Role of aneuploidy screening in preimplantation genetic testing for monogenic diseases in young women
To investigate whether aneuploidy screening in preimplantation genetic testing (PGT) for monogenic diseases improves the ongoing pregnancy/live birth rate of single frozen/thawed embryo transfer (FET) cycles in young women. Retrospective cohort study. Single university-based fertility center. From J...
Saved in:
Published in | Fertility and sterility Vol. 111; no. 5; pp. 928 - 935 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To investigate whether aneuploidy screening in preimplantation genetic testing (PGT) for monogenic diseases improves the ongoing pregnancy/live birth rate of single frozen/thawed embryo transfer (FET) cycles in young women.
Retrospective cohort study.
Single university-based fertility center.
From January 2016 to December 2017, 569 FET cycles were selected for analysis. The aneuploidy screening (AS) group included 131 FET cycles from 105 oocyte retrieval cycles in 98 patients who underwent PGT for monogenic diseases with aneuploidy screening, and the non-AS group included 438 FET cycles from 280 oocyte retrieval cycles in 266 patients who underwent PGT for monogenic diseases without aneuploidy screening.
The patient population was all under the age of 35 years and underwent PGT for monogenic diseases with and without AS.
Ongoing pregnancy/live birth rate, live birth rate, implantation rate, and miscarriage rate.
Aneuploidy screening significantly improved the ongoing pregnancy/live birth rate (61.22% vs. 43.98%), implantation rate (64.29% vs. 50.38%), and live birth rate (53.06% vs. 36.09%) of young women carrying monogenic diseases in the first FET cycles. When adjusted for the parity, number of previous miscarriages, and percentage of infertility, the likelihood of implantation was 1.874 times higher (95% confidence interval 1.126–3.119), and an ongoing pregnancy/live birth was 2.139 times more likely (95% confidence interval 1.295–3.534). In addition, the miscarriage rate was significantly decreased (3.17% vs. 11.94%). In the cumulative pregnancy outcomes, the cumulative ongoing pregnancy/live birth rate both per transfer and per patient were significantly higher in the AS group (62.24% vs. 50.38% and 79.59% vs. 68.80%), but no difference existed after adjusting for the parity, number of previous miscarriage, and percentage of infertility. Nevertheless, aneuploidy screening reduced the time interval from the first ET to the achievement a pregnancy.
Aneuploidy screening in PGT significantly improved the ongoing pregnancy/live birth rate of young women carrying monogenic diseases in the first FET cycles.
Papel del cribado de aneuploidías en test genético preimplantacional para enfermedades monogénicas en mujeres jóvenes
Investigar si el cribado de aneuploidías en el test genético preimplantacional (PGT) para enfermedades monogénicas mejora la tasa de embarazo evolutivo/nacido vivo de ciclos de transferencia de embrión único congelado (FET) en mujeres jóvenes.
Estudio retrospectivo de cohortes.
Centro único de fertilidad universitario.
Desde Enero de 2016 a Diciembre de 2017, 569 ciclos de FET fueron seleccionados para el análisis. El grupo de cribado de aneuploidías (AS) incluyó 131 ciclos de FET de 105 ciclos de recuperación ovocitaria en 98 pacientes que realizaron PGT para enfermedades monogénicas con cribado de aneuploidías, y el grupo de no-AS incluyó 438 ciclos de FET de 280 ciclos de recuperación ovocitaria en 266 pacientes que realizaron PGT para enfermedades monogénicas sin cribado de aneuploidías.
La población de pacientes estuvo toda por debajo de los 35 años y realizó PGT para enfermedades monogénicas con y sin AS.
Tasa de embarazo evolutivo/nacido vivo, tasa de nacido vivo, tasa de implantación, y tasa de aborto.
El cribado de aneuploidías mejoró significativamente la tasa de embarazo evolutivo/nacido vivo (61,22% vs. 43,98%), tasa de implantación (64,29% vs. 50,38%), y tasa de nacido vivo (53,06% vs. 36,09%) de mujeres jóvenes portadoras de enfermedades monogénicas en el primer ciclo de FET. Cuando se ajustó por la paridad, número de abortos previos, y porcentaje de infertilidad, la probabilidad de implantación fue 1,874 veces más alta (intervalo de confianza 95% 1,126-3,119), y embarazo evolutivo/nacido vivo fue 2,139 veces más probable (intervalo de confianza 95% 1,295-3,534). Además, la tasa de aborto fue disminuida significativamente (3,17% vs. 11,94%). En los resultados gestacionales acumulativos, la tasa acumulativa de embarazo evolutivo/nacido vivo tanto por transferencia y por paciente fueron significativamente más altas en el grupo AS (62,24% vs. 50,38% y 79,59% vs. 68,80%), pero no existió diferencia después de ajustar según paridad, número de abortos previos, y porcentaje de infertilidad. Sin embargo, el cribado de aneuploidías redujo el intervalo de tiempo desde el primer ET hasta lograr un embarazo.
Cribado de aneuploidías en PGT mejoró significativamente la tasa de embarazo evolutivo/nacido vivo de mujeres jóvenes portadoras de enfermedades monogénicas en el primer ciclo de FET. |
---|---|
AbstractList | To investigate whether aneuploidy screening in preimplantation genetic testing (PGT) for monogenic diseases improves the ongoing pregnancy/live birth rate of single frozen/thawed embryo transfer (FET) cycles in young women.
Retrospective cohort study.
Single university-based fertility center.
From January 2016 to December 2017, 569 FET cycles were selected for analysis. The aneuploidy screening (AS) group included 131 FET cycles from 105 oocyte retrieval cycles in 98 patients who underwent PGT for monogenic diseases with aneuploidy screening, and the non-AS group included 438 FET cycles from 280 oocyte retrieval cycles in 266 patients who underwent PGT for monogenic diseases without aneuploidy screening.
The patient population was all under the age of 35 years and underwent PGT for monogenic diseases with and without AS.
Ongoing pregnancy/live birth rate, live birth rate, implantation rate, and miscarriage rate.
Aneuploidy screening significantly improved the ongoing pregnancy/live birth rate (61.22% vs. 43.98%), implantation rate (64.29% vs. 50.38%), and live birth rate (53.06% vs. 36.09%) of young women carrying monogenic diseases in the first FET cycles. When adjusted for the parity, number of previous miscarriages, and percentage of infertility, the likelihood of implantation was 1.874 times higher (95% confidence interval 1.126–3.119), and an ongoing pregnancy/live birth was 2.139 times more likely (95% confidence interval 1.295–3.534). In addition, the miscarriage rate was significantly decreased (3.17% vs. 11.94%). In the cumulative pregnancy outcomes, the cumulative ongoing pregnancy/live birth rate both per transfer and per patient were significantly higher in the AS group (62.24% vs. 50.38% and 79.59% vs. 68.80%), but no difference existed after adjusting for the parity, number of previous miscarriage, and percentage of infertility. Nevertheless, aneuploidy screening reduced the time interval from the first ET to the achievement a pregnancy.
Aneuploidy screening in PGT significantly improved the ongoing pregnancy/live birth rate of young women carrying monogenic diseases in the first FET cycles.
Papel del cribado de aneuploidías en test genético preimplantacional para enfermedades monogénicas en mujeres jóvenes
Investigar si el cribado de aneuploidías en el test genético preimplantacional (PGT) para enfermedades monogénicas mejora la tasa de embarazo evolutivo/nacido vivo de ciclos de transferencia de embrión único congelado (FET) en mujeres jóvenes.
Estudio retrospectivo de cohortes.
Centro único de fertilidad universitario.
Desde Enero de 2016 a Diciembre de 2017, 569 ciclos de FET fueron seleccionados para el análisis. El grupo de cribado de aneuploidías (AS) incluyó 131 ciclos de FET de 105 ciclos de recuperación ovocitaria en 98 pacientes que realizaron PGT para enfermedades monogénicas con cribado de aneuploidías, y el grupo de no-AS incluyó 438 ciclos de FET de 280 ciclos de recuperación ovocitaria en 266 pacientes que realizaron PGT para enfermedades monogénicas sin cribado de aneuploidías.
La población de pacientes estuvo toda por debajo de los 35 años y realizó PGT para enfermedades monogénicas con y sin AS.
Tasa de embarazo evolutivo/nacido vivo, tasa de nacido vivo, tasa de implantación, y tasa de aborto.
El cribado de aneuploidías mejoró significativamente la tasa de embarazo evolutivo/nacido vivo (61,22% vs. 43,98%), tasa de implantación (64,29% vs. 50,38%), y tasa de nacido vivo (53,06% vs. 36,09%) de mujeres jóvenes portadoras de enfermedades monogénicas en el primer ciclo de FET. Cuando se ajustó por la paridad, número de abortos previos, y porcentaje de infertilidad, la probabilidad de implantación fue 1,874 veces más alta (intervalo de confianza 95% 1,126-3,119), y embarazo evolutivo/nacido vivo fue 2,139 veces más probable (intervalo de confianza 95% 1,295-3,534). Además, la tasa de aborto fue disminuida significativamente (3,17% vs. 11,94%). En los resultados gestacionales acumulativos, la tasa acumulativa de embarazo evolutivo/nacido vivo tanto por transferencia y por paciente fueron significativamente más altas en el grupo AS (62,24% vs. 50,38% y 79,59% vs. 68,80%), pero no existió diferencia después de ajustar según paridad, número de abortos previos, y porcentaje de infertilidad. Sin embargo, el cribado de aneuploidías redujo el intervalo de tiempo desde el primer ET hasta lograr un embarazo.
Cribado de aneuploidías en PGT mejoró significativamente la tasa de embarazo evolutivo/nacido vivo de mujeres jóvenes portadoras de enfermedades monogénicas en el primer ciclo de FET. To investigate whether aneuploidy screening in preimplantation genetic testing (PGT) for monogenic diseases improves the ongoing pregnancy/live birth rate of single frozen/thawed embryo transfer (FET) cycles in young women. Retrospective cohort study. Single university-based fertility center. From January 2016 to December 2017, 569 FET cycles were selected for analysis. The aneuploidy screening (AS) group included 131 FET cycles from 105 oocyte retrieval cycles in 98 patients who underwent PGT for monogenic diseases with aneuploidy screening, and the non-AS group included 438 FET cycles from 280 oocyte retrieval cycles in 266 patients who underwent PGT for monogenic diseases without aneuploidy screening. The patient population was all under the age of 35 years and underwent PGT for monogenic diseases with and without AS. Ongoing pregnancy/live birth rate, live birth rate, implantation rate, and miscarriage rate. Aneuploidy screening significantly improved the ongoing pregnancy/live birth rate (61.22% vs. 43.98%), implantation rate (64.29% vs. 50.38%), and live birth rate (53.06% vs. 36.09%) of young women carrying monogenic diseases in the first FET cycles. When adjusted for the parity, number of previous miscarriages, and percentage of infertility, the likelihood of implantation was 1.874 times higher (95% confidence interval 1.126-3.119), and an ongoing pregnancy/live birth was 2.139 times more likely (95% confidence interval 1.295-3.534). In addition, the miscarriage rate was significantly decreased (3.17% vs. 11.94%). In the cumulative pregnancy outcomes, the cumulative ongoing pregnancy/live birth rate both per transfer and per patient were significantly higher in the AS group (62.24% vs. 50.38% and 79.59% vs. 68.80%), but no difference existed after adjusting for the parity, number of previous miscarriage, and percentage of infertility. Nevertheless, aneuploidy screening reduced the time interval from the first ET to the achievement a pregnancy. Aneuploidy screening in PGT significantly improved the ongoing pregnancy/live birth rate of young women carrying monogenic diseases in the first FET cycles. To investigate whether aneuploidy screening in preimplantation genetic testing (PGT) for monogenic diseases improves the ongoing pregnancy/live birth rate of single frozen/thawed embryo transfer (FET) cycles in young women.OBJECTIVETo investigate whether aneuploidy screening in preimplantation genetic testing (PGT) for monogenic diseases improves the ongoing pregnancy/live birth rate of single frozen/thawed embryo transfer (FET) cycles in young women.Retrospective cohort study.DESIGNRetrospective cohort study.Single university-based fertility center.SETTINGSingle university-based fertility center.From January 2016 to December 2017, 569 FET cycles were selected for analysis. The aneuploidy screening (AS) group included 131 FET cycles from 105 oocyte retrieval cycles in 98 patients who underwent PGT for monogenic diseases with aneuploidy screening, and the non-AS group included 438 FET cycles from 280 oocyte retrieval cycles in 266 patients who underwent PGT for monogenic diseases without aneuploidy screening.PATIENT(S)From January 2016 to December 2017, 569 FET cycles were selected for analysis. The aneuploidy screening (AS) group included 131 FET cycles from 105 oocyte retrieval cycles in 98 patients who underwent PGT for monogenic diseases with aneuploidy screening, and the non-AS group included 438 FET cycles from 280 oocyte retrieval cycles in 266 patients who underwent PGT for monogenic diseases without aneuploidy screening.The patient population was all under the age of 35 years and underwent PGT for monogenic diseases with and without AS.INTERVENTION(S)The patient population was all under the age of 35 years and underwent PGT for monogenic diseases with and without AS.Ongoing pregnancy/live birth rate, live birth rate, implantation rate, and miscarriage rate.MAIN OUTCOME MEASURE(S)Ongoing pregnancy/live birth rate, live birth rate, implantation rate, and miscarriage rate.Aneuploidy screening significantly improved the ongoing pregnancy/live birth rate (61.22% vs. 43.98%), implantation rate (64.29% vs. 50.38%), and live birth rate (53.06% vs. 36.09%) of young women carrying monogenic diseases in the first FET cycles. When adjusted for the parity, number of previous miscarriages, and percentage of infertility, the likelihood of implantation was 1.874 times higher (95% confidence interval 1.126-3.119), and an ongoing pregnancy/live birth was 2.139 times more likely (95% confidence interval 1.295-3.534). In addition, the miscarriage rate was significantly decreased (3.17% vs. 11.94%). In the cumulative pregnancy outcomes, the cumulative ongoing pregnancy/live birth rate both per transfer and per patient were significantly higher in the AS group (62.24% vs. 50.38% and 79.59% vs. 68.80%), but no difference existed after adjusting for the parity, number of previous miscarriage, and percentage of infertility. Nevertheless, aneuploidy screening reduced the time interval from the first ET to the achievement a pregnancy.RESULT(S)Aneuploidy screening significantly improved the ongoing pregnancy/live birth rate (61.22% vs. 43.98%), implantation rate (64.29% vs. 50.38%), and live birth rate (53.06% vs. 36.09%) of young women carrying monogenic diseases in the first FET cycles. When adjusted for the parity, number of previous miscarriages, and percentage of infertility, the likelihood of implantation was 1.874 times higher (95% confidence interval 1.126-3.119), and an ongoing pregnancy/live birth was 2.139 times more likely (95% confidence interval 1.295-3.534). In addition, the miscarriage rate was significantly decreased (3.17% vs. 11.94%). In the cumulative pregnancy outcomes, the cumulative ongoing pregnancy/live birth rate both per transfer and per patient were significantly higher in the AS group (62.24% vs. 50.38% and 79.59% vs. 68.80%), but no difference existed after adjusting for the parity, number of previous miscarriage, and percentage of infertility. Nevertheless, aneuploidy screening reduced the time interval from the first ET to the achievement a pregnancy.Aneuploidy screening in PGT significantly improved the ongoing pregnancy/live birth rate of young women carrying monogenic diseases in the first FET cycles.CONCLUSION(S)Aneuploidy screening in PGT significantly improved the ongoing pregnancy/live birth rate of young women carrying monogenic diseases in the first FET cycles. |
Author | Zhou, Canquan Li, Rong Xu, Yanwen Xu, Yan Song, Junli Pan, Jiafu Hou, Wenhui Wang, Jing Zeng, Yanhong |
Author_xml | – sequence: 1 givenname: Wenhui surname: Hou fullname: Hou, Wenhui organization: The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China – sequence: 2 givenname: Yan surname: Xu fullname: Xu, Yan organization: The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China – sequence: 3 givenname: Rong surname: Li fullname: Li, Rong organization: The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China – sequence: 4 givenname: Junli surname: Song fullname: Song, Junli organization: The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China – sequence: 5 givenname: Jing surname: Wang fullname: Wang, Jing organization: The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China – sequence: 6 givenname: Yanhong surname: Zeng fullname: Zeng, Yanhong organization: The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China – sequence: 7 givenname: Jiafu surname: Pan fullname: Pan, Jiafu organization: The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China – sequence: 8 givenname: Canquan surname: Zhou fullname: Zhou, Canquan organization: The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China – sequence: 9 givenname: Yanwen orcidid: 0000-0002-6480-5065 surname: Xu fullname: Xu, Yanwen email: xuyanwen@live.cn organization: The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30922652$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9r3DAQxUVJaTZpv0LQMRdvNVrLsi8lbeg_CBRKexayNA7a2JIryQn77aNlkxRyWhgkmHnzY3jvjJz44JEQCmwNDJqP2_WAMfuUy7vmDLo1g1LyDVmBEE0lGrE5ISvGQFSMt_yUnKW0ZYw1IPk7crphHeeN4CuCv8OINAxUe1zmMTi7o8lERO_8LXWezhHdNI_aZ51d8PQWPWZnaMaU95IhRDoFH0q_dK1LqBOm_eYuLGX-ECb078nbQY8JPzz95-Tvt69_rn9UN7--_7z-fFOZupO5EmBqNM1gLK_B1r2WMLQ1CmxM3fOu7YYN71voO9lLJoGLroMGEHurGedWb87J5YE7x_BvKReqySWDYzkfw5IU54zJVkoQRXrxJF36Ca2ao5t03Klna4qgPQhMDClFHF4kwNQ-BbVV_1NQ-xQUg1KyrH56tWrcwb4ctRuPAXw5ALCYde8wqmQceoPWRTRZ2eCOgVy9gpjRlZD0eIe74xCPtcfDCA |
CitedBy_id | crossref_primary_10_1097_RD9_0000000000000049 crossref_primary_10_1186_s12920_022_01187_y crossref_primary_10_1016_j_ajog_2021_02_037 crossref_primary_10_1097_GRF_0000000000000677 crossref_primary_10_1111_aogs_13823 crossref_primary_10_3389_fgene_2023_1248358 crossref_primary_10_1111_ijlh_13851 crossref_primary_10_1016_j_critrevonc_2020_103201 crossref_primary_10_1002_rmb2_12434 crossref_primary_10_1007_s10815_022_02654_2 crossref_primary_10_1159_000518253 crossref_primary_10_1007_s10815_019_01595_7 crossref_primary_10_1007_s10815_021_02077_5 crossref_primary_10_1007_s10815_020_01732_7 crossref_primary_10_1093_hropen_hoae056 crossref_primary_10_3389_fendo_2023_1176063 crossref_primary_10_3390_diagnostics12081911 crossref_primary_10_1007_s13206_021_00006_3 crossref_primary_10_1080_19396368_2020_1832158 |
Cites_doi | 10.1038/344768a0 10.1016/j.rbmo.2014.10.007 10.1080/09513590.2017.1347778 10.1056/NEJMc1500421 10.1016/j.ogc.2017.10.009 10.1073/pnas.1523297113 10.1186/s12920-015-0110-4 10.1016/j.fertnstert.2018.06.021 10.1093/humrep/dep188 10.3109/09513590.2015.1068752 10.1136/jmg.2009.069971 10.1016/j.fertnstert.2017.03.011 10.1016/S0015-0282(00)00518-5 10.1002/rmb2.12014 10.1016/j.rbmo.2015.09.002 10.1016/j.fertnstert.2016.04.027 10.1038/s41598-018-21094-6 10.1016/j.fertnstert.2017.06.023 10.1016/j.fertnstert.2016.01.025 10.1186/1755-8166-6-32 10.1016/j.ijgo.2008.10.014 10.1016/j.rbmo.2012.02.009 10.1080/09513590.2017.1318274 10.1016/j.fertnstert.2017.03.007 10.1038/nm.1924 10.1093/humupd/dmu016 10.1373/clinchem.2014.228569 |
ContentType | Journal Article |
Copyright | 2019 American Society for Reproductive Medicine Copyright © 2019 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 American Society for Reproductive Medicine – notice: Copyright © 2019 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.fertnstert.2019.01.017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1556-5653 |
EndPage | 935 |
ExternalDocumentID | 30922652 10_1016_j_fertnstert_2019_01_017 S001502821930055X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Guangdong Province Key Laboratory of Reproductive Medicine funderid: https://doi.org/10.13039/501100011516 |
GroupedDBID | --- --K -~X .1- .55 .FO .GJ 0R~ 1B1 1P~ 1~5 29H 34R 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 85S AAEDT AAEDW AAFWJ AALRI AAQFI AAQXK AAXUO AAYWO ABCQX ABFRF ABJNI ABLJU ABMAC ABWVN ACGFO ACIUM ACRPL ACVFH ADBBV ADCNI ADMUD ADNMO ADVLN AEFWE AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AGCQF AGQPQ AI. AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BELOY C5W CS3 DU5 EBS EFJIC EFKBS EJD F5P FDB FEDTE FGOYB GBLVA HVGLF HZ~ IHE J1W J5H K-O KOM L7B M41 MO0 N9A NQ- O9- OK1 OQ. P2P PH~ R2- ROL RPZ SDP SEL SES SEW SSZ UNMZH UV1 VH1 W2D X7M XH2 XJT XPP YOC YZZ Z5R ZGI ZXP ~S- AACTN AAIAV ADPAM AGZHU AHPSJ ALXNB RIG ZA5 AAYXX AFCTW CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c497t-51c4ec6fcd241d4ba71f84e5e6c4b2989f32b81b97b70712599161eebda022da3 |
ISSN | 0015-0282 1556-5653 |
IngestDate | Fri Jul 11 16:32:32 EDT 2025 Thu Apr 03 07:05:52 EDT 2025 Tue Jul 01 01:04:08 EDT 2025 Thu Apr 24 22:54:42 EDT 2025 Fri Feb 23 02:25:54 EST 2024 Tue Aug 26 16:32:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Aneuploidy oocyte retrieval in vitro fertilization live birth genetic testing |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2019 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c497t-51c4ec6fcd241d4ba71f84e5e6c4b2989f32b81b97b70712599161eebda022da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6480-5065 |
PMID | 30922652 |
PQID | 2200787715 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2200787715 pubmed_primary_30922652 crossref_primary_10_1016_j_fertnstert_2019_01_017 crossref_citationtrail_10_1016_j_fertnstert_2019_01_017 elsevier_sciencedirect_doi_10_1016_j_fertnstert_2019_01_017 elsevier_clinicalkey_doi_10_1016_j_fertnstert_2019_01_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2019 2019-05-00 20190501 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Fertility and sterility |
PublicationTitleAlternate | Fertil Steril |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Fedorova, Shlykova, Shunkina, Zaitceva, Lapina, Yanchuk (bib24) 2017; 33 Rubio, Bellver, Rodrigo, Castillon, Guillen, Vidal (bib16) 2017; 107 Greco, Minasi, Fiorentino (bib28) 2015; 373 Taylor, Gitlin, Patrick, Crain, Wilson, Griffin (bib27) 2014; 20 Yan, Huang, Xu, Huang, Ma, Zhu (bib9) 2015; 112 Palini, De Stefani, Primiterra, Galluzzi (bib3) 2015; 31 Tur-Kaspa, Jeelani (bib4) 2015; 30 Demko, Simon, McCoy, Petrov, Rabinowitz (bib14) 2016; 105 Petracchi, Colaci, Igarzabal, Gadow (bib11) 2009; 104 Yang, Salem, Liu, Kuang, Salem, Liu (bib19) 2013; 6 Hu, Ding, Zhang, Zhou, Wang, Zeng (bib26) 2017; 33 Gardner, Lane, Stevens, Schlenker, Schoolcraft (bib22) 2000; 73 Ubaldi, Cimadomo, Capalbo, Vaiarelli, Buffo, Trabucco (bib25) 2017; 107 Ata, Kaplan, Danzer, Glassner, Opsahl, Tan (bib15) 2012; 24 Kung, Munne, Bankowski, Coates, Wells (bib8) 2015; 31 Irahara, Kuwahara, Iwasa, Ishikawa, Ishihara, Kugu (bib13) 2017; 16 Handyside, Harton, Mariani, Thornhill, Affara, Shaw (bib10) 2010; 47 Rubio, Gimenez, Fernandez, Vendrell, Velilla, Parriego (bib17) 2009; 24 Sullivan-Pyke, Dokras (bib7) 2018; 45 Li, Niu, Jin, Xu, Song, Guo (bib5) 2018; 8 Xu, Chen, Yin, Shen, Pan, Chen (bib21) 2015; 61 Yang, Lin, Zhang, Fong, Li, Zhao (bib6) 2015; 8 Paulson (bib20) 2017; 108 Moayeri, Saeidi, Modarresi, Hashemi (bib23) 2016; 18 Handyside, Kontogianni, Hardy, Winston (bib1) 1990; 344 Neal, Morin, Franasiak, Goodman, Juneau, Forman (bib2) 2018; 110 Kang, Melnick, Stewart, Xu, Rosenwaks (bib12) 2016; 106 Vanneste, Voet, Le Caignec, Ampe, Konings, Melotte (bib18) 2009; 15 Paulson (10.1016/j.fertnstert.2019.01.017_bib20) 2017; 108 Ubaldi (10.1016/j.fertnstert.2019.01.017_bib25) 2017; 107 Demko (10.1016/j.fertnstert.2019.01.017_bib14) 2016; 105 Yan (10.1016/j.fertnstert.2019.01.017_bib9) 2015; 112 Ata (10.1016/j.fertnstert.2019.01.017_bib15) 2012; 24 Taylor (10.1016/j.fertnstert.2019.01.017_bib27) 2014; 20 Kang (10.1016/j.fertnstert.2019.01.017_bib12) 2016; 106 Li (10.1016/j.fertnstert.2019.01.017_bib5) 2018; 8 Xu (10.1016/j.fertnstert.2019.01.017_bib21) 2015; 61 Handyside (10.1016/j.fertnstert.2019.01.017_bib1) 1990; 344 Sullivan-Pyke (10.1016/j.fertnstert.2019.01.017_bib7) 2018; 45 Irahara (10.1016/j.fertnstert.2019.01.017_bib13) 2017; 16 Moayeri (10.1016/j.fertnstert.2019.01.017_bib23) 2016; 18 Kung (10.1016/j.fertnstert.2019.01.017_bib8) 2015; 31 Palini (10.1016/j.fertnstert.2019.01.017_bib3) 2015; 31 Rubio (10.1016/j.fertnstert.2019.01.017_bib17) 2009; 24 Yang (10.1016/j.fertnstert.2019.01.017_bib19) 2013; 6 Tur-Kaspa (10.1016/j.fertnstert.2019.01.017_bib4) 2015; 30 Fedorova (10.1016/j.fertnstert.2019.01.017_bib24) 2017; 33 Vanneste (10.1016/j.fertnstert.2019.01.017_bib18) 2009; 15 Neal (10.1016/j.fertnstert.2019.01.017_bib2) 2018; 110 Gardner (10.1016/j.fertnstert.2019.01.017_bib22) 2000; 73 Greco (10.1016/j.fertnstert.2019.01.017_bib28) 2015; 373 Yang (10.1016/j.fertnstert.2019.01.017_bib6) 2015; 8 Handyside (10.1016/j.fertnstert.2019.01.017_bib10) 2010; 47 Hu (10.1016/j.fertnstert.2019.01.017_bib26) 2017; 33 Petracchi (10.1016/j.fertnstert.2019.01.017_bib11) 2009; 104 Rubio (10.1016/j.fertnstert.2019.01.017_bib16) 2017; 107 |
References_xml | – volume: 8 start-page: 30 year: 2015 ident: bib6 article-title: Randomized comparison of next-generation sequencing and array comparative genomic hybridization for preimplantation genetic screening: a pilot study publication-title: BMC Med Genomics – volume: 31 start-page: 755 year: 2015 end-page: 759 ident: bib3 article-title: Pre-implantation genetic diagnosis and screening: now and the future publication-title: Gynecol Endocrinol – volume: 45 start-page: 113 year: 2018 end-page: 125 ident: bib7 article-title: Preimplantation genetic screening and preimplantation genetic diagnosis publication-title: Obstet Gynecol Clin North Am – volume: 47 start-page: 651 year: 2010 end-page: 658 ident: bib10 article-title: Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes publication-title: J Med Genet – volume: 106 start-page: 597 year: 2016 end-page: 602 ident: bib12 article-title: Preimplantation genetic screening: who benefits? publication-title: Fertil Steril – volume: 107 start-page: 1122 year: 2017 end-page: 1129 ident: bib16 article-title: In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled study publication-title: Fertil Steril – volume: 8 start-page: 3139 year: 2018 ident: bib5 article-title: Importance of embryo aneuploidy screening in preimplantation genetic diagnosis for monogenic diseases using the karyomap gene chip publication-title: Sci Rep – volume: 373 start-page: 2089 year: 2015 end-page: 2090 ident: bib28 article-title: Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts publication-title: N Engl J Med – volume: 31 start-page: 760 year: 2015 end-page: 769 ident: bib8 article-title: Validation of next-generation sequencing for comprehensive chromosome screening of embryos publication-title: Reprod Biomed Online – volume: 108 start-page: 228 year: 2017 end-page: 230 ident: bib20 article-title: Preimplantation genetic screening: what is the clinical efficiency? publication-title: Fertil Steril – volume: 6 start-page: 32 year: 2013 ident: bib19 article-title: Selection of euploid blastocysts for cryopreservation with array comparative genomic hybridization (aCGH) results in increased implantation rates in subsequent frozen and thawed embryo transfer cycles publication-title: Mol Cytogenet – volume: 30 start-page: 115 year: 2015 end-page: 119 ident: bib4 article-title: Clinical guidelines for IVF with PGD for HLA matching publication-title: Reprod Biomed Online – volume: 15 start-page: 577 year: 2009 end-page: 583 ident: bib18 article-title: Chromosome instability is common in human cleavage-stage embryos publication-title: Nat Med – volume: 73 start-page: 1155 year: 2000 end-page: 1158 ident: bib22 article-title: Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer publication-title: Fertil Steril – volume: 61 start-page: 617 year: 2015 end-page: 626 ident: bib21 article-title: Embryo genome profiling by single-cell sequencing for preimplantation genetic diagnosis in a beta-thalassemia family publication-title: Clin Chem – volume: 33 start-page: 867 year: 2017 end-page: 871 ident: bib26 article-title: Embryo pooling: a promising strategy for managing insufficient number of embryos in preimplantation genetic diagnosis publication-title: Gynecol Endocrinol – volume: 107 start-page: 1173 year: 2017 end-page: 1180 ident: bib25 article-title: Preimplantation genetic diagnosis for aneuploidy testing in women older than 44 years: a multicenter experience publication-title: Fertil Steril – volume: 344 start-page: 768 year: 1990 end-page: 770 ident: bib1 article-title: Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification publication-title: Nature – volume: 24 start-page: 2045 year: 2009 end-page: 2047 ident: bib17 article-title: The importance of good practice in preimplantation genetic screening: critical viewpoints publication-title: Hum Reprod – volume: 24 start-page: 614 year: 2012 end-page: 620 ident: bib15 article-title: Array CGH analysis shows that aneuploidy is not related to the number of embryos generated publication-title: Reprod Biomed Online – volume: 110 start-page: 896 year: 2018 end-page: 904 ident: bib2 article-title: Preimplantation genetic testing for aneuploidy is cost-effective, shortens treatment time, and reduces the risk of failed embryo transfer and clinical miscarriage publication-title: Fertil Steril – volume: 18 start-page: 13 year: 2016 end-page: 20 ident: bib23 article-title: The effect of preimplantation genetic screening on implantation rate in women over 35 years of age publication-title: Cell J – volume: 20 start-page: 571 year: 2014 end-page: 581 ident: bib27 article-title: The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans publication-title: Hum Reprod Update – volume: 104 start-page: 243 year: 2009 end-page: 244 ident: bib11 article-title: Cytogenetic analysis of first trimester pregnancy loss publication-title: Int J Gynaecol Obstet – volume: 105 start-page: 1307 year: 2016 end-page: 1313 ident: bib14 article-title: Effects of maternal age on euploidy rates in a large cohort of embryos analyzed with 24-chromosome single-nucleotide polymorphism-based preimplantation genetic screening publication-title: Fertil Steril – volume: 112 start-page: 15964 year: 2015 end-page: 15969 ident: bib9 article-title: Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses publication-title: Proc Natl Acad Sci U S A – volume: 16 start-page: 126 year: 2017 end-page: 132 ident: bib13 article-title: Assisted reproductive technology in Japan: a summary report of 1992-2014 by the Ethics Committee, Japan Society of Obstetrics and Gynecology publication-title: Reprod Med Biol – volume: 33 start-page: 737 year: 2017 end-page: 740 ident: bib24 article-title: Outcomes of IVF cycles coupled with PGS by aCGH of embryos from donor and autologous oocytes, transferred after vitrification to women of advanced maternal age publication-title: Gynecol Endocrinol – volume: 344 start-page: 768 year: 1990 ident: 10.1016/j.fertnstert.2019.01.017_bib1 article-title: Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification publication-title: Nature doi: 10.1038/344768a0 – volume: 30 start-page: 115 year: 2015 ident: 10.1016/j.fertnstert.2019.01.017_bib4 article-title: Clinical guidelines for IVF with PGD for HLA matching publication-title: Reprod Biomed Online doi: 10.1016/j.rbmo.2014.10.007 – volume: 33 start-page: 867 year: 2017 ident: 10.1016/j.fertnstert.2019.01.017_bib26 article-title: Embryo pooling: a promising strategy for managing insufficient number of embryos in preimplantation genetic diagnosis publication-title: Gynecol Endocrinol doi: 10.1080/09513590.2017.1347778 – volume: 18 start-page: 13 year: 2016 ident: 10.1016/j.fertnstert.2019.01.017_bib23 article-title: The effect of preimplantation genetic screening on implantation rate in women over 35 years of age publication-title: Cell J – volume: 373 start-page: 2089 year: 2015 ident: 10.1016/j.fertnstert.2019.01.017_bib28 article-title: Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts publication-title: N Engl J Med doi: 10.1056/NEJMc1500421 – volume: 45 start-page: 113 year: 2018 ident: 10.1016/j.fertnstert.2019.01.017_bib7 article-title: Preimplantation genetic screening and preimplantation genetic diagnosis publication-title: Obstet Gynecol Clin North Am doi: 10.1016/j.ogc.2017.10.009 – volume: 112 start-page: 15964 year: 2015 ident: 10.1016/j.fertnstert.2019.01.017_bib9 article-title: Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1523297113 – volume: 8 start-page: 30 year: 2015 ident: 10.1016/j.fertnstert.2019.01.017_bib6 article-title: Randomized comparison of next-generation sequencing and array comparative genomic hybridization for preimplantation genetic screening: a pilot study publication-title: BMC Med Genomics doi: 10.1186/s12920-015-0110-4 – volume: 110 start-page: 896 year: 2018 ident: 10.1016/j.fertnstert.2019.01.017_bib2 article-title: Preimplantation genetic testing for aneuploidy is cost-effective, shortens treatment time, and reduces the risk of failed embryo transfer and clinical miscarriage publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2018.06.021 – volume: 24 start-page: 2045 year: 2009 ident: 10.1016/j.fertnstert.2019.01.017_bib17 article-title: The importance of good practice in preimplantation genetic screening: critical viewpoints publication-title: Hum Reprod doi: 10.1093/humrep/dep188 – volume: 31 start-page: 755 year: 2015 ident: 10.1016/j.fertnstert.2019.01.017_bib3 article-title: Pre-implantation genetic diagnosis and screening: now and the future publication-title: Gynecol Endocrinol doi: 10.3109/09513590.2015.1068752 – volume: 47 start-page: 651 year: 2010 ident: 10.1016/j.fertnstert.2019.01.017_bib10 article-title: Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes publication-title: J Med Genet doi: 10.1136/jmg.2009.069971 – volume: 107 start-page: 1122 year: 2017 ident: 10.1016/j.fertnstert.2019.01.017_bib16 article-title: In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled study publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2017.03.011 – volume: 73 start-page: 1155 year: 2000 ident: 10.1016/j.fertnstert.2019.01.017_bib22 article-title: Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer publication-title: Fertil Steril doi: 10.1016/S0015-0282(00)00518-5 – volume: 16 start-page: 126 year: 2017 ident: 10.1016/j.fertnstert.2019.01.017_bib13 article-title: Assisted reproductive technology in Japan: a summary report of 1992-2014 by the Ethics Committee, Japan Society of Obstetrics and Gynecology publication-title: Reprod Med Biol doi: 10.1002/rmb2.12014 – volume: 31 start-page: 760 year: 2015 ident: 10.1016/j.fertnstert.2019.01.017_bib8 article-title: Validation of next-generation sequencing for comprehensive chromosome screening of embryos publication-title: Reprod Biomed Online doi: 10.1016/j.rbmo.2015.09.002 – volume: 106 start-page: 597 year: 2016 ident: 10.1016/j.fertnstert.2019.01.017_bib12 article-title: Preimplantation genetic screening: who benefits? publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2016.04.027 – volume: 8 start-page: 3139 year: 2018 ident: 10.1016/j.fertnstert.2019.01.017_bib5 article-title: Importance of embryo aneuploidy screening in preimplantation genetic diagnosis for monogenic diseases using the karyomap gene chip publication-title: Sci Rep doi: 10.1038/s41598-018-21094-6 – volume: 108 start-page: 228 year: 2017 ident: 10.1016/j.fertnstert.2019.01.017_bib20 article-title: Preimplantation genetic screening: what is the clinical efficiency? publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2017.06.023 – volume: 105 start-page: 1307 year: 2016 ident: 10.1016/j.fertnstert.2019.01.017_bib14 article-title: Effects of maternal age on euploidy rates in a large cohort of embryos analyzed with 24-chromosome single-nucleotide polymorphism-based preimplantation genetic screening publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2016.01.025 – volume: 6 start-page: 32 year: 2013 ident: 10.1016/j.fertnstert.2019.01.017_bib19 article-title: Selection of euploid blastocysts for cryopreservation with array comparative genomic hybridization (aCGH) results in increased implantation rates in subsequent frozen and thawed embryo transfer cycles publication-title: Mol Cytogenet doi: 10.1186/1755-8166-6-32 – volume: 104 start-page: 243 year: 2009 ident: 10.1016/j.fertnstert.2019.01.017_bib11 article-title: Cytogenetic analysis of first trimester pregnancy loss publication-title: Int J Gynaecol Obstet doi: 10.1016/j.ijgo.2008.10.014 – volume: 24 start-page: 614 year: 2012 ident: 10.1016/j.fertnstert.2019.01.017_bib15 article-title: Array CGH analysis shows that aneuploidy is not related to the number of embryos generated publication-title: Reprod Biomed Online doi: 10.1016/j.rbmo.2012.02.009 – volume: 33 start-page: 737 year: 2017 ident: 10.1016/j.fertnstert.2019.01.017_bib24 article-title: Outcomes of IVF cycles coupled with PGS by aCGH of embryos from donor and autologous oocytes, transferred after vitrification to women of advanced maternal age publication-title: Gynecol Endocrinol doi: 10.1080/09513590.2017.1318274 – volume: 107 start-page: 1173 year: 2017 ident: 10.1016/j.fertnstert.2019.01.017_bib25 article-title: Preimplantation genetic diagnosis for aneuploidy testing in women older than 44 years: a multicenter experience publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2017.03.007 – volume: 15 start-page: 577 year: 2009 ident: 10.1016/j.fertnstert.2019.01.017_bib18 article-title: Chromosome instability is common in human cleavage-stage embryos publication-title: Nat Med doi: 10.1038/nm.1924 – volume: 20 start-page: 571 year: 2014 ident: 10.1016/j.fertnstert.2019.01.017_bib27 article-title: The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans publication-title: Hum Reprod Update doi: 10.1093/humupd/dmu016 – volume: 61 start-page: 617 year: 2015 ident: 10.1016/j.fertnstert.2019.01.017_bib21 article-title: Embryo genome profiling by single-cell sequencing for preimplantation genetic diagnosis in a beta-thalassemia family publication-title: Clin Chem doi: 10.1373/clinchem.2014.228569 |
SSID | ssj0006172 |
Score | 2.4004033 |
Snippet | To investigate whether aneuploidy screening in preimplantation genetic testing (PGT) for monogenic diseases improves the ongoing pregnancy/live birth rate of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 928 |
SubjectTerms | Adult Aneuploidy Cohort Studies Female genetic testing Genetic Testing - methods Humans in vitro fertilization live birth oocyte retrieval Oocyte Retrieval - methods Pregnancy Pregnancy Outcome - epidemiology Pregnancy Outcome - genetics Preimplantation Diagnosis - methods Retrospective Studies Young Adult |
Title | Role of aneuploidy screening in preimplantation genetic testing for monogenic diseases in young women |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S001502821930055X https://dx.doi.org/10.1016/j.fertnstert.2019.01.017 https://www.ncbi.nlm.nih.gov/pubmed/30922652 https://www.proquest.com/docview/2200787715 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbC6UvY_dlNzTYW3GIbdmK2FM31pWx7mG0I3sykixTl9Q2XfzQ_fqdo4vjdQ1kg2ASGclxzpej70jfOSbk7VxWpZQJi3KZ6oihzFWaWEZMsnmlE5GoBPOdT77mx2fs8yJbrOW2Nrtkpab61615Jf9jVWgDu2KW7D9YdhgUGuA92BeOYGE4bmXjb14aKBvTd8u2Lq8PwAtAZOoTVborU192S9l4SSEMhDmLByssreEVlPBlW2iHVr9XYwWy1-gEXHmGMX09QhW2Je52vR3rPOOnARttbzV7pjnv69C4sG0_Rtqf2km6_ZyJyztBF9w3y3q8DoGpT0H1NzXed2Z5BPww_cO5eldaj_evrasULin8LxfuVhMuphXcUYM3gorXWNjiqi7Nc2TZ7tKaNp0JoJGuFO6N8tnh1F2ym0AkAa5w99P7L98Ph-kaKZyXeDnh3-0X3id7YahNFGZTiGKpyul9cs_HGPTQAeYBuWOah2TvxKsoHhGDuKFtRde4oQNuaN3QG7ihHjfU44YCbuiAGxpwgz0tbqjFzWNydvTx9MNx5B-3EWkm-CrKYs2MzitdAqsrmZI8rubMZCbXTGGh_ipNFEQ5gisOxBTiZggtYmNUKYEIljJ9QnaatjHPCC2FqhTnVZkIGJNlCqsQiZmJy0xzPVMTwsMvWGhfix4fibIsgujwoliboUAzFLMYXnxC4qFn5-qxbNFHBCMVId8YZsgCELdF33dDX89JHdfcsvebgIkC3DbuxYFl2_5nkeAewZzzOJuQpw4sw_0EnD3feOYF2V__BV-SndVVb14BOV6p1x7evwEG6MFt |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+aneuploidy+screening+in+preimplantation+genetic+testing+for+monogenic+diseases+in+young+women&rft.jtitle=Fertility+and+sterility&rft.au=Hou%2C+Wenhui&rft.au=Xu%2C+Yan&rft.au=Li%2C+Rong&rft.au=Song%2C+Junli&rft.date=2019-05-01&rft.eissn=1556-5653&rft.volume=111&rft.issue=5&rft.spage=928&rft_id=info:doi/10.1016%2Fj.fertnstert.2019.01.017&rft_id=info%3Apmid%2F30922652&rft.externalDocID=30922652 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0015-0282&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0015-0282&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0015-0282&client=summon |