Using sustained vowels to identify patients with mild Parkinson’s disease in a Chinese dataset

Parkinson's disease (PD) is the second most common neurodegenerative disease and affects millions of people. Accurate diagnosis and subsequent treatment in the early stages can slow down disease progression. However, making an accurate diagnosis of PD at an early stage is challenging. Previous...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in aging neuroscience Vol. 16; p. 1377442
Main Authors Wang, Miao, Zhao, Xingli, Li, Fengzhu, Wu, Lingyu, Li, Yifan, Tang, Ruonan, Yao, Jiarui, Lin, Shinuan, Zheng, Yuan, Ling, Yun, Ren, Kang, Chen, Zhonglue, Yin, Xi, Wang, Zhenfu, Gao, Zhongbao, Zhang, Xi
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 03.05.2024
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Parkinson's disease (PD) is the second most common neurodegenerative disease and affects millions of people. Accurate diagnosis and subsequent treatment in the early stages can slow down disease progression. However, making an accurate diagnosis of PD at an early stage is challenging. Previous studies have revealed that even for movement disorder specialists, it was difficult to differentiate patients with PD from healthy individuals until the average modified Hoehn-Yahr staging (mH&Y) reached 1.8. Recent researches have shown that dysarthria provides good indicators for computer-assisted diagnosis of patients with PD. However, few studies have focused on diagnosing patients with PD in the early stages, specifically those with mH&Y ≤ 1.5. We used a machine learning algorithm to analyze voice features and developed diagnostic models for differentiating between healthy controls (HCs) and patients with PD, and for differentiating between HCs and patients with mild PD (mH&Y ≤ 1.5). The models were independently validated using separate datasets. Our results demonstrate that, a remarkable diagnostic performance of the model in identifying patients with mild PD (mH&Y ≤ 1.5) and HCs, with area under the ROC curve 0.93 (95% CI: 0.851.00), accuracy 0.85, sensitivity 0.95, and specificity 0.75. The results of our study are helpful for screening PD in the early stages in the community and primary medical institutions where there is a lack of movement disorder specialists and special equipment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Carla Masala, University of Cagliari, Italy
Mohammod Abdul Motin, Rajshahi University of Engineering & Technology, Bangladesh
These authors have contributed equally to this work
Edited by: Santiago Perez-Lloret, National Scientific and Technical Research Council (CONICET), Argentina
ISSN:1663-4365
1663-4365
DOI:10.3389/fnagi.2024.1377442