Potential Roles of Large Language Models in the Production of Systematic Reviews and Meta-Analyses
Large language models (LLMs) such as ChatGPT have become widely applied in the field of medical research. In the process of conducting systematic reviews, similar tools can be used to expedite various steps, including defining clinical questions, performing the literature search, document screening,...
Saved in:
Published in | Journal of medical Internet research Vol. 26; no. 11; p. e56780 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Canada
Journal of Medical Internet Research
25.06.2024
JMIR Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Large language models (LLMs) such as ChatGPT have become widely applied in the field of medical research. In the process of conducting systematic reviews, similar tools can be used to expedite various steps, including defining clinical questions, performing the literature search, document screening, information extraction, and language refinement, thereby conserving resources and enhancing efficiency. However, when using LLMs, attention should be paid to transparent reporting, distinguishing between genuine and false content, and avoiding academic misconduct. In this viewpoint, we highlight the potential roles of LLMs in the creation of systematic reviews and meta-analyses, elucidating their advantages, limitations, and future research directions, aiming to provide insights and guidance for authors planning systematic reviews and meta-analyses. |
---|---|
AbstractList | Large language models (LLMs) such as ChatGPT have become widely applied in the field of medical research. In the process of conducting systematic reviews, similar tools can be used to expedite various steps, including defining clinical questions, performing the literature search, document screening, information extraction, and language refinement, thereby conserving resources and enhancing efficiency. However, when using LLMs, attention should be paid to transparent reporting, distinguishing between genuine and false content, and avoiding academic misconduct. In this viewpoint, we highlight the potential roles of LLMs in the creation of systematic reviews and meta-analyses, elucidating their advantages, limitations, and future research directions, aiming to provide insights and guidance for authors planning systematic reviews and meta-analyses. Large language models (LLMs) such as ChatGPT have become widely applied in the field of medical research. In the process of conducting systematic reviews, similar tools can be used to expedite various steps, including defining clinical questions, performing the literature search, document screening, information extraction, and language refinement, thereby conserving resources and enhancing efficiency. However, when using LLMs, attention should be paid to transparent reporting, distinguishing between genuine and false content, and avoiding academic misconduct. In this viewpoint, we highlight the potential roles of LLMs in the creation of systematic reviews and meta-analyses, elucidating their advantages, limitations, and future research directions, aiming to provide insights and guidance for authors planning systematic reviews and meta-analyses.Large language models (LLMs) such as ChatGPT have become widely applied in the field of medical research. In the process of conducting systematic reviews, similar tools can be used to expedite various steps, including defining clinical questions, performing the literature search, document screening, information extraction, and language refinement, thereby conserving resources and enhancing efficiency. However, when using LLMs, attention should be paid to transparent reporting, distinguishing between genuine and false content, and avoiding academic misconduct. In this viewpoint, we highlight the potential roles of LLMs in the creation of systematic reviews and meta-analyses, elucidating their advantages, limitations, and future research directions, aiming to provide insights and guidance for authors planning systematic reviews and meta-analyses. Large language models (LLMs) like ChatGPT have become widely applied in the field of medical research. In the process of conducting systematic reviews, similar tools can be employed to expedite various steps, including defining clinical questions, literature search, document screening, information extraction, and language refinement, etc, thereby conserving resources and enhancing efficiency. However, when utilizing LLMs, attention should be given to transparent reporting, distinguishing between genuine and false content, and avoiding academic misconduct. This article reviews the potential roles of LLMs in the creation of systematic reviews and meta-analyses, elucidating their advantages, limitations, and future research directions, aiming to provide insights and guidance for authors involved in systematic reviews and meta-analyses. |
Audience | Academic |
Author | Luo, Xufei Wang, Ye Chen, Yaolong Chen, Fengxian Wang, Qi Lyu, Meng Liu, Hui Wang, Zijun Zhu, Di Wang, Ling |
AuthorAffiliation | 1 Evidence-Based Medicine Center School of Basic Medical Sciences Lanzhou University Lanzhou China 7 School of Public Health Lanzhou University Lanzhou China 8 Department of Health Research Methods, Evidence and Impact Faculty of Health Sciences McMaster University Hamilton, ON Canada 4 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province Lanzhou University Lanzhou China 5 Research Unit of Evidence-Based Evaluation and Guidelines, Chinese Academy of Medical Sciences (2021RU017) School of Basic Medical Sciences Lanzhou University Lanzhou China 9 McMaster Health Forum McMaster University Hamilton, ON Canada 2 World Health Organization Collaboration Center for Guideline Implementation and Knowledge Translation Lanzhou China 3 Institute of Health Data Science Lanzhou University Lanzhou China 6 School of Information Science & Engineering Lanzhou University Lanzhou China |
AuthorAffiliation_xml | – name: 7 School of Public Health Lanzhou University Lanzhou China – name: 5 Research Unit of Evidence-Based Evaluation and Guidelines, Chinese Academy of Medical Sciences (2021RU017) School of Basic Medical Sciences Lanzhou University Lanzhou China – name: 8 Department of Health Research Methods, Evidence and Impact Faculty of Health Sciences McMaster University Hamilton, ON Canada – name: 6 School of Information Science & Engineering Lanzhou University Lanzhou China – name: 1 Evidence-Based Medicine Center School of Basic Medical Sciences Lanzhou University Lanzhou China – name: 2 World Health Organization Collaboration Center for Guideline Implementation and Knowledge Translation Lanzhou China – name: 9 McMaster Health Forum McMaster University Hamilton, ON Canada – name: 3 Institute of Health Data Science Lanzhou University Lanzhou China – name: 4 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province Lanzhou University Lanzhou China |
Author_xml | – sequence: 1 givenname: Xufei orcidid: 0000-0003-0811-6326 surname: Luo fullname: Luo, Xufei – sequence: 2 givenname: Fengxian orcidid: 0009-0008-0708-504X surname: Chen fullname: Chen, Fengxian – sequence: 3 givenname: Di orcidid: 0009-0001-5159-3104 surname: Zhu fullname: Zhu, Di – sequence: 4 givenname: Ling orcidid: 0000-0003-2141-4272 surname: Wang fullname: Wang, Ling – sequence: 5 givenname: Zijun orcidid: 0009-0009-3400-5161 surname: Wang fullname: Wang, Zijun – sequence: 6 givenname: Hui orcidid: 0000-0001-8245-6025 surname: Liu fullname: Liu, Hui – sequence: 7 givenname: Meng orcidid: 0000-0001-6368-3919 surname: Lyu fullname: Lyu, Meng – sequence: 8 givenname: Ye orcidid: 0009-0003-8816-0366 surname: Wang fullname: Wang, Ye – sequence: 9 givenname: Qi orcidid: 0000-0002-5060-5978 surname: Wang fullname: Wang, Qi – sequence: 10 givenname: Yaolong orcidid: 0000-0002-7338-4418 surname: Chen fullname: Chen, Yaolong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38819655$$D View this record in MEDLINE/PubMed |
BookMark | eNptkm1r1TAUx4tM3IP7ClIQQRideWzTV3IZTgd3OKa-DqfJaZfRJrNpJ_fbm-7OsTskkBxOfufP_yTnMNvzwWOWHVNyymhdfpJlpcir7IAKrgqlKrr3LN7PDmO8JYQRUdM32T5XKtVIeZA1V2FCPzno8-vQY8xDm69h7DDtvpshBZfBYh9z5_PpBvOrMdjZTC74Bf2xiRMOMDmTX-O9wz8xB2_zS5ygWHnoNxHj2-x1C33E48fzKPt1_uXn2bdi_f3rxdlqXRhRV1PBCQXggiMwYAYJEahaBpwRWluChjUoCACUgFIglLKUzKiyJm3TpG5afpRdbHVtgFt9N7oBxo0O4PRDIoydhjE57VFLTkoK0nLVWsHaUimJtqm4raWSDMqk9XmrdTc3A1qTnmiEfkd098a7G92Fe00p44JULCl8fFQYw-8Z46QHFw32PXgMc9TJARelqBRP6Pst2kHy5nwbkqRZcL2qaqVqRdRi6fQ_VFoWB2fSMLQu5XcK3j3v4cn8v89PwIctYMYQ44jtE0KJXoZKPwxV4k5ecMZNsIxAcuD6F_Rf_HzKrw |
CitedBy_id | crossref_primary_10_1093_jamia_ocaf050 crossref_primary_10_3390_ejihpe15010009 crossref_primary_10_1111_jebm_70014 crossref_primary_10_1136_bmjebm_2024_113320 crossref_primary_10_2196_64682 |
Cites_doi | 10.5860/choice.189890 10.1186/s13643-023-02243-z 10.1093/jamia/ocv044 10.1016/j.jpurol.2023.05.018 10.2196/48949 10.21203/rs.3.rs-3433956/v1 10.1177/0739456x17723971 10.1101/2023.09.06.23295072 10.14573/altex.1902131 10.1007/s10654-019-00576-5 10.1002/jrsm.1715 10.1016/j.jclinepi.2021.06.030 10.1186/s12967-023-04371-5 10.3390/systems11070351 10.1146/annurev-psych-010418-102803 10.1038/s41415-023-6132-y 10.1136/bmj.n71 10.1097/NNE.0000000000001436 10.1186/s13643-015-0147-7 10.2196/52935 10.2196/51187 10.1038/d41586-023-00381-x 10.1186/s40902-023-00381-x 10.7759/cureus.43023 10.5195/jmla.2018.345 10.1186/s12913-022-07595-1 10.7189/jogh.13.01003 10.1038/d41586-024-00753-x 10.1136/bmjopen-2023-072254 10.1097/JS9.0000000000000737 10.1001/jama.2024.3471 10.1016/j.jclinepi.2020.01.008 10.4097/kja.21080 10.1007/s11704-024-40231-1 10.1177/0149206308328501 10.1016/j.jmir.2023.11.005 10.1136/bmj.d5928 10.1002/wps.21145 10.1037/lhb0000438 10.1136/bmjopen-2016-012545 10.17226/13058 10.1186/s13643-019-1074-9 10.1038/nature25753 10.56741/jmsd.v2i02.316 10.1097/GOX.0000000000005339 10.1186/s12874-024-02203-8 10.2196/48996 10.1136/bmjhci-2023-100830 10.1016/j.conctc.2019.100443 10.7759/cureus.864 10.1016/j.jclinepi.2021.12.005 10.1101/2024.02.20.24303083 10.1145/3539618.3591703 10.1038/s41467-024-45914-8 10.1038/s41746-023-00819-6 10.1542/hpeds.2022-006690 10.2139/ssrn.4797024 10.1001/jamanetworkopen.2024.12687 10.1101/2023.11.19.23298727 10.1136/bmj.l4898 10.1136/bmjebm-2023-112678 10.1186/s41182-019-0165-6 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 Journal of Medical Internet Research Xufei Luo, Fengxian Chen, Di Zhu, Ling Wang, Zijun Wang, Hui Liu, Meng Lyu, Ye Wang, Qi Wang, Yaolong Chen. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 25.06.2024. Xufei Luo, Fengxian Chen, Di Zhu, Ling Wang, Zijun Wang, Hui Liu, Meng Lyu, Ye Wang, Qi Wang, Yaolong Chen. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 25.06.2024. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 Journal of Medical Internet Research – notice: Xufei Luo, Fengxian Chen, Di Zhu, Ling Wang, Zijun Wang, Hui Liu, Meng Lyu, Ye Wang, Qi Wang, Yaolong Chen. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 25.06.2024. – notice: Xufei Luo, Fengxian Chen, Di Zhu, Ling Wang, Zijun Wang, Hui Liu, Meng Lyu, Ye Wang, Qi Wang, Yaolong Chen. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 25.06.2024. 2024 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.2196/56780 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Library & Information Science |
EISSN | 1438-8871 |
ExternalDocumentID | oai_doaj_org_article_53061a5d38fd42f6885edb73d95852a6 PMC11234072 A798898086 38819655 10_2196_56780 |
Genre | Journal Article |
GroupedDBID | --- .4I .DC 29L 2WC 36B 53G 5GY 5VS 77K 7RV 7X7 8FI 8FJ AAFWJ AAKPC AAWTL AAYXX ABDBF ABIVO ABUWG ACGFO ADBBV AEGXH AENEX AFKRA AFPKN AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AOIJS BAWUL BCNDV BENPR CCPQU CITATION CNYFK CS3 DIK DU5 DWQXO E3Z EAP EBD EBS EJD ELW EMB EMOBN ESX F5P FRP FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO ICO IEA IHR INH ISN ITC KQ8 M1O M48 NAPCQ OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ RNS RPM SJN SV3 TR2 UKHRP XSB NPM PMFND 7X8 PPXIY PRQQA 5PM PUEGO |
ID | FETCH-LOGICAL-c497t-301aa343ea2a2ce004e8f2a32019d0ec2be40aaa6ae54ea65652c8690fbb819f3 |
IEDL.DBID | M48 |
ISSN | 1438-8871 1439-4456 |
IngestDate | Wed Aug 27 01:31:52 EDT 2025 Thu Aug 21 18:32:22 EDT 2025 Fri Jul 11 04:16:25 EDT 2025 Tue Jun 17 22:09:28 EDT 2025 Tue Jun 10 21:08:01 EDT 2025 Thu Apr 03 07:05:44 EDT 2025 Tue Jul 01 02:06:15 EDT 2025 Thu Apr 24 23:08:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research (ISSN 1438-8871), is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-301aa343ea2a2ce004e8f2a32019d0ec2be40aaa6ae54ea65652c8690fbb819f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0008-0708-504X 0000-0002-5060-5978 0009-0003-8816-0366 0000-0003-2141-4272 0000-0003-0811-6326 0000-0001-6368-3919 0009-0001-5159-3104 0009-0009-3400-5161 0000-0001-8245-6025 0000-0002-7338-4418 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/56780 |
PMID | 38819655 |
PQID | 3063464783 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_53061a5d38fd42f6885edb73d95852a6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11234072 proquest_miscellaneous_3063464783 gale_infotracmisc_A798898086 gale_infotracacademiconefile_A798898086 pubmed_primary_38819655 crossref_primary_10_2196_56780 crossref_citationtrail_10_2196_56780 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-25 |
PublicationDateYYYYMMDD | 2024-06-25 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Toronto, Canada |
PublicationTitle | Journal of medical Internet research |
PublicationTitleAlternate | J Med Internet Res |
PublicationYear | 2024 |
Publisher | Journal of Medical Internet Research JMIR Publications |
Publisher_xml | – name: Journal of Medical Internet Research – name: JMIR Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref40 ref35 Graham, R (ref3) 2011 ref34 ref37 ref36 ref31 ref30 ref32 ref2 ref1 ref39 Rasheed, Z (ref54) ref38 ref24 ref68 ref23 ref26 ref25 ref20 ref64 ref63 Hong, S (ref67) ref22 ref66 ref21 Huang, J (ref33) 2023; 13 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref45 doi: 10.5860/choice.189890 – ident: ref11 doi: 10.1186/s13643-023-02243-z – ident: ref51 doi: 10.1093/jamia/ocv044 – ident: ref57 doi: 10.1016/j.jpurol.2023.05.018 – ident: ref31 doi: 10.2196/48949 – ident: ref37 doi: 10.21203/rs.3.rs-3433956/v1 – ident: ref14 doi: 10.1177/0739456x17723971 – ident: ref44 doi: 10.1101/2023.09.06.23295072 – ident: ref39 doi: 10.14573/altex.1902131 – ident: ref15 doi: 10.1007/s10654-019-00576-5 – ident: ref28 doi: 10.1002/jrsm.1715 – ident: ref9 doi: 10.1016/j.jclinepi.2021.06.030 – ident: ref42 doi: 10.1186/s12967-023-04371-5 – ident: ref25 doi: 10.3390/systems11070351 – ident: ref16 doi: 10.1146/annurev-psych-010418-102803 – ident: ref13 – ident: ref26 doi: 10.1038/s41415-023-6132-y – ident: ref61 – ident: ref64 doi: 10.1136/bmj.n71 – ident: ref35 doi: 10.1097/NNE.0000000000001436 – ident: ref8 doi: 10.1186/s13643-015-0147-7 – ident: ref58 doi: 10.2196/52935 – ident: ref29 doi: 10.2196/51187 – ident: ref65 doi: 10.1038/d41586-023-00381-x – ident: ref67 publication-title: arXiv – ident: ref55 doi: 10.1186/s40902-023-00381-x – ident: ref32 doi: 10.7759/cureus.43023 – volume: 13 start-page: 1148 issue: 4 year: 2023 ident: ref33 publication-title: Am J Cancer Res – ident: ref60 doi: 10.5195/jmla.2018.345 – ident: ref6 doi: 10.1186/s12913-022-07595-1 – ident: ref36 doi: 10.7189/jogh.13.01003 – ident: ref38 doi: 10.1038/d41586-024-00753-x – ident: ref27 doi: 10.1136/bmjopen-2023-072254 – ident: ref12 – ident: ref24 doi: 10.1097/JS9.0000000000000737 – ident: ref68 doi: 10.1001/jama.2024.3471 – ident: ref21 doi: 10.1016/j.jclinepi.2020.01.008 – ident: ref43 doi: 10.4097/kja.21080 – ident: ref66 doi: 10.1007/s11704-024-40231-1 – ident: ref5 doi: 10.1177/0149206308328501 – ident: ref30 doi: 10.1016/j.jmir.2023.11.005 – ident: ref62 doi: 10.1136/bmj.d5928 – ident: ref22 doi: 10.1002/wps.21145 – ident: ref4 doi: 10.1037/lhb0000438 – ident: ref18 doi: 10.1136/bmjopen-2016-012545 – year: 2011 ident: ref3 publication-title: Clinical Practice Guidelines We Can Trust doi: 10.17226/13058 – ident: ref20 doi: 10.1186/s13643-019-1074-9 – ident: ref7 doi: 10.1038/nature25753 – ident: ref59 doi: 10.56741/jmsd.v2i02.316 – ident: ref41 doi: 10.1097/GOX.0000000000005339 – ident: ref34 doi: 10.1186/s12874-024-02203-8 – ident: ref47 doi: 10.2196/48996 – ident: ref23 doi: 10.1136/bmjhci-2023-100830 – ident: ref19 doi: 10.1016/j.conctc.2019.100443 – ident: ref54 publication-title: arXiv – ident: ref1 doi: 10.7759/cureus.864 – ident: ref10 doi: 10.1016/j.jclinepi.2021.12.005 – ident: ref50 doi: 10.1101/2024.02.20.24303083 – ident: ref40 doi: 10.1145/3539618.3591703 – ident: ref48 doi: 10.1038/s41467-024-45914-8 – ident: ref56 doi: 10.1038/s41746-023-00819-6 – ident: ref2 doi: 10.1542/hpeds.2022-006690 – ident: ref49 doi: 10.2139/ssrn.4797024 – ident: ref52 doi: 10.1001/jamanetworkopen.2024.12687 – ident: ref53 doi: 10.1101/2023.11.19.23298727 – ident: ref63 doi: 10.1136/bmj.l4898 – ident: ref46 doi: 10.1136/bmjebm-2023-112678 – ident: ref17 doi: 10.1186/s41182-019-0165-6 |
SSID | ssj0020491 |
Score | 2.5252552 |
Snippet | Large language models (LLMs) such as ChatGPT have become widely applied in the field of medical research. In the process of conducting systematic reviews,... Large language models (LLMs) like ChatGPT have become widely applied in the field of medical research. In the process of conducting systematic reviews, similar... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e56780 |
SubjectTerms | Analysis Computational linguistics Language processing Medical research Medicine, Experimental Natural language interfaces Viewpoint Web applications |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KDqFQSpv04TYJCoT2ZOLVwysf05IQSreEtoHchJ40ELyh6_z_zljaZd0eesnFB0vIkmZG-mTNfANwwoPlttWinqegatn5WGsnmjqFzqXG67kdk00svrWX1_LLjbrZSvVFPmGZHjhP3KlCTDuzKgidguSp1VrF4OYidAh08TO0-uKetz5MlaMW4t7ZLjwjR2dUsVOFS3Iz2XlGgv5_l-GtfWjqI7m16Vy8gOcFLbKz3MuX8CT2e3BYYg3YB1aCiWhyWbHSPdhdlPvyfXBXy4HcgbCN78TcxJaJfSXfb3zm_5SMkqHdrdhtzxAKsqtMAEvtYdUfG5pnlu8QVsz2gS3iYOvMZhJXr-D64vzn58u6ZFWovezmQ40Wba2QIqKQuI9oJFEnbgUigS400XMXZWOtbW1UMlrEe4p7yluVnEP4kMRr2OmXfXwLbOYSwqM2hi5SlEnjvOpQ9gixQpAzGSo4Wc-48YVynDJf3Bk8epBgzCiYCo421e4zx8bfFT6RuDaFRIk9vkBFMUVRzP8UpYKPJGxDhoud8LbEH-BQiALLnBFzW6fxiFfBwaQmGpyfFB-v1cVQEXmp9XH5sDLYAyEpeFdU8Carz6bPQmsib1QV6IliTQY1Lelvf4183wiJBfHYvXuMaXgPTzniMvJ24-oAdobfD_EQcdXgjkYT-gMtPSFm priority: 102 providerName: Directory of Open Access Journals |
Title | Potential Roles of Large Language Models in the Production of Systematic Reviews and Meta-Analyses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38819655 https://www.proquest.com/docview/3063464783 https://pubmed.ncbi.nlm.nih.gov/PMC11234072 https://doaj.org/article/53061a5d38fd42f6885edb73d95852a6 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEB60hSIU0for2oYVij5Fc9ndy-ZBpJWWIqYe1YO-hd3srhaOpF5S0P_emSQNF_XBlzxkN2F3Zyb7TXbmG4DDxOpEzxWPUm9lJLLSRcrwOPI2Mz4uVaq7YhP5-fxsKT5eyo1owmEBm3-6dlRParlevfn549d7NPh3FMaMCvRW4gcXvfZt3IxSKmKQi_EgIUEA3Plcgg48ESzswO7kscl21LH2__1t3ticpoGTGzvR6QO4P0BIdtTL_CHccdUeHAwJCOwVGzKMaMXZYLp7sJMPh-iPwCzqlmKE8B0XROfEas8-UUA4Xvufl4wqpK0adlUxxIds0bPC0vuw65eR-5n1BwsN05VluWt11FOcuOYxLE9Pvn44i4ZSC1EpsrSN0My15oI7lFxSOrQcp3yiOcKDzMauTIwTsdZ6rp0UTiMIlElJxay8MYgpPH8CW1VduWfAZsYjZpo7mzlKPYlNKTNUCMRd1oqZsAEc3q54UQ485FQOY1WgP0KCKTrBBBCO3a574o0_OxyTuMZG4snubtTrb8VgdoVEj2impeXKW5H4uVLSWZNym6GbhEoawGsSdkH6hYMo9ZCUgFMhXqziiOjcMoV-XwD7k55oheWk-eWtuhTURKFrlatvmgJHwAVl9PIAnvbqM46ZK0WMjjIANVGsyaSmLdXV944EHHEyJ3K75_89gxdwL0FERnFuidyHrXZ94w4QUbUmhLvpZRrC9vHJ-eIi7P5L4DWffQ47a_oNRW4kTQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+Roles+of+Large+Language+Models+in+the+Production+of+Systematic+Reviews+and+Meta-Analyses&rft.jtitle=Journal+of+medical+Internet+research&rft.au=Luo%2C+Xufei&rft.au=Chen%2C+Fengxian&rft.au=Zhu%2C+Di&rft.au=Wang%2C+Ling&rft.date=2024-06-25&rft.pub=Journal+of+Medical+Internet+Research&rft.issn=1439-4456&rft.volume=26&rft.issue=11&rft_id=info:doi/10.2196%2F56780&rft.externalDocID=A798898086 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-8871&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-8871&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-8871&client=summon |