Besov regularity for operator equations on patchwise smooth manifolds
We study regularity properties of solutions to operator equations on patchwise smooth manifolds ∂ Ω , e.g., boundaries of polyhedral domains Ω ⊂ R 3 . Using suitable biorthogonal wavelet bases Ψ , we introduce a new class of Besov-type spaces B Ψ , q α ( L p ( ∂ Ω ) ) of functions u : ∂ Ω → C . Spe...
Saved in:
Published in | Foundations of computational mathematics Vol. 15; no. 6; pp. 1533 - 1569 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2015
Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1615-3375 1615-3383 |
DOI | 10.1007/s10208-015-9273-9 |
Cover
Abstract | We study regularity properties of solutions to operator equations on patchwise smooth manifolds
∂
Ω
, e.g., boundaries of polyhedral domains
Ω
⊂
R
3
. Using suitable biorthogonal wavelet bases
Ψ
, we introduce a new class of Besov-type spaces
B
Ψ
,
q
α
(
L
p
(
∂
Ω
)
)
of functions
u
:
∂
Ω
→
C
. Special attention is paid on the rate of convergence for best
n
-term wavelet approximation to functions in these scales since this determines the performance of adaptive numerical schemes. We show embeddings of (weighted) Sobolev spaces on
∂
Ω
into
B
Ψ
,
τ
α
(
L
τ
(
∂
Ω
)
)
,
1
/
τ
=
α
/
2
+
1
/
2
, which lead us to regularity assertions for the equations under consideration. Finally, we apply our results to a boundary integral equation of the second kind which arises from the double-layer ansatz for Dirichlet problems for Laplace’s equation in
Ω
. |
---|---|
AbstractList | We study regularity properties of solutions to operator equations on patchwise smooth manifolds ∂Ω, e.g., boundaries of polyhedral domains Ω ⊂ [R.sup.3]. Using suitable biorthogonal wavelet bases Ψ, we introduce a new class of Besov-type spaces [B.sub.α.sub.Ψ, q] ([L.sub.p] (∂Ω)) of functions u: ∂Ω → C. Special attention is paid on the rate of convergence for best n-term wavelet approximation to functions in these scales since this determines the performance of adaptive numerical schemes. We show embeddings of (weighted) Sobolev spaces on ∂Ω into [B.sup.α.sub.Ψ, τ] ([L.sub.τ(∂Ω)), 1/τ = α/2 + 1/2, which lead us to regularity assertions for the equations under consideration. Finally, we apply our results to a boundary integral equation of the second kind which arises from the double-layer ansatz for Dirichlet problems for Laplace's equation in Ω. We study regularity properties of solutions to operator equations on patchwise smooth manifolds ∂Ω, e.g., boundaries of polyhedral domains Ω ⊂ [R.sup.3]. Using suitable biorthogonal wavelet bases Ψ, we introduce a new class of Besov-type spaces [B.sub.α.sub.Ψ, q] ([L.sub.p] (∂Ω)) of functions u: ∂Ω → C. Special attention is paid on the rate of convergence for best n-term wavelet approximation to functions in these scales since this determines the performance of adaptive numerical schemes. We show embeddings of (weighted) Sobolev spaces on ∂Ω into [B.sup.α.sub.Ψ, τ] ([L.sub.τ(∂Ω)), 1/τ = α/2 + 1/2, which lead us to regularity assertions for the equations under consideration. Finally, we apply our results to a boundary integral equation of the second kind which arises from the double-layer ansatz for Dirichlet problems for Laplace's equation in Ω. Keywords Besov spaces * Weighted Sobolev spaces * Wavelets * Adaptive methods * Nonlinear approximation * Integral equations * Double layer * Regularity * Manifolds Mathematics Subject Classification 30H25 * 35B65 * 42C40 * 45E99 * 46E35 * 47B38 * 65T60 We study regularity properties of solutions to operator equations on patchwise smooth manifolds ∂ Ω , e.g., boundaries of polyhedral domains Ω ⊂ R 3 . Using suitable biorthogonal wavelet bases Ψ , we introduce a new class of Besov-type spaces B Ψ , q α ( L p ( ∂ Ω ) ) of functions u : ∂ Ω → C . Special attention is paid on the rate of convergence for best n -term wavelet approximation to functions in these scales since this determines the performance of adaptive numerical schemes. We show embeddings of (weighted) Sobolev spaces on ∂ Ω into B Ψ , τ α ( L τ ( ∂ Ω ) ) , 1 / τ = α / 2 + 1 / 2 , which lead us to regularity assertions for the equations under consideration. Finally, we apply our results to a boundary integral equation of the second kind which arises from the double-layer ansatz for Dirichlet problems for Laplace’s equation in Ω . |
Audience | Academic |
Author | Dahlke, Stephan Weimar, Markus |
Author_xml | – sequence: 1 givenname: Stephan surname: Dahlke fullname: Dahlke, Stephan organization: Faculty of Mathematics and Computer Science, Workgroup Numerics and Optimization, Philipps-University Marburg – sequence: 2 givenname: Markus surname: Weimar fullname: Weimar, Markus email: weimar@mathematik.uni-marburg.de organization: Faculty of Mathematics and Computer Science, Workgroup Numerics and Optimization, Philipps-University Marburg |
BookMark | eNp9kctKAzEUhoNUsFYfwN2AKxdTk8lcl7VULRQEL-uQZk6mKTNJTVK1b29qRaiUkkVOwvclnPOfo542GhC6InhIMC5uHcEJLmNMsrhKChpXJ6hP8nCitKS9v7rIztC5c0scwIqkfTS5A2c-IgvNuuVW-U0kjY3MCiz3oYD3NffKaBcZHa24F4tP5SBynTF-EXVcK2na2l2gU8lbB5e_-wC93U9ex4_x7OlhOh7NYpFWhY_zMp3nNKeUzEFkgElaJ_m8IPOSEJlmdc4xqSoJEtK6zJIklRRKUcuCZjLDoa0But692_AWmNLSeMtFp5xgo5SWSYUpoYGKD1AN6NBUG8YmVbje44cH-LBq6JQ4KNzsCYHx8OUbvnaOTV-e99lixwprnLMgmVD-Z6bhE9Uygtk2QLYLkIVc2DZAVgWT_DNXVnXcbo46yc5xgdUNWLY0a6tDJkekb8NMrP8 |
CitedBy_id | crossref_primary_10_4236_am_2017_88081 crossref_primary_10_1016_j_jmaa_2021_124974 crossref_primary_10_1007_s00041_019_09707_8 crossref_primary_10_1515_anona_2024_0044 crossref_primary_10_1080_01630563_2017_1359623 crossref_primary_10_4236_am_2016_715151 crossref_primary_10_1002_mana_202100271 crossref_primary_10_1080_17476933_2020_1797702 crossref_primary_10_1016_j_nonrwa_2022_103645 crossref_primary_10_1007_s10440_025_00718_w crossref_primary_10_1007_s40840_021_01147_2 crossref_primary_10_1016_j_acha_2023_01_007 |
Cites_doi | 10.1080/00036819208840092 10.1016/0022-1236(84)90066-1 10.4064/sm207-3-1 10.1090/S0025-5718-06-01867-9 10.2307/1971407 10.1016/S0893-9659(99)00075-0 10.1137/S003614290139233X 10.1016/S1874-608X(97)80008-8 10.1090/S0025-5718-08-02186-8 10.1007/PL00005404 10.1090/S0025-5718-07-01970-9 10.1007/s102080010027 10.1016/j.jat.2011.02.006 10.1007/BF02511543 10.1090/S0025-5718-00-01252-7 10.1080/00036811.2010.504184 10.1017/S0962492900002713 10.2307/2006988 10.1080/03605309708821252 10.1006/acha.2000.0282 10.2307/2374796 10.1137/S1064827599365501 10.1093/imanum/dri033 10.1016/0022-1236(90)90137-A 10.1006/jfan.1995.1067 10.1016/S0168-9274(96)00060-8 10.1002/mana.200310171 10.1137/S0036142902407988 10.1007/s13163-012-0093-z 10.1016/j.jco.2006.04.001 10.1017/S0962492900002816 10.1137/0519043 10.1006/jath.2001.3625 10.1006/acha.1997.0242 10.1137/S0036142902412269 10.1090/S0025-5718-99-01092-3 10.1007/978-3-642-66451-9 10.1515/9783110812411 10.1090/conm/445/08598 10.1007/s00041-015-9423-0 10.1007/978-3-540-68093-2 10.4171/ZAA/71 10.1007/978-0-387-85650-6_7 10.1090/cbms/083 10.1002/mana.201010052 10.1007/978-3-663-10851-1 10.1016/B978-008044046-0.50486-3 10.1007/s10208-014-9224-x |
ContentType | Journal Article |
Copyright | SFoCM 2015 COPYRIGHT 2015 Springer |
Copyright_xml | – notice: SFoCM 2015 – notice: COPYRIGHT 2015 Springer |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10208-015-9273-9 |
DatabaseName | CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Mathematics Applied Sciences Computer Science |
EISSN | 1615-3383 |
EndPage | 1569 |
ExternalDocumentID | A438290313 10_1007_s10208_015_9273_9 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IEA IHE IJ- IKXTQ IOF ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MK~ N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PQQKQ PT4 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD AEIIB |
ID | FETCH-LOGICAL-c497t-684b636331bec5e014d26b71b811f45d6a0199fefe4d85224f3e8cdf735f50273 |
IEDL.DBID | AGYKE |
ISSN | 1615-3375 |
IngestDate | Tue Jun 17 21:55:30 EDT 2025 Thu Jun 12 23:43:43 EDT 2025 Tue Jun 10 20:26:09 EDT 2025 Fri Jun 27 05:08:46 EDT 2025 Tue Jul 01 04:30:04 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Fri Feb 21 02:36:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Double layer 30H25 Besov spaces Manifolds Wavelets 45E99 47B38 Adaptive methods 46E35 Integral equations 42C40 35B65 Regularity 65T60 Weighted Sobolev spaces Nonlinear approximation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-684b636331bec5e014d26b71b811f45d6a0199fefe4d85224f3e8cdf735f50273 |
PageCount | 37 |
ParticipantIDs | gale_infotracmisc_A438290313 gale_infotracgeneralonefile_A438290313 gale_infotracacademiconefile_A438290313 gale_incontextgauss_ISR_A438290313 crossref_citationtrail_10_1007_s10208_015_9273_9 crossref_primary_10_1007_s10208_015_9273_9 springer_journals_10_1007_s10208_015_9273_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | The Journal of the Society for the Foundations of Computational Mathematics |
PublicationTitle | Foundations of computational mathematics |
PublicationTitleAbbrev | Found Comput Math |
PublicationYear | 2015 |
Publisher | Springer US Springer |
Publisher_xml | – name: Springer US – name: Springer |
References | Elschner (CR27) 1992; 45 Maz’ya, Plamenevskiĭ (CR41) 1983; 2 Cohen, Dahmen, DeVore (CR7) 2002; 2 CR39 CR37 Dahlke, Sickel (CR21) 2013; 26 CR31 Canuto, Tabacco, Urban (CR3) 1999; 6 Frazier, Jawerth (CR28) 1990; 93 Harbrecht, Stevenson (CR33) 2006; 75 Canuto, Tabacco, Urban (CR4) 2000; 8 Cohen, Dahmen, DeVore (CR6) 2001; 70 Dahlke, Dahmen, Devore, Dahmen, Kurdila, Oswald (CR14) 1997 Mendez, Mitrea (CR42) 2000; 6 CR2 Kyriazis (CR40) 2001; 113 Dahlke (CR12) 1999; 12 Barinka, Barsch, Charton, Cohen, Dahlke, Dahmen, Urban (CR1) 2001; 23 Cohen, Masson (CR9) 2000; 86 Jerison, Kenig (CR36) 1995; 130 CR47 Dahlke, Novak, Sickel (CR19) 2006; 22 Harbrecht, Schneider (CR32) 2004; 269–270 CR46 CR45 CR44 Triebel (CR50) 2006 Dahmen, Harbrecht, Schneider (CR23) 1998; 76 Stevenson, Werner (CR49) 2009; 78 Stevenson (CR48) 2003; 41 Verchota (CR51) 1984; 59 Dahlke, Dahmen, Urban (CR16) 2002; 40 CR18 Cohen, Dahmen, DeVore (CR8) 2003; 41 Kappei (CR38) 2011; 90 CR13 Costabel (CR10) 1988; 19 Hedberg, Netrusov (CR34) 2007 Jerison, Kenig (CR35) 1981; 2 CR53 DeVore (CR25) 1998; 7 CR52 Dahmen, Schneider (CR24) 1999; 68 Dahmen (CR22) 1997; 6 Hansen, Sickel (CR30) 2011; 163 DeVore, Jawerth, Popov (CR26) 1992; 114 CR29 Dahlke, Dahmen, Hochmuth, Schneider (CR15) 1997; 23 Dahlke, DeVore (CR17) 1997; 22 CR20 Dahlberg, Kenig (CR11) 1987; 2 Of, Steinbach, Wendland (CR43) 2006; 26 Cioica, Dahlke, Kinzel, Lindner, Raasch, Ritter, Schilling (CR5) 2011; 207 W Dahmen (9273_CR24) 1999; 68 G Verchota (9273_CR51) 1984; 59 M Hansen (9273_CR30) 2011; 163 R Stevenson (9273_CR48) 2003; 41 9273_CR13 H Triebel (9273_CR50) 2006 J Elschner (9273_CR27) 1992; 45 9273_CR53 J Kappei (9273_CR38) 2011; 90 9273_CR52 M Costabel (9273_CR10) 1988; 19 RA DeVore (9273_CR25) 1998; 7 C Canuto (9273_CR3) 1999; 6 S Dahlke (9273_CR17) 1997; 22 A Cohen (9273_CR9) 2000; 86 9273_CR18 W Dahmen (9273_CR23) 1998; 76 A Cohen (9273_CR8) 2003; 41 9273_CR20 A Cohen (9273_CR7) 2002; 2 VG Maz’ya (9273_CR41) 1983; 2 R Stevenson (9273_CR49) 2009; 78 G Of (9273_CR43) 2006; 26 H Harbrecht (9273_CR32) 2004; 269–270 LI Hedberg (9273_CR34) 2007 BE Dahlberg (9273_CR11) 1987; 2 9273_CR29 RA DeVore (9273_CR26) 1992; 114 9273_CR39 P Cioica (9273_CR5) 2011; 207 A Cohen (9273_CR6) 2001; 70 9273_CR37 W Dahmen (9273_CR22) 1997; 6 9273_CR31 S Dahlke (9273_CR14) 1997 H Harbrecht (9273_CR33) 2006; 75 S Dahlke (9273_CR15) 1997; 23 M Frazier (9273_CR28) 1990; 93 G Kyriazis (9273_CR40) 2001; 113 A Barinka (9273_CR1) 2001; 23 S Dahlke (9273_CR12) 1999; 12 S Dahlke (9273_CR21) 2013; 26 S Dahlke (9273_CR19) 2006; 22 9273_CR47 DS Jerison (9273_CR35) 1981; 2 9273_CR46 O Mendez (9273_CR42) 2000; 6 9273_CR45 9273_CR2 9273_CR44 DS Jerison (9273_CR36) 1995; 130 S Dahlke (9273_CR16) 2002; 40 C Canuto (9273_CR4) 2000; 8 |
References_xml | – volume: 45 start-page: 117 year: 1992 end-page: 134 ident: CR27 article-title: The double layer potential operator over polyhedral domains I: Solvability in weighted Sobolev spaces publication-title: Appl. Anal. doi: 10.1080/00036819208840092 – ident: CR45 – volume: 59 start-page: 572 year: 1984 end-page: 611 ident: CR51 article-title: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(84)90066-1 – volume: 207 start-page: 197 issue: 3 year: 2011 end-page: 234 ident: CR5 article-title: Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains publication-title: Studia Math. doi: 10.4064/sm207-3-1 – volume: 75 start-page: 1871 year: 2006 end-page: 1889 ident: CR33 article-title: Wavelets with patchwise cancellation properties publication-title: Math. Comp. doi: 10.1090/S0025-5718-06-01867-9 – volume: 2 start-page: 437 issue: 125 year: 1987 end-page: 465 ident: CR11 article-title: Hardy spaces and the Neumann problem in for Laplace’s equation in Lipschitz domains publication-title: Ann. Math. doi: 10.2307/1971407 – ident: CR39 – volume: 12 start-page: 31 year: 1999 end-page: 38 ident: CR12 article-title: Besov regularity for elliptic boundary value problems on polygonal domains publication-title: Appl. Math. Lett. doi: 10.1016/S0893-9659(99)00075-0 – volume: 40 start-page: 1230 issue: 4 year: 2002 end-page: 1262 ident: CR16 article-title: Adaptive wavelet methods for saddle point problems - Optimal convergence rates publication-title: SIAM J. Numer. Anal. doi: 10.1137/S003614290139233X – start-page: 237 year: 1997 end-page: 283 ident: CR14 article-title: Nonlinear approximation and adaptive techniques for solving elliptic operator equations publication-title: Multsicale Wavelet Methods for Partial Differential Equations doi: 10.1016/S1874-608X(97)80008-8 – ident: CR29 – volume: 78 start-page: 619 issue: 266 year: 2009 end-page: 644 ident: CR49 article-title: A multiplicative Schwarz adaptive wavelet method for elliptic boundary value problems publication-title: Math. Comp. doi: 10.1090/S0025-5718-08-02186-8 – volume: 86 start-page: 193 issue: 2 year: 2000 end-page: 238 ident: CR9 article-title: Wavelet adaptive method for second order elliptic problems: Boundary conditions and domain decomposition publication-title: Numer. Math. doi: 10.1007/PL00005404 – ident: CR46 – volume: 76 start-page: 1243 year: 1998 end-page: 1274 ident: CR23 article-title: Adaptive methods for boundary integral equations: Complexity and convergence estimates publication-title: Math. Comp. doi: 10.1090/S0025-5718-07-01970-9 – volume: 2 start-page: 203 issue: 3 year: 2002 end-page: 245 ident: CR7 article-title: Adaptive wavelet methods II: Beyond the elliptic case publication-title: J. Found. Comput. Math. doi: 10.1007/s102080010027 – volume: 163 start-page: 923 issue: 8 year: 2011 end-page: 954 ident: CR30 article-title: Best -term approximation and Lizorkin-Triebel spaces publication-title: J. Approx. Theory doi: 10.1016/j.jat.2011.02.006 – volume: 6 start-page: 503 issue: 5 year: 2000 end-page: 531 ident: CR42 article-title: The Banach envelopes of Besov and Triebel-Lizorkin spaces and applications to partial differential equations publication-title: J. Fourier Anal. Appl. doi: 10.1007/BF02511543 – volume: 70 start-page: 27 year: 2001 end-page: 75 ident: CR6 article-title: Adaptive wavelet methods for elliptic operator equations: Convergence rates publication-title: Math. Comp. doi: 10.1090/S0025-5718-00-01252-7 – volume: 90 start-page: 1323 issue: 8 year: 2011 end-page: 1535 ident: CR38 article-title: Adaptive frame methods for nonlinear elliptic problems publication-title: Appl. Anal. doi: 10.1080/00036811.2010.504184 – volume: 6 start-page: 55 year: 1997 end-page: 228 ident: CR22 article-title: Wavelet and multiscale methods for operator equations publication-title: Acta Numer. doi: 10.1017/S0962492900002713 – year: 2006 ident: CR50 publication-title: Theory of Function Spaces III – volume: 2 start-page: 367 issue: 113 year: 1981 end-page: 382 ident: CR35 article-title: The Dirichlet problem in non-smooth domains publication-title: Ann. Math. doi: 10.2307/2006988 – volume: 22 start-page: 1 issue: 1–2 year: 1997 end-page: 16 ident: CR17 article-title: Besov regularity for elliptic boundary value problems publication-title: Comm. Partial Differential Equations doi: 10.1080/03605309708821252 – year: 2007 ident: CR34 publication-title: An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation – volume: 8 start-page: 123 issue: 2 year: 2000 end-page: 165 ident: CR4 article-title: The wavelet element method part II: Realization and additional features in 2D and 3D publication-title: Appl. Comput. Harmon. Anal. doi: 10.1006/acha.2000.0282 – volume: 114 start-page: 737 issue: 4 year: 1992 end-page: 785 ident: CR26 article-title: Compression of wavelet decompositions publication-title: Am. J. Math. doi: 10.2307/2374796 – volume: 23 start-page: 910 issue: 3 year: 2001 end-page: 939 ident: CR1 article-title: Adaptive wavelet schemes for elliptic problems: Implementation and numerical experiments publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827599365501 – volume: 26 start-page: 272 issue: 2 year: 2006 end-page: 296 ident: CR43 article-title: The fast multipole method for symmetric boundary integral formulation publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/dri033 – ident: CR18 – ident: CR47 – volume: 93 start-page: 297 issue: 1 year: 1990 end-page: 318 ident: CR28 article-title: A discrete transform and decomposition of distribution spaces publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(90)90137-A – ident: CR2 – ident: CR37 – ident: CR53 – volume: 130 start-page: 161 issue: 1 year: 1995 end-page: 219 ident: CR36 article-title: The inhomogeneous Dirichlet problem in Lipschitz domains publication-title: J. Funct. Anal. doi: 10.1006/jfan.1995.1067 – volume: 23 start-page: 21 issue: 1 year: 1997 end-page: 48 ident: CR15 article-title: Stable multiscale bases and local error estimation for elliptic problems publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(96)00060-8 – volume: 269–270 start-page: 167 year: 2004 end-page: 188 ident: CR32 article-title: Biorthogonal wavelet bases for the boundary element method publication-title: Math. Nachr. doi: 10.1002/mana.200310171 – volume: 41 start-page: 1074 issue: 3 year: 2003 end-page: 1100 ident: CR48 article-title: Adaptive solution of operator equations using wavelet frames publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142902407988 – volume: 26 start-page: 115 issue: 1 year: 2013 end-page: 145 ident: CR21 article-title: On Besov regularity of solutions to nonlinear elliptic partial differential equations publication-title: Rev. Mat. Complut. doi: 10.1007/s13163-012-0093-z – ident: CR44 – volume: 22 start-page: 549 issue: 4 year: 2006 end-page: 603 ident: CR19 article-title: Optimal approximation of elliptic problems by linear and nonlinear mappings II publication-title: J. Complexity doi: 10.1016/j.jco.2006.04.001 – volume: 2 start-page: 335 year: 1983 end-page: 359 ident: CR41 article-title: The first boundary value problem for the classical equations of mathematical physics in domains with piecewise smooth boundaries I publication-title: Zeitschr. Anal. Anwend. – volume: 7 start-page: 51 year: 1998 end-page: 150 ident: CR25 article-title: Nonlinear approximation publication-title: Acta Numer. doi: 10.1017/S0962492900002816 – ident: CR52 – volume: 19 start-page: 613 issue: 3 year: 1988 end-page: 626 ident: CR10 article-title: Boundary integral operators on Lipschitz domains: Elementary results publication-title: SIAM J. Math. Anal. doi: 10.1137/0519043 – ident: CR31 – ident: CR13 – volume: 113 start-page: 110 issue: 1 year: 2001 end-page: 126 ident: CR40 article-title: Non-linear approximation and interpolation spaces publication-title: J. Approx. Theory doi: 10.1006/jath.2001.3625 – volume: 6 start-page: 1 issue: 1 year: 1999 end-page: 52 ident: CR3 article-title: The wavelet element method part I: Construction and analysis publication-title: Appl. Comput. Harmon. Anal. doi: 10.1006/acha.1997.0242 – volume: 41 start-page: 1785 issue: 5 year: 2003 end-page: 1823 ident: CR8 article-title: Adaptive wavelet schemes for nonlinear variational problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142902412269 – volume: 68 start-page: 1533 year: 1999 end-page: 1567 ident: CR24 article-title: Composite wavelet bases for operator equations publication-title: Math. Comp. doi: 10.1090/S0025-5718-99-01092-3 – ident: CR20 – volume: 70 start-page: 27 year: 2001 ident: 9273_CR6 publication-title: Math. Comp. doi: 10.1090/S0025-5718-00-01252-7 – volume: 90 start-page: 1323 issue: 8 year: 2011 ident: 9273_CR38 publication-title: Appl. Anal. doi: 10.1080/00036811.2010.504184 – volume: 6 start-page: 503 issue: 5 year: 2000 ident: 9273_CR42 publication-title: J. Fourier Anal. Appl. doi: 10.1007/BF02511543 – volume: 22 start-page: 1 issue: 1–2 year: 1997 ident: 9273_CR17 publication-title: Comm. Partial Differential Equations doi: 10.1080/03605309708821252 – volume-title: An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation year: 2007 ident: 9273_CR34 – ident: 9273_CR2 doi: 10.1007/978-3-642-66451-9 – volume: 41 start-page: 1074 issue: 3 year: 2003 ident: 9273_CR48 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142902407988 – volume: 26 start-page: 272 issue: 2 year: 2006 ident: 9273_CR43 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/dri033 – ident: 9273_CR53 – volume: 207 start-page: 197 issue: 3 year: 2011 ident: 9273_CR5 publication-title: Studia Math. doi: 10.4064/sm207-3-1 – volume: 22 start-page: 549 issue: 4 year: 2006 ident: 9273_CR19 publication-title: J. Complexity doi: 10.1016/j.jco.2006.04.001 – volume: 23 start-page: 910 issue: 3 year: 2001 ident: 9273_CR1 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827599365501 – volume: 26 start-page: 115 issue: 1 year: 2013 ident: 9273_CR21 publication-title: Rev. Mat. Complut. doi: 10.1007/s13163-012-0093-z – volume: 78 start-page: 619 issue: 266 year: 2009 ident: 9273_CR49 publication-title: Math. Comp. doi: 10.1090/S0025-5718-08-02186-8 – volume: 2 start-page: 437 issue: 125 year: 1987 ident: 9273_CR11 publication-title: Ann. Math. doi: 10.2307/1971407 – volume: 68 start-page: 1533 year: 1999 ident: 9273_CR24 publication-title: Math. Comp. doi: 10.1090/S0025-5718-99-01092-3 – ident: 9273_CR44 doi: 10.1515/9783110812411 – ident: 9273_CR37 doi: 10.1090/conm/445/08598 – volume: 76 start-page: 1243 year: 1998 ident: 9273_CR23 publication-title: Math. Comp. doi: 10.1090/S0025-5718-07-01970-9 – volume: 2 start-page: 203 issue: 3 year: 2002 ident: 9273_CR7 publication-title: J. Found. Comput. Math. doi: 10.1007/s102080010027 – ident: 9273_CR52 doi: 10.1007/s00041-015-9423-0 – ident: 9273_CR45 doi: 10.1007/978-3-540-68093-2 – volume: 12 start-page: 31 year: 1999 ident: 9273_CR12 publication-title: Appl. Math. Lett. doi: 10.1016/S0893-9659(99)00075-0 – start-page: 237 volume-title: Multsicale Wavelet Methods for Partial Differential Equations year: 1997 ident: 9273_CR14 doi: 10.1016/S1874-608X(97)80008-8 – volume: 163 start-page: 923 issue: 8 year: 2011 ident: 9273_CR30 publication-title: J. Approx. Theory doi: 10.1016/j.jat.2011.02.006 – volume: 6 start-page: 1 issue: 1 year: 1999 ident: 9273_CR3 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1006/acha.1997.0242 – volume: 40 start-page: 1230 issue: 4 year: 2002 ident: 9273_CR16 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S003614290139233X – volume: 93 start-page: 297 issue: 1 year: 1990 ident: 9273_CR28 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(90)90137-A – volume: 114 start-page: 737 issue: 4 year: 1992 ident: 9273_CR26 publication-title: Am. J. Math. doi: 10.2307/2374796 – volume: 2 start-page: 335 year: 1983 ident: 9273_CR41 publication-title: Zeitschr. Anal. Anwend. doi: 10.4171/ZAA/71 – volume: 86 start-page: 193 issue: 2 year: 2000 ident: 9273_CR9 publication-title: Numer. Math. doi: 10.1007/PL00005404 – volume: 6 start-page: 55 year: 1997 ident: 9273_CR22 publication-title: Acta Numer. doi: 10.1017/S0962492900002713 – ident: 9273_CR20 doi: 10.1007/978-0-387-85650-6_7 – volume: 45 start-page: 117 year: 1992 ident: 9273_CR27 publication-title: Appl. Anal. doi: 10.1080/00036819208840092 – ident: 9273_CR39 doi: 10.1090/cbms/083 – volume: 269–270 start-page: 167 year: 2004 ident: 9273_CR32 publication-title: Math. Nachr. doi: 10.1002/mana.200310171 – ident: 9273_CR13 – ident: 9273_CR46 doi: 10.1002/mana.201010052 – volume: 113 start-page: 110 issue: 1 year: 2001 ident: 9273_CR40 publication-title: J. Approx. Theory doi: 10.1006/jath.2001.3625 – volume: 8 start-page: 123 issue: 2 year: 2000 ident: 9273_CR4 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1006/acha.2000.0282 – volume: 23 start-page: 21 issue: 1 year: 1997 ident: 9273_CR15 publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(96)00060-8 – ident: 9273_CR47 doi: 10.1007/978-3-663-10851-1 – volume: 130 start-page: 161 issue: 1 year: 1995 ident: 9273_CR36 publication-title: J. Funct. Anal. doi: 10.1006/jfan.1995.1067 – ident: 9273_CR31 doi: 10.1016/B978-008044046-0.50486-3 – ident: 9273_CR18 – volume: 2 start-page: 367 issue: 113 year: 1981 ident: 9273_CR35 publication-title: Ann. Math. doi: 10.2307/2006988 – volume: 19 start-page: 613 issue: 3 year: 1988 ident: 9273_CR10 publication-title: SIAM J. Math. Anal. doi: 10.1137/0519043 – ident: 9273_CR29 doi: 10.1007/s10208-014-9224-x – volume: 7 start-page: 51 year: 1998 ident: 9273_CR25 publication-title: Acta Numer. doi: 10.1017/S0962492900002816 – volume: 59 start-page: 572 year: 1984 ident: 9273_CR51 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(84)90066-1 – volume-title: Theory of Function Spaces III year: 2006 ident: 9273_CR50 – volume: 75 start-page: 1871 year: 2006 ident: 9273_CR33 publication-title: Math. Comp. doi: 10.1090/S0025-5718-06-01867-9 – volume: 41 start-page: 1785 issue: 5 year: 2003 ident: 9273_CR8 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142902412269 |
SSID | ssj0015914 |
Score | 2.1276147 |
Snippet | We study regularity properties of solutions to operator equations on patchwise smooth manifolds
∂
Ω
, e.g., boundaries of polyhedral domains
Ω
⊂
R
3
. Using... We study regularity properties of solutions to operator equations on patchwise smooth manifolds ∂Ω, e.g., boundaries of polyhedral domains Ω ⊂ [R.sup.3]. Using... |
SourceID | gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1533 |
SubjectTerms | Analysis Applications of Mathematics Computer Science Economics Linear and Multilinear Algebras Manifolds (Mathematics) Math Applications in Computer Science Mathematics Mathematics and Statistics Matrix Theory Numerical Analysis Transformations (Mathematics) |
Title | Besov regularity for operator equations on patchwise smooth manifolds |
URI | https://link.springer.com/article/10.1007/s10208-015-9273-9 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7gH2wGCAVhiThRBIoExNHCf2Y0EdAzQeYJXGkxU79kCMpMwtSPz1nBO7EDSQ9hpf4ti-L-vufgfwmBeKpvVEJ2gLKn9BQZkzyiaU1rYqRJ6prlD4-F1xNM_fnLLTUMftYrZ7DEl2mvqPYresS7xiiUCbm4gN2GQpF3wEm9NXH9_O1sEDJjpIb-_L4Jwli8HMyz4yMEdRKQ9Dop2lOdyGk_iPfYLJl4PVUh3on3_BN15xEbfgZvA8ybRnldtwzTQ7sB28UBJk3OGj2OghPtuB67F8GYe3jtdAr-4OzF4Y134nF11He98Hj6ATTNqF6aL3xHzrkcQdaRuyQK3_6cdnZ4j72iKDEA-9Ydvz2t2F-eHs5OVREjozJDoX5TIpeK4KWlCaIgswg9esOitUmSqepjZndVGh5yissSavOXp4uaWG69qWlFnmEXTuwahpG7MLhPHSlv7aonWaV5aribEe35TaiS015WOYxAOSOsCW--4Z5_I34LLfU4l7Kv2eSjGGZ-tXFj1mx_-IH_lTlx4Lo_HJNmfVyjn5-sN7OfVBUuHBLcfwNBDZFifXVahdwCV4-KwB5ZMB5VkPHn4Z4d6AEKVaD4afRwaSQau4fy_i_pWoH8CNzHNgl5SzB6Plxco8RNdqqfaDKO3Dxjyb_gKUrxfd |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9B9zB4YDCYKAywEAIJlCmp7Xw8FtTRsXUP0EnjyYodeyBGUuYWJP56zoldCBpIe40vcWzfne90d78DeJankiZVrCK8C0rnoKDMaWkiSitTpgUbybZQeHacTk_Yu1N-6uu4bch2DyHJVlP_Uew2ahOveFTgnRsV12GDoQseD2Bj_Pbj4WQdPOBFC-ntbBmcM-MhmHnZR3rXUVDK_ZBoe9Psb8E8_GOXYPJlb7WUe-rnX_CNV1zEbbjlLU8y7ljlDlzT9TZseSuUeBm3-Cg0egjPtmEzlC_j8M3ZGujV3oXJa22b7-Si7Wjv-uARNIJJs9Bt9J7obx2SuCVNTRao9T_9-Gw1sV8bZBDioDdMc17Ze3CyP5m_mUa-M0OkWJEtozRnMqUppQmyANfoZlWjVGaJzJPEMF6lJVqOhdFGsypHC48ZqnNVmYxywx2Czg4M6qbW94HwPDOZc1uUSlhpchlr4_BNqYlNpmg-hDgckFAettx1zzgXvwGX3Z4K3FPh9lQUQ3i5fmXRYXb8j_ipO3XhsDBql2xzVq6sFQcf3ouxC5IWDtxyCC88kWlwclX62gVcgoPP6lE-71GedeDhlxHu9ghRqlVv-FVgIOG1iv33Ih5cifoJbE7nsyNxdHB8-BBujBw3tgk6uzBYXqz0IzSzlvKxF6tfD-0Z0Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfYkBg8sLGBONhYhNCQhqq7Nk0_Hg-20z7YhAYn7S1q02SbNNpjucG_j90mB5XGJF4Tt1Fsx3bk-GeAd1lS8rAaqQB9QUEXFDxzujQB55UpkjyOyrZQ-OQ0OZjGR-fi3PU5tf61u09JdjUNhNJUz4ezygz_KnyL2kdYIsjR_wb5EjxEaxySok-j8SKNIPIW3JuiGlw9FT6tedcveo7Jm-d-crT1OZM1eOqCRTbupPsMHuh6HVZd4MjcsbQ45Hsz-LF1WPEVxzj95GSBzWo3YP-jts1PdtM2oafWdQzjVtbMdJtwZ_pHB_5tWVOzGRrqy19XVjP7vUGZMkLLMM11ZZ_DdLL_7dNB4JopBCrO03mQZHGZ8ITzEKUmNN6Mqigp07DMwtDEokoKDPZyo42OqwyDsthwnanKpFwYQaA3L2C5bmr9EpjIUpPSTUOpMC5MVo60IUhSbkYmVTwbwMhzUiqHNE4NL67lH4xkYr5E5ktivswHsLv4ZNbBbNxH_JbEIwm-oqb3MRfFrbXy8OuZHFNeMyc8ygG8d0SmwcVV4coNcAuEeNWj3OlRXnR433cRbvYI8SCq3vQHry7SGQL77028-i_qbXj0ZW8iPx-eHr-GxxFpbfukZhOW5ze3egsDo3n5plX-31ZMAUc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Besov+regularity+for+operator+equations+on+patchwise+smooth+manifolds&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Dahlke%2C+Stephan&rft.au=Weimar%2C+Markus&rft.date=2015-12-01&rft.pub=Springer&rft.issn=1615-3375&rft.spage=1533&rft_id=info:doi/10.1007%2Fs10208-015-9273-9&rft.externalDocID=A438290313 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon |