Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity
Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and phosphodiesterase activities were determined by using para-nitrophenol ( pNP) analogue substrates in a range of temperate pasture soils from E...
Saved in:
Published in | The Science of the total environment Vol. 344; no. 1; pp. 27 - 36 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.05.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and phosphodiesterase activities were determined by using
para-nitrophenol (
pNP) analogue substrates in a range of temperate pasture soils from England and Wales. Substrate-induced phosphatase activity ranged between 2.62 and 12.19 μmol
pNP g
−1 soil h
−1 for phosphomonoesterase and between 0.25 and 2.24 μmol
pNP g
−1 soil h
−1 for phosphodiesterase. Activities were correlated strongly with soil pH and labile organic P extracted in sodium bicarbonate, although the relationships differed markedly for the two enzymes. Acidic soils contained high phosphomonoesterase activity, low phosphodiesterase activity, and high concentrations of labile organic P, whereas the reverse was true in more neutral soils. As most of the organic P inputs to soil are phosphate diesters, it therefore seems likely that phosphodiesterase activity regulates labile organic P turnover in pasture soils. The low phosphodiesterase activity in acidic soils may be linked to the dominance of fungi or an effect of sorption on the enzyme. These results suggest that greater emphasis should be placed on understanding the role of phosphodiesterase activity in the cycling of soil organic P. |
---|---|
AbstractList | Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and phosphodiesterase activities were determined by using para-nitrophenol (pNP) analogue substrates in a range of temperate pasture soils from England and Wales. Substrate-induced phosphatase activity ranged between 2.62 and 12.19 micromol pNP g-1 soil h-1 for phosphomonoesterase and between 0.25 and 2.24 micromol pNP g-1 soil h-1 for phosphodiesterase. Activities were correlated strongly with soil pH and labile organic P extracted in sodium bicarbonate, although the relationships differed markedly for the two enzymes. Acidic soils contained high phosphomonoesterase activity, low phosphodiesterase activity, and high concentrations of labile organic P, whereas the reverse was true in more neutral soils. As most of the organic P inputs to soil are phosphate diesters, it therefore seems likely that phosphodiesterase activity regulates labile organic P turnover in pasture soils. The low phosphodiesterase activity in acidic soils may be linked to the dominance of fungi or an effect of sorption on the enzyme. These results suggest that greater emphasis should be placed on understanding the role of phosphodiesterase activity in the cycling of soil organic P. Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and phosphodiesterase activities were determined by using para-nitrophenol (pNP) analogue substrates in a range of temperate pasture soils from England and Wales. Substrate-induced phosphatase activity ranged between 2.62 and 12.19 mu mol pNP g super(-1) soil h super(-1) for phosphomonoesterase and between 0.25 and 2.24 mu mol pNP g super(-1) soil h super(-1) for phosphodiesterase. Activities were correlated strongly with soil pH and labile organic P extracted in sodium bicarbonate, although the relationships differed markedly for the two enzymes. Acidic soils contained high phosphomonoesterase activity, low phosphodiesterase activity, and high concentrations of labile organic P, whereas the reverse was true in more neutral soils. As most of the organic P inputs to soil are phosphate diesters, it therefore seems likely that phosphodiesterase activity regulates labile organic P turnover in pasture soils. The low phosphodiesterase activity in acidic soils may be linked to the dominance of fungi or an effect of sorption on the enzyme. These results suggest that greater emphasis should be placed on understanding the role of phosphodiesterase activity in the cycling of soil organic P. Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and phosphodiesterase activities were determined by using para-nitrophenol (pNP) analogue substrates in a range of temperate pasture soils from England and Wales. Substrate-induced phosphatase activity ranged between 2.62 and 12.19 micromol pNP g-1 soil h-1 for phosphomonoesterase and between 0.25 and 2.24 micromol pNP g-1 soil h-1 for phosphodiesterase. Activities were correlated strongly with soil pH and labile organic P extracted in sodium bicarbonate, although the relationships differed markedly for the two enzymes. Acidic soils contained high phosphomonoesterase activity, low phosphodiesterase activity, and high concentrations of labile organic P, whereas the reverse was true in more neutral soils. As most of the organic P inputs to soil are phosphate diesters, it therefore seems likely that phosphodiesterase activity regulates labile organic P turnover in pasture soils. The low phosphodiesterase activity in acidic soils may be linked to the dominance of fungi or an effect of sorption on the enzyme. These results suggest that greater emphasis should be placed on understanding the role of phosphodiesterase activity in the cycling of soil organic P.Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and phosphodiesterase activities were determined by using para-nitrophenol (pNP) analogue substrates in a range of temperate pasture soils from England and Wales. Substrate-induced phosphatase activity ranged between 2.62 and 12.19 micromol pNP g-1 soil h-1 for phosphomonoesterase and between 0.25 and 2.24 micromol pNP g-1 soil h-1 for phosphodiesterase. Activities were correlated strongly with soil pH and labile organic P extracted in sodium bicarbonate, although the relationships differed markedly for the two enzymes. Acidic soils contained high phosphomonoesterase activity, low phosphodiesterase activity, and high concentrations of labile organic P, whereas the reverse was true in more neutral soils. As most of the organic P inputs to soil are phosphate diesters, it therefore seems likely that phosphodiesterase activity regulates labile organic P turnover in pasture soils. The low phosphodiesterase activity in acidic soils may be linked to the dominance of fungi or an effect of sorption on the enzyme. These results suggest that greater emphasis should be placed on understanding the role of phosphodiesterase activity in the cycling of soil organic P. Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and phosphodiesterase activities were determined by using para-nitrophenol ( pNP) analogue substrates in a range of temperate pasture soils from England and Wales. Substrate-induced phosphatase activity ranged between 2.62 and 12.19 μmol pNP g −1 soil h −1 for phosphomonoesterase and between 0.25 and 2.24 μmol pNP g −1 soil h −1 for phosphodiesterase. Activities were correlated strongly with soil pH and labile organic P extracted in sodium bicarbonate, although the relationships differed markedly for the two enzymes. Acidic soils contained high phosphomonoesterase activity, low phosphodiesterase activity, and high concentrations of labile organic P, whereas the reverse was true in more neutral soils. As most of the organic P inputs to soil are phosphate diesters, it therefore seems likely that phosphodiesterase activity regulates labile organic P turnover in pasture soils. The low phosphodiesterase activity in acidic soils may be linked to the dominance of fungi or an effect of sorption on the enzyme. These results suggest that greater emphasis should be placed on understanding the role of phosphodiesterase activity in the cycling of soil organic P. |
Author | Haygarth, Philip M. Turner, Benjamin L. |
Author_xml | – sequence: 1 givenname: Benjamin L. surname: Turner fullname: Turner, Benjamin L. email: turnerbl@si.edu – sequence: 2 givenname: Philip M. surname: Haygarth fullname: Haygarth, Philip M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15907508$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFu1DAURS1URKeFXwCv2CU8O4ntILGoKqCVKtEFrC3HeWk9ysTBdkaaT-hf4-m0gNgM3liyzr3PeueMnEx-QkLeMSgZMPFhXUbrkk84bUsO0JTAS4DqBVkxJduCARcnZAVQq6IVrTwlZzGuIR-p2CtyypoWZANqRR5u732c700yEamxyW1d2lE30YSbGYNJSGcT0xKQRu_G-JHe7qcmZ0Ya8G4ZTXJ-on6go-nciNSHOzM5S-fHXh-WSHN68lsMtNs9P_cOY8r1fw19TV4OZoz45uk-Jz--fP5-eVXcfPt6fXlxU9i6lakQrB9wAItD3RnOoWOtEEbg0IlKVQat6PoO2l7yXrVVbRvbsabnDWvqJkfr6py8P_TOwf9c8jf0xkWL42gm9EvUQqpaKg5HQSahbvPuj4O1bHilZAbfPoFLt8Fez8FtTNjpZx0ZkAfABh9jwOEPAnovXq_1b_F6L14D11l8Tn76J5mxRzcpGDf-R_7ikMe8-q3DsOdwsti7gDbp3rujHb8AjDLUjw |
CitedBy_id | crossref_primary_10_1038_s41598_017_02327_6 crossref_primary_10_1016_j_apsoil_2022_104550 crossref_primary_10_1016_j_fcr_2021_108309 crossref_primary_10_1016_j_geoderma_2023_116755 crossref_primary_10_1016_j_soilbio_2015_01_003 crossref_primary_10_1007_s11104_017_3405_8 crossref_primary_10_1016_j_geoderma_2015_04_004 crossref_primary_10_1016_j_still_2014_01_001 crossref_primary_10_2139_ssrn_4061022 crossref_primary_10_1007_s11104_017_3225_x crossref_primary_10_3389_fmicb_2023_1236891 crossref_primary_10_3390_agronomy11112232 crossref_primary_10_1016_j_ecoenv_2016_12_003 crossref_primary_10_1016_j_apsoil_2015_09_004 crossref_primary_10_1016_j_geoderma_2022_115829 crossref_primary_10_1016_j_soilbio_2013_05_010 crossref_primary_10_1016_j_soilbio_2017_11_006 crossref_primary_10_1111_gcb_17077 crossref_primary_10_1002_eap_2861 crossref_primary_10_1016_j_ejsobi_2016_07_001 crossref_primary_10_1080_03650340_2020_1715950 crossref_primary_10_5194_bg_8_1901_2011 crossref_primary_10_1016_j_geoderma_2010_10_001 crossref_primary_10_1186_s12870_024_04907_x crossref_primary_10_2136_sssaj2017_12_0420 crossref_primary_10_1016_j_geoderma_2022_116124 crossref_primary_10_1007_s00374_020_01531_3 crossref_primary_10_1007_s11368_023_03603_x crossref_primary_10_1038_s41396_020_00829_2 crossref_primary_10_1038_s41598_019_49976_3 crossref_primary_10_4141_cjss09090 crossref_primary_10_2134_jeq2006_0464 crossref_primary_10_3390_agronomy11071297 crossref_primary_10_1007_s10750_016_3009_y crossref_primary_10_1016_j_scitotenv_2015_02_044 crossref_primary_10_1007_s11104_013_1624_1 crossref_primary_10_1016_j_scitotenv_2023_164583 crossref_primary_10_1080_03650340_2022_2082417 crossref_primary_10_1007_s42729_022_00826_8 crossref_primary_10_1016_j_foreco_2007_10_040 crossref_primary_10_1038_s41396_020_00864_z crossref_primary_10_1371_journal_pone_0312199 crossref_primary_10_1007_s00374_010_0464_x crossref_primary_10_1007_s10705_021_10163_4 crossref_primary_10_1007_s11104_017_3401_z crossref_primary_10_1016_j_geoderma_2019_06_037 crossref_primary_10_1016_j_apsoil_2024_105748 crossref_primary_10_3390_microorganisms13030624 crossref_primary_10_1007_s11104_024_06797_2 crossref_primary_10_1080_17429145_2013_861028 crossref_primary_10_1016_j_scitotenv_2015_11_011 crossref_primary_10_1111_1462_2920_13778 crossref_primary_10_1080_03650340_2016_1235266 crossref_primary_10_1007_s11104_023_06186_1 crossref_primary_10_1016_j_catena_2017_10_021 crossref_primary_10_1016_j_gecco_2020_e00934 crossref_primary_10_3390_agronomy15010035 crossref_primary_10_1139_cjm_2020_0227 crossref_primary_10_1016_j_apsoil_2025_105896 crossref_primary_10_1016_j_scitotenv_2005_02_008 crossref_primary_10_1016_j_still_2007_11_001 crossref_primary_10_3389_fmicb_2022_1045919 crossref_primary_10_5194_bg_15_4575_2018 crossref_primary_10_1016_j_geoderma_2021_115279 crossref_primary_10_3390_plants12061295 crossref_primary_10_1016_j_foreco_2018_04_035 crossref_primary_10_1016_j_ejsobi_2018_01_009 crossref_primary_10_1016_j_jenvman_2020_110664 crossref_primary_10_1038_s41598_017_01418_8 crossref_primary_10_1016_j_hpj_2016_11_005 crossref_primary_10_1111_sum_12430 crossref_primary_10_1016_j_ecoleng_2022_106644 crossref_primary_10_5897_AJAR2015_10263 crossref_primary_10_1007_s11368_018_2132_y crossref_primary_10_3390_agriculture12122079 crossref_primary_10_1016_j_agee_2024_108906 crossref_primary_10_1007_s00374_017_1226_9 crossref_primary_10_1016_j_soilbio_2012_02_008 crossref_primary_10_1002_jeq2_20556 crossref_primary_10_1111_1758_2229_13040 crossref_primary_10_1111_nph_14674 crossref_primary_10_1007_s11104_014_2129_2 crossref_primary_10_3390_agronomy2030187 crossref_primary_10_3390_su15086635 crossref_primary_10_3390_microorganisms8030364 crossref_primary_10_1002_jpln_200900281 crossref_primary_10_3389_fpls_2022_935829 crossref_primary_10_1016_j_soilbio_2019_107628 crossref_primary_10_3390_agronomy13051308 crossref_primary_10_7717_peerj_18140 crossref_primary_10_1038_s41598_023_44266_5 crossref_primary_10_1080_03650340_2020_1714031 crossref_primary_10_17221_307_2019_PSE crossref_primary_10_1007_s00374_016_1110_z crossref_primary_10_1371_journal_pone_0177030 crossref_primary_10_1007_s42773_023_00278_y crossref_primary_10_1016_j_baae_2021_03_014 crossref_primary_10_1016_j_apsoil_2024_105730 crossref_primary_10_1080_00103620802432733 crossref_primary_10_22144_ctu_jvn_2016_197 crossref_primary_10_2298_ABS231025043K crossref_primary_10_1002_ece3_7036 crossref_primary_10_1080_10643389_2011_627019 crossref_primary_10_1007_s42729_024_01748_3 crossref_primary_10_1016_j_apsoil_2024_105858 crossref_primary_10_1016_j_soilbio_2024_109416 crossref_primary_10_1007_s12155_013_9369_5 crossref_primary_10_1016_j_ecss_2019_106243 crossref_primary_10_1016_j_soilbio_2021_108465 crossref_primary_10_2134_jeq2014_10_0440 crossref_primary_10_1016_j_soilbio_2019_107633 crossref_primary_10_1016_j_still_2016_09_003 crossref_primary_10_1016_j_soilbio_2010_09_007 crossref_primary_10_5897_AJAR2015_10365 crossref_primary_10_1007_s11104_021_04897_x crossref_primary_10_1007_s10533_017_0375_0 crossref_primary_10_1002_jpln_201000139 crossref_primary_10_3389_ffgc_2020_00047 crossref_primary_10_3390_f10090734 crossref_primary_10_3390_f12121707 crossref_primary_10_1016_j_geoderma_2016_04_028 crossref_primary_10_2136_sssaj2015_02_0080 crossref_primary_10_3389_fenvs_2023_1298027 crossref_primary_10_3390_soilsystems4040074 crossref_primary_10_1007_s00374_013_0773_y crossref_primary_10_17221_437_2010_PSE crossref_primary_10_1007_s11104_016_3142_4 crossref_primary_10_1007_s11104_025_07225_9 crossref_primary_10_1007_s42729_021_00495_z crossref_primary_10_1021_acsearthspacechem_8b00018 crossref_primary_10_1007_s11104_018_3810_7 crossref_primary_10_3389_fenvs_2022_947014 crossref_primary_10_1016_j_soilbio_2015_03_020 crossref_primary_10_1016_j_jhydrol_2007_10_038 crossref_primary_10_3389_fmicb_2022_831888 crossref_primary_10_1016_S2095_3119_21_63715_2 crossref_primary_10_3389_fpls_2022_987112 crossref_primary_10_1007_s11104_019_04089_8 crossref_primary_10_1016_j_geoderma_2016_08_018 crossref_primary_10_1016_S1002_0160_20_60052_2 crossref_primary_10_1002_ece3_8669 crossref_primary_10_1016_j_agee_2016_12_030 crossref_primary_10_1080_00380768_2020_1814114 crossref_primary_10_1007_s11104_023_06136_x crossref_primary_10_1080_00103624_2014_909831 crossref_primary_10_1093_jpe_rtac091 crossref_primary_10_1007_s11368_015_1180_9 crossref_primary_10_1016_j_geoderma_2013_11_002 crossref_primary_10_1016_j_apsoil_2024_105280 crossref_primary_10_1016_j_scitotenv_2021_152627 crossref_primary_10_1016_j_geoderma_2023_116406 crossref_primary_10_1111_j_1469_8137_2011_03652_x crossref_primary_10_3389_fsoil_2023_1097965 crossref_primary_10_1016_j_soilbio_2015_07_011 |
Cites_doi | 10.1016/0038-0717(77)90070-0 10.1146/annurev.arplant.50.1.665 10.1139/b92-101 10.1097/00010694-197801000-00008 10.1097/00010694-197011000-00010 10.1016/S0378-1127(02)00450-4 10.1016/0038-0717(93)90042-A 10.1023/A:1006316117817 10.1111/j.1469-8137.1996.tb01863.x 10.1016/S0038-0717(00)00238-8 10.2136/sssaj1982.03615995004600050017x 10.1016/S0269-7491(02)00147-1 10.1016/S0065-2113(08)70007-5 10.1097/00010694-197808000-00006 10.1016/0038-0717(95)00069-Q 10.2136/sssaj1978.03615995004200020016x 10.3109/10408417609102304 10.1016/0038-0717(70)90032-5 10.1111/j.1365-2389.1955.tb00849.x 10.1111/j.1469-8137.1996.tb01864.x 10.1016/0038-0717(83)90124-4 10.1016/S0003-2670(00)88444-5 10.1016/0038-0717(81)90050-X 10.2134/jeq1997.00472425002600020011x 10.1007/BF00570635 10.1016/S0269-7491(98)00115-8 10.2136/sssaj2003.3440 10.1007/BF00337200 10.1016/S0038-0717(01)00144-4 10.1016/S0146-6380(03)00061-5 10.1104/pp.122.2.543 |
ContentType | Journal Article |
Copyright | 2005 Elsevier B.V. |
Copyright_xml | – notice: 2005 Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7ST C1K SOI 7TV 7U6 M7N 7X8 |
DOI | 10.1016/j.scitotenv.2005.02.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Pollution Abstracts Sustainability Science Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Environment Abstracts Environmental Sciences and Pollution Management Pollution Abstracts Sustainability Science Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Pollution Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences Agriculture |
EISSN | 1879-1026 |
EndPage | 36 |
ExternalDocumentID | 15907508 10_1016_j_scitotenv_2005_02_003 S0048969705001099 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | British Isles, England British Isles, Wales |
GeographicLocations_xml | – name: British Isles, England – name: British Isles, Wales |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYJJ ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCU SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K WUQ XPP ZXP ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7ST C1K SOI 7TV 7U6 M7N 7X8 |
ID | FETCH-LOGICAL-c497t-61dfef0cef4ba220b1966a6efb6383aec6bdb09d72d8934c5cb15d2515451df43 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 |
IngestDate | Fri Jul 11 11:22:23 EDT 2025 Thu Jul 10 18:13:20 EDT 2025 Fri Jul 11 00:58:44 EDT 2025 Wed Feb 19 01:40:24 EST 2025 Tue Jul 01 03:08:53 EDT 2025 Thu Apr 24 22:59:30 EDT 2025 Fri Feb 23 02:34:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Organic phosphorus Soil Phosphomonoesterase Phosphatase Pasture Phosphodiesterase |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-61dfef0cef4ba220b1966a6efb6383aec6bdb09d72d8934c5cb15d2515451df43 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 15907508 |
PQID | 14752387 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_67847820 proquest_miscellaneous_17049005 proquest_miscellaneous_14752387 pubmed_primary_15907508 crossref_primary_10_1016_j_scitotenv_2005_02_003 crossref_citationtrail_10_1016_j_scitotenv_2005_02_003 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2005_02_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-05-15 |
PublicationDateYYYYMMDD | 2005-05-15 |
PublicationDate_xml | – month: 05 year: 2005 text: 2005-05-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2005 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Schoumans (bib31) 2000 Chen, Condron, Davis, Sherlock (bib5) 2003; 177 Spier, Cowling (bib33) 1991; 12 Margesin, Schinner (bib18) 1994; 18 Skujins (bib32) 1976; 4 Cosgrove (bib8) 1980 Reid, Wilson (bib26) 1971; vol. IV Ross, Spier, Kettles, Mackay (bib27) 1995; 27 Turner, Haygarth (bib36) 2003; 67 Turner, McKelvie, Haygarth (bib39) 2002; 34 Vuorinen (bib41) 1993; 25 Cosgrove (bib7) 1967; vol. 1 Abel, Nürnberger, Ahnert, Krauss, Glund (bib1) 2000; 122 Condron, Turner, Cade-Menun (bib6) 2005 Johnson, Leake, Lee, Campbell (bib14) 1998; 103 Paul, Clark (bib23) 1996 Rowland, Haygarth (bib28) 1997; 26 Sarathchandra, Perrott (bib29) 1981; 13 Olsen, Cole, Watanabe, Dean (bib22) 1954 Olander, Vitousek (bib21) 2000; 49 Turner, Baxter, Whitton (bib38) 2002; 120 Browman, Tabatabai (bib4) 1978; 42 Tabatabai (bib34) 1994 Antibus, Sinsabaugh, Linkins (bib2) 1992; 70 Juma, Tabatabai (bib15) 1978; 126 Quiquampoix, Mousain (bib24) 2005 Turner, Mahieu, Condron (bib40) 2003; 34 Myers, Leake (bib20) 1996; 132 Leake, Miles (bib17) 1996; 132 Bowman, Cole (bib3) 1978; 125 Ko, Hora (bib13) 1970; 110 Kiss, Dragan-Bulardo, Radulescu (bib16) 1975; 27 Saunders, Williams (bib30) 1955; 6 Turner, Bristow, Haygarth (bib37) 2001; 33 Harrison (bib11) 1983; 15 Raghothama (bib25) 1999; 50 Greaves, Wilson (bib10) 1970; 2 Hedley, Stewart, Chauhan (bib12) 1982; 46 Torriani-Gorini (bib35) 1994 Eivazi, Tabatabai (bib9) 1977; 9 Murphy, Riley (bib19) 1962; 27 Hedley (10.1016/j.scitotenv.2005.02.003_bib12) 1982; 46 Ko (10.1016/j.scitotenv.2005.02.003_bib13) 1970; 110 Condron (10.1016/j.scitotenv.2005.02.003_bib6) 2005 Antibus (10.1016/j.scitotenv.2005.02.003_bib2) 1992; 70 Quiquampoix (10.1016/j.scitotenv.2005.02.003_bib24) 2005 Olander (10.1016/j.scitotenv.2005.02.003_bib21) 2000; 49 Rowland (10.1016/j.scitotenv.2005.02.003_bib28) 1997; 26 Torriani-Gorini (10.1016/j.scitotenv.2005.02.003_bib35) 1994 Browman (10.1016/j.scitotenv.2005.02.003_bib4) 1978; 42 Spier (10.1016/j.scitotenv.2005.02.003_bib33) 1991; 12 Turner (10.1016/j.scitotenv.2005.02.003_bib38) 2002; 120 Sarathchandra (10.1016/j.scitotenv.2005.02.003_bib29) 1981; 13 Chen (10.1016/j.scitotenv.2005.02.003_bib5) 2003; 177 Turner (10.1016/j.scitotenv.2005.02.003_bib37) 2001; 33 Paul (10.1016/j.scitotenv.2005.02.003_bib23) 1996 Tabatabai (10.1016/j.scitotenv.2005.02.003_bib34) 1994 Cosgrove (10.1016/j.scitotenv.2005.02.003_bib8) 1980 Schoumans (10.1016/j.scitotenv.2005.02.003_bib31) 2000 Murphy (10.1016/j.scitotenv.2005.02.003_bib19) 1962; 27 Leake (10.1016/j.scitotenv.2005.02.003_bib17) 1996; 132 Abel (10.1016/j.scitotenv.2005.02.003_bib1) 2000; 122 Harrison (10.1016/j.scitotenv.2005.02.003_bib11) 1983; 15 Vuorinen (10.1016/j.scitotenv.2005.02.003_bib41) 1993; 25 Juma (10.1016/j.scitotenv.2005.02.003_bib15) 1978; 126 Turner (10.1016/j.scitotenv.2005.02.003_bib40) 2003; 34 Skujins (10.1016/j.scitotenv.2005.02.003_bib32) 1976; 4 Saunders (10.1016/j.scitotenv.2005.02.003_bib30) 1955; 6 Greaves (10.1016/j.scitotenv.2005.02.003_bib10) 1970; 2 Bowman (10.1016/j.scitotenv.2005.02.003_bib3) 1978; 125 Cosgrove (10.1016/j.scitotenv.2005.02.003_bib7) 1967; vol. 1 Kiss (10.1016/j.scitotenv.2005.02.003_bib16) 1975; 27 Reid (10.1016/j.scitotenv.2005.02.003_bib26) 1971; vol. IV Eivazi (10.1016/j.scitotenv.2005.02.003_bib9) 1977; 9 Johnson (10.1016/j.scitotenv.2005.02.003_bib14) 1998; 103 Margesin (10.1016/j.scitotenv.2005.02.003_bib18) 1994; 18 Raghothama (10.1016/j.scitotenv.2005.02.003_bib25) 1999; 50 Turner (10.1016/j.scitotenv.2005.02.003_bib39) 2002; 34 Ross (10.1016/j.scitotenv.2005.02.003_bib27) 1995; 27 Turner (10.1016/j.scitotenv.2005.02.003_bib36) 2003; 67 Myers (10.1016/j.scitotenv.2005.02.003_bib20) 1996; 132 Olsen (10.1016/j.scitotenv.2005.02.003_bib22) 1954 |
References_xml | – volume: 26 start-page: 410 year: 1997 end-page: 415 ident: bib28 article-title: Determination of total dissolved phosphorus in soil solutions publication-title: J Environ Qual – volume: 67 start-page: 344 year: 2003 end-page: 350 ident: bib36 article-title: Changes in bicarbonate-extractable inorganic and organic phosphorus following soil drying publication-title: Soil Sci Soc Am J – volume: 122 start-page: 543 year: 2000 end-page: 552 ident: bib1 article-title: Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells publication-title: Plant Physiol – volume: vol. 1 start-page: 216 year: 1967 end-page: 228 ident: bib7 article-title: Metabolism of organic phosphates in soil publication-title: Soil Biochemistry – volume: 2 start-page: 257 year: 1970 end-page: 268 ident: bib10 article-title: The degradation of nucleic acids and montmorillonite-nucleic acid complexes by soil microorganisms publication-title: Soil Biol Biochem – year: 1980 ident: bib8 article-title: Inositol phosphates: their chemistry, biochemistry and physiology – volume: vol. IV start-page: 373 year: 1971 end-page: 415 ident: bib26 publication-title: The enzymes – volume: 6 start-page: 254 year: 1955 end-page: 267 ident: bib30 article-title: Observations on the determination of total organic phosphorus in soils publication-title: J Soil Sci – volume: 33 start-page: 913 year: 2001 end-page: 919 ident: bib37 article-title: Rapid estimation of microbial biomass in grassland soils by ultra-violet absorbance publication-title: Soil Biol Biochem – volume: 132 start-page: 435 year: 1996 end-page: 443 ident: bib17 article-title: Phosphodiesters as mycorrhizal P sources: I. Phosphodiesterase production and the utilization of DNA as a phosphorus source by the ericoid mycorrhizal fungus publication-title: New Phytol – volume: 49 start-page: 175 year: 2000 end-page: 190 ident: bib21 article-title: Regulation of soil phosphatase and chitinase activity by N and P availability publication-title: Biogeochemistry – volume: 25 start-page: 295 year: 1993 end-page: 296 ident: bib41 article-title: Requirement of publication-title: Soil Biol Biochem – volume: 103 start-page: 239 year: 1998 end-page: 250 ident: bib14 article-title: Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands publication-title: Environ Pollut – volume: 34 start-page: 27 year: 2002 end-page: 35 ident: bib39 article-title: Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis publication-title: Soil Biol Biochem – start-page: 89 year: 2005 end-page: 112 ident: bib24 article-title: Enzymatic hydrolysis of organic phosphorus publication-title: Organic phosphorus in the environment – start-page: 775 year: 1994 end-page: 833 ident: bib34 article-title: Soil enzymes publication-title: Methods of soil analysis. Part. 2: microbiological and biological properties – start-page: 31 year: 2000 end-page: 34 ident: bib31 article-title: Determination of the degree of phosphate saturation in non-calcareous soils publication-title: Methods of phosphorus analysis in soils, sediments and waters – volume: 126 start-page: 101 year: 1978 end-page: 108 ident: bib15 article-title: Distribution of phosphomonoesterase in soils publication-title: Soil Sci – volume: 70 start-page: 794 year: 1992 end-page: 801 ident: bib2 article-title: Phosphatase-activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi publication-title: Can J Bot – volume: 13 start-page: 543 year: 1981 end-page: 545 ident: bib29 article-title: Determination of phosphatase and arylsulphatase activities in soils publication-title: Soil Biol Biochem – year: 1996 ident: bib23 article-title: Soil microbiology and biochemistry – volume: 110 start-page: 355 year: 1970 end-page: 358 ident: bib13 article-title: Production of phospholipases by soil microorganisms publication-title: Soil Sci – volume: 9 start-page: 167 year: 1977 end-page: 172 ident: bib9 article-title: Phosphatases in soils publication-title: Soil Biol Biochem – volume: 15 start-page: 93 year: 1983 end-page: 99 ident: bib11 article-title: Relationship between intensity of phosphatase activity and physico-chemical properties in woodland soils publication-title: Soil Biol Biochem – year: 1954 ident: bib22 article-title: Estimation of available phosphorus in soils by extraction with sodium bicarbonate – volume: 4 start-page: 383 year: 1976 end-page: 421 ident: bib32 article-title: Extracellular enzymes in soil publication-title: Crit Rev Microbiol – volume: 120 start-page: 313 year: 2002 end-page: 317 ident: bib38 article-title: Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition publication-title: Environ Pollut – volume: 27 start-page: 25 year: 1975 end-page: 87 ident: bib16 article-title: Biological significance of enzymes accumulated in soil publication-title: Adv Agron – volume: 27 start-page: 1431 year: 1995 end-page: 1443 ident: bib27 article-title: Soil microbial biomass, C and N mineralization and enzyme activities in a hill pasture: influence of season and slow-release P and S fertilizer publication-title: Soil Biol Biochem – start-page: 1 year: 1994 end-page: 4 ident: bib35 article-title: The Pho regulon of publication-title: Phosphate in microorganisms: cellular and molecular biology – volume: 125 start-page: 49 year: 1978 end-page: 54 ident: bib3 article-title: Transformations of organic phosphorus substrates in soils as evaluated by NaHCO publication-title: Soil Sci – volume: 42 start-page: 284 year: 1978 end-page: 290 ident: bib4 article-title: Phosphodiesterase activity of soils publication-title: Soil Sci Soc Am J – volume: 132 start-page: 445 year: 1996 end-page: 451 ident: bib20 article-title: Phosphodiesters as mycorrhizal P sources. II: publication-title: New Phytol – year: 2005 ident: bib6 article-title: Chemistry and dynamics of soil organic phosphorus publication-title: Phosphorus: agriculture and the environment – volume: 12 start-page: 189 year: 1991 end-page: 194 ident: bib33 article-title: Phosphatase activities of pasture plants and soils: relationship with plant productivity and soil P fertility indices publication-title: Biol Fertil Soils – volume: 27 start-page: 31 year: 1962 end-page: 36 ident: bib19 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal Chim Acta – volume: 177 start-page: 539 year: 2003 end-page: 557 ident: bib5 article-title: Seasonal dynamics of soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand publication-title: For Ecol Manag – volume: 18 start-page: 320 year: 1994 end-page: 326 ident: bib18 article-title: Phosphomonoesterase, phosphodiesterase, phosphotriesterase, and inorganic pyrophosphatase activities in forest soils in an alpine area: effect of pH on enzyme activity and extractability publication-title: Biol Fertil Soils – volume: 34 start-page: 1199 year: 2003 end-page: 1210 ident: bib40 article-title: The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution publication-title: Org Geochem – volume: 50 start-page: 665 year: 1999 end-page: 693 ident: bib25 article-title: Phosphate acquisition publication-title: Annu Rev Plant Physiol Mol Biol – volume: 46 start-page: 970 year: 1982 end-page: 976 ident: bib12 article-title: Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations publication-title: Soil Sci Soc Am J – volume: 9 start-page: 167 year: 1977 ident: 10.1016/j.scitotenv.2005.02.003_bib9 article-title: Phosphatases in soils publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(77)90070-0 – volume: 50 start-page: 665 year: 1999 ident: 10.1016/j.scitotenv.2005.02.003_bib25 article-title: Phosphate acquisition publication-title: Annu Rev Plant Physiol Mol Biol doi: 10.1146/annurev.arplant.50.1.665 – volume: vol. 1 start-page: 216 year: 1967 ident: 10.1016/j.scitotenv.2005.02.003_bib7 article-title: Metabolism of organic phosphates in soil – year: 1954 ident: 10.1016/j.scitotenv.2005.02.003_bib22 – volume: 70 start-page: 794 year: 1992 ident: 10.1016/j.scitotenv.2005.02.003_bib2 article-title: Phosphatase-activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi publication-title: Can J Bot doi: 10.1139/b92-101 – volume: 125 start-page: 49 year: 1978 ident: 10.1016/j.scitotenv.2005.02.003_bib3 article-title: Transformations of organic phosphorus substrates in soils as evaluated by NaHCO3 extraction publication-title: Soil Sci doi: 10.1097/00010694-197801000-00008 – volume: 110 start-page: 355 year: 1970 ident: 10.1016/j.scitotenv.2005.02.003_bib13 article-title: Production of phospholipases by soil microorganisms publication-title: Soil Sci doi: 10.1097/00010694-197011000-00010 – volume: 177 start-page: 539 year: 2003 ident: 10.1016/j.scitotenv.2005.02.003_bib5 article-title: Seasonal dynamics of soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand publication-title: For Ecol Manag doi: 10.1016/S0378-1127(02)00450-4 – volume: 25 start-page: 295 year: 1993 ident: 10.1016/j.scitotenv.2005.02.003_bib41 article-title: Requirement of p-nitrophenol standard for each soil publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(93)90042-A – volume: 49 start-page: 175 year: 2000 ident: 10.1016/j.scitotenv.2005.02.003_bib21 article-title: Regulation of soil phosphatase and chitinase activity by N and P availability publication-title: Biogeochemistry doi: 10.1023/A:1006316117817 – volume: 132 start-page: 435 year: 1996 ident: 10.1016/j.scitotenv.2005.02.003_bib17 article-title: Phosphodiesters as mycorrhizal P sources: I. Phosphodiesterase production and the utilization of DNA as a phosphorus source by the ericoid mycorrhizal fungus Hymenoscyphus ericae publication-title: New Phytol doi: 10.1111/j.1469-8137.1996.tb01863.x – volume: 33 start-page: 913 year: 2001 ident: 10.1016/j.scitotenv.2005.02.003_bib37 article-title: Rapid estimation of microbial biomass in grassland soils by ultra-violet absorbance publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(00)00238-8 – start-page: 1 year: 1994 ident: 10.1016/j.scitotenv.2005.02.003_bib35 article-title: The Pho regulon of Escherichia coli – volume: 46 start-page: 970 year: 1982 ident: 10.1016/j.scitotenv.2005.02.003_bib12 article-title: Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1982.03615995004600050017x – volume: 120 start-page: 313 year: 2002 ident: 10.1016/j.scitotenv.2005.02.003_bib38 article-title: Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition publication-title: Environ Pollut doi: 10.1016/S0269-7491(02)00147-1 – start-page: 31 year: 2000 ident: 10.1016/j.scitotenv.2005.02.003_bib31 article-title: Determination of the degree of phosphate saturation in non-calcareous soils – volume: vol. IV start-page: 373 year: 1971 ident: 10.1016/j.scitotenv.2005.02.003_bib26 article-title: E. Coli alkaline phosphatase – volume: 27 start-page: 25 year: 1975 ident: 10.1016/j.scitotenv.2005.02.003_bib16 article-title: Biological significance of enzymes accumulated in soil publication-title: Adv Agron doi: 10.1016/S0065-2113(08)70007-5 – volume: 126 start-page: 101 year: 1978 ident: 10.1016/j.scitotenv.2005.02.003_bib15 article-title: Distribution of phosphomonoesterase in soils publication-title: Soil Sci doi: 10.1097/00010694-197808000-00006 – volume: 27 start-page: 1431 year: 1995 ident: 10.1016/j.scitotenv.2005.02.003_bib27 article-title: Soil microbial biomass, C and N mineralization and enzyme activities in a hill pasture: influence of season and slow-release P and S fertilizer publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(95)00069-Q – volume: 42 start-page: 284 year: 1978 ident: 10.1016/j.scitotenv.2005.02.003_bib4 article-title: Phosphodiesterase activity of soils publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1978.03615995004200020016x – volume: 4 start-page: 383 year: 1976 ident: 10.1016/j.scitotenv.2005.02.003_bib32 article-title: Extracellular enzymes in soil publication-title: Crit Rev Microbiol doi: 10.3109/10408417609102304 – year: 2005 ident: 10.1016/j.scitotenv.2005.02.003_bib6 article-title: Chemistry and dynamics of soil organic phosphorus – volume: 2 start-page: 257 year: 1970 ident: 10.1016/j.scitotenv.2005.02.003_bib10 article-title: The degradation of nucleic acids and montmorillonite-nucleic acid complexes by soil microorganisms publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(70)90032-5 – volume: 6 start-page: 254 year: 1955 ident: 10.1016/j.scitotenv.2005.02.003_bib30 article-title: Observations on the determination of total organic phosphorus in soils publication-title: J Soil Sci doi: 10.1111/j.1365-2389.1955.tb00849.x – volume: 132 start-page: 445 year: 1996 ident: 10.1016/j.scitotenv.2005.02.003_bib20 article-title: Phosphodiesters as mycorrhizal P sources. II: Ericoid mycorrhiza and the utilization of nuclei as a phosphorus and nitrogen source by Vaccinium macrocarpon publication-title: New Phytol doi: 10.1111/j.1469-8137.1996.tb01864.x – year: 1980 ident: 10.1016/j.scitotenv.2005.02.003_bib8 – volume: 15 start-page: 93 year: 1983 ident: 10.1016/j.scitotenv.2005.02.003_bib11 article-title: Relationship between intensity of phosphatase activity and physico-chemical properties in woodland soils publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(83)90124-4 – volume: 27 start-page: 31 year: 1962 ident: 10.1016/j.scitotenv.2005.02.003_bib19 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 13 start-page: 543 year: 1981 ident: 10.1016/j.scitotenv.2005.02.003_bib29 article-title: Determination of phosphatase and arylsulphatase activities in soils publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(81)90050-X – year: 1996 ident: 10.1016/j.scitotenv.2005.02.003_bib23 – volume: 26 start-page: 410 year: 1997 ident: 10.1016/j.scitotenv.2005.02.003_bib28 article-title: Determination of total dissolved phosphorus in soil solutions publication-title: J Environ Qual doi: 10.2134/jeq1997.00472425002600020011x – volume: 18 start-page: 320 year: 1994 ident: 10.1016/j.scitotenv.2005.02.003_bib18 article-title: Phosphomonoesterase, phosphodiesterase, phosphotriesterase, and inorganic pyrophosphatase activities in forest soils in an alpine area: effect of pH on enzyme activity and extractability publication-title: Biol Fertil Soils doi: 10.1007/BF00570635 – start-page: 775 year: 1994 ident: 10.1016/j.scitotenv.2005.02.003_bib34 article-title: Soil enzymes – volume: 103 start-page: 239 year: 1998 ident: 10.1016/j.scitotenv.2005.02.003_bib14 article-title: Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands publication-title: Environ Pollut doi: 10.1016/S0269-7491(98)00115-8 – volume: 67 start-page: 344 year: 2003 ident: 10.1016/j.scitotenv.2005.02.003_bib36 article-title: Changes in bicarbonate-extractable inorganic and organic phosphorus following soil drying publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2003.3440 – volume: 12 start-page: 189 year: 1991 ident: 10.1016/j.scitotenv.2005.02.003_bib33 article-title: Phosphatase activities of pasture plants and soils: relationship with plant productivity and soil P fertility indices publication-title: Biol Fertil Soils doi: 10.1007/BF00337200 – start-page: 89 year: 2005 ident: 10.1016/j.scitotenv.2005.02.003_bib24 article-title: Enzymatic hydrolysis of organic phosphorus – volume: 34 start-page: 27 year: 2002 ident: 10.1016/j.scitotenv.2005.02.003_bib39 article-title: Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(01)00144-4 – volume: 34 start-page: 1199 year: 2003 ident: 10.1016/j.scitotenv.2005.02.003_bib40 article-title: The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution 31P NMR spectroscopy publication-title: Org Geochem doi: 10.1016/S0146-6380(03)00061-5 – volume: 122 start-page: 543 year: 2000 ident: 10.1016/j.scitotenv.2005.02.003_bib1 article-title: Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells publication-title: Plant Physiol doi: 10.1104/pp.122.2.543 |
SSID | ssj0000781 |
Score | 2.2686317 |
Snippet | Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 27 |
SubjectTerms | Agriculture England Environmental Monitoring Organic phosphorus Organophosphorus Compounds - analysis Pasture Phosphatase Phosphodiesterase Phosphomonoesterase Phosphoric Diester Hydrolases - chemistry Phosphoric Monoester Hydrolases - chemistry Soil Soil - analysis Wales |
Title | Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity |
URI | https://dx.doi.org/10.1016/j.scitotenv.2005.02.003 https://www.ncbi.nlm.nih.gov/pubmed/15907508 https://www.proquest.com/docview/14752387 https://www.proquest.com/docview/17049005 https://www.proquest.com/docview/67847820 |
Volume | 344 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CSqFQSrNt2u0j1aFXN4oty6vcQkjYdGkIpaG5GUmWyJbFNmtvIZfe-687Y9nZ5rDJISeD0MgPaTSfPDPfAHyWmbfkzYtUIVQkrDIRwpAiimON1sEfJLor9_btXE4vxder9GoLjodcGAqr7Pf-sKd3u3Xfst9_zf16PqccXzFRUmU8Df4dymAXGa3yL3_WYR5EZhO8zKjY2PtOjBeO21aITX_3P1eIvDPZZKE2IdDOEp2-hBc9hGRH4Sl3YMuVI3gaikrejGD3ZJ27ht165W1G8Dz8omMh8-gV_L24rpr6WrdoyBjlN1AZCTYvGdFVEdeyY7VuyMPAmmq-aA7ZBb0FbgkLtgwl7HFSWeXZgmh6HQsVoiyru3Gr5aphKF1SkCgzN0MzhS1S2vN_N30Nl6cnP46nUV-ZIbJCZS2eNwvvPLfOC6PjmBvUY6ml8wbVOdHOSlMYroosLhAPCZtac5AWCKUQr6GoSHZhu6xK9xZYQqU_Em4mTjuhrVMOAZp3srCee2n5GOQwG7ntacupesYiH-LTfuW300hFNdOcx8R4OgZ-K1gH5o6HRQ6H6c7vLMIc7cvDwp-GBZKjipLfRZeuWjV4usrwuD_J7umRkQOWp5t7IKYQRG04hjdh7a3fKVUE-ybvHvPw7-FZx0lLtLTpB9hulyv3EdFWa_Y6ddqDJ0dns-k5XWfff87-AebhMl4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQSQrBQWF71AY6hbuIkm0ocELTa0od6aKXegu3YdNEqiTZZ0F6483v4g8zETpcelh5Qr5GdxJnJzGfPzDcAb5LUaormBVkhskDoTAUIQ4ogDCV6B7sdya7d29FxMj4Tn8_j8zX43dfCUFqlt_3OpnfW2l_Z8l9zq55MqMZXjLIkS3ns4js-s_LALH7gvq15v_8Jhfw2DPd2Tz-OA99aINAiS1vcMBXWWK6NFUqGIVeoiIlMjFWoj5E0OlGF4lmRhgU6dKFjrbbjArEAAg6cKiK87y24LdBcUNuEdz-XeSXEnuPC2mhJ8PWuJJXhQtoKwfB3f5pDbKHRKpe4CvJ2rm_vITzwmJV9cJ_lEayZcgB3XBfLxQA2dpfFcjjMW4tmAPfdmSBzpU6P4dfJRdXUF7JFz8mooIL6VrBJyYgfi8idDatlQyEN1lSTabPDTmgVaIOmbGa--kZjrLJsSrzAhrmWVJrV3X2r2bxhOLukrFSmFv1lypOkOuu_HvoEzm5EXhuwXlaleQYsol4jEVcjI42Q2mQGEaE1SaEtt4nmQ0h6aeTa86RTu45p3ifEfcsvxUhdPOOch0SxOgR-ObF2VCHXT9npxZ1f0focHdr1kzd7BcnRJlCgR5ammje4nUtjhGLpP0akFPHl8eoRCGIEcSkO4anTveWa4oxw5uj5_7z8Jtwdnx4d5of7xwcv4F5HiEucuPFLWG9nc_MKoV6rXne_FoMvN_0v_wEUrW2b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphatase+activity+in+temperate+pasture+soils%3A+Potential+regulation+of+labile+organic+phosphorus+turnover+by+phosphodiesterase+activity&rft.jtitle=The+Science+of+the+total+environment&rft.au=Turner%2C+Benjamin+L.&rft.au=Haygarth%2C+Philip+M.&rft.date=2005-05-15&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=344&rft.issue=1&rft.spage=27&rft.epage=36&rft_id=info:doi/10.1016%2Fj.scitotenv.2005.02.003&rft.externalDocID=S0048969705001099 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |