Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity

Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and phosphodiesterase activities were determined by using para-nitrophenol ( pNP) analogue substrates in a range of temperate pasture soils from E...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 344; no. 1; pp. 27 - 36
Main Authors Turner, Benjamin L., Haygarth, Philip M.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.05.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and phosphodiesterase activities were determined by using para-nitrophenol ( pNP) analogue substrates in a range of temperate pasture soils from England and Wales. Substrate-induced phosphatase activity ranged between 2.62 and 12.19 μmol pNP g −1 soil h −1 for phosphomonoesterase and between 0.25 and 2.24 μmol pNP g −1 soil h −1 for phosphodiesterase. Activities were correlated strongly with soil pH and labile organic P extracted in sodium bicarbonate, although the relationships differed markedly for the two enzymes. Acidic soils contained high phosphomonoesterase activity, low phosphodiesterase activity, and high concentrations of labile organic P, whereas the reverse was true in more neutral soils. As most of the organic P inputs to soil are phosphate diesters, it therefore seems likely that phosphodiesterase activity regulates labile organic P turnover in pasture soils. The low phosphodiesterase activity in acidic soils may be linked to the dominance of fungi or an effect of sorption on the enzyme. These results suggest that greater emphasis should be placed on understanding the role of phosphodiesterase activity in the cycling of soil organic P.
AbstractList Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and phosphodiesterase activities were determined by using para-nitrophenol (pNP) analogue substrates in a range of temperate pasture soils from England and Wales. Substrate-induced phosphatase activity ranged between 2.62 and 12.19 micromol pNP g-1 soil h-1 for phosphomonoesterase and between 0.25 and 2.24 micromol pNP g-1 soil h-1 for phosphodiesterase. Activities were correlated strongly with soil pH and labile organic P extracted in sodium bicarbonate, although the relationships differed markedly for the two enzymes. Acidic soils contained high phosphomonoesterase activity, low phosphodiesterase activity, and high concentrations of labile organic P, whereas the reverse was true in more neutral soils. As most of the organic P inputs to soil are phosphate diesters, it therefore seems likely that phosphodiesterase activity regulates labile organic P turnover in pasture soils. The low phosphodiesterase activity in acidic soils may be linked to the dominance of fungi or an effect of sorption on the enzyme. These results suggest that greater emphasis should be placed on understanding the role of phosphodiesterase activity in the cycling of soil organic P.
Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and phosphodiesterase activities were determined by using para-nitrophenol (pNP) analogue substrates in a range of temperate pasture soils from England and Wales. Substrate-induced phosphatase activity ranged between 2.62 and 12.19 mu mol pNP g super(-1) soil h super(-1) for phosphomonoesterase and between 0.25 and 2.24 mu mol pNP g super(-1) soil h super(-1) for phosphodiesterase. Activities were correlated strongly with soil pH and labile organic P extracted in sodium bicarbonate, although the relationships differed markedly for the two enzymes. Acidic soils contained high phosphomonoesterase activity, low phosphodiesterase activity, and high concentrations of labile organic P, whereas the reverse was true in more neutral soils. As most of the organic P inputs to soil are phosphate diesters, it therefore seems likely that phosphodiesterase activity regulates labile organic P turnover in pasture soils. The low phosphodiesterase activity in acidic soils may be linked to the dominance of fungi or an effect of sorption on the enzyme. These results suggest that greater emphasis should be placed on understanding the role of phosphodiesterase activity in the cycling of soil organic P.
Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and phosphodiesterase activities were determined by using para-nitrophenol (pNP) analogue substrates in a range of temperate pasture soils from England and Wales. Substrate-induced phosphatase activity ranged between 2.62 and 12.19 micromol pNP g-1 soil h-1 for phosphomonoesterase and between 0.25 and 2.24 micromol pNP g-1 soil h-1 for phosphodiesterase. Activities were correlated strongly with soil pH and labile organic P extracted in sodium bicarbonate, although the relationships differed markedly for the two enzymes. Acidic soils contained high phosphomonoesterase activity, low phosphodiesterase activity, and high concentrations of labile organic P, whereas the reverse was true in more neutral soils. As most of the organic P inputs to soil are phosphate diesters, it therefore seems likely that phosphodiesterase activity regulates labile organic P turnover in pasture soils. The low phosphodiesterase activity in acidic soils may be linked to the dominance of fungi or an effect of sorption on the enzyme. These results suggest that greater emphasis should be placed on understanding the role of phosphodiesterase activity in the cycling of soil organic P.Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and phosphodiesterase activities were determined by using para-nitrophenol (pNP) analogue substrates in a range of temperate pasture soils from England and Wales. Substrate-induced phosphatase activity ranged between 2.62 and 12.19 micromol pNP g-1 soil h-1 for phosphomonoesterase and between 0.25 and 2.24 micromol pNP g-1 soil h-1 for phosphodiesterase. Activities were correlated strongly with soil pH and labile organic P extracted in sodium bicarbonate, although the relationships differed markedly for the two enzymes. Acidic soils contained high phosphomonoesterase activity, low phosphodiesterase activity, and high concentrations of labile organic P, whereas the reverse was true in more neutral soils. As most of the organic P inputs to soil are phosphate diesters, it therefore seems likely that phosphodiesterase activity regulates labile organic P turnover in pasture soils. The low phosphodiesterase activity in acidic soils may be linked to the dominance of fungi or an effect of sorption on the enzyme. These results suggest that greater emphasis should be placed on understanding the role of phosphodiesterase activity in the cycling of soil organic P.
Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and phosphodiesterase activities were determined by using para-nitrophenol ( pNP) analogue substrates in a range of temperate pasture soils from England and Wales. Substrate-induced phosphatase activity ranged between 2.62 and 12.19 μmol pNP g −1 soil h −1 for phosphomonoesterase and between 0.25 and 2.24 μmol pNP g −1 soil h −1 for phosphodiesterase. Activities were correlated strongly with soil pH and labile organic P extracted in sodium bicarbonate, although the relationships differed markedly for the two enzymes. Acidic soils contained high phosphomonoesterase activity, low phosphodiesterase activity, and high concentrations of labile organic P, whereas the reverse was true in more neutral soils. As most of the organic P inputs to soil are phosphate diesters, it therefore seems likely that phosphodiesterase activity regulates labile organic P turnover in pasture soils. The low phosphodiesterase activity in acidic soils may be linked to the dominance of fungi or an effect of sorption on the enzyme. These results suggest that greater emphasis should be placed on understanding the role of phosphodiesterase activity in the cycling of soil organic P.
Author Haygarth, Philip M.
Turner, Benjamin L.
Author_xml – sequence: 1
  givenname: Benjamin L.
  surname: Turner
  fullname: Turner, Benjamin L.
  email: turnerbl@si.edu
– sequence: 2
  givenname: Philip M.
  surname: Haygarth
  fullname: Haygarth, Philip M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15907508$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAURS1URKeFXwCv2CU8O4ntILGoKqCVKtEFrC3HeWk9ysTBdkaaT-hf4-m0gNgM3liyzr3PeueMnEx-QkLeMSgZMPFhXUbrkk84bUsO0JTAS4DqBVkxJduCARcnZAVQq6IVrTwlZzGuIR-p2CtyypoWZANqRR5u732c700yEamxyW1d2lE30YSbGYNJSGcT0xKQRu_G-JHe7qcmZ0Ya8G4ZTXJ-on6go-nciNSHOzM5S-fHXh-WSHN68lsMtNs9P_cOY8r1fw19TV4OZoz45uk-Jz--fP5-eVXcfPt6fXlxU9i6lakQrB9wAItD3RnOoWOtEEbg0IlKVQat6PoO2l7yXrVVbRvbsabnDWvqJkfr6py8P_TOwf9c8jf0xkWL42gm9EvUQqpaKg5HQSahbvPuj4O1bHilZAbfPoFLt8Fez8FtTNjpZx0ZkAfABh9jwOEPAnovXq_1b_F6L14D11l8Tn76J5mxRzcpGDf-R_7ikMe8-q3DsOdwsti7gDbp3rujHb8AjDLUjw
CitedBy_id crossref_primary_10_1038_s41598_017_02327_6
crossref_primary_10_1016_j_apsoil_2022_104550
crossref_primary_10_1016_j_fcr_2021_108309
crossref_primary_10_1016_j_geoderma_2023_116755
crossref_primary_10_1016_j_soilbio_2015_01_003
crossref_primary_10_1007_s11104_017_3405_8
crossref_primary_10_1016_j_geoderma_2015_04_004
crossref_primary_10_1016_j_still_2014_01_001
crossref_primary_10_2139_ssrn_4061022
crossref_primary_10_1007_s11104_017_3225_x
crossref_primary_10_3389_fmicb_2023_1236891
crossref_primary_10_3390_agronomy11112232
crossref_primary_10_1016_j_ecoenv_2016_12_003
crossref_primary_10_1016_j_apsoil_2015_09_004
crossref_primary_10_1016_j_geoderma_2022_115829
crossref_primary_10_1016_j_soilbio_2013_05_010
crossref_primary_10_1016_j_soilbio_2017_11_006
crossref_primary_10_1111_gcb_17077
crossref_primary_10_1002_eap_2861
crossref_primary_10_1016_j_ejsobi_2016_07_001
crossref_primary_10_1080_03650340_2020_1715950
crossref_primary_10_5194_bg_8_1901_2011
crossref_primary_10_1016_j_geoderma_2010_10_001
crossref_primary_10_1186_s12870_024_04907_x
crossref_primary_10_2136_sssaj2017_12_0420
crossref_primary_10_1016_j_geoderma_2022_116124
crossref_primary_10_1007_s00374_020_01531_3
crossref_primary_10_1007_s11368_023_03603_x
crossref_primary_10_1038_s41396_020_00829_2
crossref_primary_10_1038_s41598_019_49976_3
crossref_primary_10_4141_cjss09090
crossref_primary_10_2134_jeq2006_0464
crossref_primary_10_3390_agronomy11071297
crossref_primary_10_1007_s10750_016_3009_y
crossref_primary_10_1016_j_scitotenv_2015_02_044
crossref_primary_10_1007_s11104_013_1624_1
crossref_primary_10_1016_j_scitotenv_2023_164583
crossref_primary_10_1080_03650340_2022_2082417
crossref_primary_10_1007_s42729_022_00826_8
crossref_primary_10_1016_j_foreco_2007_10_040
crossref_primary_10_1038_s41396_020_00864_z
crossref_primary_10_1371_journal_pone_0312199
crossref_primary_10_1007_s00374_010_0464_x
crossref_primary_10_1007_s10705_021_10163_4
crossref_primary_10_1007_s11104_017_3401_z
crossref_primary_10_1016_j_geoderma_2019_06_037
crossref_primary_10_1016_j_apsoil_2024_105748
crossref_primary_10_3390_microorganisms13030624
crossref_primary_10_1007_s11104_024_06797_2
crossref_primary_10_1080_17429145_2013_861028
crossref_primary_10_1016_j_scitotenv_2015_11_011
crossref_primary_10_1111_1462_2920_13778
crossref_primary_10_1080_03650340_2016_1235266
crossref_primary_10_1007_s11104_023_06186_1
crossref_primary_10_1016_j_catena_2017_10_021
crossref_primary_10_1016_j_gecco_2020_e00934
crossref_primary_10_3390_agronomy15010035
crossref_primary_10_1139_cjm_2020_0227
crossref_primary_10_1016_j_apsoil_2025_105896
crossref_primary_10_1016_j_scitotenv_2005_02_008
crossref_primary_10_1016_j_still_2007_11_001
crossref_primary_10_3389_fmicb_2022_1045919
crossref_primary_10_5194_bg_15_4575_2018
crossref_primary_10_1016_j_geoderma_2021_115279
crossref_primary_10_3390_plants12061295
crossref_primary_10_1016_j_foreco_2018_04_035
crossref_primary_10_1016_j_ejsobi_2018_01_009
crossref_primary_10_1016_j_jenvman_2020_110664
crossref_primary_10_1038_s41598_017_01418_8
crossref_primary_10_1016_j_hpj_2016_11_005
crossref_primary_10_1111_sum_12430
crossref_primary_10_1016_j_ecoleng_2022_106644
crossref_primary_10_5897_AJAR2015_10263
crossref_primary_10_1007_s11368_018_2132_y
crossref_primary_10_3390_agriculture12122079
crossref_primary_10_1016_j_agee_2024_108906
crossref_primary_10_1007_s00374_017_1226_9
crossref_primary_10_1016_j_soilbio_2012_02_008
crossref_primary_10_1002_jeq2_20556
crossref_primary_10_1111_1758_2229_13040
crossref_primary_10_1111_nph_14674
crossref_primary_10_1007_s11104_014_2129_2
crossref_primary_10_3390_agronomy2030187
crossref_primary_10_3390_su15086635
crossref_primary_10_3390_microorganisms8030364
crossref_primary_10_1002_jpln_200900281
crossref_primary_10_3389_fpls_2022_935829
crossref_primary_10_1016_j_soilbio_2019_107628
crossref_primary_10_3390_agronomy13051308
crossref_primary_10_7717_peerj_18140
crossref_primary_10_1038_s41598_023_44266_5
crossref_primary_10_1080_03650340_2020_1714031
crossref_primary_10_17221_307_2019_PSE
crossref_primary_10_1007_s00374_016_1110_z
crossref_primary_10_1371_journal_pone_0177030
crossref_primary_10_1007_s42773_023_00278_y
crossref_primary_10_1016_j_baae_2021_03_014
crossref_primary_10_1016_j_apsoil_2024_105730
crossref_primary_10_1080_00103620802432733
crossref_primary_10_22144_ctu_jvn_2016_197
crossref_primary_10_2298_ABS231025043K
crossref_primary_10_1002_ece3_7036
crossref_primary_10_1080_10643389_2011_627019
crossref_primary_10_1007_s42729_024_01748_3
crossref_primary_10_1016_j_apsoil_2024_105858
crossref_primary_10_1016_j_soilbio_2024_109416
crossref_primary_10_1007_s12155_013_9369_5
crossref_primary_10_1016_j_ecss_2019_106243
crossref_primary_10_1016_j_soilbio_2021_108465
crossref_primary_10_2134_jeq2014_10_0440
crossref_primary_10_1016_j_soilbio_2019_107633
crossref_primary_10_1016_j_still_2016_09_003
crossref_primary_10_1016_j_soilbio_2010_09_007
crossref_primary_10_5897_AJAR2015_10365
crossref_primary_10_1007_s11104_021_04897_x
crossref_primary_10_1007_s10533_017_0375_0
crossref_primary_10_1002_jpln_201000139
crossref_primary_10_3389_ffgc_2020_00047
crossref_primary_10_3390_f10090734
crossref_primary_10_3390_f12121707
crossref_primary_10_1016_j_geoderma_2016_04_028
crossref_primary_10_2136_sssaj2015_02_0080
crossref_primary_10_3389_fenvs_2023_1298027
crossref_primary_10_3390_soilsystems4040074
crossref_primary_10_1007_s00374_013_0773_y
crossref_primary_10_17221_437_2010_PSE
crossref_primary_10_1007_s11104_016_3142_4
crossref_primary_10_1007_s11104_025_07225_9
crossref_primary_10_1007_s42729_021_00495_z
crossref_primary_10_1021_acsearthspacechem_8b00018
crossref_primary_10_1007_s11104_018_3810_7
crossref_primary_10_3389_fenvs_2022_947014
crossref_primary_10_1016_j_soilbio_2015_03_020
crossref_primary_10_1016_j_jhydrol_2007_10_038
crossref_primary_10_3389_fmicb_2022_831888
crossref_primary_10_1016_S2095_3119_21_63715_2
crossref_primary_10_3389_fpls_2022_987112
crossref_primary_10_1007_s11104_019_04089_8
crossref_primary_10_1016_j_geoderma_2016_08_018
crossref_primary_10_1016_S1002_0160_20_60052_2
crossref_primary_10_1002_ece3_8669
crossref_primary_10_1016_j_agee_2016_12_030
crossref_primary_10_1080_00380768_2020_1814114
crossref_primary_10_1007_s11104_023_06136_x
crossref_primary_10_1080_00103624_2014_909831
crossref_primary_10_1093_jpe_rtac091
crossref_primary_10_1007_s11368_015_1180_9
crossref_primary_10_1016_j_geoderma_2013_11_002
crossref_primary_10_1016_j_apsoil_2024_105280
crossref_primary_10_1016_j_scitotenv_2021_152627
crossref_primary_10_1016_j_geoderma_2023_116406
crossref_primary_10_1111_j_1469_8137_2011_03652_x
crossref_primary_10_3389_fsoil_2023_1097965
crossref_primary_10_1016_j_soilbio_2015_07_011
Cites_doi 10.1016/0038-0717(77)90070-0
10.1146/annurev.arplant.50.1.665
10.1139/b92-101
10.1097/00010694-197801000-00008
10.1097/00010694-197011000-00010
10.1016/S0378-1127(02)00450-4
10.1016/0038-0717(93)90042-A
10.1023/A:1006316117817
10.1111/j.1469-8137.1996.tb01863.x
10.1016/S0038-0717(00)00238-8
10.2136/sssaj1982.03615995004600050017x
10.1016/S0269-7491(02)00147-1
10.1016/S0065-2113(08)70007-5
10.1097/00010694-197808000-00006
10.1016/0038-0717(95)00069-Q
10.2136/sssaj1978.03615995004200020016x
10.3109/10408417609102304
10.1016/0038-0717(70)90032-5
10.1111/j.1365-2389.1955.tb00849.x
10.1111/j.1469-8137.1996.tb01864.x
10.1016/0038-0717(83)90124-4
10.1016/S0003-2670(00)88444-5
10.1016/0038-0717(81)90050-X
10.2134/jeq1997.00472425002600020011x
10.1007/BF00570635
10.1016/S0269-7491(98)00115-8
10.2136/sssaj2003.3440
10.1007/BF00337200
10.1016/S0038-0717(01)00144-4
10.1016/S0146-6380(03)00061-5
10.1104/pp.122.2.543
ContentType Journal Article
Copyright 2005 Elsevier B.V.
Copyright_xml – notice: 2005 Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7ST
C1K
SOI
7TV
7U6
M7N
7X8
DOI 10.1016/j.scitotenv.2005.02.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Pollution Abstracts
Sustainability Science Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Environment Abstracts
Environmental Sciences and Pollution Management
Pollution Abstracts
Sustainability Science Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Pollution Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
Agriculture
EISSN 1879-1026
EndPage 36
ExternalDocumentID 15907508
10_1016_j_scitotenv_2005_02_003
S0048969705001099
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations British Isles, England
British Isles, Wales
GeographicLocations_xml – name: British Isles, England
– name: British Isles, Wales
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYJJ
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
WUQ
XPP
ZXP
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7ST
C1K
SOI
7TV
7U6
M7N
7X8
ID FETCH-LOGICAL-c497t-61dfef0cef4ba220b1966a6efb6383aec6bdb09d72d8934c5cb15d2515451df43
IEDL.DBID .~1
ISSN 0048-9697
IngestDate Fri Jul 11 11:22:23 EDT 2025
Thu Jul 10 18:13:20 EDT 2025
Fri Jul 11 00:58:44 EDT 2025
Wed Feb 19 01:40:24 EST 2025
Tue Jul 01 03:08:53 EDT 2025
Thu Apr 24 22:59:30 EDT 2025
Fri Feb 23 02:34:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Organic phosphorus
Soil
Phosphomonoesterase
Phosphatase
Pasture
Phosphodiesterase
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-61dfef0cef4ba220b1966a6efb6383aec6bdb09d72d8934c5cb15d2515451df43
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 15907508
PQID 14752387
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_67847820
proquest_miscellaneous_17049005
proquest_miscellaneous_14752387
pubmed_primary_15907508
crossref_primary_10_1016_j_scitotenv_2005_02_003
crossref_citationtrail_10_1016_j_scitotenv_2005_02_003
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2005_02_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-05-15
PublicationDateYYYYMMDD 2005-05-15
PublicationDate_xml – month: 05
  year: 2005
  text: 2005-05-15
  day: 15
PublicationDecade 2000
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2005
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Schoumans (bib31) 2000
Chen, Condron, Davis, Sherlock (bib5) 2003; 177
Spier, Cowling (bib33) 1991; 12
Margesin, Schinner (bib18) 1994; 18
Skujins (bib32) 1976; 4
Cosgrove (bib8) 1980
Reid, Wilson (bib26) 1971; vol. IV
Ross, Spier, Kettles, Mackay (bib27) 1995; 27
Turner, Haygarth (bib36) 2003; 67
Turner, McKelvie, Haygarth (bib39) 2002; 34
Vuorinen (bib41) 1993; 25
Cosgrove (bib7) 1967; vol. 1
Abel, Nürnberger, Ahnert, Krauss, Glund (bib1) 2000; 122
Condron, Turner, Cade-Menun (bib6) 2005
Johnson, Leake, Lee, Campbell (bib14) 1998; 103
Paul, Clark (bib23) 1996
Rowland, Haygarth (bib28) 1997; 26
Sarathchandra, Perrott (bib29) 1981; 13
Olsen, Cole, Watanabe, Dean (bib22) 1954
Olander, Vitousek (bib21) 2000; 49
Turner, Baxter, Whitton (bib38) 2002; 120
Browman, Tabatabai (bib4) 1978; 42
Tabatabai (bib34) 1994
Antibus, Sinsabaugh, Linkins (bib2) 1992; 70
Juma, Tabatabai (bib15) 1978; 126
Quiquampoix, Mousain (bib24) 2005
Turner, Mahieu, Condron (bib40) 2003; 34
Myers, Leake (bib20) 1996; 132
Leake, Miles (bib17) 1996; 132
Bowman, Cole (bib3) 1978; 125
Ko, Hora (bib13) 1970; 110
Kiss, Dragan-Bulardo, Radulescu (bib16) 1975; 27
Saunders, Williams (bib30) 1955; 6
Turner, Bristow, Haygarth (bib37) 2001; 33
Harrison (bib11) 1983; 15
Raghothama (bib25) 1999; 50
Greaves, Wilson (bib10) 1970; 2
Hedley, Stewart, Chauhan (bib12) 1982; 46
Torriani-Gorini (bib35) 1994
Eivazi, Tabatabai (bib9) 1977; 9
Murphy, Riley (bib19) 1962; 27
Hedley (10.1016/j.scitotenv.2005.02.003_bib12) 1982; 46
Ko (10.1016/j.scitotenv.2005.02.003_bib13) 1970; 110
Condron (10.1016/j.scitotenv.2005.02.003_bib6) 2005
Antibus (10.1016/j.scitotenv.2005.02.003_bib2) 1992; 70
Quiquampoix (10.1016/j.scitotenv.2005.02.003_bib24) 2005
Olander (10.1016/j.scitotenv.2005.02.003_bib21) 2000; 49
Rowland (10.1016/j.scitotenv.2005.02.003_bib28) 1997; 26
Torriani-Gorini (10.1016/j.scitotenv.2005.02.003_bib35) 1994
Browman (10.1016/j.scitotenv.2005.02.003_bib4) 1978; 42
Spier (10.1016/j.scitotenv.2005.02.003_bib33) 1991; 12
Turner (10.1016/j.scitotenv.2005.02.003_bib38) 2002; 120
Sarathchandra (10.1016/j.scitotenv.2005.02.003_bib29) 1981; 13
Chen (10.1016/j.scitotenv.2005.02.003_bib5) 2003; 177
Turner (10.1016/j.scitotenv.2005.02.003_bib37) 2001; 33
Paul (10.1016/j.scitotenv.2005.02.003_bib23) 1996
Tabatabai (10.1016/j.scitotenv.2005.02.003_bib34) 1994
Cosgrove (10.1016/j.scitotenv.2005.02.003_bib8) 1980
Schoumans (10.1016/j.scitotenv.2005.02.003_bib31) 2000
Murphy (10.1016/j.scitotenv.2005.02.003_bib19) 1962; 27
Leake (10.1016/j.scitotenv.2005.02.003_bib17) 1996; 132
Abel (10.1016/j.scitotenv.2005.02.003_bib1) 2000; 122
Harrison (10.1016/j.scitotenv.2005.02.003_bib11) 1983; 15
Vuorinen (10.1016/j.scitotenv.2005.02.003_bib41) 1993; 25
Juma (10.1016/j.scitotenv.2005.02.003_bib15) 1978; 126
Turner (10.1016/j.scitotenv.2005.02.003_bib40) 2003; 34
Skujins (10.1016/j.scitotenv.2005.02.003_bib32) 1976; 4
Saunders (10.1016/j.scitotenv.2005.02.003_bib30) 1955; 6
Greaves (10.1016/j.scitotenv.2005.02.003_bib10) 1970; 2
Bowman (10.1016/j.scitotenv.2005.02.003_bib3) 1978; 125
Cosgrove (10.1016/j.scitotenv.2005.02.003_bib7) 1967; vol. 1
Kiss (10.1016/j.scitotenv.2005.02.003_bib16) 1975; 27
Reid (10.1016/j.scitotenv.2005.02.003_bib26) 1971; vol. IV
Eivazi (10.1016/j.scitotenv.2005.02.003_bib9) 1977; 9
Johnson (10.1016/j.scitotenv.2005.02.003_bib14) 1998; 103
Margesin (10.1016/j.scitotenv.2005.02.003_bib18) 1994; 18
Raghothama (10.1016/j.scitotenv.2005.02.003_bib25) 1999; 50
Turner (10.1016/j.scitotenv.2005.02.003_bib39) 2002; 34
Ross (10.1016/j.scitotenv.2005.02.003_bib27) 1995; 27
Turner (10.1016/j.scitotenv.2005.02.003_bib36) 2003; 67
Myers (10.1016/j.scitotenv.2005.02.003_bib20) 1996; 132
Olsen (10.1016/j.scitotenv.2005.02.003_bib22) 1954
References_xml – volume: 26
  start-page: 410
  year: 1997
  end-page: 415
  ident: bib28
  article-title: Determination of total dissolved phosphorus in soil solutions
  publication-title: J Environ Qual
– volume: 67
  start-page: 344
  year: 2003
  end-page: 350
  ident: bib36
  article-title: Changes in bicarbonate-extractable inorganic and organic phosphorus following soil drying
  publication-title: Soil Sci Soc Am J
– volume: 122
  start-page: 543
  year: 2000
  end-page: 552
  ident: bib1
  article-title: Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells
  publication-title: Plant Physiol
– volume: vol. 1
  start-page: 216
  year: 1967
  end-page: 228
  ident: bib7
  article-title: Metabolism of organic phosphates in soil
  publication-title: Soil Biochemistry
– volume: 2
  start-page: 257
  year: 1970
  end-page: 268
  ident: bib10
  article-title: The degradation of nucleic acids and montmorillonite-nucleic acid complexes by soil microorganisms
  publication-title: Soil Biol Biochem
– year: 1980
  ident: bib8
  article-title: Inositol phosphates: their chemistry, biochemistry and physiology
– volume: vol. IV
  start-page: 373
  year: 1971
  end-page: 415
  ident: bib26
  publication-title: The enzymes
– volume: 6
  start-page: 254
  year: 1955
  end-page: 267
  ident: bib30
  article-title: Observations on the determination of total organic phosphorus in soils
  publication-title: J Soil Sci
– volume: 33
  start-page: 913
  year: 2001
  end-page: 919
  ident: bib37
  article-title: Rapid estimation of microbial biomass in grassland soils by ultra-violet absorbance
  publication-title: Soil Biol Biochem
– volume: 132
  start-page: 435
  year: 1996
  end-page: 443
  ident: bib17
  article-title: Phosphodiesters as mycorrhizal P sources: I. Phosphodiesterase production and the utilization of DNA as a phosphorus source by the ericoid mycorrhizal fungus
  publication-title: New Phytol
– volume: 49
  start-page: 175
  year: 2000
  end-page: 190
  ident: bib21
  article-title: Regulation of soil phosphatase and chitinase activity by N and P availability
  publication-title: Biogeochemistry
– volume: 25
  start-page: 295
  year: 1993
  end-page: 296
  ident: bib41
  article-title: Requirement of
  publication-title: Soil Biol Biochem
– volume: 103
  start-page: 239
  year: 1998
  end-page: 250
  ident: bib14
  article-title: Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands
  publication-title: Environ Pollut
– volume: 34
  start-page: 27
  year: 2002
  end-page: 35
  ident: bib39
  article-title: Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis
  publication-title: Soil Biol Biochem
– start-page: 89
  year: 2005
  end-page: 112
  ident: bib24
  article-title: Enzymatic hydrolysis of organic phosphorus
  publication-title: Organic phosphorus in the environment
– start-page: 775
  year: 1994
  end-page: 833
  ident: bib34
  article-title: Soil enzymes
  publication-title: Methods of soil analysis. Part. 2: microbiological and biological properties
– start-page: 31
  year: 2000
  end-page: 34
  ident: bib31
  article-title: Determination of the degree of phosphate saturation in non-calcareous soils
  publication-title: Methods of phosphorus analysis in soils, sediments and waters
– volume: 126
  start-page: 101
  year: 1978
  end-page: 108
  ident: bib15
  article-title: Distribution of phosphomonoesterase in soils
  publication-title: Soil Sci
– volume: 70
  start-page: 794
  year: 1992
  end-page: 801
  ident: bib2
  article-title: Phosphatase-activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi
  publication-title: Can J Bot
– volume: 13
  start-page: 543
  year: 1981
  end-page: 545
  ident: bib29
  article-title: Determination of phosphatase and arylsulphatase activities in soils
  publication-title: Soil Biol Biochem
– year: 1996
  ident: bib23
  article-title: Soil microbiology and biochemistry
– volume: 110
  start-page: 355
  year: 1970
  end-page: 358
  ident: bib13
  article-title: Production of phospholipases by soil microorganisms
  publication-title: Soil Sci
– volume: 9
  start-page: 167
  year: 1977
  end-page: 172
  ident: bib9
  article-title: Phosphatases in soils
  publication-title: Soil Biol Biochem
– volume: 15
  start-page: 93
  year: 1983
  end-page: 99
  ident: bib11
  article-title: Relationship between intensity of phosphatase activity and physico-chemical properties in woodland soils
  publication-title: Soil Biol Biochem
– year: 1954
  ident: bib22
  article-title: Estimation of available phosphorus in soils by extraction with sodium bicarbonate
– volume: 4
  start-page: 383
  year: 1976
  end-page: 421
  ident: bib32
  article-title: Extracellular enzymes in soil
  publication-title: Crit Rev Microbiol
– volume: 120
  start-page: 313
  year: 2002
  end-page: 317
  ident: bib38
  article-title: Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition
  publication-title: Environ Pollut
– volume: 27
  start-page: 25
  year: 1975
  end-page: 87
  ident: bib16
  article-title: Biological significance of enzymes accumulated in soil
  publication-title: Adv Agron
– volume: 27
  start-page: 1431
  year: 1995
  end-page: 1443
  ident: bib27
  article-title: Soil microbial biomass, C and N mineralization and enzyme activities in a hill pasture: influence of season and slow-release P and S fertilizer
  publication-title: Soil Biol Biochem
– start-page: 1
  year: 1994
  end-page: 4
  ident: bib35
  article-title: The Pho regulon of
  publication-title: Phosphate in microorganisms: cellular and molecular biology
– volume: 125
  start-page: 49
  year: 1978
  end-page: 54
  ident: bib3
  article-title: Transformations of organic phosphorus substrates in soils as evaluated by NaHCO
  publication-title: Soil Sci
– volume: 42
  start-page: 284
  year: 1978
  end-page: 290
  ident: bib4
  article-title: Phosphodiesterase activity of soils
  publication-title: Soil Sci Soc Am J
– volume: 132
  start-page: 445
  year: 1996
  end-page: 451
  ident: bib20
  article-title: Phosphodiesters as mycorrhizal P sources. II:
  publication-title: New Phytol
– year: 2005
  ident: bib6
  article-title: Chemistry and dynamics of soil organic phosphorus
  publication-title: Phosphorus: agriculture and the environment
– volume: 12
  start-page: 189
  year: 1991
  end-page: 194
  ident: bib33
  article-title: Phosphatase activities of pasture plants and soils: relationship with plant productivity and soil P fertility indices
  publication-title: Biol Fertil Soils
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  ident: bib19
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal Chim Acta
– volume: 177
  start-page: 539
  year: 2003
  end-page: 557
  ident: bib5
  article-title: Seasonal dynamics of soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand
  publication-title: For Ecol Manag
– volume: 18
  start-page: 320
  year: 1994
  end-page: 326
  ident: bib18
  article-title: Phosphomonoesterase, phosphodiesterase, phosphotriesterase, and inorganic pyrophosphatase activities in forest soils in an alpine area: effect of pH on enzyme activity and extractability
  publication-title: Biol Fertil Soils
– volume: 34
  start-page: 1199
  year: 2003
  end-page: 1210
  ident: bib40
  article-title: The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution
  publication-title: Org Geochem
– volume: 50
  start-page: 665
  year: 1999
  end-page: 693
  ident: bib25
  article-title: Phosphate acquisition
  publication-title: Annu Rev Plant Physiol Mol Biol
– volume: 46
  start-page: 970
  year: 1982
  end-page: 976
  ident: bib12
  article-title: Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations
  publication-title: Soil Sci Soc Am J
– volume: 9
  start-page: 167
  year: 1977
  ident: 10.1016/j.scitotenv.2005.02.003_bib9
  article-title: Phosphatases in soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(77)90070-0
– volume: 50
  start-page: 665
  year: 1999
  ident: 10.1016/j.scitotenv.2005.02.003_bib25
  article-title: Phosphate acquisition
  publication-title: Annu Rev Plant Physiol Mol Biol
  doi: 10.1146/annurev.arplant.50.1.665
– volume: vol. 1
  start-page: 216
  year: 1967
  ident: 10.1016/j.scitotenv.2005.02.003_bib7
  article-title: Metabolism of organic phosphates in soil
– year: 1954
  ident: 10.1016/j.scitotenv.2005.02.003_bib22
– volume: 70
  start-page: 794
  year: 1992
  ident: 10.1016/j.scitotenv.2005.02.003_bib2
  article-title: Phosphatase-activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi
  publication-title: Can J Bot
  doi: 10.1139/b92-101
– volume: 125
  start-page: 49
  year: 1978
  ident: 10.1016/j.scitotenv.2005.02.003_bib3
  article-title: Transformations of organic phosphorus substrates in soils as evaluated by NaHCO3 extraction
  publication-title: Soil Sci
  doi: 10.1097/00010694-197801000-00008
– volume: 110
  start-page: 355
  year: 1970
  ident: 10.1016/j.scitotenv.2005.02.003_bib13
  article-title: Production of phospholipases by soil microorganisms
  publication-title: Soil Sci
  doi: 10.1097/00010694-197011000-00010
– volume: 177
  start-page: 539
  year: 2003
  ident: 10.1016/j.scitotenv.2005.02.003_bib5
  article-title: Seasonal dynamics of soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand
  publication-title: For Ecol Manag
  doi: 10.1016/S0378-1127(02)00450-4
– volume: 25
  start-page: 295
  year: 1993
  ident: 10.1016/j.scitotenv.2005.02.003_bib41
  article-title: Requirement of p-nitrophenol standard for each soil
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(93)90042-A
– volume: 49
  start-page: 175
  year: 2000
  ident: 10.1016/j.scitotenv.2005.02.003_bib21
  article-title: Regulation of soil phosphatase and chitinase activity by N and P availability
  publication-title: Biogeochemistry
  doi: 10.1023/A:1006316117817
– volume: 132
  start-page: 435
  year: 1996
  ident: 10.1016/j.scitotenv.2005.02.003_bib17
  article-title: Phosphodiesters as mycorrhizal P sources: I. Phosphodiesterase production and the utilization of DNA as a phosphorus source by the ericoid mycorrhizal fungus Hymenoscyphus ericae
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1996.tb01863.x
– volume: 33
  start-page: 913
  year: 2001
  ident: 10.1016/j.scitotenv.2005.02.003_bib37
  article-title: Rapid estimation of microbial biomass in grassland soils by ultra-violet absorbance
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(00)00238-8
– start-page: 1
  year: 1994
  ident: 10.1016/j.scitotenv.2005.02.003_bib35
  article-title: The Pho regulon of Escherichia coli
– volume: 46
  start-page: 970
  year: 1982
  ident: 10.1016/j.scitotenv.2005.02.003_bib12
  article-title: Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1982.03615995004600050017x
– volume: 120
  start-page: 313
  year: 2002
  ident: 10.1016/j.scitotenv.2005.02.003_bib38
  article-title: Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition
  publication-title: Environ Pollut
  doi: 10.1016/S0269-7491(02)00147-1
– start-page: 31
  year: 2000
  ident: 10.1016/j.scitotenv.2005.02.003_bib31
  article-title: Determination of the degree of phosphate saturation in non-calcareous soils
– volume: vol. IV
  start-page: 373
  year: 1971
  ident: 10.1016/j.scitotenv.2005.02.003_bib26
  article-title: E. Coli alkaline phosphatase
– volume: 27
  start-page: 25
  year: 1975
  ident: 10.1016/j.scitotenv.2005.02.003_bib16
  article-title: Biological significance of enzymes accumulated in soil
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(08)70007-5
– volume: 126
  start-page: 101
  year: 1978
  ident: 10.1016/j.scitotenv.2005.02.003_bib15
  article-title: Distribution of phosphomonoesterase in soils
  publication-title: Soil Sci
  doi: 10.1097/00010694-197808000-00006
– volume: 27
  start-page: 1431
  year: 1995
  ident: 10.1016/j.scitotenv.2005.02.003_bib27
  article-title: Soil microbial biomass, C and N mineralization and enzyme activities in a hill pasture: influence of season and slow-release P and S fertilizer
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(95)00069-Q
– volume: 42
  start-page: 284
  year: 1978
  ident: 10.1016/j.scitotenv.2005.02.003_bib4
  article-title: Phosphodiesterase activity of soils
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1978.03615995004200020016x
– volume: 4
  start-page: 383
  year: 1976
  ident: 10.1016/j.scitotenv.2005.02.003_bib32
  article-title: Extracellular enzymes in soil
  publication-title: Crit Rev Microbiol
  doi: 10.3109/10408417609102304
– year: 2005
  ident: 10.1016/j.scitotenv.2005.02.003_bib6
  article-title: Chemistry and dynamics of soil organic phosphorus
– volume: 2
  start-page: 257
  year: 1970
  ident: 10.1016/j.scitotenv.2005.02.003_bib10
  article-title: The degradation of nucleic acids and montmorillonite-nucleic acid complexes by soil microorganisms
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(70)90032-5
– volume: 6
  start-page: 254
  year: 1955
  ident: 10.1016/j.scitotenv.2005.02.003_bib30
  article-title: Observations on the determination of total organic phosphorus in soils
  publication-title: J Soil Sci
  doi: 10.1111/j.1365-2389.1955.tb00849.x
– volume: 132
  start-page: 445
  year: 1996
  ident: 10.1016/j.scitotenv.2005.02.003_bib20
  article-title: Phosphodiesters as mycorrhizal P sources. II: Ericoid mycorrhiza and the utilization of nuclei as a phosphorus and nitrogen source by Vaccinium macrocarpon
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1996.tb01864.x
– year: 1980
  ident: 10.1016/j.scitotenv.2005.02.003_bib8
– volume: 15
  start-page: 93
  year: 1983
  ident: 10.1016/j.scitotenv.2005.02.003_bib11
  article-title: Relationship between intensity of phosphatase activity and physico-chemical properties in woodland soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(83)90124-4
– volume: 27
  start-page: 31
  year: 1962
  ident: 10.1016/j.scitotenv.2005.02.003_bib19
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal Chim Acta
  doi: 10.1016/S0003-2670(00)88444-5
– volume: 13
  start-page: 543
  year: 1981
  ident: 10.1016/j.scitotenv.2005.02.003_bib29
  article-title: Determination of phosphatase and arylsulphatase activities in soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(81)90050-X
– year: 1996
  ident: 10.1016/j.scitotenv.2005.02.003_bib23
– volume: 26
  start-page: 410
  year: 1997
  ident: 10.1016/j.scitotenv.2005.02.003_bib28
  article-title: Determination of total dissolved phosphorus in soil solutions
  publication-title: J Environ Qual
  doi: 10.2134/jeq1997.00472425002600020011x
– volume: 18
  start-page: 320
  year: 1994
  ident: 10.1016/j.scitotenv.2005.02.003_bib18
  article-title: Phosphomonoesterase, phosphodiesterase, phosphotriesterase, and inorganic pyrophosphatase activities in forest soils in an alpine area: effect of pH on enzyme activity and extractability
  publication-title: Biol Fertil Soils
  doi: 10.1007/BF00570635
– start-page: 775
  year: 1994
  ident: 10.1016/j.scitotenv.2005.02.003_bib34
  article-title: Soil enzymes
– volume: 103
  start-page: 239
  year: 1998
  ident: 10.1016/j.scitotenv.2005.02.003_bib14
  article-title: Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands
  publication-title: Environ Pollut
  doi: 10.1016/S0269-7491(98)00115-8
– volume: 67
  start-page: 344
  year: 2003
  ident: 10.1016/j.scitotenv.2005.02.003_bib36
  article-title: Changes in bicarbonate-extractable inorganic and organic phosphorus following soil drying
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2003.3440
– volume: 12
  start-page: 189
  year: 1991
  ident: 10.1016/j.scitotenv.2005.02.003_bib33
  article-title: Phosphatase activities of pasture plants and soils: relationship with plant productivity and soil P fertility indices
  publication-title: Biol Fertil Soils
  doi: 10.1007/BF00337200
– start-page: 89
  year: 2005
  ident: 10.1016/j.scitotenv.2005.02.003_bib24
  article-title: Enzymatic hydrolysis of organic phosphorus
– volume: 34
  start-page: 27
  year: 2002
  ident: 10.1016/j.scitotenv.2005.02.003_bib39
  article-title: Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(01)00144-4
– volume: 34
  start-page: 1199
  year: 2003
  ident: 10.1016/j.scitotenv.2005.02.003_bib40
  article-title: The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution 31P NMR spectroscopy
  publication-title: Org Geochem
  doi: 10.1016/S0146-6380(03)00061-5
– volume: 122
  start-page: 543
  year: 2000
  ident: 10.1016/j.scitotenv.2005.02.003_bib1
  article-title: Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells
  publication-title: Plant Physiol
  doi: 10.1104/pp.122.2.543
SSID ssj0000781
Score 2.2686317
Snippet Phosphatase enzymes regulate organic phosphorus (P) turnover in soil, but a clear understanding remains elusive. To investigate this, phosphomonoesterase and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27
SubjectTerms Agriculture
England
Environmental Monitoring
Organic phosphorus
Organophosphorus Compounds - analysis
Pasture
Phosphatase
Phosphodiesterase
Phosphomonoesterase
Phosphoric Diester Hydrolases - chemistry
Phosphoric Monoester Hydrolases - chemistry
Soil
Soil - analysis
Wales
Title Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity
URI https://dx.doi.org/10.1016/j.scitotenv.2005.02.003
https://www.ncbi.nlm.nih.gov/pubmed/15907508
https://www.proquest.com/docview/14752387
https://www.proquest.com/docview/17049005
https://www.proquest.com/docview/67847820
Volume 344
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CSqFQSrNt2u0j1aFXN4oty6vcQkjYdGkIpaG5GUmWyJbFNmtvIZfe-687Y9nZ5rDJISeD0MgPaTSfPDPfAHyWmbfkzYtUIVQkrDIRwpAiimON1sEfJLor9_btXE4vxder9GoLjodcGAqr7Pf-sKd3u3Xfst9_zf16PqccXzFRUmU8Df4dymAXGa3yL3_WYR5EZhO8zKjY2PtOjBeO21aITX_3P1eIvDPZZKE2IdDOEp2-hBc9hGRH4Sl3YMuVI3gaikrejGD3ZJ27ht165W1G8Dz8omMh8-gV_L24rpr6WrdoyBjlN1AZCTYvGdFVEdeyY7VuyMPAmmq-aA7ZBb0FbgkLtgwl7HFSWeXZgmh6HQsVoiyru3Gr5aphKF1SkCgzN0MzhS1S2vN_N30Nl6cnP46nUV-ZIbJCZS2eNwvvPLfOC6PjmBvUY6ml8wbVOdHOSlMYroosLhAPCZtac5AWCKUQr6GoSHZhu6xK9xZYQqU_Em4mTjuhrVMOAZp3srCee2n5GOQwG7ntacupesYiH-LTfuW300hFNdOcx8R4OgZ-K1gH5o6HRQ6H6c7vLMIc7cvDwp-GBZKjipLfRZeuWjV4usrwuD_J7umRkQOWp5t7IKYQRG04hjdh7a3fKVUE-ybvHvPw7-FZx0lLtLTpB9hulyv3EdFWa_Y6ddqDJ0dns-k5XWfff87-AebhMl4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQSQrBQWF71AY6hbuIkm0ocELTa0od6aKXegu3YdNEqiTZZ0F6483v4g8zETpcelh5Qr5GdxJnJzGfPzDcAb5LUaormBVkhskDoTAUIQ4ogDCV6B7sdya7d29FxMj4Tn8_j8zX43dfCUFqlt_3OpnfW2l_Z8l9zq55MqMZXjLIkS3ns4js-s_LALH7gvq15v_8Jhfw2DPd2Tz-OA99aINAiS1vcMBXWWK6NFUqGIVeoiIlMjFWoj5E0OlGF4lmRhgU6dKFjrbbjArEAAg6cKiK87y24LdBcUNuEdz-XeSXEnuPC2mhJ8PWuJJXhQtoKwfB3f5pDbKHRKpe4CvJ2rm_vITzwmJV9cJ_lEayZcgB3XBfLxQA2dpfFcjjMW4tmAPfdmSBzpU6P4dfJRdXUF7JFz8mooIL6VrBJyYgfi8idDatlQyEN1lSTabPDTmgVaIOmbGa--kZjrLJsSrzAhrmWVJrV3X2r2bxhOLukrFSmFv1lypOkOuu_HvoEzm5EXhuwXlaleQYsol4jEVcjI42Q2mQGEaE1SaEtt4nmQ0h6aeTa86RTu45p3ifEfcsvxUhdPOOch0SxOgR-ObF2VCHXT9npxZ1f0focHdr1kzd7BcnRJlCgR5ammje4nUtjhGLpP0akFPHl8eoRCGIEcSkO4anTveWa4oxw5uj5_7z8Jtwdnx4d5of7xwcv4F5HiEucuPFLWG9nc_MKoV6rXne_FoMvN_0v_wEUrW2b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphatase+activity+in+temperate+pasture+soils%3A+Potential+regulation+of+labile+organic+phosphorus+turnover+by+phosphodiesterase+activity&rft.jtitle=The+Science+of+the+total+environment&rft.au=Turner%2C+Benjamin+L.&rft.au=Haygarth%2C+Philip+M.&rft.date=2005-05-15&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=344&rft.issue=1&rft.spage=27&rft.epage=36&rft_id=info:doi/10.1016%2Fj.scitotenv.2005.02.003&rft.externalDocID=S0048969705001099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon