What Do Randomized Studies of Housing Mobility Demonstrate? Causal Inference in the Face of Interference
During the past 20 years, social scientists using observational studies have generated a large and inconclusive literature on neighborhood effects. Recent workers have argued that estimates of neighborhood effects based on randomized studies of housing mobility, such as the "Moving to Opportuni...
Saved in:
Published in | Journal of the American Statistical Association Vol. 101; no. 476; pp. 1398 - 1407 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
Taylor & Francis
01.12.2006
American Statistical Association Assoc Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | During the past 20 years, social scientists using observational studies have generated a large and inconclusive literature on neighborhood effects. Recent workers have argued that estimates of neighborhood effects based on randomized studies of housing mobility, such as the "Moving to Opportunity" (MTO) demonstration, are more credible. These estimates are based on the implicit assumption of no interference between units; that is, a subject's value on the response depends only on the treatment to which that subject is assigned, not on the treatment assignments of other subjects. For the MTO studies, this assumption is not reasonable. Although little work has been done on the definition and estimation of treatment effects when interference is present, interference is common in studies of neighborhood effects and in many other social settings (e.g., schools and networks), and when data from such studies are analyzed under the "no-interference assumption," very misleading inferences can result. Furthermore, the consequences of interference (e.g., spillovers) should often be of great substantive interest, even though little attention has been paid to this. Using the MTO demonstration as a concrete context, this article develops a frame-work for causal inference when interference is present and defines a number of causal estimands of interest. The properties of the usual estimators of treatment effects, which are unbiased and/or consistent in randomized studies without interference, are also characterized. When interference is present, the difference between a treatment group mean and a control group mean (unadjusted or adjusted for covariates) estimates not an average treatment effect, but rather the difference between two effects defined on two distinct subpopulations. This result is of great importance, for a researcher who fails to recognize this could easily infer that a treatment is beneficial when in fact it is universally harmful. |
---|---|
AbstractList | During the past 20 years, social scientists using observational studies have generated a large and inconclusive literature on neighborhood effects. Recent workers have argued that estimates of neighborhood effects based on randomized studies of housing mobility, such as the "Moving to Opportunity" (MTO) demonstration, are more credible. These estimates are based on the implicit assumption of no interference between units; that is, a subject's value on the response depends only on the treatment to which that subject is assigned, not on the treatment assignments of other subjects. For the MTO studies, this assumption is not reasonable. Although little work has been done on the definition and estimation of treatment effects when interference is present, interference is common in studies of neighborhood effects and in many other social settings (e.g., schools and networks), and when data from such studies are analyzed under the "no-interference assumption," very misleading inferences can result. Furthermore, the consequences of interference (e.g., spillovers) should often be of great substantive interest, even though little attention has been paid to this. Using the MTO demonstration as a concrete context, this article develops a frame-work for causal inference when interference is present and defines a number of causal estimands of interest. The properties of the usual estimators of treatment effects, which are unbiased and/or consistent in randomized studies without interference, are also characterized. When interference is present, the difference between a treatment group mean and a control group mean (unadjusted or adjusted for covariates) estimates not an average treatment effect, but rather the difference between two effects defined on two distinct subpopulations. This result is of great importance, for a researcher who fails to recognize this could easily infer that a treatment is beneficial when in fact it is universally harmful. [PUBLICATION ABSTRACT] During the past 20 years, social scientists using observational studies have generated a large and inconclusive literature on neighborhood effects. Recent workers have argued that estimates of neighborhood effects based on randomized studies of housing mobility, such as the "Moving to Opportunity" (MTO) demonstration, are more credible. These estimates are based on the implicit assumption of no interference between units; that is, a subject's value on the response depends only on the treatment to which that subject is assigned, not on the treatment assignments of other subjects. For the MTO studies, this assumption is not reasonable. Although little work has been done on the definition and estimation of treatment effects when interference is present, interference is common in studies of neighborhood effects and in many other social settings (e.g., schools and networks), and when data from such studies are analyzed under the "no-interference assumption," very misleading inferences can result. Furthermore, the consequences of interference (e.g., spillovers) should often be of great substantive interest, even though little attention has been paid to this. Using the MTO demonstration as a concrete context, this article develops a frame-work for causal inference when interference is present and defines a number of causal estimands of interest. The properties of the usual estimators of treatment effects, which are unbiased and/or consistent in randomized studies without interference, are also characterized. When interference is present, the difference between a treatment group mean and a control group mean (unadjusted or adjusted for covariates) estimates not an average treatment effect, but rather the difference between two effects defined on two distinct subpopulations. This result is of great importance, for a researcher who fails to recognize this could easily infer that a treatment is beneficial when in fact it is universally harmful. During the past 20 years, social scientists using observational studies have generated a large and inconclusive literature on neighborhood effects. Recent workers have argued that estimates of neighborhood effects based on randomized studies of housing mobility, such as the "Moving to Opportunity" (MTO) demonstration, are more credible. These estimates are based on the implicit assumption of no interference between units; that is, a subject's value on the response depends only on the treatment to which that subject is assigned, not on the treatment assignments of other subjects. For the MTO studies, this assumption is not reasonable. Although little work has been done on the definition and estimation of treatment effects when interference is present, interference is common in studies of neighborhood effects and in many other social settings (e.g., schools and networks), and when data from such studies are analyzed under the "no-interference assumption," very misleading inferences can result. Furthermore, the consequences of interference (e.g., spillovers) should often be of great substantive interest, even though little attention has been paid to this. Using the MTO demonstration as a concrete context, this article develops a framework for causal inference when interference is present and defines a number of causal estimands of interest. The properties of the usual estimators of treatment effects, which are unbiased and/or consistent in randomized studies without interference, are also characterized. When interference is present, the difference between a treatment group mean and a control group mean (unadjusted or adjusted for covariates) estimates not an average treatment effect, but rather the difference between two effects defined on two distinct subpopulations. This result is of great importance, for a researcher who fails to recognize this could easily infer that a treatment is beneficial when in fact it is universally harmful. |
Author | Sobel, Michael E |
Author_xml | – sequence: 1 givenname: Michael E surname: Sobel fullname: Sobel, Michael E |
BackLink | http://www.econis.eu/PPNSET?PPN=523350570$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18368082$$DView record in Pascal Francis |
BookMark | eNp90VtrFDEUB_AgLbitfgFBHAR9G5vL5DKIiLRqCxXBC_oWMskZzTKT1CSLrJ_ebKctUqF5yUN-_-TknAO0F2IAhB4R_IKQXh1hIijpOBb4cgkm7qEV4Uy2VHbf99BqB9oq-vvoIOf1DkmlVujlt5-mNCex-WSCi7P_A675XDbOQ27i2JzGTfbhR_MhDn7yZducwBxDLskUeP0A7Y9myvDwaj9EX9-9_XJ82p5_fH92_Oa8tV0vS8sVGzuJh9E5OwohJAycEAIYU0EUhQEocMadgR4b6niHiYSRMYcFsf2g2CF6vtx7keKvDeSiZ58tTJMJUOvTTHAuO8YqfHoLruMmhVqbrm2QPcaX6NkVMtmaaUwmWJ_1RfKzSVtNFBMKK1rdk8WBjeEfwCljHHOJq1CLsCnmnGDU1hdTfAy1P37SBOvdcPT_w6lReit68_5docdLaJ1LTDcJKgXrpdjV82o592GMaTa_Y5qcLmY7xXT9TXbH_X8B8YKrSg |
CODEN | JSTNAL |
CitedBy_id | crossref_primary_10_3390_f16010030 crossref_primary_10_1093_aje_kwab167 crossref_primary_10_2139_ssrn_2866505 crossref_primary_10_1002_sta4_214 crossref_primary_10_1080_01621459_2016_1194845 crossref_primary_10_1002_sta4_219 crossref_primary_10_1016_j_spasta_2022_100711 crossref_primary_10_1214_19_STS749 crossref_primary_10_1086_522804 crossref_primary_10_1177_00469580231214759 crossref_primary_10_1162_rest_a_00818 crossref_primary_10_1016_j_eng_2019_08_016 crossref_primary_10_1016_j_ssresearch_2022_102818 crossref_primary_10_1111_j_1573_7861_2011_01316_x crossref_primary_10_2139_ssrn_4315389 crossref_primary_10_1073_pnas_0710189104 crossref_primary_10_1002_sim_10102 crossref_primary_10_1097_EDE_0b013e31822708d5 crossref_primary_10_3102_1076998609359785 crossref_primary_10_1097_EDE_0b013e31824d5fe7 crossref_primary_10_1093_biostatistics_kxr052 crossref_primary_10_1093_jeg_lbw040 crossref_primary_10_1111_biom_13745 crossref_primary_10_1162_rest_a_00716 crossref_primary_10_1016_j_chieco_2024_102254 crossref_primary_10_1146_annurev_statistics_031219_041205 crossref_primary_10_1287_mnsc_2020_3844 crossref_primary_10_1016_j_jeconom_2022_10_004 crossref_primary_10_1093_ije_dyx201 crossref_primary_10_1007_s41237_021_00140_0 crossref_primary_10_1093_biomet_asac009 crossref_primary_10_3389_fdata_2022_888592 crossref_primary_10_1086_660009 crossref_primary_10_1111_j_1540_5907_2012_00592_x crossref_primary_10_1111_brv_12697 crossref_primary_10_1214_08_STS274 crossref_primary_10_1016_j_spl_2015_06_011 crossref_primary_10_1016_j_econlet_2025_112242 crossref_primary_10_1214_19_STS728 crossref_primary_10_1016_j_annepidem_2021_12_010 crossref_primary_10_1007_s00181_016_1186_1 crossref_primary_10_1007_s40471_016_0086_4 crossref_primary_10_1177_1536867X1701700403 crossref_primary_10_1002_sim_6573 crossref_primary_10_1080_07350015_2019_1647843 crossref_primary_10_1080_09645292_2021_2019196 crossref_primary_10_1080_01621459_2020_1768100 crossref_primary_10_1080_02673037_2015_1009004 crossref_primary_10_1515_jci_2012_0002 crossref_primary_10_1093_pan_mpw015 crossref_primary_10_1214_24_AOAS1904 crossref_primary_10_1093_aje_kwv453 crossref_primary_10_2139_ssrn_2115619 crossref_primary_10_1016_j_ebiom_2024_105456 crossref_primary_10_1111_joes_12692 crossref_primary_10_1111_biom_13606 crossref_primary_10_1097_MLR_0000000000001822 crossref_primary_10_1111_biom_13049 crossref_primary_10_1093_aje_kwac008 crossref_primary_10_1111_rssc_12266 crossref_primary_10_1016_j_jadohealth_2016_10_022 crossref_primary_10_3390_ijerph120809391 crossref_primary_10_1016_j_spl_2011_02_019 crossref_primary_10_1214_21_AOAS1498 crossref_primary_10_1093_biostatistics_kxy050 crossref_primary_10_1007_s11121_010_0175_4 crossref_primary_10_1080_07350015_2019_1668795 crossref_primary_10_1093_jrsssa_qnae018 crossref_primary_10_1080_01621459_2021_1983437 crossref_primary_10_1097_EDE_0000000000001334 crossref_primary_10_1016_j_socnet_2015_03_006 crossref_primary_10_1371_journal_pone_0278937 crossref_primary_10_1007_s40471_023_00328_w crossref_primary_10_1111_insr_12452 crossref_primary_10_1093_ije_dyz010 crossref_primary_10_1017_S0003055422001022 crossref_primary_10_1177_0049124119852384 crossref_primary_10_1016_j_econmod_2022_105873 crossref_primary_10_1002_sim_6128 crossref_primary_10_1080_00273171_2011_576624 crossref_primary_10_1080_03004430_2023_2301420 crossref_primary_10_1093_aje_kwr428 crossref_primary_10_2139_ssrn_3722705 crossref_primary_10_3102_0034654312449489 crossref_primary_10_1017_S0266267121000353 crossref_primary_10_2139_ssrn_1963351 crossref_primary_10_1111_1745_9125_12149 crossref_primary_10_2139_ssrn_4169349 crossref_primary_10_1093_biomet_asad019 crossref_primary_10_1093_cesifo_ify004 crossref_primary_10_1017_xps_2014_9 crossref_primary_10_1086_588740 crossref_primary_10_1086_588741 crossref_primary_10_1177_0962280210386779 crossref_primary_10_1016_j_spl_2012_04_002 crossref_primary_10_1093_jrsssa_qnae032 crossref_primary_10_1515_jci_2022_0014 crossref_primary_10_1080_01621459_2013_779832 crossref_primary_10_1093_jrsssa_qnad060 crossref_primary_10_4236_ojs_2013_34A002 crossref_primary_10_1111_j_1745_9125_2010_00198_x crossref_primary_10_1093_aje_kwu274 crossref_primary_10_1177_0049124110366236 crossref_primary_10_1111_biom_13782 crossref_primary_10_1002_pst_2026 crossref_primary_10_1007_s00285_022_01801_8 crossref_primary_10_1002_sim_9525 crossref_primary_10_1515_em_2015_0016 crossref_primary_10_1086_589843 crossref_primary_10_1093_gerona_glab382 crossref_primary_10_1002_jae_3120 crossref_primary_10_3102_10769986241254351 crossref_primary_10_1093_aje_kwv254 crossref_primary_10_1097_EDE_0000000000000832 crossref_primary_10_1007_s11199_013_0261_8 crossref_primary_10_1162_rest_a_00933 crossref_primary_10_1080_01621459_2011_646917 crossref_primary_10_1177_0049124112452391 crossref_primary_10_1093_biomet_asw047 crossref_primary_10_1080_19345747_2015_1086912 crossref_primary_10_2139_ssrn_3802304 crossref_primary_10_5465_annals_2020_0369 crossref_primary_10_1515_jci_2013_0002 crossref_primary_10_2139_ssrn_3064909 crossref_primary_10_4045_tidsskr_22_0059 crossref_primary_10_1016_j_socnet_2019_11_003 crossref_primary_10_1007_s11336_016_9507_z crossref_primary_10_1111_rssa_12528 crossref_primary_10_1111_rssa_12594 crossref_primary_10_1093_aje_kwaa239 crossref_primary_10_1007_s11292_018_9344_4 crossref_primary_10_1146_annurev_soc_012809_102702 crossref_primary_10_1214_14_STS501 crossref_primary_10_1515_ijb_2014_0055 crossref_primary_10_1038_s41591_024_03134_z crossref_primary_10_1093_restud_rdae041 crossref_primary_10_1111_biom_13483 crossref_primary_10_1002_sim_9427 crossref_primary_10_1177_0962280210391076 crossref_primary_10_1002_psp_2609 crossref_primary_10_1515_ijb_2019_0126 crossref_primary_10_1515_jci_2023_0005 crossref_primary_10_2139_ssrn_2515811 crossref_primary_10_1080_01621459_2021_2021920 crossref_primary_10_1177_00491241221147503 crossref_primary_10_1177_0193841X231204588 crossref_primary_10_1177_1536867X1401400301 crossref_primary_10_1093_aje_kwz198 crossref_primary_10_1080_01621459_2018_1512863 crossref_primary_10_1016_j_jeconom_2023_105565 crossref_primary_10_1007_s10940_010_9117_3 crossref_primary_10_1002_sim_9437 crossref_primary_10_1177_0160017619869781 crossref_primary_10_1111_rssc_12522 crossref_primary_10_1016_j_socscimed_2015_05_014 crossref_primary_10_1111_j_1475_6773_2010_01232_x crossref_primary_10_1111_ajps_12417 crossref_primary_10_1177_1523422314559807 crossref_primary_10_1093_biostatistics_kxad015 crossref_primary_10_1086_724865 crossref_primary_10_1007_s40471_015_0035_7 crossref_primary_10_1002_sim_10278 crossref_primary_10_4236_ojs_2014_49067 crossref_primary_10_1016_j_jeconom_2021_10_014 crossref_primary_10_1097_EDE_0b013e318245c4ac crossref_primary_10_1111_biom_13459 crossref_primary_10_1098_rspb_2021_1537 crossref_primary_10_1016_j_conctc_2021_100864 crossref_primary_10_1017_S0140525X22000681 crossref_primary_10_1515_jci_2023_0029 crossref_primary_10_1016_j_healthplace_2020_102331 crossref_primary_10_1080_07350015_2019_1592755 crossref_primary_10_1214_22_AOAS1610 crossref_primary_10_1515_jci_2022_0051 crossref_primary_10_1080_10967494_2022_2124336 crossref_primary_10_1093_jrsssb_qkad136 crossref_primary_10_1214_22_AOAS1713 crossref_primary_10_1016_j_jinteco_2014_11_007 crossref_primary_10_1214_20_AOS1973 crossref_primary_10_1146_annurev_soc_030420_015345 crossref_primary_10_1146_annurev_criminol_011419_041541 crossref_primary_10_2139_ssrn_4751335 crossref_primary_10_1007_s10260_014_0257_8 crossref_primary_10_1257_jel_20191597 crossref_primary_10_1093_jrsssc_qlae008 crossref_primary_10_1080_01621459_2012_655954 crossref_primary_10_1002_sim_7392 crossref_primary_10_1097_EDE_0b013e3181bd5638 crossref_primary_10_1111_rssa_12951 crossref_primary_10_1214_24_BA1493 crossref_primary_10_2139_ssrn_3666101 crossref_primary_10_1086_671346 crossref_primary_10_1038_srep17581 crossref_primary_10_1126_science_1224648 crossref_primary_10_1080_01621459_2020_1775612 crossref_primary_10_1214_16_AOAS932 crossref_primary_10_3390_pathogens12020326 crossref_primary_10_1016_j_ehb_2007_03_006 crossref_primary_10_1080_01621459_2017_1323641 crossref_primary_10_1007_s10488_016_0738_1 crossref_primary_10_1145_3673761 crossref_primary_10_1017_pan_2020_28 crossref_primary_10_1177_0081175018785216 crossref_primary_10_1007_s10488_020_01034_1 crossref_primary_10_1186_1742_5573_9_3 crossref_primary_10_2139_ssrn_2374371 crossref_primary_10_1093_pan_mps038 crossref_primary_10_1214_19_AOAS1314 crossref_primary_10_1177_1536867X1801700403 crossref_primary_10_1214_19_AOAS1316 crossref_primary_10_1097_EDE_0000000000001742 crossref_primary_10_2139_ssrn_2757313 crossref_primary_10_1097_EDE_0000000000001502 crossref_primary_10_1002_sim_3139 crossref_primary_10_1080_10511482_2022_2133548 crossref_primary_10_1007_s41109_024_00653_z crossref_primary_10_1097_EDE_0000000000001741 crossref_primary_10_1214_15_AOAS902 crossref_primary_10_1002_bimj_201800345 crossref_primary_10_1002_aaai_12070 crossref_primary_10_1093_ije_dyw279 crossref_primary_10_1097_EDE_0b013e3182109296 crossref_primary_10_1111_biom_13034 crossref_primary_10_1111_biom_12184 crossref_primary_10_1007_s40471_014_0030_4 crossref_primary_10_1093_pan_mps025 crossref_primary_10_1146_annurev_criminol_011518_024838 crossref_primary_10_1177_09622802241242313 crossref_primary_10_1080_01621459_2015_1125788 crossref_primary_10_1002_sim_3370 crossref_primary_10_1073_pnas_2208975119 crossref_primary_10_1093_jrs_feab109 crossref_primary_10_1515_jci_2015_0021 crossref_primary_10_1093_biomet_asy072 crossref_primary_10_1080_01621459_2013_844698 crossref_primary_10_1080_01621459_2023_2284422 crossref_primary_10_1093_aje_kwn117 crossref_primary_10_1177_0962280219849613 crossref_primary_10_1097_EDE_0b013e31825fb7a0 crossref_primary_10_1002_cjs_11702 crossref_primary_10_1080_01621459_2020_1811098 crossref_primary_10_1214_14_AOAS762 crossref_primary_10_1257_jel_20211563 crossref_primary_10_1080_01621459_2024_2340789 crossref_primary_10_3389_fpsyg_2014_00304 crossref_primary_10_3102_1076998607307355 crossref_primary_10_1016_j_socnet_2018_01_010 crossref_primary_10_1080_01621459_2023_2284413 crossref_primary_10_1002_sta4_549 crossref_primary_10_1093_ije_dyn356 crossref_primary_10_1111_biom_13125 crossref_primary_10_1214_14_STS479 crossref_primary_10_1214_16_AOAS1005 crossref_primary_10_1111_biom_12286 crossref_primary_10_1515_jci_2016_0003 crossref_primary_10_1016_j_reseneeco_2024_101463 crossref_primary_10_1371_journal_pone_0059984 crossref_primary_10_1080_19345747_2022_2142178 crossref_primary_10_1214_09_STS313 crossref_primary_10_1177_0962280218774936 crossref_primary_10_1111_rssb_12478 |
ContentType | Journal Article |
Copyright | American Statistical Association 2006 Copyright 2006 American Statistical Association 2007 INIST-CNRS Copyright American Statistical Association Dec 2006 |
Copyright_xml | – notice: American Statistical Association 2006 – notice: Copyright 2006 American Statistical Association – notice: 2007 INIST-CNRS – notice: Copyright American Statistical Association Dec 2006 |
DBID | AAYXX CITATION OQ6 IQODW 8BJ FQK JBE K9. |
DOI | 10.1198/016214506000000636 |
DatabaseName | CrossRef ECONIS Pascal-Francis International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-274X |
EndPage | 1407 |
ExternalDocumentID | 1201088831 18368082 523350570 10_1198_016214506000000636 27639760 10710100 |
Genre | Article Feature |
GroupedDBID | -DZ -~X ..I .7F .GJ .QJ 0BK 0R~ 29L 2AX 30N 3R3 4.4 5GY 5RE 692 7WY 85S 8FL AABCJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABTAI ABXSQ ABXUL ABXYU ABYAD ABYWD ACAGQ ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACTWD ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADULT AEISY AELPN AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFSUE AFVYC AFXHP AGDLA AGMYJ AGROQ AHDZW AHMOU AI. AIJEM AKBVH AKOOK ALCKM ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMEWO AQRUH AVBZW AWYRJ BLEHA CCCUG CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FEDTE FJW FVMVE GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HQ6 HVGLF HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K60 K6~ KYCEM LU7 M4Z MS~ MVM MW2 N95 NA5 NY~ O9- OFU OK1 P2P QCRFL RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T SA0 SJN SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 VH1 WH7 WZA YQT YYM YYP ZGOLN ~S~ AAGDL AAHIA AAWIL ABAWQ ACHJO ADYSH AFRVT AGLNM AIHAF AIYEW AMPGV AAYXX CITATION .-4 07G 1OL 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAAVZ AAFWJ AAIKQ AAKBW ABEFU ABJCF ABRLO ABUWG ACGEE ADBBV AEUMN AFKRA AFQQW AGCQS AGLEN AMATQ AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU DWIFK DWQXO E.L FRNLG FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK IVXBP K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S NHB NUSFT OQ6 P-O PADUT PHGZT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X S0X TAQ TFMCV UB9 UKHRP UQL VOH WHG YXB ZCG ZGI ZUP ZXP IQODW 8BJ FQK JBE K9. TASJS |
ID | FETCH-LOGICAL-c497t-583f470bfddcf6667eb5111e0026182ebe2e535dae90a2d54017ef33d061c9b83 |
ISSN | 0162-1459 |
IngestDate | Fri Jul 11 03:27:02 EDT 2025 Wed Aug 13 10:51:25 EDT 2025 Wed Apr 02 07:23:36 EDT 2025 Sat Mar 08 17:16:12 EST 2025 Thu Apr 24 22:59:12 EDT 2025 Tue Jul 01 03:15:08 EDT 2025 Thu May 29 08:44:08 EDT 2025 Wed Dec 25 09:04:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 476 |
Keywords | Causal inference Treatment efficiency Interference Average Neighborhood effects Statistical estimation Covariate Mean estimation Stable unit treatment value assumption Statistical method Unbiased estimation Treatment effect Application |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c497t-583f470bfddcf6667eb5111e0026182ebe2e535dae90a2d54017ef33d061c9b83 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 274790033 |
PQPubID | 41715 |
PageCount | 10 |
ParticipantIDs | proquest_journals_274790033 pascalfrancis_primary_18368082 econis_primary_523350570 proquest_miscellaneous_36557433 crossref_citationtrail_10_1198_016214506000000636 jstor_primary_27639760 informaworld_taylorfrancis_310_1198_016214506000000636 crossref_primary_10_1198_016214506000000636 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-12-01 |
PublicationDateYYYYMMDD | 2006-12-01 |
PublicationDate_xml | – month: 12 year: 2006 text: 2006-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2006 |
Publisher | Taylor & Francis American Statistical Association Assoc Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: American Statistical Association – name: Assoc – name: Taylor & Francis Ltd |
References | (p_6); 91 Randomized Mobility Experiment Early Results (p_42); 116 Journal (p_52); 89 Annual Review (p_76); 28 Quarterly Journal (p_7); 108 (p_31); 13 Quarterly Journal (p_54); 116 Short-Term The (p_62); 22 (p_78); 51 (p_71); 75 (p_22); 1 (p_16); 112 (p_64); 12 Studies Nonrandomized (p_67); 66 Effects Average Treatment (p_38); 62 (p_19); 5 |
References_xml | – volume: 51 start-page: 315 ident: p_78 publication-title: Economics – volume: 108 start-page: 619 ident: p_7 publication-title: Economics – volume: 91 start-page: 444 ident: p_6 publication-title: Statistical Association – volume: 116 start-page: 607 ident: p_42 publication-title: Economics – volume: 116 start-page: 665 ident: p_54 publication-title: Economics – volume: 12 start-page: 321 ident: p_64 publication-title: Debate – volume: 75 start-page: 591 ident: p_71 publication-title: Association – volume: 22 start-page: 187 ident: p_62 publication-title: Family Issues – volume: 66 start-page: 688 ident: p_67 publication-title: Educational Psychology – volume: 5 start-page: 3 ident: p_19 publication-title: News – volume: 13 start-page: 1 ident: p_31 publication-title: Research – volume: 112 start-page: 827 ident: p_16 publication-title: Economics – volume: 28 start-page: 443 ident: p_76 publication-title: Sociology – volume: 1 start-page: 75 ident: p_22 publication-title: Growth – volume: 89 start-page: 131 ident: p_52 publication-title: Public Economics – volume: 62 start-page: 467 ident: p_38 publication-title: Econometrica |
SSID | ssj0000788 |
Score | 2.4138408 |
Snippet | During the past 20 years, social scientists using observational studies have generated a large and inconclusive literature on neighborhood effects. Recent... |
SourceID | proquest pascalfrancis econis crossref jstor informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1398 |
SubjectTerms | Applications Applications and Case Studies Causal inference Control groups Estimation Estimators Exact sciences and technology General topics Housing Inference Interference Leases Mathematics Mobility Neighborhood effects Neighborhoods Neighbourhoods Poverty Probability and statistics Random allocation Random sampling Randomized algorithms Research trends Sciences and techniques of general use Social interaction Social mobility Social sciences Stable unit treatment value assumption Statistics Vouchers |
Subtitle | Causal Inference in the Face of Interference |
Title | What Do Randomized Studies of Housing Mobility Demonstrate? |
URI | https://www.tandfonline.com/doi/abs/10.1198/016214506000000636 https://www.jstor.org/stable/27639760 http://www.econis.eu/PPNSET?PPN=523350570 https://www.proquest.com/docview/274790033 https://www.proquest.com/docview/36557433 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZt2kMupa8QN23qQ2_BrayHJdNDKX0QCsmhbGBvxrJkCDR26DqH5td3RpYf-yC0uSyL1zsYfePRN6N5EPJOKqddzkxisc-QoLVKSkldohxsvtZUQhqMQ56dZ6cX4sdSLoeR8KG6pDPvq9uddSX3QRWuAa5YJfsfyI5C4QJ8B3zhExCGz3_CGPtuAwU--Vk2tr26vPXk0ecF-vh8e-MDAWetT4D9A7blCtkgNofYyOeb0dJZqYkf7tv5Ts47gMSwTGv6Q_6QfB_KGqYgwnpCxmJrnsc85JixJBWhb7cbzKRKwJ9drtnRILBXGKHmdhF4pp7tseDVqd32O-9rEjJsoE4z78IAidpolh28FyBHKaUPySMGLgLaOE7Pp11Y-Zmj49MPBVO5_rAtfo2UPMZIxOVqo3ftkK-KybPlCpa97hdqaw_3xGTxlDwJ0MWfe_V4Rh645jnZH5FbvSAfUU_ir2086Ukc9CRu6zjoSTzoSTzTk08vycX3b4svp0kYmpFUIlcdVtHVQlFTW1vV4JsqZ4BTp84725rBO8uc5NKWLqcls0DYU-Vqzi0Quyo3mh-QvaZt3CGJaWkY0zV3IEzk2mqrwFkVUpSp1bqsIpIOq1ZUoaM8Djb5VXjPMtfF9kpH5GT8z3XfT-XOuw97MMZ7JeMcfWoakWwOT9F5FQ6gFPwumQceyFEkU3i4nYHE4zVkp-fTHAfUsIgcDVAXwQqsCozq4GkAj8jb8Vcw0XjuVjYOECx4JiUQdf7qvo98RPanl_Y12et-37g3wIU7c-yV_i_axafx |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQaIXylfVUGh94IZSEjuObXFAqKVaoLsH1Eq9hTi2qwq6QWx6oL-eGSfZ0hb1AOc4E8cej9-Mx28AXknltTfcpo54hoosqLSWmU-Vx83X2aaQluKQ01k5OSo-Hcvjoc7pYkirJB869EQR0VbT4qZgdL_CjX6DMIUItrMyQlzcZMu7cE-aUpGii2x2aYpVLDxJ7VN8wYy3Zv4q48rOdJ_c0dPFNQLTMWmRMijrBQ5i6Ktf3DDkcXfaX4Ov43_1SSnfds47u9NcXKN8_I8ffwQPB-TK3veq9hju-PkTWCWw2nM9P4W3xAPO9lr2Bb_Qnp1eeMeGPEXWBjZpKcn-hE3bmJD7i-35M0KnRFbx7hkc7X843J2kQ3GGtCmM6ui2VihUZoNzTUAfSHmL2C330anTHHWDeymkq73Jau4QGObKByEcAojGWC3WYWXezv0GsKy2nOsgPAorjHbaob-uC1nUudO6bhLIx4mpmoG5nApofK-iB2N0dXNcEni9fOdHz9txa-uNfr6XbdE_F-S7ZQmUf2pA1cVAyjDvlbhN5nrUlaVIrugQtUSJW1eU57J_WlAhFJ7A5qhN1WBRFhVFDyjqLBLYXj5FU0DnO_Xc4wxWopQSAaF4_q9d3oYHk8PpQXXwcfZ5E1b5UKMpy1_ASvfz3L9E_NXZrbjGfgNx3R5S |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQagX3lXTQpsDN5Ti2HHiiANCLKvl0RVCVOrNimMbVdBNxaaH9tcz4zhb2qIeeo4zcezx-Jvx-BuAV7JyytXcZJZ4hgrmq6yRzGWVw83XmraQhuKQ-_NydlB8PpSHMeC2jGmV5EP7gSgi2Gpa3CfWDwu8Vm8QpRC_NisDwsU9trwL90q6ZUlXONj8whJXoe4ktc_whXq8NPNfGZc2pvvkjR4tr_CXjjmLlEDZLHEM_VD84podD5vT9BHo8beGnJRfe6e92WvPrzA-3v6_H8PDiFvT94OiPYE7bvEU1gmqDkzPz-AtsYCnky79jh_ojo_OnU1jlmLa-XTWUYr9z3S_C-m4Z-nEHRM2JaqKd8_hYPrxx4dZFkszZG1RVz3d1fJFxYy3tvXoAVXOIHLLXXDpFEfN4E4KaRtXs4ZbhIV55bwQFuFDWxslNmBt0S3cJqSsMZwrLxwKK2pllUVvXRWyaHKrVNMmkI_zotvIW07lM37r4L_USl8flwRer945GVg7bmy9OUz3qi1654I8N5ZA-a8C6D6EUeK0a3GTzI2gKiuRvKIj1BIl7lzSnYv-KUFlUHgC26My6WhPlppiBxRzFgnsrp6iIaDTnWbhcAa1KKVEOCi2btvlXXjwbTLVXz_Nv2zDOo8Fmlj-Atb6P6fuJYKv3uyEFfYXwlQc9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+Do+Randomized+Studies+of+Housing+Mobility+Demonstrate%3F&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Sobel%2C+Michael+E&rft.date=2006-12-01&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=101&rft.issue=476&rft.spage=1398&rft.epage=1407&rft_id=info:doi/10.1198%2F016214506000000636&rft.externalDocID=10710100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |