What Do Randomized Studies of Housing Mobility Demonstrate? Causal Inference in the Face of Interference

During the past 20 years, social scientists using observational studies have generated a large and inconclusive literature on neighborhood effects. Recent workers have argued that estimates of neighborhood effects based on randomized studies of housing mobility, such as the "Moving to Opportuni...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 101; no. 476; pp. 1398 - 1407
Main Author Sobel, Michael E
Format Journal Article
LanguageEnglish
Published Alexandria, VA Taylor & Francis 01.12.2006
American Statistical Association
Assoc
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During the past 20 years, social scientists using observational studies have generated a large and inconclusive literature on neighborhood effects. Recent workers have argued that estimates of neighborhood effects based on randomized studies of housing mobility, such as the "Moving to Opportunity" (MTO) demonstration, are more credible. These estimates are based on the implicit assumption of no interference between units; that is, a subject's value on the response depends only on the treatment to which that subject is assigned, not on the treatment assignments of other subjects. For the MTO studies, this assumption is not reasonable. Although little work has been done on the definition and estimation of treatment effects when interference is present, interference is common in studies of neighborhood effects and in many other social settings (e.g., schools and networks), and when data from such studies are analyzed under the "no-interference assumption," very misleading inferences can result. Furthermore, the consequences of interference (e.g., spillovers) should often be of great substantive interest, even though little attention has been paid to this. Using the MTO demonstration as a concrete context, this article develops a frame-work for causal inference when interference is present and defines a number of causal estimands of interest. The properties of the usual estimators of treatment effects, which are unbiased and/or consistent in randomized studies without interference, are also characterized. When interference is present, the difference between a treatment group mean and a control group mean (unadjusted or adjusted for covariates) estimates not an average treatment effect, but rather the difference between two effects defined on two distinct subpopulations. This result is of great importance, for a researcher who fails to recognize this could easily infer that a treatment is beneficial when in fact it is universally harmful.
AbstractList During the past 20 years, social scientists using observational studies have generated a large and inconclusive literature on neighborhood effects. Recent workers have argued that estimates of neighborhood effects based on randomized studies of housing mobility, such as the "Moving to Opportunity" (MTO) demonstration, are more credible. These estimates are based on the implicit assumption of no interference between units; that is, a subject's value on the response depends only on the treatment to which that subject is assigned, not on the treatment assignments of other subjects. For the MTO studies, this assumption is not reasonable. Although little work has been done on the definition and estimation of treatment effects when interference is present, interference is common in studies of neighborhood effects and in many other social settings (e.g., schools and networks), and when data from such studies are analyzed under the "no-interference assumption," very misleading inferences can result. Furthermore, the consequences of interference (e.g., spillovers) should often be of great substantive interest, even though little attention has been paid to this. Using the MTO demonstration as a concrete context, this article develops a frame-work for causal inference when interference is present and defines a number of causal estimands of interest. The properties of the usual estimators of treatment effects, which are unbiased and/or consistent in randomized studies without interference, are also characterized. When interference is present, the difference between a treatment group mean and a control group mean (unadjusted or adjusted for covariates) estimates not an average treatment effect, but rather the difference between two effects defined on two distinct subpopulations. This result is of great importance, for a researcher who fails to recognize this could easily infer that a treatment is beneficial when in fact it is universally harmful. [PUBLICATION ABSTRACT]
During the past 20 years, social scientists using observational studies have generated a large and inconclusive literature on neighborhood effects. Recent workers have argued that estimates of neighborhood effects based on randomized studies of housing mobility, such as the "Moving to Opportunity" (MTO) demonstration, are more credible. These estimates are based on the implicit assumption of no interference between units; that is, a subject's value on the response depends only on the treatment to which that subject is assigned, not on the treatment assignments of other subjects. For the MTO studies, this assumption is not reasonable. Although little work has been done on the definition and estimation of treatment effects when interference is present, interference is common in studies of neighborhood effects and in many other social settings (e.g., schools and networks), and when data from such studies are analyzed under the "no-interference assumption," very misleading inferences can result. Furthermore, the consequences of interference (e.g., spillovers) should often be of great substantive interest, even though little attention has been paid to this. Using the MTO demonstration as a concrete context, this article develops a frame-work for causal inference when interference is present and defines a number of causal estimands of interest. The properties of the usual estimators of treatment effects, which are unbiased and/or consistent in randomized studies without interference, are also characterized. When interference is present, the difference between a treatment group mean and a control group mean (unadjusted or adjusted for covariates) estimates not an average treatment effect, but rather the difference between two effects defined on two distinct subpopulations. This result is of great importance, for a researcher who fails to recognize this could easily infer that a treatment is beneficial when in fact it is universally harmful.
During the past 20 years, social scientists using observational studies have generated a large and inconclusive literature on neighborhood effects. Recent workers have argued that estimates of neighborhood effects based on randomized studies of housing mobility, such as the "Moving to Opportunity" (MTO) demonstration, are more credible. These estimates are based on the implicit assumption of no interference between units; that is, a subject's value on the response depends only on the treatment to which that subject is assigned, not on the treatment assignments of other subjects. For the MTO studies, this assumption is not reasonable. Although little work has been done on the definition and estimation of treatment effects when interference is present, interference is common in studies of neighborhood effects and in many other social settings (e.g., schools and networks), and when data from such studies are analyzed under the "no-interference assumption," very misleading inferences can result. Furthermore, the consequences of interference (e.g., spillovers) should often be of great substantive interest, even though little attention has been paid to this. Using the MTO demonstration as a concrete context, this article develops a framework for causal inference when interference is present and defines a number of causal estimands of interest. The properties of the usual estimators of treatment effects, which are unbiased and/or consistent in randomized studies without interference, are also characterized. When interference is present, the difference between a treatment group mean and a control group mean (unadjusted or adjusted for covariates) estimates not an average treatment effect, but rather the difference between two effects defined on two distinct subpopulations. This result is of great importance, for a researcher who fails to recognize this could easily infer that a treatment is beneficial when in fact it is universally harmful.
Author Sobel, Michael E
Author_xml – sequence: 1
  givenname: Michael E
  surname: Sobel
  fullname: Sobel, Michael E
BackLink http://www.econis.eu/PPNSET?PPN=523350570$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18368082$$DView record in Pascal Francis
BookMark eNp90VtrFDEUB_AgLbitfgFBHAR9G5vL5DKIiLRqCxXBC_oWMskZzTKT1CSLrJ_ebKctUqF5yUN-_-TknAO0F2IAhB4R_IKQXh1hIijpOBb4cgkm7qEV4Uy2VHbf99BqB9oq-vvoIOf1DkmlVujlt5-mNCex-WSCi7P_A675XDbOQ27i2JzGTfbhR_MhDn7yZducwBxDLskUeP0A7Y9myvDwaj9EX9-9_XJ82p5_fH92_Oa8tV0vS8sVGzuJh9E5OwohJAycEAIYU0EUhQEocMadgR4b6niHiYSRMYcFsf2g2CF6vtx7keKvDeSiZ58tTJMJUOvTTHAuO8YqfHoLruMmhVqbrm2QPcaX6NkVMtmaaUwmWJ_1RfKzSVtNFBMKK1rdk8WBjeEfwCljHHOJq1CLsCnmnGDU1hdTfAy1P37SBOvdcPT_w6lReit68_5docdLaJ1LTDcJKgXrpdjV82o592GMaTa_Y5qcLmY7xXT9TXbH_X8B8YKrSg
CODEN JSTNAL
CitedBy_id crossref_primary_10_3390_f16010030
crossref_primary_10_1093_aje_kwab167
crossref_primary_10_2139_ssrn_2866505
crossref_primary_10_1002_sta4_214
crossref_primary_10_1080_01621459_2016_1194845
crossref_primary_10_1002_sta4_219
crossref_primary_10_1016_j_spasta_2022_100711
crossref_primary_10_1214_19_STS749
crossref_primary_10_1086_522804
crossref_primary_10_1177_00469580231214759
crossref_primary_10_1162_rest_a_00818
crossref_primary_10_1016_j_eng_2019_08_016
crossref_primary_10_1016_j_ssresearch_2022_102818
crossref_primary_10_1111_j_1573_7861_2011_01316_x
crossref_primary_10_2139_ssrn_4315389
crossref_primary_10_1073_pnas_0710189104
crossref_primary_10_1002_sim_10102
crossref_primary_10_1097_EDE_0b013e31822708d5
crossref_primary_10_3102_1076998609359785
crossref_primary_10_1097_EDE_0b013e31824d5fe7
crossref_primary_10_1093_biostatistics_kxr052
crossref_primary_10_1093_jeg_lbw040
crossref_primary_10_1111_biom_13745
crossref_primary_10_1162_rest_a_00716
crossref_primary_10_1016_j_chieco_2024_102254
crossref_primary_10_1146_annurev_statistics_031219_041205
crossref_primary_10_1287_mnsc_2020_3844
crossref_primary_10_1016_j_jeconom_2022_10_004
crossref_primary_10_1093_ije_dyx201
crossref_primary_10_1007_s41237_021_00140_0
crossref_primary_10_1093_biomet_asac009
crossref_primary_10_3389_fdata_2022_888592
crossref_primary_10_1086_660009
crossref_primary_10_1111_j_1540_5907_2012_00592_x
crossref_primary_10_1111_brv_12697
crossref_primary_10_1214_08_STS274
crossref_primary_10_1016_j_spl_2015_06_011
crossref_primary_10_1016_j_econlet_2025_112242
crossref_primary_10_1214_19_STS728
crossref_primary_10_1016_j_annepidem_2021_12_010
crossref_primary_10_1007_s00181_016_1186_1
crossref_primary_10_1007_s40471_016_0086_4
crossref_primary_10_1177_1536867X1701700403
crossref_primary_10_1002_sim_6573
crossref_primary_10_1080_07350015_2019_1647843
crossref_primary_10_1080_09645292_2021_2019196
crossref_primary_10_1080_01621459_2020_1768100
crossref_primary_10_1080_02673037_2015_1009004
crossref_primary_10_1515_jci_2012_0002
crossref_primary_10_1093_pan_mpw015
crossref_primary_10_1214_24_AOAS1904
crossref_primary_10_1093_aje_kwv453
crossref_primary_10_2139_ssrn_2115619
crossref_primary_10_1016_j_ebiom_2024_105456
crossref_primary_10_1111_joes_12692
crossref_primary_10_1111_biom_13606
crossref_primary_10_1097_MLR_0000000000001822
crossref_primary_10_1111_biom_13049
crossref_primary_10_1093_aje_kwac008
crossref_primary_10_1111_rssc_12266
crossref_primary_10_1016_j_jadohealth_2016_10_022
crossref_primary_10_3390_ijerph120809391
crossref_primary_10_1016_j_spl_2011_02_019
crossref_primary_10_1214_21_AOAS1498
crossref_primary_10_1093_biostatistics_kxy050
crossref_primary_10_1007_s11121_010_0175_4
crossref_primary_10_1080_07350015_2019_1668795
crossref_primary_10_1093_jrsssa_qnae018
crossref_primary_10_1080_01621459_2021_1983437
crossref_primary_10_1097_EDE_0000000000001334
crossref_primary_10_1016_j_socnet_2015_03_006
crossref_primary_10_1371_journal_pone_0278937
crossref_primary_10_1007_s40471_023_00328_w
crossref_primary_10_1111_insr_12452
crossref_primary_10_1093_ije_dyz010
crossref_primary_10_1017_S0003055422001022
crossref_primary_10_1177_0049124119852384
crossref_primary_10_1016_j_econmod_2022_105873
crossref_primary_10_1002_sim_6128
crossref_primary_10_1080_00273171_2011_576624
crossref_primary_10_1080_03004430_2023_2301420
crossref_primary_10_1093_aje_kwr428
crossref_primary_10_2139_ssrn_3722705
crossref_primary_10_3102_0034654312449489
crossref_primary_10_1017_S0266267121000353
crossref_primary_10_2139_ssrn_1963351
crossref_primary_10_1111_1745_9125_12149
crossref_primary_10_2139_ssrn_4169349
crossref_primary_10_1093_biomet_asad019
crossref_primary_10_1093_cesifo_ify004
crossref_primary_10_1017_xps_2014_9
crossref_primary_10_1086_588740
crossref_primary_10_1086_588741
crossref_primary_10_1177_0962280210386779
crossref_primary_10_1016_j_spl_2012_04_002
crossref_primary_10_1093_jrsssa_qnae032
crossref_primary_10_1515_jci_2022_0014
crossref_primary_10_1080_01621459_2013_779832
crossref_primary_10_1093_jrsssa_qnad060
crossref_primary_10_4236_ojs_2013_34A002
crossref_primary_10_1111_j_1745_9125_2010_00198_x
crossref_primary_10_1093_aje_kwu274
crossref_primary_10_1177_0049124110366236
crossref_primary_10_1111_biom_13782
crossref_primary_10_1002_pst_2026
crossref_primary_10_1007_s00285_022_01801_8
crossref_primary_10_1002_sim_9525
crossref_primary_10_1515_em_2015_0016
crossref_primary_10_1086_589843
crossref_primary_10_1093_gerona_glab382
crossref_primary_10_1002_jae_3120
crossref_primary_10_3102_10769986241254351
crossref_primary_10_1093_aje_kwv254
crossref_primary_10_1097_EDE_0000000000000832
crossref_primary_10_1007_s11199_013_0261_8
crossref_primary_10_1162_rest_a_00933
crossref_primary_10_1080_01621459_2011_646917
crossref_primary_10_1177_0049124112452391
crossref_primary_10_1093_biomet_asw047
crossref_primary_10_1080_19345747_2015_1086912
crossref_primary_10_2139_ssrn_3802304
crossref_primary_10_5465_annals_2020_0369
crossref_primary_10_1515_jci_2013_0002
crossref_primary_10_2139_ssrn_3064909
crossref_primary_10_4045_tidsskr_22_0059
crossref_primary_10_1016_j_socnet_2019_11_003
crossref_primary_10_1007_s11336_016_9507_z
crossref_primary_10_1111_rssa_12528
crossref_primary_10_1111_rssa_12594
crossref_primary_10_1093_aje_kwaa239
crossref_primary_10_1007_s11292_018_9344_4
crossref_primary_10_1146_annurev_soc_012809_102702
crossref_primary_10_1214_14_STS501
crossref_primary_10_1515_ijb_2014_0055
crossref_primary_10_1038_s41591_024_03134_z
crossref_primary_10_1093_restud_rdae041
crossref_primary_10_1111_biom_13483
crossref_primary_10_1002_sim_9427
crossref_primary_10_1177_0962280210391076
crossref_primary_10_1002_psp_2609
crossref_primary_10_1515_ijb_2019_0126
crossref_primary_10_1515_jci_2023_0005
crossref_primary_10_2139_ssrn_2515811
crossref_primary_10_1080_01621459_2021_2021920
crossref_primary_10_1177_00491241221147503
crossref_primary_10_1177_0193841X231204588
crossref_primary_10_1177_1536867X1401400301
crossref_primary_10_1093_aje_kwz198
crossref_primary_10_1080_01621459_2018_1512863
crossref_primary_10_1016_j_jeconom_2023_105565
crossref_primary_10_1007_s10940_010_9117_3
crossref_primary_10_1002_sim_9437
crossref_primary_10_1177_0160017619869781
crossref_primary_10_1111_rssc_12522
crossref_primary_10_1016_j_socscimed_2015_05_014
crossref_primary_10_1111_j_1475_6773_2010_01232_x
crossref_primary_10_1111_ajps_12417
crossref_primary_10_1177_1523422314559807
crossref_primary_10_1093_biostatistics_kxad015
crossref_primary_10_1086_724865
crossref_primary_10_1007_s40471_015_0035_7
crossref_primary_10_1002_sim_10278
crossref_primary_10_4236_ojs_2014_49067
crossref_primary_10_1016_j_jeconom_2021_10_014
crossref_primary_10_1097_EDE_0b013e318245c4ac
crossref_primary_10_1111_biom_13459
crossref_primary_10_1098_rspb_2021_1537
crossref_primary_10_1016_j_conctc_2021_100864
crossref_primary_10_1017_S0140525X22000681
crossref_primary_10_1515_jci_2023_0029
crossref_primary_10_1016_j_healthplace_2020_102331
crossref_primary_10_1080_07350015_2019_1592755
crossref_primary_10_1214_22_AOAS1610
crossref_primary_10_1515_jci_2022_0051
crossref_primary_10_1080_10967494_2022_2124336
crossref_primary_10_1093_jrsssb_qkad136
crossref_primary_10_1214_22_AOAS1713
crossref_primary_10_1016_j_jinteco_2014_11_007
crossref_primary_10_1214_20_AOS1973
crossref_primary_10_1146_annurev_soc_030420_015345
crossref_primary_10_1146_annurev_criminol_011419_041541
crossref_primary_10_2139_ssrn_4751335
crossref_primary_10_1007_s10260_014_0257_8
crossref_primary_10_1257_jel_20191597
crossref_primary_10_1093_jrsssc_qlae008
crossref_primary_10_1080_01621459_2012_655954
crossref_primary_10_1002_sim_7392
crossref_primary_10_1097_EDE_0b013e3181bd5638
crossref_primary_10_1111_rssa_12951
crossref_primary_10_1214_24_BA1493
crossref_primary_10_2139_ssrn_3666101
crossref_primary_10_1086_671346
crossref_primary_10_1038_srep17581
crossref_primary_10_1126_science_1224648
crossref_primary_10_1080_01621459_2020_1775612
crossref_primary_10_1214_16_AOAS932
crossref_primary_10_3390_pathogens12020326
crossref_primary_10_1016_j_ehb_2007_03_006
crossref_primary_10_1080_01621459_2017_1323641
crossref_primary_10_1007_s10488_016_0738_1
crossref_primary_10_1145_3673761
crossref_primary_10_1017_pan_2020_28
crossref_primary_10_1177_0081175018785216
crossref_primary_10_1007_s10488_020_01034_1
crossref_primary_10_1186_1742_5573_9_3
crossref_primary_10_2139_ssrn_2374371
crossref_primary_10_1093_pan_mps038
crossref_primary_10_1214_19_AOAS1314
crossref_primary_10_1177_1536867X1801700403
crossref_primary_10_1214_19_AOAS1316
crossref_primary_10_1097_EDE_0000000000001742
crossref_primary_10_2139_ssrn_2757313
crossref_primary_10_1097_EDE_0000000000001502
crossref_primary_10_1002_sim_3139
crossref_primary_10_1080_10511482_2022_2133548
crossref_primary_10_1007_s41109_024_00653_z
crossref_primary_10_1097_EDE_0000000000001741
crossref_primary_10_1214_15_AOAS902
crossref_primary_10_1002_bimj_201800345
crossref_primary_10_1002_aaai_12070
crossref_primary_10_1093_ije_dyw279
crossref_primary_10_1097_EDE_0b013e3182109296
crossref_primary_10_1111_biom_13034
crossref_primary_10_1111_biom_12184
crossref_primary_10_1007_s40471_014_0030_4
crossref_primary_10_1093_pan_mps025
crossref_primary_10_1146_annurev_criminol_011518_024838
crossref_primary_10_1177_09622802241242313
crossref_primary_10_1080_01621459_2015_1125788
crossref_primary_10_1002_sim_3370
crossref_primary_10_1073_pnas_2208975119
crossref_primary_10_1093_jrs_feab109
crossref_primary_10_1515_jci_2015_0021
crossref_primary_10_1093_biomet_asy072
crossref_primary_10_1080_01621459_2013_844698
crossref_primary_10_1080_01621459_2023_2284422
crossref_primary_10_1093_aje_kwn117
crossref_primary_10_1177_0962280219849613
crossref_primary_10_1097_EDE_0b013e31825fb7a0
crossref_primary_10_1002_cjs_11702
crossref_primary_10_1080_01621459_2020_1811098
crossref_primary_10_1214_14_AOAS762
crossref_primary_10_1257_jel_20211563
crossref_primary_10_1080_01621459_2024_2340789
crossref_primary_10_3389_fpsyg_2014_00304
crossref_primary_10_3102_1076998607307355
crossref_primary_10_1016_j_socnet_2018_01_010
crossref_primary_10_1080_01621459_2023_2284413
crossref_primary_10_1002_sta4_549
crossref_primary_10_1093_ije_dyn356
crossref_primary_10_1111_biom_13125
crossref_primary_10_1214_14_STS479
crossref_primary_10_1214_16_AOAS1005
crossref_primary_10_1111_biom_12286
crossref_primary_10_1515_jci_2016_0003
crossref_primary_10_1016_j_reseneeco_2024_101463
crossref_primary_10_1371_journal_pone_0059984
crossref_primary_10_1080_19345747_2022_2142178
crossref_primary_10_1214_09_STS313
crossref_primary_10_1177_0962280218774936
crossref_primary_10_1111_rssb_12478
ContentType Journal Article
Copyright American Statistical Association 2006
Copyright 2006 American Statistical Association
2007 INIST-CNRS
Copyright American Statistical Association Dec 2006
Copyright_xml – notice: American Statistical Association 2006
– notice: Copyright 2006 American Statistical Association
– notice: 2007 INIST-CNRS
– notice: Copyright American Statistical Association Dec 2006
DBID AAYXX
CITATION
OQ6
IQODW
8BJ
FQK
JBE
K9.
DOI 10.1198/016214506000000636
DatabaseName CrossRef
ECONIS
Pascal-Francis
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 1407
ExternalDocumentID 1201088831
18368082
523350570
10_1198_016214506000000636
27639760
10710100
Genre Article
Feature
GroupedDBID -DZ
-~X
..I
.7F
.GJ
.QJ
0BK
0R~
29L
2AX
30N
3R3
4.4
5GY
5RE
692
7WY
85S
8FL
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABTAI
ABXSQ
ABXUL
ABXYU
ABYAD
ABYWD
ACAGQ
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AELPN
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFSUE
AFVYC
AFXHP
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIJEM
AKBVH
AKOOK
ALCKM
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMEWO
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FEDTE
FJW
FVMVE
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HQ6
HVGLF
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MVM
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
QCRFL
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SJN
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
VH1
WH7
WZA
YQT
YYM
YYP
ZGOLN
~S~
AAGDL
AAHIA
AAWIL
ABAWQ
ACHJO
ADYSH
AFRVT
AGLNM
AIHAF
AIYEW
AMPGV
AAYXX
CITATION
.-4
07G
1OL
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAAVZ
AAFWJ
AAIKQ
AAKBW
ABEFU
ABJCF
ABRLO
ABUWG
ACGEE
ADBBV
AEUMN
AFKRA
AFQQW
AGCQS
AGLEN
AMATQ
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
DWIFK
DWQXO
E.L
FRNLG
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
NHB
NUSFT
OQ6
P-O
PADUT
PHGZT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
S0X
TAQ
TFMCV
UB9
UKHRP
UQL
VOH
WHG
YXB
ZCG
ZGI
ZUP
ZXP
IQODW
8BJ
FQK
JBE
K9.
TASJS
ID FETCH-LOGICAL-c497t-583f470bfddcf6667eb5111e0026182ebe2e535dae90a2d54017ef33d061c9b83
ISSN 0162-1459
IngestDate Fri Jul 11 03:27:02 EDT 2025
Wed Aug 13 10:51:25 EDT 2025
Wed Apr 02 07:23:36 EDT 2025
Sat Mar 08 17:16:12 EST 2025
Thu Apr 24 22:59:12 EDT 2025
Tue Jul 01 03:15:08 EDT 2025
Thu May 29 08:44:08 EDT 2025
Wed Dec 25 09:04:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 476
Keywords Causal inference
Treatment efficiency
Interference
Average
Neighborhood effects
Statistical estimation
Covariate
Mean estimation
Stable unit treatment value assumption
Statistical method
Unbiased estimation
Treatment effect
Application
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c497t-583f470bfddcf6667eb5111e0026182ebe2e535dae90a2d54017ef33d061c9b83
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 274790033
PQPubID 41715
PageCount 10
ParticipantIDs proquest_journals_274790033
pascalfrancis_primary_18368082
econis_primary_523350570
proquest_miscellaneous_36557433
crossref_citationtrail_10_1198_016214506000000636
jstor_primary_27639760
informaworld_taylorfrancis_310_1198_016214506000000636
crossref_primary_10_1198_016214506000000636
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-12-01
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2006
Publisher Taylor & Francis
American Statistical Association
Assoc
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Assoc
– name: Taylor & Francis Ltd
References (p_6); 91
Randomized Mobility Experiment Early Results (p_42); 116
Journal (p_52); 89
Annual Review (p_76); 28
Quarterly Journal (p_7); 108
(p_31); 13
Quarterly Journal (p_54); 116
Short-Term The (p_62); 22
(p_78); 51
(p_71); 75
(p_22); 1
(p_16); 112
(p_64); 12
Studies Nonrandomized (p_67); 66
Effects Average Treatment (p_38); 62
(p_19); 5
References_xml – volume: 51
  start-page: 315
  ident: p_78
  publication-title: Economics
– volume: 108
  start-page: 619
  ident: p_7
  publication-title: Economics
– volume: 91
  start-page: 444
  ident: p_6
  publication-title: Statistical Association
– volume: 116
  start-page: 607
  ident: p_42
  publication-title: Economics
– volume: 116
  start-page: 665
  ident: p_54
  publication-title: Economics
– volume: 12
  start-page: 321
  ident: p_64
  publication-title: Debate
– volume: 75
  start-page: 591
  ident: p_71
  publication-title: Association
– volume: 22
  start-page: 187
  ident: p_62
  publication-title: Family Issues
– volume: 66
  start-page: 688
  ident: p_67
  publication-title: Educational Psychology
– volume: 5
  start-page: 3
  ident: p_19
  publication-title: News
– volume: 13
  start-page: 1
  ident: p_31
  publication-title: Research
– volume: 112
  start-page: 827
  ident: p_16
  publication-title: Economics
– volume: 28
  start-page: 443
  ident: p_76
  publication-title: Sociology
– volume: 1
  start-page: 75
  ident: p_22
  publication-title: Growth
– volume: 89
  start-page: 131
  ident: p_52
  publication-title: Public Economics
– volume: 62
  start-page: 467
  ident: p_38
  publication-title: Econometrica
SSID ssj0000788
Score 2.4138408
Snippet During the past 20 years, social scientists using observational studies have generated a large and inconclusive literature on neighborhood effects. Recent...
SourceID proquest
pascalfrancis
econis
crossref
jstor
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1398
SubjectTerms Applications
Applications and Case Studies
Causal inference
Control groups
Estimation
Estimators
Exact sciences and technology
General topics
Housing
Inference
Interference
Leases
Mathematics
Mobility
Neighborhood effects
Neighborhoods
Neighbourhoods
Poverty
Probability and statistics
Random allocation
Random sampling
Randomized algorithms
Research trends
Sciences and techniques of general use
Social interaction
Social mobility
Social sciences
Stable unit treatment value assumption
Statistics
Vouchers
Subtitle Causal Inference in the Face of Interference
Title What Do Randomized Studies of Housing Mobility Demonstrate?
URI https://www.tandfonline.com/doi/abs/10.1198/016214506000000636
https://www.jstor.org/stable/27639760
http://www.econis.eu/PPNSET?PPN=523350570
https://www.proquest.com/docview/274790033
https://www.proquest.com/docview/36557433
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZt2kMupa8QN23qQ2_BrayHJdNDKX0QCsmhbGBvxrJkCDR26DqH5td3RpYf-yC0uSyL1zsYfePRN6N5EPJOKqddzkxisc-QoLVKSkldohxsvtZUQhqMQ56dZ6cX4sdSLoeR8KG6pDPvq9uddSX3QRWuAa5YJfsfyI5C4QJ8B3zhExCGz3_CGPtuAwU--Vk2tr26vPXk0ecF-vh8e-MDAWetT4D9A7blCtkgNofYyOeb0dJZqYkf7tv5Ts47gMSwTGv6Q_6QfB_KGqYgwnpCxmJrnsc85JixJBWhb7cbzKRKwJ9drtnRILBXGKHmdhF4pp7tseDVqd32O-9rEjJsoE4z78IAidpolh28FyBHKaUPySMGLgLaOE7Pp11Y-Zmj49MPBVO5_rAtfo2UPMZIxOVqo3ftkK-KybPlCpa97hdqaw_3xGTxlDwJ0MWfe_V4Rh645jnZH5FbvSAfUU_ir2086Ukc9CRu6zjoSTzoSTzTk08vycX3b4svp0kYmpFUIlcdVtHVQlFTW1vV4JsqZ4BTp84725rBO8uc5NKWLqcls0DYU-Vqzi0Quyo3mh-QvaZt3CGJaWkY0zV3IEzk2mqrwFkVUpSp1bqsIpIOq1ZUoaM8Djb5VXjPMtfF9kpH5GT8z3XfT-XOuw97MMZ7JeMcfWoakWwOT9F5FQ6gFPwumQceyFEkU3i4nYHE4zVkp-fTHAfUsIgcDVAXwQqsCozq4GkAj8jb8Vcw0XjuVjYOECx4JiUQdf7qvo98RPanl_Y12et-37g3wIU7c-yV_i_axafx
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQaIXylfVUGh94IZSEjuObXFAqKVaoLsH1Eq9hTi2qwq6QWx6oL-eGSfZ0hb1AOc4E8cej9-Mx28AXknltTfcpo54hoosqLSWmU-Vx83X2aaQluKQ01k5OSo-Hcvjoc7pYkirJB869EQR0VbT4qZgdL_CjX6DMIUItrMyQlzcZMu7cE-aUpGii2x2aYpVLDxJ7VN8wYy3Zv4q48rOdJ_c0dPFNQLTMWmRMijrBQ5i6Ktf3DDkcXfaX4Ov43_1SSnfds47u9NcXKN8_I8ffwQPB-TK3veq9hju-PkTWCWw2nM9P4W3xAPO9lr2Bb_Qnp1eeMeGPEXWBjZpKcn-hE3bmJD7i-35M0KnRFbx7hkc7X843J2kQ3GGtCmM6ui2VihUZoNzTUAfSHmL2C330anTHHWDeymkq73Jau4QGObKByEcAojGWC3WYWXezv0GsKy2nOsgPAorjHbaob-uC1nUudO6bhLIx4mpmoG5nApofK-iB2N0dXNcEni9fOdHz9txa-uNfr6XbdE_F-S7ZQmUf2pA1cVAyjDvlbhN5nrUlaVIrugQtUSJW1eU57J_WlAhFJ7A5qhN1WBRFhVFDyjqLBLYXj5FU0DnO_Xc4wxWopQSAaF4_q9d3oYHk8PpQXXwcfZ5E1b5UKMpy1_ASvfz3L9E_NXZrbjGfgNx3R5S
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQagX3lXTQpsDN5Ti2HHiiANCLKvl0RVCVOrNimMbVdBNxaaH9tcz4zhb2qIeeo4zcezx-Jvx-BuAV7JyytXcZJZ4hgrmq6yRzGWVw83XmraQhuKQ-_NydlB8PpSHMeC2jGmV5EP7gSgi2Gpa3CfWDwu8Vm8QpRC_NisDwsU9trwL90q6ZUlXONj8whJXoe4ktc_whXq8NPNfGZc2pvvkjR4tr_CXjjmLlEDZLHEM_VD84podD5vT9BHo8beGnJRfe6e92WvPrzA-3v6_H8PDiFvT94OiPYE7bvEU1gmqDkzPz-AtsYCnky79jh_ojo_OnU1jlmLa-XTWUYr9z3S_C-m4Z-nEHRM2JaqKd8_hYPrxx4dZFkszZG1RVz3d1fJFxYy3tvXoAVXOIHLLXXDpFEfN4E4KaRtXs4ZbhIV55bwQFuFDWxslNmBt0S3cJqSsMZwrLxwKK2pllUVvXRWyaHKrVNMmkI_zotvIW07lM37r4L_USl8flwRer945GVg7bmy9OUz3qi1654I8N5ZA-a8C6D6EUeK0a3GTzI2gKiuRvKIj1BIl7lzSnYv-KUFlUHgC26My6WhPlppiBxRzFgnsrp6iIaDTnWbhcAa1KKVEOCi2btvlXXjwbTLVXz_Nv2zDOo8Fmlj-Atb6P6fuJYKv3uyEFfYXwlQc9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+Do+Randomized+Studies+of+Housing+Mobility+Demonstrate%3F&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Sobel%2C+Michael+E&rft.date=2006-12-01&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=101&rft.issue=476&rft.spage=1398&rft.epage=1407&rft_id=info:doi/10.1198%2F016214506000000636&rft.externalDocID=10710100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon