p20BAP31 induces cell apoptosis via both AIF caspase-independent and the ROS/JNK mitochondrial pathway in colorectal cancer

During cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic pathway between the endoplasmic reticulum (ER) and mitochondria. However, the underlying mechanisms of p20BAP31 in cell apoptosis remains unclear. We compared th...

Full description

Saved in:
Bibliographic Details
Published inCellular & molecular biology letters Vol. 28; no. 1; pp. 25 - 22
Main Authors Jiang, Xiaohan, Li, Guoxun, Zhu, Benzhi, Zang, Jingnan, Lan, Tian, Jiang, Rui, Wang, Bing
Format Journal Article
LanguageEnglish
Published England BioMed Central 28.03.2023
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic pathway between the endoplasmic reticulum (ER) and mitochondria. However, the underlying mechanisms of p20BAP31 in cell apoptosis remains unclear. We compared the effects of p20BAP31 on cell apoptosis in six cell lines and selected the most sensitive cells. Functional experiments were conducted, including Cell Counting Kit 8 (CCK-8), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) assay. Then, cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. Next, NOX inhibitors (ML171 and apocynin), ROS scavenger (NAC), JNK inhibitor (SP600125), and caspase inhibitor (Z-VAD-FMK) were used to further investigate the underlying mechanisms of p20BAP31 on cell apoptosis. Finally, apoptosis-inducing factor (AIF) translocation from the mitochondria to the nuclei was verified by immunoblotting and immunofluorescence assay. We found that overexpression of p20BAP31 indeed induced apoptosis and had a much greater sensitivity in HCT116 cells. Furthermore, the overexpression of p20BAP31 inhibited cell proliferation by causing S phase arrest. Further study revealed that p20BAP31 reduced MMP, with a significant increase in ROS levels, accompanied by the activation of the MAPK signaling pathway. Importantly, the mechanistic investigation indicated that p20BAP31 induces mitochondrial-dependent apoptosis by activating the ROS/JNK signaling pathway and induces caspase-independent apoptosis by promoting the nuclear translocation of AIF. p20BAP31 induced cell apoptosis via both the ROS/JNK mitochondrial pathway and AIF caspase-independent pathway. Compared with antitumor drugs that are susceptible to drug resistance, p20BAP31 has unique advantages for tumor therapy.
AbstractList During cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic pathway between the endoplasmic reticulum (ER) and mitochondria. However, the underlying mechanisms of p20BAP31 in cell apoptosis remains unclear.BACKGROUNDDuring cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic pathway between the endoplasmic reticulum (ER) and mitochondria. However, the underlying mechanisms of p20BAP31 in cell apoptosis remains unclear.We compared the effects of p20BAP31 on cell apoptosis in six cell lines and selected the most sensitive cells. Functional experiments were conducted, including Cell Counting Kit 8 (CCK-8), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) assay. Then, cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. Next, NOX inhibitors (ML171 and apocynin), ROS scavenger (NAC), JNK inhibitor (SP600125), and caspase inhibitor (Z-VAD-FMK) were used to further investigate the underlying mechanisms of p20BAP31 on cell apoptosis. Finally, apoptosis-inducing factor (AIF) translocation from the mitochondria to the nuclei was verified by immunoblotting and immunofluorescence assay.METHODSWe compared the effects of p20BAP31 on cell apoptosis in six cell lines and selected the most sensitive cells. Functional experiments were conducted, including Cell Counting Kit 8 (CCK-8), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) assay. Then, cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. Next, NOX inhibitors (ML171 and apocynin), ROS scavenger (NAC), JNK inhibitor (SP600125), and caspase inhibitor (Z-VAD-FMK) were used to further investigate the underlying mechanisms of p20BAP31 on cell apoptosis. Finally, apoptosis-inducing factor (AIF) translocation from the mitochondria to the nuclei was verified by immunoblotting and immunofluorescence assay.We found that overexpression of p20BAP31 indeed induced apoptosis and had a much greater sensitivity in HCT116 cells. Furthermore, the overexpression of p20BAP31 inhibited cell proliferation by causing S phase arrest. Further study revealed that p20BAP31 reduced MMP, with a significant increase in ROS levels, accompanied by the activation of the MAPK signaling pathway. Importantly, the mechanistic investigation indicated that p20BAP31 induces mitochondrial-dependent apoptosis by activating the ROS/JNK signaling pathway and induces caspase-independent apoptosis by promoting the nuclear translocation of AIF.RESULTSWe found that overexpression of p20BAP31 indeed induced apoptosis and had a much greater sensitivity in HCT116 cells. Furthermore, the overexpression of p20BAP31 inhibited cell proliferation by causing S phase arrest. Further study revealed that p20BAP31 reduced MMP, with a significant increase in ROS levels, accompanied by the activation of the MAPK signaling pathway. Importantly, the mechanistic investigation indicated that p20BAP31 induces mitochondrial-dependent apoptosis by activating the ROS/JNK signaling pathway and induces caspase-independent apoptosis by promoting the nuclear translocation of AIF.p20BAP31 induced cell apoptosis via both the ROS/JNK mitochondrial pathway and AIF caspase-independent pathway. Compared with antitumor drugs that are susceptible to drug resistance, p20BAP31 has unique advantages for tumor therapy.CONCLUSIONSp20BAP31 induced cell apoptosis via both the ROS/JNK mitochondrial pathway and AIF caspase-independent pathway. Compared with antitumor drugs that are susceptible to drug resistance, p20BAP31 has unique advantages for tumor therapy.
During cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic pathway between the endoplasmic reticulum (ER) and mitochondria. However, the underlying mechanisms of p20BAP31 in cell apoptosis remains unclear. We compared the effects of p20BAP31 on cell apoptosis in six cell lines and selected the most sensitive cells. Functional experiments were conducted, including Cell Counting Kit 8 (CCK-8), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) assay. Then, cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. Next, NOX inhibitors (ML171 and apocynin), ROS scavenger (NAC), JNK inhibitor (SP600125), and caspase inhibitor (Z-VAD-FMK) were used to further investigate the underlying mechanisms of p20BAP31 on cell apoptosis. Finally, apoptosis-inducing factor (AIF) translocation from the mitochondria to the nuclei was verified by immunoblotting and immunofluorescence assay. We found that overexpression of p20BAP31 indeed induced apoptosis and had a much greater sensitivity in HCT116 cells. Furthermore, the overexpression of p20BAP31 inhibited cell proliferation by causing S phase arrest. Further study revealed that p20BAP31 reduced MMP, with a significant increase in ROS levels, accompanied by the activation of the MAPK signaling pathway. Importantly, the mechanistic investigation indicated that p20BAP31 induces mitochondrial-dependent apoptosis by activating the ROS/JNK signaling pathway and induces caspase-independent apoptosis by promoting the nuclear translocation of AIF. p20BAP31 induced cell apoptosis via both the ROS/JNK mitochondrial pathway and AIF caspase-independent pathway. Compared with antitumor drugs that are susceptible to drug resistance, p20BAP31 has unique advantages for tumor therapy.
BackgroundDuring cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic pathway between the endoplasmic reticulum (ER) and mitochondria. However, the underlying mechanisms of p20BAP31 in cell apoptosis remains unclear.MethodsWe compared the effects of p20BAP31 on cell apoptosis in six cell lines and selected the most sensitive cells. Functional experiments were conducted, including Cell Counting Kit 8 (CCK-8), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) assay. Then, cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. Next, NOX inhibitors (ML171 and apocynin), ROS scavenger (NAC), JNK inhibitor (SP600125), and caspase inhibitor (Z-VAD-FMK) were used to further investigate the underlying mechanisms of p20BAP31 on cell apoptosis. Finally, apoptosis-inducing factor (AIF) translocation from the mitochondria to the nuclei was verified by immunoblotting and immunofluorescence assay.ResultsWe found that overexpression of p20BAP31 indeed induced apoptosis and had a much greater sensitivity in HCT116 cells. Furthermore, the overexpression of p20BAP31 inhibited cell proliferation by causing S phase arrest. Further study revealed that p20BAP31 reduced MMP, with a significant increase in ROS levels, accompanied by the activation of the MAPK signaling pathway. Importantly, the mechanistic investigation indicated that p20BAP31 induces mitochondrial-dependent apoptosis by activating the ROS/JNK signaling pathway and induces caspase-independent apoptosis by promoting the nuclear translocation of AIF.Conclusionsp20BAP31 induced cell apoptosis via both the ROS/JNK mitochondrial pathway and AIF caspase-independent pathway. Compared with antitumor drugs that are susceptible to drug resistance, p20BAP31 has unique advantages for tumor therapy.
Abstract Background During cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic pathway between the endoplasmic reticulum (ER) and mitochondria. However, the underlying mechanisms of p20BAP31 in cell apoptosis remains unclear. Methods We compared the effects of p20BAP31 on cell apoptosis in six cell lines and selected the most sensitive cells. Functional experiments were conducted, including Cell Counting Kit 8 (CCK-8), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) assay. Then, cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. Next, NOX inhibitors (ML171 and apocynin), ROS scavenger (NAC), JNK inhibitor (SP600125), and caspase inhibitor (Z-VAD-FMK) were used to further investigate the underlying mechanisms of p20BAP31 on cell apoptosis. Finally, apoptosis-inducing factor (AIF) translocation from the mitochondria to the nuclei was verified by immunoblotting and immunofluorescence assay. Results We found that overexpression of p20BAP31 indeed induced apoptosis and had a much greater sensitivity in HCT116 cells. Furthermore, the overexpression of p20BAP31 inhibited cell proliferation by causing S phase arrest. Further study revealed that p20BAP31 reduced MMP, with a significant increase in ROS levels, accompanied by the activation of the MAPK signaling pathway. Importantly, the mechanistic investigation indicated that p20BAP31 induces mitochondrial-dependent apoptosis by activating the ROS/JNK signaling pathway and induces caspase-independent apoptosis by promoting the nuclear translocation of AIF. Conclusions p20BAP31 induced cell apoptosis via both the ROS/JNK mitochondrial pathway and AIF caspase-independent pathway. Compared with antitumor drugs that are susceptible to drug resistance, p20BAP31 has unique advantages for tumor therapy.
ArticleNumber 25
Author Li, Guoxun
Jiang, Xiaohan
Wang, Bing
Zhu, Benzhi
Zang, Jingnan
Jiang, Rui
Lan, Tian
Author_xml – sequence: 1
  givenname: Xiaohan
  surname: Jiang
  fullname: Jiang, Xiaohan
– sequence: 2
  givenname: Guoxun
  surname: Li
  fullname: Li, Guoxun
– sequence: 3
  givenname: Benzhi
  surname: Zhu
  fullname: Zhu, Benzhi
– sequence: 4
  givenname: Jingnan
  surname: Zang
  fullname: Zang, Jingnan
– sequence: 5
  givenname: Tian
  surname: Lan
  fullname: Lan, Tian
– sequence: 6
  givenname: Rui
  surname: Jiang
  fullname: Jiang, Rui
– sequence: 7
  givenname: Bing
  surname: Wang
  fullname: Wang, Bing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36977989$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wB1ggS2zYhPqVOF6hoaIwUFHEY23dOHc6HmXi1PYUtfx5nJkWtV2wsa3rcz8fXZ_DYm_wAxbFS0bfMtbUx5GxumpKykVJqRSyvHlSHLC60SUTmu_dO-8XhzGuKOVUSvqs2Be1Vko3-qD4M3L6fvZNMOKGbmMxEot9T2D0Y_LRRXLlgLQ-LclsfkosxBEillmLI-ZlSASGjqQlku_nP44_f_1C1i55u_RDFxz0ZIS0_A3XmU6s731Am3LVwmAxPC-eLqCP-OJ2Pyp-nX74efKpPDv_OD-ZnZVWapXKWnUWqKKqRVRqAbpthK2RthWrOqq1tJIuatSSKys4VHUHjaY10KzuRCvFUTHfcTsPKzMGt4ZwbTw4sy34cGEgJGd7NFpIZGip4AuQkCGNRokNF1Dll5uJ9W7HGjftGjubJxCgfwB9eDO4pbnwV4ZRWvGGq0x4c0sI_nKDMZm1i9PQYUC_iYYrzSvGmeJZ-vqRdOU3YcizmlRMaaq3wFf3Lf3zcvfJWdDsBDb4GAMujHUJkvOTQ9dna2bKk9nlyeQ8mW2ezE1u5Y9a7-j_afoLvhnNhw
CitedBy_id crossref_primary_10_1186_s12885_024_13361_9
crossref_primary_10_3390_ijms252111414
crossref_primary_10_1186_s11658_024_00646_x
crossref_primary_10_1016_j_colsurfa_2024_134070
crossref_primary_10_1016_j_ijbiomac_2024_132870
crossref_primary_10_1186_s11658_024_00536_2
crossref_primary_10_3390_ijms241411468
crossref_primary_10_3390_ijms25105101
crossref_primary_10_1016_j_jare_2024_09_029
crossref_primary_10_1080_17425247_2024_2398604
crossref_primary_10_1515_biol_2022_1000
crossref_primary_10_3389_fphar_2024_1532695
crossref_primary_10_3389_fphar_2025_1514486
crossref_primary_10_1016_j_omton_2024_200768
crossref_primary_10_1016_j_bioorg_2023_106803
Cites_doi 10.1038/nrm3999
10.1155/2012/329635
10.2119/molmed.2009.00030
10.1016/j.cell.2004.07.025
10.4331/wjbc.v2.i5.73
10.1073/pnas.97.26.14376
10.4049/jimmunol.177.9.6172
10.1186/s11658-022-00392-y
10.1189/jlb.0702335
10.1016/j.mito.2010.12.004
10.1111/jphp.12879
10.1016/S0092-8674(02)01046-2
10.1074/jbc.M402115200
10.2478/s11658-009-0030-4
10.1161/JAHA.113.000159
10.1016/j.bbamcr.2016.09.012
10.1016/j.bbamcr.2014.01.009
10.1016/j.lfs.2020.117656
10.1126/sciadv.aaw1386
10.1007/s11033-019-05191-x
10.1038/srep44809
10.1038/bjc.2015.85
10.1016/S0076-6879(08)01606-6
10.1002/ijc.31930
10.1111/1759-7714.12093
10.1016/j.bmc.2017.12.026
10.1152/physrev.00013.2006
10.1194/jlr.M077016
10.1074/jbc.M209684200
10.3390/cells8111350
10.4161/cc.19799
10.1007/s10495-021-01657-1
10.7717/peerj.8562
10.1080/01926230701320337
10.1038/nrm3629
10.1083/jcb.200212059
10.1016/j.bbamcr.2011.11.020
10.1016/j.ebiom.2018.03.016
10.1016/S1097-2765(03)00095-9
10.1002/j.1460-2075.1996.tb00497.x
10.1002/stem.1765
10.3748/wjg.v20.i22.6786
10.1002/j.1460-2075.1994.tb06690.x
10.3390/biom12060823
10.1074/jbc.M509522200
10.1016/j.bbrc.2017.06.190
10.1038/35069004
10.1016/j.biochi.2021.04.008
10.1146/annurev-cancerbio-050216-121933
10.1128/MCB.20.18.6731-6740.2000
10.1038/s41571-020-0341-y
10.1038/17135
10.1038/sj.cr.7290105
10.1083/jcb.139.6.1397
10.1038/cddis.2014.543
10.1083/jcb.139.2.327
10.1038/nsb836
10.1074/jbc.M501306200
10.1136/gutjnl-2015-310912
10.1007/s12272-015-0550-6
10.1158/1541-7786.MCR-09-0373
10.1016/j.cell.2008.04.042
10.1021/acs.jmedchem.7b01694
ContentType Journal Article
Copyright 2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s11658-023-00434-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1689-1392
EndPage 22
ExternalDocumentID oai_doaj_org_article_934e1ec032fa4a06a89e4e823a57fa84
PMC10052827
36977989
10_1186_s11658_023_00434_z
Genre Journal Article
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 2016YFC1302402
– fundername: Liaoning Revitalization Talents Program
  grantid: XLYC1902063
– fundername: National Natural Science Foundation of China
  grantid: 31670770
– fundername: National Natural Science Foundation of China
  grantid: 31370784
– fundername: Support Program for Longyuan Youth and Fundamental Research Funds for the Universities of Gansu Province
  grantid: N2120004
– fundername: Key Research and Development Program of Jiangxi Province
  grantid: 2020JH2/10300080
– fundername: ;
  grantid: N2120004
– fundername: ;
  grantid: 31670770; 2016YFC1302402; 31370784
– fundername: ;
  grantid: 2020JH2/10300080
– fundername: ;
  grantid: XLYC1902063
GroupedDBID ---
.86
.VR
06D
0R~
0VY
29B
2JY
2~H
30V
4.4
408
53G
5GY
67N
67Z
6NX
6S1
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95.
95~
AAFWJ
AAJSJ
AAKDD
AAQCX
AASML
AASQH
AAXMT
AAYXX
ABAQN
ABFKT
ABMNI
ABUWG
ACGFS
ACOMO
ACPRK
ACZBO
ADBBV
ADGYE
ADOZN
ADUKV
AENEX
AFBAA
AFBBN
AFCXV
AFKRA
AFPKN
AFWTZ
AHBYD
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BA0
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
C6C
CCPQU
CITATION
CS3
DU5
E3Z
EBLON
EBS
EMOBN
F5P
FRP
FYUFA
G-Y
G-Z
GQ7
GROUPED_DOAJ
GX1
HCIFZ
HF~
HLICF
HMCUK
HMJXF
HYE
IJ-
IXC
IXE
IY9
IZQ
I~X
I~Z
KDC
KOV
M1P
M7P
MA-
N9A
OAM
OK1
PF0
PHGZM
PHGZT
PIMPY
PSQYO
Q2X
QOS
R9I
RBZ
RNS
ROL
RPM
RPX
RSV
S27
S3A
S3B
SBL
SDH
SHX
SOJ
T13
TR2
TSK
TSV
TUC
U2A
UKHRP
VC2
WK8
XSB
Y2W
~A9
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FE
8FH
8FK
AZQEC
DWQXO
GNUQQ
K9.
LK8
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c497t-67dca0707bee77fa9b83c6e0b515d0994c40f6e9427c32a56da8906a0e77d3b43
IEDL.DBID DOA
ISSN 1689-1392
1425-8153
IngestDate Wed Aug 27 01:32:42 EDT 2025
Thu Aug 21 18:38:05 EDT 2025
Thu Jul 10 17:23:27 EDT 2025
Fri Jul 25 19:09:40 EDT 2025
Thu Apr 03 06:54:03 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
Tue Jul 01 03:25:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ROS/JNK pathway
p20BAP31
AIF
Colorectal cancer
Apoptosis
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-67dca0707bee77fa9b83c6e0b515d0994c40f6e9427c32a56da8906a0e77d3b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/934e1ec032fa4a06a89e4e823a57fa84
PMID 36977989
PQID 2791790927
PQPubID 54771
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_934e1ec032fa4a06a89e4e823a57fa84
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10052827
proquest_miscellaneous_2792512172
proquest_journals_2791790927
pubmed_primary_36977989
crossref_citationtrail_10_1186_s11658_023_00434_z
crossref_primary_10_1186_s11658_023_00434_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-28
PublicationDateYYYYMMDD 2023-03-28
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Wrocław
– name: London
PublicationTitle Cellular & molecular biology letters
PublicationTitleAlternate Cell Mol Biol Lett
PublicationYear 2023
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References K Zen (434_CR7) 2004; 279
S Marchi (434_CR45) 2012; 2012
M Redza-Dutordoir (434_CR31) 2016; 1863
M Stojanovic (434_CR17) 2005; 280
G Kroemer (434_CR42) 2007; 87
B Wang (434_CR8) 2008; 133
SA Susin (434_CR28) 1999; 397
MV Blagosklonny (434_CR56) 2001; 61
S Kostenko (434_CR61) 2011; 2
L McGlorthan (434_CR22) 2021; 26
DG Breckenridge (434_CR16) 2003; 160
K-B Huang (434_CR43) 2018; 61
J-L Xu (434_CR10) 2018; 59
AL Sylvester (434_CR32) 2022; 12
M Arnold (434_CR54) 2017; 66
MS Mohamed (434_CR24) 2018; 26
D Plesca (434_CR36) 2008; 446
A Lyakhovich (434_CR48) 2010; 8
A Letai (434_CR59) 2017; 1
T Adachi (434_CR1) 1996; 15
K Kozar (434_CR38) 2004; 118
BA Carneiro (434_CR55) 2020; 17
B Dapas (434_CR39) 2009; 15
EM Quistgaard (434_CR35) 2021; 186
H Murahashi (434_CR64) 2003; 73
C Yao (434_CR47) 2014; 5
C Pacelli (434_CR46) 2011; 11
D Bano (434_CR50) 2018; 30
NJ Darling (434_CR33) 2014; 1843
C Bertoli (434_CR41) 2013; 14
B Wang (434_CR60) 2003; 278
WG Annaert (434_CR5) 1997; 139
JM Schriewer (434_CR63) 2013; 2
JJ Ladasky (434_CR6) 2006; 177
KM Kim (434_CR2) 1994; 13
H Yao (434_CR40) 2020; 8
T Namba (434_CR13) 2019; 5
S Sperandio (434_CR20) 2000; 97
W Zhang (434_CR34) 2002; 12
N Prasad (434_CR62) 2020; 47
M Nguyen (434_CR15) 2000; 20
H Ye (434_CR26) 2002; 9
C-W Wu (434_CR37) 2012; 11
B Ren (434_CR44) 2018; 70
K Niu (434_CR9) 2017; 7
SA Lipton (434_CR51) 2002; 111
W-T Kim (434_CR12) 2014; 32
E Szczesna-Skorupa (434_CR4) 2006; 281
K Machihara (434_CR14) 2019; 8
J Lopez (434_CR25) 2015; 112
S Elmore (434_CR21) 2007; 35
Y Fuchs (434_CR19) 2015; 16
F Edlich (434_CR23) 2018; 500
Y He (434_CR57) 2020; 252
N Joza (434_CR52) 2001; 410
FW Ng (434_CR3) 1997; 139
JZ Parrish (434_CR27) 2003; 11
SY Park (434_CR29) 2010; 15
HY Li (434_CR49) 2015; 6
G Binefa (434_CR53) 2014; 20
J Chen (434_CR11) 2019; 144
Z Fang (434_CR58) 2022; 27
HM Heath-Engel (434_CR18) 2012; 1823
SW Kang (434_CR30) 2015; 38
References_xml – volume: 16
  start-page: 329
  issue: 6
  year: 2015
  ident: 434_CR19
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3999
– volume: 2012
  year: 2012
  ident: 434_CR45
  publication-title: J Signal Transduct
  doi: 10.1155/2012/329635
– volume: 15
  start-page: 297
  issue: 9–10
  year: 2009
  ident: 434_CR39
  publication-title: Mol Med
  doi: 10.2119/molmed.2009.00030
– volume: 118
  start-page: 477
  issue: 4
  year: 2004
  ident: 434_CR38
  publication-title: Cell
  doi: 10.1016/j.cell.2004.07.025
– volume: 2
  start-page: 73
  issue: 5
  year: 2011
  ident: 434_CR61
  publication-title: World J Biol Chem
  doi: 10.4331/wjbc.v2.i5.73
– volume: 97
  start-page: 14376
  issue: 26
  year: 2000
  ident: 434_CR20
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.97.26.14376
– volume: 177
  start-page: 6172
  issue: 9
  year: 2006
  ident: 434_CR6
  publication-title: J Immunol
  doi: 10.4049/jimmunol.177.9.6172
– volume: 27
  start-page: 90
  issue: 1
  year: 2022
  ident: 434_CR58
  publication-title: Cell Mol Biol Lett
  doi: 10.1186/s11658-022-00392-y
– volume: 73
  start-page: 399
  issue: 3
  year: 2003
  ident: 434_CR64
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.0702335
– volume: 11
  start-page: 334
  issue: 2
  year: 2011
  ident: 434_CR46
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2010.12.004
– volume: 70
  start-page: 516
  issue: 4
  year: 2018
  ident: 434_CR44
  publication-title: J Pharm Pharmacol
  doi: 10.1111/jphp.12879
– volume: 111
  start-page: 147
  issue: 2
  year: 2002
  ident: 434_CR51
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)01046-2
– volume: 279
  start-page: 44924
  issue: 43
  year: 2004
  ident: 434_CR7
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M402115200
– volume: 15
  start-page: 1
  issue: 1
  year: 2010
  ident: 434_CR29
  publication-title: Cell Mol Biol Lett
  doi: 10.2478/s11658-009-0030-4
– volume: 2
  issue: 2
  year: 2013
  ident: 434_CR63
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.113.000159
– volume: 1863
  start-page: 2977
  issue: 12
  year: 2016
  ident: 434_CR31
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2016.09.012
– volume: 1843
  start-page: 2150
  issue: 10
  year: 2014
  ident: 434_CR33
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2014.01.009
– volume: 252
  year: 2020
  ident: 434_CR57
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2020.117656
– volume: 5
  start-page: 1386
  issue: 6
  year: 2019
  ident: 434_CR13
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aaw1386
– volume: 47
  start-page: 987
  issue: 2
  year: 2020
  ident: 434_CR62
  publication-title: Mol Biol Rep
  doi: 10.1007/s11033-019-05191-x
– volume: 7
  start-page: 44809
  year: 2017
  ident: 434_CR9
  publication-title: Sci Rep
  doi: 10.1038/srep44809
– volume: 112
  start-page: 957
  issue: 6
  year: 2015
  ident: 434_CR25
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2015.85
– volume: 446
  start-page: 107
  year: 2008
  ident: 434_CR36
  publication-title: Method Enzymol.
  doi: 10.1016/S0076-6879(08)01606-6
– volume: 144
  start-page: 2051
  issue: 8
  year: 2019
  ident: 434_CR11
  publication-title: Int J Cancer
  doi: 10.1002/ijc.31930
– volume: 5
  start-page: 304
  issue: 4
  year: 2014
  ident: 434_CR47
  publication-title: Thorac Cancer
  doi: 10.1111/1759-7714.12093
– volume: 26
  start-page: 623
  issue: 3
  year: 2018
  ident: 434_CR24
  publication-title: Bioorgan Med Chem
  doi: 10.1016/j.bmc.2017.12.026
– volume: 61
  start-page: 4301
  issue: 11
  year: 2001
  ident: 434_CR56
  publication-title: Cancer Res
– volume: 87
  start-page: 99
  issue: 1
  year: 2007
  ident: 434_CR42
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00013.2006
– volume: 59
  start-page: 35
  issue: 1
  year: 2018
  ident: 434_CR10
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M077016
– volume: 278
  start-page: 14461
  issue: 16
  year: 2003
  ident: 434_CR60
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M209684200
– volume: 8
  start-page: 1350
  issue: 11
  year: 2019
  ident: 434_CR14
  publication-title: Cells
  doi: 10.3390/cells8111350
– volume: 11
  start-page: 1714
  issue: 9
  year: 2012
  ident: 434_CR37
  publication-title: Cell Cycle
  doi: 10.4161/cc.19799
– volume: 26
  start-page: 184
  issue: 3
  year: 2021
  ident: 434_CR22
  publication-title: Apoptosis
  doi: 10.1007/s10495-021-01657-1
– volume: 8
  start-page: 8562
  year: 2020
  ident: 434_CR40
  publication-title: PeerJ
  doi: 10.7717/peerj.8562
– volume: 35
  start-page: 495
  issue: 4
  year: 2007
  ident: 434_CR21
  publication-title: Toxicol Pathol
  doi: 10.1080/01926230701320337
– volume: 14
  start-page: 518
  issue: 8
  year: 2013
  ident: 434_CR41
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3629
– volume: 160
  start-page: 1115
  issue: 7
  year: 2003
  ident: 434_CR16
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200212059
– volume: 1823
  start-page: 335
  issue: 2
  year: 2012
  ident: 434_CR18
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2011.11.020
– volume: 30
  start-page: 29
  year: 2018
  ident: 434_CR50
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.03.016
– volume: 11
  start-page: 987
  issue: 4
  year: 2003
  ident: 434_CR27
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(03)00095-9
– volume: 15
  start-page: 1534
  issue: 7
  year: 1996
  ident: 434_CR1
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1996.tb00497.x
– volume: 32
  start-page: 2626
  issue: 10
  year: 2014
  ident: 434_CR12
  publication-title: Stem Cells
  doi: 10.1002/stem.1765
– volume: 20
  start-page: 6786
  issue: 22
  year: 2014
  ident: 434_CR53
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v20.i22.6786
– volume: 13
  start-page: 3793
  issue: 16
  year: 1994
  ident: 434_CR2
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1994.tb06690.x
– volume: 12
  start-page: 823
  issue: 6
  year: 2022
  ident: 434_CR32
  publication-title: Biomolecules
  doi: 10.3390/biom12060823
– volume: 281
  start-page: 4142
  issue: 7
  year: 2006
  ident: 434_CR4
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M509522200
– volume: 500
  start-page: 26
  issue: 1
  year: 2018
  ident: 434_CR23
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2017.06.190
– volume: 410
  start-page: 549
  issue: 6828
  year: 2001
  ident: 434_CR52
  publication-title: Nature
  doi: 10.1038/35069004
– volume: 186
  start-page: 105
  year: 2021
  ident: 434_CR35
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2021.04.008
– volume: 1
  start-page: 275
  issue: 1
  year: 2017
  ident: 434_CR59
  publication-title: Annu Rev Cancer Biol
  doi: 10.1146/annurev-cancerbio-050216-121933
– volume: 20
  start-page: 6731
  issue: 18
  year: 2000
  ident: 434_CR15
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.20.18.6731-6740.2000
– volume: 17
  start-page: 395
  issue: 7
  year: 2020
  ident: 434_CR55
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/s41571-020-0341-y
– volume: 397
  start-page: 441
  issue: 6718
  year: 1999
  ident: 434_CR28
  publication-title: Nature
  doi: 10.1038/17135
– volume: 12
  start-page: 9
  issue: 1
  year: 2002
  ident: 434_CR34
  publication-title: Cell Res
  doi: 10.1038/sj.cr.7290105
– volume: 139
  start-page: 1397
  issue: 6
  year: 1997
  ident: 434_CR5
  publication-title: J Cell Biol
  doi: 10.1083/jcb.139.6.1397
– volume: 6
  start-page: 1604
  issue: 1
  year: 2015
  ident: 434_CR49
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2014.543
– volume: 139
  start-page: 327
  issue: 2
  year: 1997
  ident: 434_CR3
  publication-title: J Cell Biol
  doi: 10.1083/jcb.139.2.327
– volume: 9
  start-page: 680
  issue: 9
  year: 2002
  ident: 434_CR26
  publication-title: Nat Struct Biol
  doi: 10.1038/nsb836
– volume: 280
  start-page: 30018
  issue: 34
  year: 2005
  ident: 434_CR17
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M501306200
– volume: 66
  start-page: 683
  issue: 4
  year: 2017
  ident: 434_CR54
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-310912
– volume: 38
  start-page: 338
  issue: 3
  year: 2015
  ident: 434_CR30
  publication-title: Arch Pharm Res
  doi: 10.1007/s12272-015-0550-6
– volume: 8
  start-page: 46
  issue: 1
  year: 2010
  ident: 434_CR48
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-09-0373
– volume: 133
  start-page: 1080
  issue: 6
  year: 2008
  ident: 434_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2008.04.042
– volume: 61
  start-page: 3478
  issue: 8
  year: 2018
  ident: 434_CR43
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.7b01694
SSID ssj0020440
Score 2.4131346
Snippet During cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic pathway between the...
BackgroundDuring cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic pathway...
Abstract Background During cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 25
SubjectTerms AIF
Antibodies
Apoptosis
Apoptosis Inducing Factor - metabolism
Apoptosis Inducing Factor - pharmacology
Apoptosis-inducing factor
C-Terminus
Cancer
Caspase inhibitors
Caspase-8
Caspases - metabolism
Cell cycle
Cell growth
Cell Line, Tumor
Cell proliferation
Cholecystokinin
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - metabolism
Cytochrome
Drug resistance
Endoplasmic reticulum
Flow cytometry
Humans
Immunoblotting
Immunofluorescence
JNK Mitogen-Activated Protein Kinases - metabolism
Kinases
MAP kinase
MAP Kinase Signaling System
Membrane potential
Membrane Potential, Mitochondrial
Mitochondria
Mitochondria - metabolism
Nuclear transport
p20BAP31
Plasmids
Proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
ROS/JNK pathway
S phase
Signal transduction
Stem cells
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA56Ivgi_rZ6SgTfJGybpGnyJHvicp54inqwbyFNU13Qtm57yp3_vDNpd88Vudd0WtJ-M5MvafINIc-B4nupQmBa-orJEDLmvMlZUUJ75rUSDg8KvztWhyfyaJkvpwW3ftpWucmJMVFXrcc18hkvDIpJGV687H4wrBqFf1enEhpXyTWULsMtXcXyYsKF5ZTj6SKeMw2hvTk0o9WsR9kZzWDEYvgzTLLznYEp6vf_j3T-u3fyr8FocYvcnFgknY-w3yZXQnOHXB_rSp7dJb87nh7MP4iMwowbsOsprs9T17Xd0Parnv5cOVoCRnT-ZkG9g6zSB7baVsQdqGsqCtSQfnz_aXZ0_JZ-h8CHRNlU6K8Uyxj_cmfwdIqi15g0odWjA63vkZPF68-vDtlUZYF5aYqBqaLyDkV_yhCKonam1MKrkJbAdCrgj9LLtFbBSF54wV2uKqdNqlwK1pUopbhP9pq2CQ8JdTJ1WeVgDqK4rJUsMdpTMON1UABPQrLNJ7Z-kiDHShjfbJyKaGVHWCzAYiMs9jwhL7b3dKMAx6XWB4jc1hLFs2NDu_5ip1i0RsiQBZ8KXjvp4FW0CTJoLlwO769lQvY3uNspont74X8Jeba9DLGIALomtKfRBukicMKEPBjdZNsToYBpG20SonccaKeru1ea1deo953h2r3mxaPL-_WY3ODRnwXjep_sDevT8AQY01A-jWHxBxwuEqs
  priority: 102
  providerName: ProQuest
Title p20BAP31 induces cell apoptosis via both AIF caspase-independent and the ROS/JNK mitochondrial pathway in colorectal cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/36977989
https://www.proquest.com/docview/2791790927
https://www.proquest.com/docview/2792512172
https://pubmed.ncbi.nlm.nih.gov/PMC10052827
https://doaj.org/article/934e1ec032fa4a06a89e4e823a57fa84
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-6IngRv62uQwRvEqZN0nwcZ2SHdcVxGV0YvIQ0TXFAO8O2q-z6z_te2xl2RPTipYf0taTvI_m9NPk9Ql4BxA9SxciMDCWTMWbMB5szXUB7FowSHg8Kv5-r4zN5ssyX10p94Z6wnh64V9zYChmzGFLBKy99qryxUUbDhc915U3HBApz3jaZGlItLKS8PSJj1LhBkhnDYH5i-OtLsqu9aahj6_8TxPx9p-S1qWd2j9wdMCOd9H29T27E-gG53VeRvHxIfm54Op2cioxCfg2WaiiuxlO_WW_adbNq6PeVpwVYhE7ezmjwMIY0ka129W9b6uuSAhCkiw8fxyfzd_QbhDkMi3WJ3kmxaPEPfwlvp0hxjUMktAZ0l_NH5Gx29OnNMRtqKrAgrW6Z0mXwSPFTxKhBgbYwIqiYFoBrSkCLMsi0UtFKroPgPlclKBy0noJ0KQopHpODel3Hp4R6mfqs9JBxKC4rJQuM7RTEeBWVzU1Csq2KXRgIx7HuxVfXJR5Gud4sDsziOrO4q4S83j2z6ek2_io9RcvtJJEqu2sAB3KDA7l_OVBCDrd2d0P8No5ri9RlluuEvNzdhshDA_o6ri86GQSHgAAT8qR3k11PhAJcbY1NiNlzoL2u7t-pV186du8MV-oN18_-x8c9J3d45_WCcXNIDtrzi_gCUFRbjMhNvdQjcmt6ND9djLrwgeti-vkXYV4c4Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVGJwQviG8CA4wET8hqYjuO_YBQC6vadSvT2KS9BcdxoBIkpemYOv4Tv5HrfEER2ttendvI6T33-N44vgehl5DiGy6sJZKblHBrA6KNCkmUwHhgpGDaHRQ-mInxCd87DU-30K_2LIz7rLLlxIqo08K4d-R9GinXTErR6O3iO3GqUW53tZXQqGExtetzKNnKN5P34N9XlI52j9-NSaMqQAxX0YqIKDXaNblJrI2iTKtEMiOsn8DKnkK-xA33M2EVp5FhVIci1VL5QvtgnbKEM7jvNbTNGZQyPbQ93J0dHnUlnhNwrs4z0ZBIIJP2mI4U_dI1upEE1kjitt84udhYCivFgP-luf9-rfnX8je6jW41eSse1EC7g7Zsfhddr5Us1_fQzwX1h4NDFmCo8QEtJXY7AlgvisWqKOcl_jHXOAFU4MFkhI0GHistmXcavCus8xRDMoqPPnzs782m-BtQDVBznroIwU44-Vyv4e7Ytdl2NA2jxkF2eR-dXIkHHqBeXuT2EcKa-zpINVQ9gvJM8MTxiw9mNLNChdJDQfsXx6Zpeu60N77GVfEjRVy7JQa3xJVb4gsPve5-s6hbflxqPXSe6yxdu-5qoFh-jpvojxXjNrDGZzTTXMOjSGW5lZTpEJ5fcg_ttH6PGw4p4z-I99CL7jJEv3Ogzm1xVtm4BBWyUA89rGHSzYQJyO2VVB6SGwDamOrmlXz-peowHrjdAkmjx5fP6zm6MT4-2I_3J7PpE3STVthmhMod1Fstz-xTyNdWybMmSDD6dNVx-Ruq4VDS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGEIgXxG8CA4wET8hqYjuO_YBQx6jWFcoETOpbcBwHKkFSmo6p4z_jr-MuTTqK0N726lwsO_fd57vYviPkGbj4TirvmZYuZ9L7iFlnYpZk0B45rYTFi8Lvxmr_SB5M4skW-d3dhcFjlR0nNkSdVw7_kfd4YjCZlIFQvWiPRRzuDV7NfjCsIIU7rV05jRVERn55AuFb_XK4B7p-zvngzafX-6ytMMCcNMmCqSR3FhPeZN4nSWFNpoVTPsxglc_Bd5JOhoXyRvLECW5jlVttQmVDkM5FJgX0e4lcTkQcoY0lk7NgD0s5NzebeMw00Ep3YUerXo0pbzSD1ZLhRpxkpxuLYlM74H8O77_nNv9aCAc3yPXWg6X9FeRuki1f3iJXVjUtl7fJrxkPd_uHIqIQ7QNuaop7A9TOqtmiqqc1_Tm1NAN80P5wQJ0FRqs9m66r8S6oLXMKbin98P5j72A8ot-BdICkyxxthWIJ5RO7hN4pJtxGwoZWh-Cd3yFHF_L975Ltsir9fUKtDG2UW4h_FJeFkhkyTQhivPDKxDogUfeJU9emP8cqHN_SJgzSKl2pJQW1pI1a0tOAvFi_M1sl_zhXehc1t5bExN1NQzX_krY8kBohfeRdKHhhpYWpaOOl11zYGOavZUB2Or2nLZvU6Rn2A_J0_Rh4ABVoS18dNzLoqoI_GpB7K5isRyIUePlGm4DoDQBtDHXzSTn92uQaj3DfQPPkwfnjekKugjWmb4fj0UNyjTfQFozrHbK9mB_7R-C4LbLHjYVQ8vmiTfIPtI5Tog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=p20BAP31+induces+cell+apoptosis+via+both+AIF+caspase-independent+and+the+ROS%2FJNK+mitochondrial+pathway+in+colorectal+cancer&rft.jtitle=Cellular+%26+molecular+biology+letters&rft.au=Jiang%2C+Xiaohan&rft.au=Li%2C+Guoxun&rft.au=Zhu%2C+Benzhi&rft.au=Zang%2C+Jingnan&rft.date=2023-03-28&rft.pub=BioMed+Central&rft.issn=1425-8153&rft.eissn=1689-1392&rft.volume=28&rft_id=info:doi/10.1186%2Fs11658-023-00434-z&rft_id=info%3Apmid%2F36977989&rft.externalDocID=PMC10052827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1689-1392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1689-1392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1689-1392&client=summon