutions to operator equations on patchwise smooth manifolds  ∂ Ω , e.g., boundaries of polyhedral domains Ω ⊂ R 3 . Using suitable biorthogonal wavelet bases Ψ , we introduce a new class of Besov-type spaces B Ψ , q α ( L p ( ∂ Ω ) ) of functions u : ∂ Ω → C . Special attention is paid on the rate of convergence for best n -term wavelet approximation to functions in these scales since this determines the performance of adaptive numerical schemes. We show embeddings of (weighted) Sobolev spaces on ∂ Ω into B Ψ , τ α ( L τ ( ∂ Ω ) ) , 1 / τ = α / 2 + 1 / 2 , which lead us to regularity assertions for the equations under consideration. Finally, we apply our results to a boundary integral equation of the second kind which arises from the double-layer ansatz for Dirichlet problems for Laplace’s equation in Ω .
AbstractList We study regularity properties of solutions to operator equations on patchwise smooth manifolds ∂Ω, e.g., boundaries of polyhedral domains Ω ⊂ [R.sup.3]. Using suitable biorthogonal wavelet bases Ψ, we introduce a new class of Besov-type spaces [B.sub.α.sub.Ψ, q] ([L.sub.p] (∂Ω)) of functions u: ∂Ω → C. Special attention is paid on the rate of convergence for best n-term wavelet approximation to functions in these scales since this determines the performance of adaptive numerical schemes. We show embeddings of (weighted) Sobolev spaces on ∂Ω into [B.sup.α.sub.Ψ, τ] ([L.sub.τ(∂Ω)), 1/τ = α/2 + 1/2, which lead us to regularity assertions for the equations under consideration. Finally, we apply our results to a boundary integral equation of the second kind which arises from the double-layer ansatz for Dirichlet problems for Laplace's equation in Ω.
We study regularity properties of solutions to operator equations on patchwise smooth manifolds ∂Ω, e.g., boundaries of polyhedral domains Ω ⊂ [R.sup.3]. Using suitable biorthogonal wavelet bases Ψ, we introduce a new class of Besov-type spaces [B.sub.α.sub.Ψ, q] ([L.sub.p] (∂Ω)) of functions u: ∂Ω → C. Special attention is paid on the rate of convergence for best n-term wavelet approximation to functions in these scales since this determines the performance of adaptive numerical schemes. We show embeddings of (weighted) Sobolev spaces on ∂Ω into [B.sup.α.sub.Ψ, τ] ([L.sub.τ(∂Ω)), 1/τ = α/2 + 1/2, which lead us to regularity assertions for the equations under consideration. Finally, we apply our results to a boundary integral equation of the second kind which arises from the double-layer ansatz for Dirichlet problems for Laplace's equation in Ω. Keywords Besov spaces * Weighted Sobolev spaces * Wavelets * Adaptive methods * Nonlinear approximation * Integral equations * Double layer * Regularity * Manifolds Mathematics Subject Classification 30H25 * 35B65 * 42C40 * 45E99 * 46E35 * 47B38 * 65T60
We study regularity properties of solutions to operator equations on patchwise smooth manifolds  ∂ Ω , e.g., boundaries of polyhedral domains Ω ⊂ R 3 . Using suitable biorthogonal wavelet bases Ψ , we introduce a new class of Besov-type spaces B Ψ , q α ( L p ( ∂ Ω ) ) of functions u : ∂ Ω → C . Special attention is paid on the rate of convergence for best n -term wavelet approximation to functions in these scales since this determines the performance of adaptive numerical schemes. We show embeddings of (weighted) Sobolev spaces on ∂ Ω into B Ψ , τ α ( L τ ( ∂ Ω ) ) , 1 / τ = α / 2 + 1 / 2 , which lead us to regularity assertions for the equations under consideration. Finally, we apply our results to a boundary integral equation of the second kind which arises from the double-layer ansatz for Dirichlet problems for Laplace’s equation in Ω .
Audience Academic
Author Dahlke, Stephan
Weimar, Markus
Author_xml – sequence: 1
  givenname: Stephan
  surname: Dahlke
  fullname: Dahlke, Stephan
  organization: Faculty of Mathematics and Computer Science, Workgroup Numerics and Optimization, Philipps-University Marburg
– sequence: 2
  givenname: Markus
  surname: Weimar
  fullname: Weimar, Markus
  email: weimar@mathematik.uni-marburg.de
  organization: Faculty of Mathematics and Computer Science, Workgroup Numerics and Optimization, Philipps-University Marburg
BookMark eNp9kctKAzEUhoNUsFYfwN2AKxdTk8lcl7VULRQEL-uQZk6mKTNJTVK1b29qRaiUkkVOwvclnPOfo542GhC6InhIMC5uHcEJLmNMsrhKChpXJ6hP8nCitKS9v7rIztC5c0scwIqkfTS5A2c-IgvNuuVW-U0kjY3MCiz3oYD3NffKaBcZHa24F4tP5SBynTF-EXVcK2na2l2gU8lbB5e_-wC93U9ex4_x7OlhOh7NYpFWhY_zMp3nNKeUzEFkgElaJ_m8IPOSEJlmdc4xqSoJEtK6zJIklRRKUcuCZjLDoa0But692_AWmNLSeMtFp5xgo5SWSYUpoYGKD1AN6NBUG8YmVbje44cH-LBq6JQ4KNzsCYHx8OUbvnaOTV-e99lixwprnLMgmVD-Z6bhE9Uygtk2QLYLkIVc2DZAVgWT_DNXVnXcbo46yc5xgdUNWLY0a6tDJkekb8NMrP8
CitedBy_id crossref_primary_10_4236_am_2017_88081
crossref_primary_10_1016_j_jmaa_2021_124974
crossref_primary_10_1007_s00041_019_09707_8
crossref_primary_10_1515_anona_2024_0044
crossref_primary_10_1080_01630563_2017_1359623
crossref_primary_10_4236_am_2016_715151
crossref_primary_10_1002_mana_202100271
crossref_primary_10_1080_17476933_2020_1797702
crossref_primary_10_1016_j_nonrwa_2022_103645
crossref_primary_10_1007_s10440_025_00718_w
crossref_primary_10_1007_s40840_021_01147_2
crossref_primary_10_1016_j_acha_2023_01_007
Cites_doi 10.1080/00036819208840092
10.1016/0022-1236(84)90066-1
10.4064/sm207-3-1
10.1090/S0025-5718-06-01867-9
10.2307/1971407
10.1016/S0893-9659(99)00075-0
10.1137/S003614290139233X
10.1016/S1874-608X(97)80008-8
10.1090/S0025-5718-08-02186-8
10.1007/PL00005404
10.1090/S0025-5718-07-01970-9
10.1007/s102080010027
10.1016/j.jat.2011.02.006
10.1007/BF02511543
10.1090/S0025-5718-00-01252-7
10.1080/00036811.2010.504184
10.1017/S0962492900002713
10.2307/2006988
10.1080/03605309708821252
10.1006/acha.2000.0282
10.2307/2374796
10.1137/S1064827599365501
10.1093/imanum/dri033
10.1016/0022-1236(90)90137-A
10.1006/jfan.1995.1067
10.1016/S0168-9274(96)00060-8
10.1002/mana.200310171
10.1137/S0036142902407988
10.1007/s13163-012-0093-z
10.1016/j.jco.2006.04.001
10.1017/S0962492900002816
10.1137/0519043
10.1006/jath.2001.3625
10.1006/acha.1997.0242
10.1137/S0036142902412269
10.1090/S0025-5718-99-01092-3
10.1007/978-3-642-66451-9
10.1515/9783110812411
10.1090/conm/445/08598
10.1007/s00041-015-9423-0
10.1007/978-3-540-68093-2
10.4171/ZAA/71
10.1007/978-0-387-85650-6_7
10.1090/cbms/083
10.1002/mana.201010052
10.1007/978-3-663-10851-1
10.1016/B978-008044046-0.50486-3
10.1007/s10208-014-9224-x
ContentType Journal Article
Copyright SFoCM 2015
COPYRIGHT 2015 Springer
Copyright_xml – notice: SFoCM 2015
– notice: COPYRIGHT 2015 Springer
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10208-015-9273-9
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList




DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 1569
ExternalDocumentID A438290313
10_1007_s10208_015_9273_9
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
AEIIB
ID FETCH-LOGICAL-c497t-684b636331bec5e014d26b71b811f45d6a0199fefe4d85224f3e8cdf735f50273
IEDL.DBID AGYKE
ISSN 1615-3375
IngestDate Tue Jun 17 21:55:30 EDT 2025
Thu Jun 12 23:43:43 EDT 2025
Tue Jun 10 20:26:09 EDT 2025
Fri Jun 27 05:08:46 EDT 2025
Tue Jul 01 04:30:04 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
Fri Feb 21 02:36:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Double layer
30H25
Besov spaces
Manifolds
Wavelets
45E99
47B38
Adaptive methods
46E35
Integral equations
42C40
35B65
Regularity
65T60
Weighted Sobolev spaces
Nonlinear approximation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-684b636331bec5e014d26b71b811f45d6a0199fefe4d85224f3e8cdf735f50273
PageCount 37
ParticipantIDs gale_infotracmisc_A438290313
gale_infotracgeneralonefile_A438290313
gale_infotracacademiconefile_A438290313
gale_incontextgauss_ISR_A438290313
crossref_citationtrail_10_1007_s10208_015_9273_9
crossref_primary_10_1007_s10208_015_9273_9
springer_journals_10_1007_s10208_015_9273_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationYear 2015
Publisher Springer US
Springer
Publisher_xml – name: Springer US
– name: Springer
References Elschner (CR27) 1992; 45
Maz’ya, Plamenevskiĭ (CR41) 1983; 2
Cohen, Dahmen, DeVore (CR7) 2002; 2
CR39
CR37
Dahlke, Sickel (CR21) 2013; 26
CR31
Canuto, Tabacco, Urban (CR3) 1999; 6
Frazier, Jawerth (CR28) 1990; 93
Harbrecht, Stevenson (CR33) 2006; 75
Canuto, Tabacco, Urban (CR4) 2000; 8
Cohen, Dahmen, DeVore (CR6) 2001; 70
Dahlke, Dahmen, Devore, Dahmen, Kurdila, Oswald (CR14) 1997
Mendez, Mitrea (CR42) 2000; 6
CR2
Kyriazis (CR40) 2001; 113
Dahlke (CR12) 1999; 12
Barinka, Barsch, Charton, Cohen, Dahlke, Dahmen, Urban (CR1) 2001; 23
Cohen, Masson (CR9) 2000; 86
Jerison, Kenig (CR36) 1995; 130
CR47
Dahlke, Novak, Sickel (CR19) 2006; 22
Harbrecht, Schneider (CR32) 2004; 269–270
CR46
CR45
CR44
Triebel (CR50) 2006
Dahmen, Harbrecht, Schneider (CR23) 1998; 76
Stevenson, Werner (CR49) 2009; 78
Stevenson (CR48) 2003; 41
Verchota (CR51) 1984; 59
Dahlke, Dahmen, Urban (CR16) 2002; 40
CR18
Cohen, Dahmen, DeVore (CR8) 2003; 41
Kappei (CR38) 2011; 90
CR13
Costabel (CR10) 1988; 19
Hedberg, Netrusov (CR34) 2007
Jerison, Kenig (CR35) 1981; 2
CR53
DeVore (CR25) 1998; 7
CR52
Dahmen, Schneider (CR24) 1999; 68
Dahmen (CR22) 1997; 6
Hansen, Sickel (CR30) 2011; 163
DeVore, Jawerth, Popov (CR26) 1992; 114
CR29
Dahlke, Dahmen, Hochmuth, Schneider (CR15) 1997; 23
Dahlke, DeVore (CR17) 1997; 22
CR20
Dahlberg, Kenig (CR11) 1987; 2
Of, Steinbach, Wendland (CR43) 2006; 26
Cioica, Dahlke, Kinzel, Lindner, Raasch, Ritter, Schilling (CR5) 2011; 207
W Dahmen (9273_CR24) 1999; 68
G Verchota (9273_CR51) 1984; 59
M Hansen (9273_CR30) 2011; 163
R Stevenson (9273_CR48) 2003; 41
9273_CR13
H Triebel (9273_CR50) 2006
J Elschner (9273_CR27) 1992; 45
9273_CR53
J Kappei (9273_CR38) 2011; 90
9273_CR52
M Costabel (9273_CR10) 1988; 19
RA DeVore (9273_CR25) 1998; 7
C Canuto (9273_CR3) 1999; 6
S Dahlke (9273_CR17) 1997; 22
A Cohen (9273_CR9) 2000; 86
9273_CR18
W Dahmen (9273_CR23) 1998; 76
A Cohen (9273_CR8) 2003; 41
9273_CR20
A Cohen (9273_CR7) 2002; 2
VG Maz’ya (9273_CR41) 1983; 2
R Stevenson (9273_CR49) 2009; 78
G Of (9273_CR43) 2006; 26
H Harbrecht (9273_CR32) 2004; 269–270
LI Hedberg (9273_CR34) 2007
BE Dahlberg (9273_CR11) 1987; 2
9273_CR29
RA DeVore (9273_CR26) 1992; 114
9273_CR39
P Cioica (9273_CR5) 2011; 207
A Cohen (9273_CR6) 2001; 70
9273_CR37
W Dahmen (9273_CR22) 1997; 6
9273_CR31
S Dahlke (9273_CR14) 1997
H Harbrecht (9273_CR33) 2006; 75
S Dahlke (9273_CR15) 1997; 23
M Frazier (9273_CR28) 1990; 93
G Kyriazis (9273_CR40) 2001; 113
A Barinka (9273_CR1) 2001; 23
S Dahlke (9273_CR12) 1999; 12
S Dahlke (9273_CR21) 2013; 26
S Dahlke (9273_CR19) 2006; 22
9273_CR47
DS Jerison (9273_CR35) 1981; 2
9273_CR46
O Mendez (9273_CR42) 2000; 6
9273_CR45
9273_CR2
9273_CR44
DS Jerison (9273_CR36) 1995; 130
S Dahlke (9273_CR16) 2002; 40
C Canuto (9273_CR4) 2000; 8
References_xml – volume: 45
  start-page: 117
  year: 1992
  end-page: 134
  ident: CR27
  article-title: The double layer potential operator over polyhedral domains I: Solvability in weighted Sobolev spaces
  publication-title: Appl. Anal.
  doi: 10.1080/00036819208840092
– ident: CR45
– volume: 59
  start-page: 572
  year: 1984
  end-page: 611
  ident: CR51
  article-title: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(84)90066-1
– volume: 207
  start-page: 197
  issue: 3
  year: 2011
  end-page: 234
  ident: CR5
  article-title: Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains
  publication-title: Studia Math.
  doi: 10.4064/sm207-3-1
– volume: 75
  start-page: 1871
  year: 2006
  end-page: 1889
  ident: CR33
  article-title: Wavelets with patchwise cancellation properties
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-06-01867-9
– volume: 2
  start-page: 437
  issue: 125
  year: 1987
  end-page: 465
  ident: CR11
  article-title: Hardy spaces and the Neumann problem in for Laplace’s equation in Lipschitz domains
  publication-title: Ann. Math.
  doi: 10.2307/1971407
– ident: CR39
– volume: 12
  start-page: 31
  year: 1999
  end-page: 38
  ident: CR12
  article-title: Besov regularity for elliptic boundary value problems on polygonal domains
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(99)00075-0
– volume: 40
  start-page: 1230
  issue: 4
  year: 2002
  end-page: 1262
  ident: CR16
  article-title: Adaptive wavelet methods for saddle point problems - Optimal convergence rates
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S003614290139233X
– start-page: 237
  year: 1997
  end-page: 283
  ident: CR14
  article-title: Nonlinear approximation and adaptive techniques for solving elliptic operator equations
  publication-title: Multsicale Wavelet Methods for Partial Differential Equations
  doi: 10.1016/S1874-608X(97)80008-8
– ident: CR29
– volume: 78
  start-page: 619
  issue: 266
  year: 2009
  end-page: 644
  ident: CR49
  article-title: A multiplicative Schwarz adaptive wavelet method for elliptic boundary value problems
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-08-02186-8
– volume: 86
  start-page: 193
  issue: 2
  year: 2000
  end-page: 238
  ident: CR9
  article-title: Wavelet adaptive method for second order elliptic problems: Boundary conditions and domain decomposition
  publication-title: Numer. Math.
  doi: 10.1007/PL00005404
– ident: CR46
– volume: 76
  start-page: 1243
  year: 1998
  end-page: 1274
  ident: CR23
  article-title: Adaptive methods for boundary integral equations: Complexity and convergence estimates
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-07-01970-9
– volume: 2
  start-page: 203
  issue: 3
  year: 2002
  end-page: 245
  ident: CR7
  article-title: Adaptive wavelet methods II: Beyond the elliptic case
  publication-title: J. Found. Comput. Math.
  doi: 10.1007/s102080010027
– volume: 163
  start-page: 923
  issue: 8
  year: 2011
  end-page: 954
  ident: CR30
  article-title: Best -term approximation and Lizorkin-Triebel spaces
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2011.02.006
– volume: 6
  start-page: 503
  issue: 5
  year: 2000
  end-page: 531
  ident: CR42
  article-title: The Banach envelopes of Besov and Triebel-Lizorkin spaces and applications to partial differential equations
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/BF02511543
– volume: 70
  start-page: 27
  year: 2001
  end-page: 75
  ident: CR6
  article-title: Adaptive wavelet methods for elliptic operator equations: Convergence rates
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-00-01252-7
– volume: 90
  start-page: 1323
  issue: 8
  year: 2011
  end-page: 1535
  ident: CR38
  article-title: Adaptive frame methods for nonlinear elliptic problems
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2010.504184
– volume: 6
  start-page: 55
  year: 1997
  end-page: 228
  ident: CR22
  article-title: Wavelet and multiscale methods for operator equations
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002713
– year: 2006
  ident: CR50
  publication-title: Theory of Function Spaces III
– volume: 2
  start-page: 367
  issue: 113
  year: 1981
  end-page: 382
  ident: CR35
  article-title: The Dirichlet problem in non-smooth domains
  publication-title: Ann. Math.
  doi: 10.2307/2006988
– volume: 22
  start-page: 1
  issue: 1–2
  year: 1997
  end-page: 16
  ident: CR17
  article-title: Besov regularity for elliptic boundary value problems
  publication-title: Comm. Partial Differential Equations
  doi: 10.1080/03605309708821252
– year: 2007
  ident: CR34
  publication-title: An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation
– volume: 8
  start-page: 123
  issue: 2
  year: 2000
  end-page: 165
  ident: CR4
  article-title: The wavelet element method part II: Realization and additional features in 2D and 3D
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.2000.0282
– volume: 114
  start-page: 737
  issue: 4
  year: 1992
  end-page: 785
  ident: CR26
  article-title: Compression of wavelet decompositions
  publication-title: Am. J. Math.
  doi: 10.2307/2374796
– volume: 23
  start-page: 910
  issue: 3
  year: 2001
  end-page: 939
  ident: CR1
  article-title: Adaptive wavelet schemes for elliptic problems: Implementation and numerical experiments
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827599365501
– volume: 26
  start-page: 272
  issue: 2
  year: 2006
  end-page: 296
  ident: CR43
  article-title: The fast multipole method for symmetric boundary integral formulation
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/dri033
– ident: CR18
– ident: CR47
– volume: 93
  start-page: 297
  issue: 1
  year: 1990
  end-page: 318
  ident: CR28
  article-title: A discrete transform and decomposition of distribution spaces
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(90)90137-A
– ident: CR2
– ident: CR37
– ident: CR53
– volume: 130
  start-page: 161
  issue: 1
  year: 1995
  end-page: 219
  ident: CR36
  article-title: The inhomogeneous Dirichlet problem in Lipschitz domains
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1995.1067
– volume: 23
  start-page: 21
  issue: 1
  year: 1997
  end-page: 48
  ident: CR15
  article-title: Stable multiscale bases and local error estimation for elliptic problems
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(96)00060-8
– volume: 269–270
  start-page: 167
  year: 2004
  end-page: 188
  ident: CR32
  article-title: Biorthogonal wavelet bases for the boundary element method
  publication-title: Math. Nachr.
  doi: 10.1002/mana.200310171
– volume: 41
  start-page: 1074
  issue: 3
  year: 2003
  end-page: 1100
  ident: CR48
  article-title: Adaptive solution of operator equations using wavelet frames
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142902407988
– volume: 26
  start-page: 115
  issue: 1
  year: 2013
  end-page: 145
  ident: CR21
  article-title: On Besov regularity of solutions to nonlinear elliptic partial differential equations
  publication-title: Rev. Mat. Complut.
  doi: 10.1007/s13163-012-0093-z
– ident: CR44
– volume: 22
  start-page: 549
  issue: 4
  year: 2006
  end-page: 603
  ident: CR19
  article-title: Optimal approximation of elliptic problems by linear and nonlinear mappings II
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2006.04.001
– volume: 2
  start-page: 335
  year: 1983
  end-page: 359
  ident: CR41
  article-title: The first boundary value problem for the classical equations of mathematical physics in domains with piecewise smooth boundaries I
  publication-title: Zeitschr. Anal. Anwend.
– volume: 7
  start-page: 51
  year: 1998
  end-page: 150
  ident: CR25
  article-title: Nonlinear approximation
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002816
– ident: CR52
– volume: 19
  start-page: 613
  issue: 3
  year: 1988
  end-page: 626
  ident: CR10
  article-title: Boundary integral operators on Lipschitz domains: Elementary results
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0519043
– ident: CR31
– ident: CR13
– volume: 113
  start-page: 110
  issue: 1
  year: 2001
  end-page: 126
  ident: CR40
  article-title: Non-linear approximation and interpolation spaces
  publication-title: J. Approx. Theory
  doi: 10.1006/jath.2001.3625
– volume: 6
  start-page: 1
  issue: 1
  year: 1999
  end-page: 52
  ident: CR3
  article-title: The wavelet element method part I: Construction and analysis
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.1997.0242
– volume: 41
  start-page: 1785
  issue: 5
  year: 2003
  end-page: 1823
  ident: CR8
  article-title: Adaptive wavelet schemes for nonlinear variational problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142902412269
– volume: 68
  start-page: 1533
  year: 1999
  end-page: 1567
  ident: CR24
  article-title: Composite wavelet bases for operator equations
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-99-01092-3
– ident: CR20
– volume: 70
  start-page: 27
  year: 2001
  ident: 9273_CR6
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-00-01252-7
– volume: 90
  start-page: 1323
  issue: 8
  year: 2011
  ident: 9273_CR38
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2010.504184
– volume: 6
  start-page: 503
  issue: 5
  year: 2000
  ident: 9273_CR42
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/BF02511543
– volume: 22
  start-page: 1
  issue: 1–2
  year: 1997
  ident: 9273_CR17
  publication-title: Comm. Partial Differential Equations
  doi: 10.1080/03605309708821252
– volume-title: An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation
  year: 2007
  ident: 9273_CR34
– ident: 9273_CR2
  doi: 10.1007/978-3-642-66451-9
– volume: 41
  start-page: 1074
  issue: 3
  year: 2003
  ident: 9273_CR48
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142902407988
– volume: 26
  start-page: 272
  issue: 2
  year: 2006
  ident: 9273_CR43
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/dri033
– ident: 9273_CR53
– volume: 207
  start-page: 197
  issue: 3
  year: 2011
  ident: 9273_CR5
  publication-title: Studia Math.
  doi: 10.4064/sm207-3-1
– volume: 22
  start-page: 549
  issue: 4
  year: 2006
  ident: 9273_CR19
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2006.04.001
– volume: 23
  start-page: 910
  issue: 3
  year: 2001
  ident: 9273_CR1
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827599365501
– volume: 26
  start-page: 115
  issue: 1
  year: 2013
  ident: 9273_CR21
  publication-title: Rev. Mat. Complut.
  doi: 10.1007/s13163-012-0093-z
– volume: 78
  start-page: 619
  issue: 266
  year: 2009
  ident: 9273_CR49
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-08-02186-8
– volume: 2
  start-page: 437
  issue: 125
  year: 1987
  ident: 9273_CR11
  publication-title: Ann. Math.
  doi: 10.2307/1971407
– volume: 68
  start-page: 1533
  year: 1999
  ident: 9273_CR24
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-99-01092-3
– ident: 9273_CR44
  doi: 10.1515/9783110812411
– ident: 9273_CR37
  doi: 10.1090/conm/445/08598
– volume: 76
  start-page: 1243
  year: 1998
  ident: 9273_CR23
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-07-01970-9
– volume: 2
  start-page: 203
  issue: 3
  year: 2002
  ident: 9273_CR7
  publication-title: J. Found. Comput. Math.
  doi: 10.1007/s102080010027
– ident: 9273_CR52
  doi: 10.1007/s00041-015-9423-0
– ident: 9273_CR45
  doi: 10.1007/978-3-540-68093-2
– volume: 12
  start-page: 31
  year: 1999
  ident: 9273_CR12
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(99)00075-0
– start-page: 237
  volume-title: Multsicale Wavelet Methods for Partial Differential Equations
  year: 1997
  ident: 9273_CR14
  doi: 10.1016/S1874-608X(97)80008-8
– volume: 163
  start-page: 923
  issue: 8
  year: 2011
  ident: 9273_CR30
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2011.02.006
– volume: 6
  start-page: 1
  issue: 1
  year: 1999
  ident: 9273_CR3
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.1997.0242
– volume: 40
  start-page: 1230
  issue: 4
  year: 2002
  ident: 9273_CR16
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S003614290139233X
– volume: 93
  start-page: 297
  issue: 1
  year: 1990
  ident: 9273_CR28
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(90)90137-A
– volume: 114
  start-page: 737
  issue: 4
  year: 1992
  ident: 9273_CR26
  publication-title: Am. J. Math.
  doi: 10.2307/2374796
– volume: 2
  start-page: 335
  year: 1983
  ident: 9273_CR41
  publication-title: Zeitschr. Anal. Anwend.
  doi: 10.4171/ZAA/71
– volume: 86
  start-page: 193
  issue: 2
  year: 2000
  ident: 9273_CR9
  publication-title: Numer. Math.
  doi: 10.1007/PL00005404
– volume: 6
  start-page: 55
  year: 1997
  ident: 9273_CR22
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002713
– ident: 9273_CR20
  doi: 10.1007/978-0-387-85650-6_7
– volume: 45
  start-page: 117
  year: 1992
  ident: 9273_CR27
  publication-title: Appl. Anal.
  doi: 10.1080/00036819208840092
– ident: 9273_CR39
  doi: 10.1090/cbms/083
– volume: 269–270
  start-page: 167
  year: 2004
  ident: 9273_CR32
  publication-title: Math. Nachr.
  doi: 10.1002/mana.200310171
– ident: 9273_CR13
– ident: 9273_CR46
  doi: 10.1002/mana.201010052
– volume: 113
  start-page: 110
  issue: 1
  year: 2001
  ident: 9273_CR40
  publication-title: J. Approx. Theory
  doi: 10.1006/jath.2001.3625
– volume: 8
  start-page: 123
  issue: 2
  year: 2000
  ident: 9273_CR4
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.2000.0282
– volume: 23
  start-page: 21
  issue: 1
  year: 1997
  ident: 9273_CR15
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(96)00060-8
– ident: 9273_CR47
  doi: 10.1007/978-3-663-10851-1
– volume: 130
  start-page: 161
  issue: 1
  year: 1995
  ident: 9273_CR36
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1995.1067
– ident: 9273_CR31
  doi: 10.1016/B978-008044046-0.50486-3
– ident: 9273_CR18
– volume: 2
  start-page: 367
  issue: 113
  year: 1981
  ident: 9273_CR35
  publication-title: Ann. Math.
  doi: 10.2307/2006988
– volume: 19
  start-page: 613
  issue: 3
  year: 1988
  ident: 9273_CR10
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0519043
– ident: 9273_CR29
  doi: 10.1007/s10208-014-9224-x
– volume: 7
  start-page: 51
  year: 1998
  ident: 9273_CR25
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002816
– volume: 59
  start-page: 572
  year: 1984
  ident: 9273_CR51
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(84)90066-1
– volume-title: Theory of Function Spaces III
  year: 2006
  ident: 9273_CR50
– volume: 75
  start-page: 1871
  year: 2006
  ident: 9273_CR33
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-06-01867-9
– volume: 41
  start-page: 1785
  issue: 5
  year: 2003
  ident: 9273_CR8
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142902412269
SSID ssj0015914
Score 2.1276147
Snippet We study regularity properties of solutions to operator equations on patchwise smooth manifolds  ∂ Ω , e.g., boundaries of polyhedral domains Ω ⊂ R 3 . Using...
We study regularity properties of solutions to operator equations on patchwise smooth manifolds ∂Ω, e.g., boundaries of polyhedral domains Ω ⊂ [R.sup.3]. Using...
SourceID gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1533
SubjectTerms Analysis
Applications of Mathematics
Computer Science
Economics
Linear and Multilinear Algebras
Manifolds (Mathematics)
Math Applications in Computer Science
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Transformations (Mathematics)
Title Besov regularity for operator equations on patchwise smooth manifolds
URI https://link.springer.com/article/10.1007/s10208-015-9273-9
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7gH2wGCAVhiThRBIoExNHCf2Y0EdAzQeYJXGkxU79kCMpMwtSPz1nBO7EDSQ9hpf4ti-L-vufgfwmBeKpvVEJ2gLKn9BQZkzyiaU1rYqRJ6prlD4-F1xNM_fnLLTUMftYrZ7DEl2mvqPYresS7xiiUCbm4gN2GQpF3wEm9NXH9_O1sEDJjpIb-_L4Jwli8HMyz4yMEdRKQ9Dop2lOdyGk_iPfYLJl4PVUh3on3_BN15xEbfgZvA8ybRnldtwzTQ7sB28UBJk3OGj2OghPtuB67F8GYe3jtdAr-4OzF4Y134nF11He98Hj6ATTNqF6aL3xHzrkcQdaRuyQK3_6cdnZ4j72iKDEA-9Ydvz2t2F-eHs5OVREjozJDoX5TIpeK4KWlCaIgswg9esOitUmSqepjZndVGh5yissSavOXp4uaWG69qWlFnmEXTuwahpG7MLhPHSlv7aonWaV5aribEe35TaiS015WOYxAOSOsCW--4Z5_I34LLfU4l7Kv2eSjGGZ-tXFj1mx_-IH_lTlx4Lo_HJNmfVyjn5-sN7OfVBUuHBLcfwNBDZFifXVahdwCV4-KwB5ZMB5VkPHn4Z4d6AEKVaD4afRwaSQau4fy_i_pWoH8CNzHNgl5SzB6Plxco8RNdqqfaDKO3Dxjyb_gKUrxfd
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9B9zB4YDCYKAywEAIJlCmp7Xw8FtTRsXUP0EnjyYodeyBGUuYWJP56zoldCBpIe40vcWzfne90d78DeJankiZVrCK8C0rnoKDMaWkiSitTpgUbybZQeHacTk_Yu1N-6uu4bch2DyHJVlP_Uew2ahOveFTgnRsV12GDoQseD2Bj_Pbj4WQdPOBFC-ntbBmcM-MhmHnZR3rXUVDK_ZBoe9Psb8E8_GOXYPJlb7WUe-rnX_CNV1zEbbjlLU8y7ljlDlzT9TZseSuUeBm3-Cg0egjPtmEzlC_j8M3ZGujV3oXJa22b7-Si7Wjv-uARNIJJs9Bt9J7obx2SuCVNTRao9T_9-Gw1sV8bZBDioDdMc17Ze3CyP5m_mUa-M0OkWJEtozRnMqUppQmyANfoZlWjVGaJzJPEMF6lJVqOhdFGsypHC48ZqnNVmYxywx2Czg4M6qbW94HwPDOZc1uUSlhpchlr4_BNqYlNpmg-hDgckFAettx1zzgXvwGX3Z4K3FPh9lQUQ3i5fmXRYXb8j_ipO3XhsDBql2xzVq6sFQcf3ouxC5IWDtxyCC88kWlwclX62gVcgoPP6lE-71GedeDhlxHu9ghRqlVv-FVgIOG1iv33Ih5cifoJbE7nsyNxdHB8-BBujBw3tgk6uzBYXqz0IzSzlvKxF6tfD-0Z0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfYkBg8sLGBONhYhNCQhqq7Nk0_Hg-20z7YhAYn7S1q02SbNNpjucG_j90mB5XGJF4Tt1Fsx3bk-GeAd1lS8rAaqQB9QUEXFDxzujQB55UpkjyOyrZQ-OQ0OZjGR-fi3PU5tf61u09JdjUNhNJUz4ezygz_KnyL2kdYIsjR_wb5EjxEaxySok-j8SKNIPIW3JuiGlw9FT6tedcveo7Jm-d-crT1OZM1eOqCRTbupPsMHuh6HVZd4MjcsbQ45Hsz-LF1WPEVxzj95GSBzWo3YP-jts1PdtM2oafWdQzjVtbMdJtwZ_pHB_5tWVOzGRrqy19XVjP7vUGZMkLLMM11ZZ_DdLL_7dNB4JopBCrO03mQZHGZ8ITzEKUmNN6Mqigp07DMwtDEokoKDPZyo42OqwyDsthwnanKpFwYQaA3L2C5bmr9EpjIUpPSTUOpMC5MVo60IUhSbkYmVTwbwMhzUiqHNE4NL67lH4xkYr5E5ktivswHsLv4ZNbBbNxH_JbEIwm-oqb3MRfFrbXy8OuZHFNeMyc8ygG8d0SmwcVV4coNcAuEeNWj3OlRXnR433cRbvYI8SCq3vQHry7SGQL77028-i_qbXj0ZW8iPx-eHr-GxxFpbfukZhOW5ze3egsDo3n5plX-31ZMAUc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Besov+regularity+for+operator+equations+on+patchwise+smooth+manifolds&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Dahlke%2C+Stephan&rft.au=Weimar%2C+Markus&rft.date=2015-12-01&rft.pub=Springer&rft.issn=1615-3375&rft.spage=1533&rft_id=info:doi/10.1007%2Fs10208-015-9273-9&rft.externalDocID=A438290313
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon