Sequence and conformation effects on ionization potential and charge distribution of homo-nucleobase stacks using M06-2X hybrid density functional theory calculations

DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was perfo...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomolecular structure & dynamics Vol. 32; no. 4; pp. 532 - 545
Main Authors Rooman, Marianne, Wintjens, René
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 03.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was performed here, on the basis of single- and double-stranded homo-nucleobase stacks of 1-10 bases or 1-8 base pairs in standard A-, B-, and Z-conformation. First, several levels of theory were tested for calculating the vertical ionization potentials of individual nucleobases; the M06-2X/6-31G ∗ hybrid density functional theory method was selected by comparison with experimental data. Next, the vertical ionization potential, and the Mulliken charge and spin density distributions were calculated and considered on all nucleobase stacks. We found that (1) the ionization potential decreases with the number of bases, the lowest being reached by Gua≡Cyt tracts; (2) the association of two single strands into a double-stranded tract lowers the ionization potential significantly (3) differences in ionization potential due to sequence variation are roughly three times larger than those due to conformational modifications. The charge and spin density distributions were found (1) to be located toward the 5′-end for single-stranded Gua-stacks and toward the 3′-end for Cyt-stacks and basically delocalized over all bases for Ade- and Thy-stacks; (2) the association into double-stranded tracts empties the Cyt- and Thy-strands of most of the charge and all the spin density and concentrates them on the Gua- and Ade-strands. The possible biological implications of these results for transcription are discussed.
AbstractList DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was performed here, on the basis of single- and double-stranded homo-nucleobase stacks of 1-10 bases or 1-8 base pairs in standard A-, B-, and Z-conformation. First, several levels of theory were tested for calculating the vertical ionization potentials of individual nucleobases; the M06-2X/6-31G ∗ hybrid density functional theory method was selected by comparison with experimental data. Next, the vertical ionization potential, and the Mulliken charge and spin density distributions were calculated and considered on all nucleobase stacks. We found that (1) the ionization potential decreases with the number of bases, the lowest being reached by Gua≡Cyt tracts; (2) the association of two single strands into a double-stranded tract lowers the ionization potential significantly (3) differences in ionization potential due to sequence variation are roughly three times larger than those due to conformational modifications. The charge and spin density distributions were found (1) to be located toward the 5′-end for single-stranded Gua-stacks and toward the 3′-end for Cyt-stacks and basically delocalized over all bases for Ade- and Thy-stacks; (2) the association into double-stranded tracts empties the Cyt- and Thy-strands of most of the charge and all the spin density and concentrates them on the Gua- and Ade-strands. The possible biological implications of these results for transcription are discussed.
DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was performed here, on the basis of single- and double-stranded homo-nucleobase stacks of 1-10 bases or 1-8 base pairs in standard A-, B-, and Z-conformation. First, several levels of theory were tested for calculating the vertical ionization potentials of individual nucleobases; the M06-2X/6-31G* hybrid density functional theory method was selected by comparison with experimental data. Next, the vertical ionization potential, and the Mulliken charge and spin density distributions were calculated and considered on all nucleobase stacks. We found that (1) the ionization potential decreases with the number of bases, the lowest being reached by Gua≡Cyt tracts; (2) the association of two single strands into a double-stranded tract lowers the ionization potential significantly (3) differences in ionization potential due to sequence variation are roughly three times larger than those due to conformational modifications. The charge and spin density distributions were found (1) to be located toward the 5'-end for single-stranded Gua-stacks and toward the 3'-end for Cyt-stacks and basically delocalized over all bases for Ade- and Thy-stacks; (2) the association into double-stranded tracts empties the Cyt- and Thy-strands of most of the charge and all the spin density and concentrates them on the Gua- and Ade-strands. The possible biological implications of these results for transcription are discussed.
DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was performed here, on the basis of single- and double-stranded homo-nucleobase stacks of 1-10 bases or 1-8 base pairs in standard A-, B-, and Z-conformation. First, several levels of theory were tested for calculating the vertical ionization potentials of individual nucleobases; the M06-2X/6-31G* hybrid density functional theory method was selected by comparison with experimental data. Next, the vertical ionization potential, and the Mulliken charge and spin density distributions were calculated and considered on all nucleo-base stacks. We found that (1) the ionization potential decreases with the number of bases, the lowest being reached by Gua=Cyt tracts; (2) the association of two single strands into a double-stranded tract lowers the ionization potential significantly (3) differences in ionization potential due to sequence variation are roughly three times larger than those due to conformational modifications. The charge and spin density distributions were found (1) to be located toward the 5'-end for single-stranded Gua-stacks and toward the 3'-end for Cyt-stacks and basically delocalized over all bases for Ade- and Thy-stacks; (2) the association into double-stranded tracts empties the Cyt- and Thy-strands of most of the charge and all the spin density and concentrates them on the Gua- and Ade-strands. The possible biological implications of these results for transcription are discussed.
DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was performed here, on the basis of single- and double-stranded homo-nucleobase stacks of 1-10 bases or 1-8 base pairs in standard A-, B-, and Z-conformation. First, several levels of theory were tested for calculating the vertical ionization potentials of individual nucleobases; the M06-2X/6-31G* hybrid density functional theory method was selected by comparison with experimental data. Next, the vertical ionization potential, and the Mulliken charge and spin density distributions were calculated and considered on all nucleobase stacks. We found that (1) the ionization potential decreases with the number of bases, the lowest being reached by Gua≡Cyt tracts; (2) the association of two single strands into a double-stranded tract lowers the ionization potential significantly (3) differences in ionization potential due to sequence variation are roughly three times larger than those due to conformational modifications. The charge and spin density distributions were found (1) to be located toward the 5'-end for single-stranded Gua-stacks and toward the 3'-end for Cyt-stacks and basically delocalized over all bases for Ade- and Thy-stacks; (2) the association into double-stranded tracts empties the Cyt- and Thy-strands of most of the charge and all the spin density and concentrates them on the Gua- and Ade-strands. The possible biological implications of these results for transcription are discussed.DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was performed here, on the basis of single- and double-stranded homo-nucleobase stacks of 1-10 bases or 1-8 base pairs in standard A-, B-, and Z-conformation. First, several levels of theory were tested for calculating the vertical ionization potentials of individual nucleobases; the M06-2X/6-31G* hybrid density functional theory method was selected by comparison with experimental data. Next, the vertical ionization potential, and the Mulliken charge and spin density distributions were calculated and considered on all nucleobase stacks. We found that (1) the ionization potential decreases with the number of bases, the lowest being reached by Gua≡Cyt tracts; (2) the association of two single strands into a double-stranded tract lowers the ionization potential significantly (3) differences in ionization potential due to sequence variation are roughly three times larger than those due to conformational modifications. The charge and spin density distributions were found (1) to be located toward the 5'-end for single-stranded Gua-stacks and toward the 3'-end for Cyt-stacks and basically delocalized over all bases for Ade- and Thy-stacks; (2) the association into double-stranded tracts empties the Cyt- and Thy-strands of most of the charge and all the spin density and concentrates them on the Gua- and Ade-strands. The possible biological implications of these results for transcription are discussed.
Author Rooman, Marianne
Wintjens, René
Author_xml – sequence: 1
  givenname: Marianne
  surname: Rooman
  fullname: Rooman, Marianne
  email: mrooman@ulb.ac.be
  organization: BioModeling, BioInformatics and BioProcesses Department, CP 165/61 Université Libre de Bruxelles
– sequence: 2
  givenname: René
  surname: Wintjens
  fullname: Wintjens, René
  organization: Laboratory of Biopolymers and Supramolecular Nanomaterials/Structural Biology Unit, CP 206/04, Université Libre de Bruxelles
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23582046$$D View this record in MEDLINE/PubMed
BookMark eNqFksuOFCEUhokZ41z0DYxh6aZarl1VLjSTibdkjAs1cUcoONWN0tACpWkfyOeU7po26sIJCyj4_r8OnP8cnYQYAKGHlCwo6cgT0vKeUsIWjFC-aDsuSXcHnVHJu4YwKU7Q2R5p9swpOs_5MyGM0pbeQ6eMy44RsTxDP9_D1wmCAayDxSaGMaaNLi4GDOMIpmRcl_XT_Zh3t7FAKE77WbDWaQXYulySG6YDEUe8jpvYhMl4iIPOgHPR5kvGU3Zhhd-SZcM-4fVuSM5iCyG7ssPjFMxeXo3LGmLaYaO9mfzhr_k-ujtqn-HBzXyBPr588eHqdXP97tWbq8vrxoi-LQ1tZTuYwQCMYKEHYwWTfdtKM1guLLNSS2hhSbXWXWf02PVC0IFJxgfOjOAX6Nnsu52GDVhTr5q0V9vkNjrtVNRO_X0S3Fqt4jdVe1FHVw0e3xikWB82F7Vx2YD3OkCcsqJSiNovype3o6KnZFlBVtFHf5b1u55jHyvwdAZMijknGJVx5fB0tUrnFSVqHxp1DI3ah0bNoali8Y_46H-L7Pksc3NovsfkrSp652Makw7GZcX_6_ALnKjdZw
CitedBy_id crossref_primary_10_1021_acs_nanolett_9b04622
crossref_primary_10_3390_molecules29163756
crossref_primary_10_1039_D0CP04970K
crossref_primary_10_1039_C5CP07804K
crossref_primary_10_1039_D0RA01357A
crossref_primary_10_3390_ijms231810621
crossref_primary_10_3390_molecules24224044
crossref_primary_10_1039_C4CP02541E
crossref_primary_10_1063_1674_0068_29_cjcp1509187
crossref_primary_10_1021_acs_jpca_3c08232
crossref_primary_10_1063_1_5138658
crossref_primary_10_1021_jp410009a
crossref_primary_10_1016_j_omtn_2018_10_014
crossref_primary_10_1021_acs_jctc_0c00568
crossref_primary_10_1039_D3CP00884C
crossref_primary_10_1186_s40203_016_0019_4
crossref_primary_10_3987_COM_21_14590
crossref_primary_10_1134_S1068162022020224
crossref_primary_10_1002_qua_26574
crossref_primary_10_1021_acs_est_4c04449
crossref_primary_10_1021_acs_langmuir_4c01512
crossref_primary_10_1039_C9CP06244K
crossref_primary_10_1038_srep07391
crossref_primary_10_1039_C4RA09270H
crossref_primary_10_1039_C5CP04894J
crossref_primary_10_1021_acs_jcim_4c00528
crossref_primary_10_1186_s12864_019_5867_y
crossref_primary_10_1021_acs_jcim_2c01525
crossref_primary_10_1021_acs_jctc_8b00645
crossref_primary_10_1007_s10853_020_05567_6
crossref_primary_10_1002_jcc_25836
crossref_primary_10_1021_acs_biochem_3c00324
crossref_primary_10_1039_C4CP04282D
crossref_primary_10_3390_molecules26185479
Cites_doi 10.1021/jp0259059
10.1016/0368-2048(78)85042-7
10.1063/1.555819
10.1016/S0040-4039(00)91259-0
10.1021/ja9014869
10.1021/j100446a015
10.1021/jp9054582
10.1021/ja0563399
10.1080/073911011010524985
10.1021/jp026772u
10.1126/science.177.4047.451
10.1126/science.1062864
10.1021/jp071772l
10.1021/jp022056g
10.1021/ja00429a013
10.1016/S0022-2836(02)00263-2
10.1021/jp0617625
10.1021/jp801872e
10.1021/ct800308k
10.1021/jp050985c
10.1002/jcc.540040303
10.1080/09553009514550751
10.1021/jp805308p
10.1073/pnas.96.15.8353
10.1063/1.1674902
10.1021/ja015947v
10.1038/srep00272
10.1103/PhysRev.46.618
10.1021/jp201281t
10.1021/jp910788e
10.1146/annurev.biochem.71.083101.134037
10.1021/ja904777h
10.1021/j100003a032
10.1016/0022-2860(89)80020-1
10.1039/c2ra22389a
10.1021/ja00128a050
10.1006/jmbi.2000.4040
10.1007/978-3-540-72494-0
10.1021/jp200537t
10.1016/S0959-440X(02)00327-5
10.1016/0009-2614(76)80810-X
10.1021/ja9609821
10.1016/j.cbpa.2008.01.046
10.1021/ja00081a036
10.1039/b719370j
10.1007/s00214-007-0310-x
10.1002/anie.200602106
10.1007/978-1-4612-5190-3
10.1021/jp046660y
10.1007/s002140050307
10.1021/ja00107a023
10.1016/0009-2614(89)87234-3
10.1063/1.1740588
10.1021/ar990040b
10.1021/ja981888i
10.1073/pnas.0501406102
10.1021/j100153a067
10.1016/0009-2614(75)80190-4
10.1039/b919930f
10.1021/jp101711z
10.1021/jp8076134
10.1039/b718562f
10.1093/nass/nrp043
10.1039/b006196o
10.1021/ja00534a010
10.1103/PhysRevB.37.785
10.1016/0040-4039(76)80120-7
10.1021/jp9120723
10.1021/jp953306e
10.1063/1.2336217
10.1063/1.434949
10.1021/jp061184s
10.1021/ja9826892
10.1021/ja972331q
10.1021/ja00476a006
10.1063/1.3269030
10.1073/pnas.95.10.5550
10.1103/RevModPhys.23.69
10.1038/382731a0
10.1021/cr100023g
10.1039/b817284f
10.1016/S0031-8914(34)90011-2
10.1063/1.447079
10.1093/nar/28.1.235
10.1016/0006-291X(72)90243-4
10.1021/jp0132329
10.1021/ja808998q
10.1021/jp049270k
10.1103/PhysRevA.38.3098
10.1021/ja8091246
10.1016/0079-6107(70)90027-1
10.1021/cr9800255
10.2174/187221009788490040
10.1007/BF00533485
10.1021/ja907669c
10.1107/S0567739476001873
10.1021/jp901888r
ContentType Journal Article
Copyright 2013 The Author(s). Published by Taylor & Francis 2013
Copyright_xml – notice: 2013 The Author(s). Published by Taylor & Francis 2013
DBID 0YH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
5PM
DOI 10.1080/07391102.2013.783508
DatabaseName Taylor & Francis Free Journals (Free resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Nucleic Acids Abstracts
DatabaseTitleList
MEDLINE

Nucleic Acids Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 0YH
  name: Taylor & Francis Free Journals (Free resource, activated by CARLI)
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1538-0254
EndPage 545
ExternalDocumentID PMC3919198
23582046
10_1080_07391102_2013_783508
783508
Genre Article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.QJ
0BK
0R~
0YH
30N
4.4
5GY
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
DGEBU
DKSSO
EBS
EJD
EMOBN
E~A
E~B
F5P
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NX0
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SJN
SNACF
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
UT5
ZGOLN
~KM
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
07X
53G
AAGME
AAOAP
ABFMO
ABTAA
ACBBU
ACDHJ
ACQMU
ACZPZ
ADGTR
ADOPC
AFDYB
AFFVI
AI.
AMATQ
APNXG
AURDB
BFWEY
C0.
CGR
CUY
CVF
CWRZV
DLOXE
ECM
EIF
HGUVV
JEPSP
LJTGL
NPM
NUSFT
OWHGL
PCLFJ
S70
VH1
7X8
7TM
5PM
TASJS
ID FETCH-LOGICAL-c497t-1757bcbceefede9ecd4259775cbd34d2d5a5e7e61aaa88caf89441b2523b32c43
IEDL.DBID 0YH
ISSN 0739-1102
1538-0254
IngestDate Thu Aug 21 14:12:39 EDT 2025
Fri Jul 11 10:04:05 EDT 2025
Fri Jul 11 02:54:51 EDT 2025
Thu Apr 03 06:52:44 EDT 2025
Thu Apr 24 22:56:35 EDT 2025
Tue Jul 01 00:56:21 EDT 2025
Wed Dec 25 08:59:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License open-access: This is an Open Access article. Non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly attributed, cited, and is not altered, transformed, or built upon in any way, is permitted. The moral rights of the named author(s) have been asserted.
This is an open access article distributed under the Supplemental Terms and Conditions for iOpenAccess articles published in Taylor & Francis journals, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This is an Open Access article. Non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly attributed, cited, and is not altered, transformed, or built upon in any way, is permitted. The moral rights of the named author(s) have been asserted.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-1757bcbceefede9ecd4259775cbd34d2d5a5e7e61aaa88caf89441b2523b32c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Communicated by Ramaswamy H. Sarma
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/07391102.2013.783508
PMID 23582046
PQID 1491063632
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1544013136
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3919198
proquest_miscellaneous_1491063632
pubmed_primary_23582046
crossref_citationtrail_10_1080_07391102_2013_783508
crossref_primary_10_1080_07391102_2013_783508
informaworld_taylorfrancis_310_1080_07391102_2013_783508
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-03
PublicationDateYYYYMMDD 2014-04-03
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-03
  day: 03
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of biomolecular structure & dynamics
PublicationTitleAlternate J Biomol Struct Dyn
PublicationYear 2014
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0072
Kabsch W. (CIT0048) 1976; 32
Arnott S. (CIT0002) 1970; 21
Hobza P. (CIT0044) 1995; 117
Cauët E. (CIT0012) 2006; 110
Ditchfield R. (CIT0027) 1971; 54
Fernando H. (CIT0031) 1998; 95
Arnott S. (CIT0004) 1972; 177
Politzer P. (CIT0069) 1998; 99
Urano S. (CIT0094) 1989; 214
Heller A. (CIT0042) 2000; 116
Dougherty D. (CIT0030) 1978; 13
Close D. M. (CIT0018) 2003; 107
Prat F. (CIT0070) 1998; 120
Schuster G. B. (CIT0080) 2009; 53
Arnott S. (CIT0003) 1972; 47
Henderson P. T. (CIT0043) 1999; 96
Sugiyama H. (CIT0091) 1996; 118
Wintjens R. (CIT0096) 2000; 302
Barnett R. N. (CIT0005) 2001; 294
Paukku Y. (CIT0068) 2011; 115
CIT0099
CIT0014
Møller C. (CIT0064) 1934; 46
Hariharan P. C. (CIT0041) 1973; 28
Blancafort L. (CIT0008) 2006; 110
Steinbrecher T. (CIT0089) 2008; 112
Colson A.-O. (CIT0022) 1995; 67
Lias S. G. (CIT0058) 1988; 17
Kumar A. (CIT0052) 2011; 115
Šponer J. (CIT0086) 1999; 99
Lin J. (CIT0060) 1980; 84
Padva A. (CIT0067) 1976; 41
Slavíček P. (CIT0084) 2009; 131
Šponer J. (CIT0088) 2008; 10
Lewis J. P. (CIT0057) 2003; 107
Dougherty D. (CIT0029) 1976; 98
Berman H. M. (CIT0007) 2000; 28
Golubeva A. A. (CIT0038) 2009; 11
Hall D. B. (CIT0040) 1996; 382
Salzner U. (CIT0078) 2009; 131
CIT0032
Cauët E. (CIT0013) 2010; 114
Dougherty D. (CIT0028) 1977; 67
Gus J. D. (CIT0039) 2008; 458
Santoro F. (CIT0079) 2009; 131
Mulliken R. S. (CIT0065) 1955; 23
Saito I. (CIT0077) 1995; 117
Improta R. (CIT0047) 2008; 10
Yu C. (CIT0098) 1978; 100
Bravaya K. B. (CIT0011) 2010; 12
Giese B. (CIT0036) 2000; 33
Sevilla M. D. (CIT0081) 1995; 99
Yokojima S. (CIT0097) 2009; 113
Shao F. (CIT0082) 2005; 127
Kumar A. (CIT0051) 2010; 110
Hush N. S. (CIT0046) 1975; 34
Roca-Sanjuán D. (CIT0071) 2006; 125
Rooman M. (CIT0073) 2002; 319
Saito I. (CIT0076) 1998; 120
Adhikary A. (CIT0001) 2009; 131
Clark T. (CIT0017) 1983; 4
Hohenstein E. G. (CIT0045) 2008; 4
Stowasser R. (CIT0090) 1999; 121
Close D. M. (CIT0019) 2004; 108
Šponer J. (CIT0085) 1994; 116
Maksic Z. B. (CIT0061) 2002; 106
Gervasio F. L. (CIT0035) 2006; 45
Šponer J. (CIT0087) 1996; 100
Roothaan C. C. J. (CIT0074) 1951; 23
Shih C.-T. (CIT0083) 2012; 2
Cerón-Carrasco J. P. (CIT0015) 2010; 114
Lee C. (CIT0056) 1988; 37
Boon E. M. (CIT0010) 2002; 12
Genereux J. (CIT0034) 2010; 132
Giese B. (CIT0037) 2002; 71
Voityuk A. A. (CIT0095) 2005; 109
Lin J. (CIT0059) 1980; 102
Chakraborty T. (CIT0016) 2007
Colson A.-O. (CIT0021) 1993; 97
Crespo-Hernández C. E. (CIT0025) 2004; 108
Kurnikov I. V. (CIT0053) 2002; 106
Bongiorno A. (CIT0009) 2009; 112
Koopmans T. (CIT0049) 1934; 1
Saenger W. (CIT0075) 1984
Close D. M. (CIT0020) 2008; 112
Kubar T. (CIT0050) 2009; 113
Lauer G. (CIT0055) 1975; 45
Miehlich B. (CIT0063) 1989; 157
Zhao Y. (CIT0100) 2008; 120
Orlov V. M. (CIT0066) 1976; 17
Svozil D. (CIT0092) 2010; 114
Becke A. D. (CIT0006) 1988; 38
Conwell E. M. (CIT0023) 2005; 102
Lange A. W. (CIT0054) 2009; 131
Merino E. J. (CIT0062) 2008; 12
Frisch M. J. (CIT0033) 1984; 80
Conwell E. M. (CIT0024) 2001; 123
Triberis G. P. (CIT0093) 2009; 3
21417208 - J Phys Chem B. 2011 May 5;115(17):4990-5000
26620472 - J Chem Theory Comput. 2008 Dec 9;4(12):1996-2000
20394358 - J Phys Chem B. 2010 May 6;114(17):5886-94
19331336 - J Phys Chem B. 2009 Apr 23;113(16):5653-6
20449342 - Phys Chem Chem Phys. 2010 Mar 14;12(10):2292-307
19947608 - J Phys Chem B. 2009 Dec 24;113(51):16384-92
20443634 - Chem Rev. 2010 Dec 8;110(12):7002-23
19519596 - Recent Pat Nanotechnol. 2009;3(2):135-53
9576920 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5550-5
20025305 - J Chem Phys. 2009 Dec 21;131(23):231101
21469755 - J Biomol Struct Dyn. 2011 Jun;28(6):949-53
10970741 - J Mol Biol. 2000 Sep 15;302(2):395-410
19803481 - J Am Chem Soc. 2009 Oct 28;131(42):15232-45
19224030 - Phys Chem Chem Phys. 2009 Mar 7;11(9):1303-11
16965007 - J Chem Phys. 2006 Aug 28;125(8):084302
18464980 - Phys Chem Chem Phys. 2008 May 21;10(19):2656-64
12051937 - J Mol Biol. 2002 May 24;319(1):67-76
18855364 - J Phys Chem A. 2008 Nov 6;112(44):11207-12
12127450 - Curr Opin Struct Biol. 2002 Jun;12(3):320-9
20000584 - J Phys Chem B. 2010 Jan 21;114(2):1191-203
18314014 - Curr Opin Chem Biol. 2008 Apr;12(2):229-37
10995201 - Acc Chem Res. 2000 Sep;33(9):631-6
19749272 - Nucleic Acids Symp Ser (Oxf). 2009;(53):85-6
18844392 - J Phys Chem B. 2008 Nov 6;112(44):13945-50
17506547 - J Phys Chem B. 2007 Jun 14;111(23):6571-6
8751447 - Nature. 1996 Aug 22;382(6593):731-5
21500846 - J Phys Chem A. 2011 May 12;115(18):4804-10
15956188 - Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):8795-9
11707121 - J Am Chem Soc. 2001 Nov 21;123(46):11441-5
5040245 - Biochem Biophys Res Commun. 1972 Jun 28;47(6):1504-9
16706397 - J Phys Chem A. 2006 May 25;110(20):6426-32
932347 - J Am Chem Soc. 1976 Jun 23;98(13):3815-20
11197472 - Faraday Discuss. 2000;(116):1-13
16888729 - Angew Chem Int Ed Engl. 2006 Aug 25;45(34):5606-9
20047321 - J Am Chem Soc. 2010 Jan 27;132(3):891-905
19292489 - J Am Chem Soc. 2009 Mar 25;131(11):3913-22
16854034 - J Phys Chem A. 2006 Jul 27;110(29):9200-11
9900728 - Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100
19374336 - J Am Chem Soc. 2009 May 13;131(18):6460-7
10411879 - Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8353-8
5043149 - Science. 1972 Aug 4;177(4047):451-2
19469533 - J Am Chem Soc. 2009 Jun 24;131(24):8614-9
16332096 - J Am Chem Soc. 2005 Dec 14;127(49):17445-52
16852312 - J Phys Chem B. 2005 Jun 2;109(21):10793-6
11641491 - Science. 2001 Oct 19;294(5542):567-71
9944570 - Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789
22355784 - Sci Rep. 2012;2:272
20883043 - J Phys Chem B. 2010 Oct 28;114(42):13439-45
4913289 - Prog Biophys Mol Biol. 1970;21:265-319
10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42
7608626 - Int J Radiat Biol. 1995 Jun;67(6):627-45
18464974 - Phys Chem Chem Phys. 2008 May 21;10(19):2595-610
12045090 - Annu Rev Biochem. 2002;71:51-70
19049302 - J Phys Chem B. 2008 Dec 25;112(51):16935-44
11749516 - Chem Rev. 1999 Nov 10;99(11):3247-76
References_xml – volume: 106
  start-page: 6515
  year: 2002
  ident: CIT0061
  publication-title: Journal of Physical Chemistry A
  doi: 10.1021/jp0259059
– volume: 13
  start-page: 379
  year: 1978
  ident: CIT0030
  publication-title: Journal of Electron Spectroscopy and related Phenomena
  doi: 10.1016/0368-2048(78)85042-7
– volume: 17
  start-page: 1
  issue: 1
  year: 1988
  ident: CIT0058
  publication-title: Journal of Physical and Chemical Reference Data
  doi: 10.1063/1.555819
– volume: 45
  start-page: 3939
  year: 1975
  ident: CIT0055
  publication-title: Tetrahedron Letters
  doi: 10.1016/S0040-4039(00)91259-0
– volume: 131
  start-page: 8614
  year: 2009
  ident: CIT0001
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja9014869
– volume: 84
  start-page: 1006
  year: 1980
  ident: CIT0060
  publication-title: Journal of Physical Chemistry
  doi: 10.1021/j100446a015
– volume: 113
  start-page: 16384
  year: 2009
  ident: CIT0097
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp9054582
– volume: 127
  start-page: 17445
  year: 2005
  ident: CIT0082
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja0563399
– ident: CIT0072
  doi: 10.1080/073911011010524985
– volume: 107
  start-page: 2581
  year: 2003
  ident: CIT0057
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp026772u
– volume: 177
  start-page: 451
  year: 1972
  ident: CIT0004
  publication-title: Science
  doi: 10.1126/science.177.4047.451
– volume: 294
  start-page: 567
  year: 2001
  ident: CIT0005
  publication-title: Science
  doi: 10.1126/science.1062864
– ident: CIT0099
  doi: 10.1021/jp071772l
– volume: 107
  start-page: 864
  year: 2003
  ident: CIT0018
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp022056g
– volume: 98
  start-page: 3815
  year: 1976
  ident: CIT0029
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja00429a013
– volume: 319
  start-page: 67
  year: 2002
  ident: CIT0073
  publication-title: Journal of Molecular Biology
  doi: 10.1016/S0022-2836(02)00263-2
– volume: 110
  start-page: 9200
  year: 2006
  ident: CIT0012
  publication-title: Journal of Physical Chemistry A
  doi: 10.1021/jp0617625
– volume: 112
  start-page: 13945
  year: 2009
  ident: CIT0009
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp801872e
– volume: 4
  start-page: 1996
  year: 2008
  ident: CIT0045
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/ct800308k
– volume: 109
  start-page: 10793
  year: 2005
  ident: CIT0095
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp050985c
– volume: 4
  start-page: 294
  year: 1983
  ident: CIT0017
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.540040303
– volume: 67
  start-page: 627
  year: 1995
  ident: CIT0022
  publication-title: International Journal of Radiation Biology
  doi: 10.1080/09553009514550751
– ident: CIT0032
– volume: 112
  start-page: 11207
  year: 2008
  ident: CIT0020
  publication-title: Journal of Physical Chemistry A
  doi: 10.1021/jp805308p
– volume: 96
  start-page: 8353
  year: 1999
  ident: CIT0043
  publication-title: Proceedings of the National academy of Sciences of the USA
  doi: 10.1073/pnas.96.15.8353
– volume: 54
  start-page: 724
  year: 1971
  ident: CIT0027
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.1674902
– volume: 123
  start-page: 11441
  year: 2001
  ident: CIT0024
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja015947v
– volume: 2
  start-page: 272
  year: 2012
  ident: CIT0083
  publication-title: Science Reports
  doi: 10.1038/srep00272
– volume: 46
  start-page: 618
  year: 1934
  ident: CIT0064
  publication-title: Physical Review
  doi: 10.1103/PhysRev.46.618
– volume: 115
  start-page: 4804
  year: 2011
  ident: CIT0068
  publication-title: Journal of Physical Chemistry A
  doi: 10.1021/jp201281t
– volume: 114
  start-page: 1191
  year: 2010
  ident: CIT0092
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp910788e
– volume: 71
  start-page: 51
  year: 2002
  ident: CIT0037
  publication-title: Annual Review of Biochemistry
  doi: 10.1146/annurev.biochem.71.083101.134037
– volume: 131
  start-page: 15232
  year: 2009
  ident: CIT0079
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja904777h
– volume: 99
  start-page: 1060
  year: 1995
  ident: CIT0081
  publication-title: Journal of Physical Chemistry
  doi: 10.1021/j100003a032
– volume: 214
  start-page: 315
  year: 1989
  ident: CIT0094
  publication-title: Journal of Molecular Structure
  doi: 10.1016/0022-2860(89)80020-1
– ident: CIT0014
  doi: 10.1039/c2ra22389a
– volume: 117
  start-page: 6406
  year: 1995
  ident: CIT0077
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja00128a050
– volume: 302
  start-page: 393
  year: 2000
  ident: CIT0096
  publication-title: Journal of Molecular Biology
  doi: 10.1006/jmbi.2000.4040
– volume-title: Charge migration in DNA: Perspectives from physics, chemistry and biology
  year: 2007
  ident: CIT0016
  doi: 10.1007/978-3-540-72494-0
– volume: 115
  start-page: 4990
  year: 2011
  ident: CIT0052
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp200537t
– volume: 12
  start-page: 320
  year: 2002
  ident: CIT0010
  publication-title: Current Opinion in Structural Biology
  doi: 10.1016/S0959-440X(02)00327-5
– volume: 41
  start-page: 278
  year: 1976
  ident: CIT0067
  publication-title: Chemical Physics Letters
  doi: 10.1016/0009-2614(76)80810-X
– volume: 118
  start-page: 7063
  year: 1996
  ident: CIT0091
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja9609821
– volume: 12
  start-page: 229
  year: 2008
  ident: CIT0062
  publication-title: Current Opinion in Chemical Biology
  doi: 10.1016/j.cbpa.2008.01.046
– volume: 116
  start-page: 709
  year: 1994
  ident: CIT0085
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja00081a036
– volume: 10
  start-page: 2595
  year: 2008
  ident: CIT0088
  publication-title: Physical Chemistry Chemical Physics: PCCP
  doi: 10.1039/b719370j
– volume: 458
  start-page: 164
  year: 2008
  ident: CIT0039
  publication-title: Chemical Physics Letters
– volume: 120
  start-page: 215
  year: 2008
  ident: CIT0100
  publication-title: Theoretical Chemistry Accounts
  doi: 10.1007/s00214-007-0310-x
– volume: 45
  start-page: 5606
  year: 2006
  ident: CIT0035
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.200602106
– volume-title: Principles of nucleic acid structure
  year: 1984
  ident: CIT0075
  doi: 10.1007/978-1-4612-5190-3
– volume: 108
  start-page: 10376
  year: 2004
  ident: CIT0019
  publication-title: Journal of Physical Chemistry A
  doi: 10.1021/jp046660y
– volume: 99
  start-page: 83
  year: 1998
  ident: CIT0069
  publication-title: Theoretical Chemistry Accounts
  doi: 10.1007/s002140050307
– volume: 117
  start-page: 792
  year: 1995
  ident: CIT0044
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja00107a023
– volume: 157
  start-page: 200
  year: 1989
  ident: CIT0063
  publication-title: Chemical Physics Letters
  doi: 10.1016/0009-2614(89)87234-3
– volume: 23
  start-page: 1833
  year: 1955
  ident: CIT0065
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.1740588
– volume: 33
  start-page: 631
  year: 2000
  ident: CIT0036
  publication-title: Accounts of Chemical Research
  doi: 10.1021/ar990040b
– volume: 120
  start-page: 12686
  year: 1998
  ident: CIT0076
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja981888i
– volume: 102
  start-page: 8795
  year: 2005
  ident: CIT0023
  publication-title: Proceedings of the National Academy of Sciences of the USA
  doi: 10.1073/pnas.0501406102
– volume: 97
  start-page: 13852
  year: 1993
  ident: CIT0021
  publication-title: Journal of Physical Chemistry
  doi: 10.1021/j100153a067
– volume: 34
  start-page: 11
  year: 1975
  ident: CIT0046
  publication-title: Chemical Physics Letters
  doi: 10.1016/0009-2614(75)80190-4
– volume: 12
  start-page: 2292
  year: 2010
  ident: CIT0011
  publication-title: Physical Chemistry Chemical Physics: PCCP
  doi: 10.1039/b919930f
– volume: 114
  start-page: 13439
  year: 2010
  ident: CIT0015
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp101711z
– volume: 112
  start-page: 16935
  year: 2008
  ident: CIT0089
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp8076134
– volume: 10
  start-page: 2656
  year: 2008
  ident: CIT0047
  publication-title: Physical Chemistry Chemical Physics: PCCP
  doi: 10.1039/b718562f
– volume: 53
  start-page: 85
  year: 2009
  ident: CIT0080
  publication-title: Nucleic Acids Symposium Series
  doi: 10.1093/nass/nrp043
– volume: 116
  start-page: 1
  year: 2000
  ident: CIT0042
  publication-title: Faraday Discussions
  doi: 10.1039/b006196o
– volume: 102
  start-page: 4627
  year: 1980
  ident: CIT0059
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja00534a010
– volume: 37
  start-page: 785
  year: 1988
  ident: CIT0056
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.37.785
– volume: 17
  start-page: 4315
  year: 1976
  ident: CIT0066
  publication-title: Tetrahedron Letters
  doi: 10.1016/0040-4039(76)80120-7
– volume: 114
  start-page: 5886
  year: 2010
  ident: CIT0013
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp9120723
– volume: 100
  start-page: 5590
  year: 1996
  ident: CIT0087
  publication-title: Journal of Physical Chemistry
  doi: 10.1021/jp953306e
– volume: 125
  start-page: 084302
  year: 2006
  ident: CIT0071
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.2336217
– volume: 67
  start-page: 1289
  year: 1977
  ident: CIT0028
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.434949
– volume: 110
  start-page: 6426
  year: 2006
  ident: CIT0008
  publication-title: Journal of Physical Chemistry A
  doi: 10.1021/jp061184s
– volume: 121
  start-page: 3414
  year: 1999
  ident: CIT0090
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja9826892
– volume: 120
  start-page: 845
  year: 1998
  ident: CIT0070
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja972331q
– volume: 100
  start-page: 2303
  year: 1978
  ident: CIT0098
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja00476a006
– volume: 131
  start-page: 231101
  year: 2009
  ident: CIT0078
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.3269030
– volume: 95
  start-page: 5550
  year: 1998
  ident: CIT0031
  publication-title: Proceedings of the National academy of Sciences of the USA
  doi: 10.1073/pnas.95.10.5550
– volume: 23
  start-page: 69
  year: 1951
  ident: CIT0074
  publication-title: Reviews of Modern Physics
  doi: 10.1103/RevModPhys.23.69
– volume: 382
  start-page: 731
  year: 1996
  ident: CIT0040
  publication-title: Nature
  doi: 10.1038/382731a0
– volume: 110
  start-page: 7002
  year: 2010
  ident: CIT0051
  publication-title: Chemical Reviews
  doi: 10.1021/cr100023g
– volume: 11
  start-page: 1303
  year: 2009
  ident: CIT0038
  publication-title: Physical Chemistry Chemical Physics: PCCP
  doi: 10.1039/b817284f
– volume: 1
  start-page: 104
  year: 1934
  ident: CIT0049
  publication-title: Physica
  doi: 10.1016/S0031-8914(34)90011-2
– volume: 80
  start-page: 3265
  year: 1984
  ident: CIT0033
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.447079
– volume: 28
  start-page: 235
  year: 2000
  ident: CIT0007
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/28.1.235
– volume: 47
  start-page: 1504
  year: 1972
  ident: CIT0003
  publication-title: Biochemical and Biophysical Research Communications
  doi: 10.1016/0006-291X(72)90243-4
– volume: 106
  start-page: 2381
  year: 2002
  ident: CIT0053
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp0132329
– volume: 131
  start-page: 3913
  year: 2009
  ident: CIT0054
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja808998q
– volume: 108
  start-page: 6373
  year: 2004
  ident: CIT0025
  publication-title: Journal of Physical Chemistry A
  doi: 10.1021/jp049270k
– volume: 38
  start-page: 3098
  year: 1988
  ident: CIT0006
  publication-title: Physical Review A
  doi: 10.1103/PhysRevA.38.3098
– volume: 131
  start-page: 6460
  year: 2009
  ident: CIT0084
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja8091246
– volume: 21
  start-page: 265
  year: 1970
  ident: CIT0002
  publication-title: Progress in Biophysics and Molecular Biology
  doi: 10.1016/0079-6107(70)90027-1
– volume: 99
  start-page: 3247
  year: 1999
  ident: CIT0086
  publication-title: Chemical Reviews
  doi: 10.1021/cr9800255
– volume: 3
  start-page: 135
  year: 2009
  ident: CIT0093
  publication-title: Recent Patents on Nanotechnology
  doi: 10.2174/187221009788490040
– volume: 28
  start-page: 213
  year: 1973
  ident: CIT0041
  publication-title: Theoretica Chimica Acta
  doi: 10.1007/BF00533485
– volume: 132
  start-page: 891
  year: 2010
  ident: CIT0034
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja907669c
– volume: 32
  start-page: 922
  year: 1976
  ident: CIT0048
  publication-title: Acta Crystallographica A
  doi: 10.1107/S0567739476001873
– volume: 113
  start-page: 5653
  year: 2009
  ident: CIT0050
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp901888r
– reference: 9576920 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5550-5
– reference: 19049302 - J Phys Chem B. 2008 Dec 25;112(51):16935-44
– reference: 19947608 - J Phys Chem B. 2009 Dec 24;113(51):16384-92
– reference: 20394358 - J Phys Chem B. 2010 May 6;114(17):5886-94
– reference: 16852312 - J Phys Chem B. 2005 Jun 2;109(21):10793-6
– reference: 17506547 - J Phys Chem B. 2007 Jun 14;111(23):6571-6
– reference: 20000584 - J Phys Chem B. 2010 Jan 21;114(2):1191-203
– reference: 8751447 - Nature. 1996 Aug 22;382(6593):731-5
– reference: 19331336 - J Phys Chem B. 2009 Apr 23;113(16):5653-6
– reference: 9944570 - Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789
– reference: 10411879 - Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8353-8
– reference: 10995201 - Acc Chem Res. 2000 Sep;33(9):631-6
– reference: 22355784 - Sci Rep. 2012;2:272
– reference: 21469755 - J Biomol Struct Dyn. 2011 Jun;28(6):949-53
– reference: 4913289 - Prog Biophys Mol Biol. 1970;21:265-319
– reference: 16706397 - J Phys Chem A. 2006 May 25;110(20):6426-32
– reference: 932347 - J Am Chem Soc. 1976 Jun 23;98(13):3815-20
– reference: 5040245 - Biochem Biophys Res Commun. 1972 Jun 28;47(6):1504-9
– reference: 26620472 - J Chem Theory Comput. 2008 Dec 9;4(12):1996-2000
– reference: 20443634 - Chem Rev. 2010 Dec 8;110(12):7002-23
– reference: 11749516 - Chem Rev. 1999 Nov 10;99(11):3247-76
– reference: 11197472 - Faraday Discuss. 2000;(116):1-13
– reference: 19292489 - J Am Chem Soc. 2009 Mar 25;131(11):3913-22
– reference: 18844392 - J Phys Chem B. 2008 Nov 6;112(44):13945-50
– reference: 19374336 - J Am Chem Soc. 2009 May 13;131(18):6460-7
– reference: 19749272 - Nucleic Acids Symp Ser (Oxf). 2009;(53):85-6
– reference: 20449342 - Phys Chem Chem Phys. 2010 Mar 14;12(10):2292-307
– reference: 18464974 - Phys Chem Chem Phys. 2008 May 21;10(19):2595-610
– reference: 18314014 - Curr Opin Chem Biol. 2008 Apr;12(2):229-37
– reference: 5043149 - Science. 1972 Aug 4;177(4047):451-2
– reference: 16854034 - J Phys Chem A. 2006 Jul 27;110(29):9200-11
– reference: 7608626 - Int J Radiat Biol. 1995 Jun;67(6):627-45
– reference: 20047321 - J Am Chem Soc. 2010 Jan 27;132(3):891-905
– reference: 20883043 - J Phys Chem B. 2010 Oct 28;114(42):13439-45
– reference: 16888729 - Angew Chem Int Ed Engl. 2006 Aug 25;45(34):5606-9
– reference: 19803481 - J Am Chem Soc. 2009 Oct 28;131(42):15232-45
– reference: 10970741 - J Mol Biol. 2000 Sep 15;302(2):395-410
– reference: 11707121 - J Am Chem Soc. 2001 Nov 21;123(46):11441-5
– reference: 12051937 - J Mol Biol. 2002 May 24;319(1):67-76
– reference: 10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42
– reference: 18464980 - Phys Chem Chem Phys. 2008 May 21;10(19):2656-64
– reference: 21417208 - J Phys Chem B. 2011 May 5;115(17):4990-5000
– reference: 21500846 - J Phys Chem A. 2011 May 12;115(18):4804-10
– reference: 11641491 - Science. 2001 Oct 19;294(5542):567-71
– reference: 20025305 - J Chem Phys. 2009 Dec 21;131(23):231101
– reference: 9900728 - Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100
– reference: 12127450 - Curr Opin Struct Biol. 2002 Jun;12(3):320-9
– reference: 16965007 - J Chem Phys. 2006 Aug 28;125(8):084302
– reference: 16332096 - J Am Chem Soc. 2005 Dec 14;127(49):17445-52
– reference: 19469533 - J Am Chem Soc. 2009 Jun 24;131(24):8614-9
– reference: 15956188 - Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):8795-9
– reference: 12045090 - Annu Rev Biochem. 2002;71:51-70
– reference: 19224030 - Phys Chem Chem Phys. 2009 Mar 7;11(9):1303-11
– reference: 19519596 - Recent Pat Nanotechnol. 2009;3(2):135-53
– reference: 18855364 - J Phys Chem A. 2008 Nov 6;112(44):11207-12
SSID ssj0021171
Score 2.1967628
Snippet DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 532
SubjectTerms charge distribution
charge transfer
DNA - chemistry
DNA stacks
electron holes
homo-nucleobase stacks
hybrid density functional theory
Models, Theoretical
Nucleic Acid Conformation
oxidative damage
quantum chemistry calculations
radical cations
spin density distribution
vertical ionization potential
Title Sequence and conformation effects on ionization potential and charge distribution of homo-nucleobase stacks using M06-2X hybrid density functional theory calculations
URI https://www.tandfonline.com/doi/abs/10.1080/07391102.2013.783508
https://www.ncbi.nlm.nih.gov/pubmed/23582046
https://www.proquest.com/docview/1491063632
https://www.proquest.com/docview/1544013136
https://pubmed.ncbi.nlm.nih.gov/PMC3919198
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF6kRfBF_O1ZKyP4urrJbjbJY5GWQ2hftHA-hf3piZoUL324f8i_05lsEu6KVpCD40J2Q8LM3nyzme8bxt5Ea20sfM6przFXPtTcaBu5NEJbL0SUJRGFzy_08lJ9WBWrHRY_lVVSDh2TUMTwX02L29jNVBH3jl4uYdQiGlUm39LWBbF9D3NyVvRo8Xk5p1xZNqRcNIPTlIk895er7AWnPenSPwHQm3WUO4Hp7AG7PyJKOEku8JDdCe0jdjf1mNw-Zr8-jsXSgM8LmP3OdEUYazkAf9KubCJkwlXXUwURXnKYQEpKATzp646tsaCLsO5-dLwlLeSO4iAgxnTfNkBV9F_gXGier2C9JTYYeCqR77dAETRtPMLAntwCuocbu4dtnrDLs9NP75d8bM7AnarLniPsKK2zGGNjQAsH53H1I5gsnPVS-dwXpghl0JkxpqqciVWNyMvmmPhamTsln7KDtmvDcwbK1EU0dYbYTCgZhM2rgCjOYHJqdRHkgsnJKo0blcupgcb3JpsETkdbNmTLJtlywfg86yopd_xjfLVr8KYfdkxiam_SyNunvp6co8HVSa9cTBu66w0mVgjHtNQyv2VMoSjJzaResGfJoeYbHojMQuGZcs_V5gGkDr5_pv26HlTC8TbxU734_8c6YvfwKNUpyZfsoP95HY4RgvX21bDK8FuKi9_R_iwe
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQEYJLKc8u5WEkrl6S-JHkiCqqBbp7oZV6i2zHZlEhqdjsYflB_E5mYifqVrRIoL1EsicbyxPPI998Q8gbb4zxss4Y9jVmonYl08p4xnWiTJ0knudYKDxfqNmp-HgmBzThKsIqMYb2gSiiP6vx5cZk9ACJe4tfl8BsYR1VyqeYu8By39uyVDk2MeDJYoy50rSPuVCCochQPXfNXbas0xZ36Z880KtAykuW6eg-McOaAiDlfLruzNT-vEL3-F-L3iO70W-l74KiPSC3XPOQ3AmdLDePyK_PEZJN4Q8oxNhjUSSNiBEKl5j7DWWf9KLtEKcEt-wFkK_J0RpZfGMDLtp6umy_t6xBxuUWrS0FT9aeryhi9b_QeaJYdkaXG6w5ozUC8bsNRTsd0pu0r9HcUFBCG3uUrR6T06P3J4czFltAMCvKvGPg3OTGGrDk3oEeOVvDGQMuq7Sm5qLOaqmly51KtdZFYbUvSvDvTAbhteGZFfwJ2Wnaxu0TKnQpvS5T8AATwV1issKBr6ghBDZKOj4hfNj6ykZ-dGzT8a1KBxrVuAMV7kAVdmBC2Ch1EfhB_jK_uKxVVdfnZXxoolLxm0VfDxpYwRmAH3Z049r1CsI3cPoUVzy7YY4UGEqnXE3I06C14wP35dKJgJF8S5_HCchBvj3SfF32XOTwmPArnv37sl6Ru7OT-XF1_GHx6YDcg5GAjOLPyU73Y-1egNPXmZf9a_0bvohOjw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQIhCX5Q3lOUhcXZI4cZIjAqrlsRUSrNRb5CdFC0m1TQ_lB_E7mYmTqF3BIoF6qRTbiuWx5xtnvm8Ye-611j6zCae6xjy1ruRKas-FiqS2UeRFTkTh47k8OknfLbLFDouf0iophvZBKKI7q2lzr6wfMuJe0Mcl9FpEo4rFlK4uiO17WZJ2OJE4ovkYcsVxF3JRD05dBvLcH0bZc0570qW_A6Dn8yh3HNPsOlPDlEI-yul00-qp-XFO7fF_5nyDHfaoFV4GM7vJLrn6FrsS6lhub7Ofn_qEbMDxASPskRIJfb4I4F-6-Q2kT1g1LWUp4ZBdB1JrcmBJw7cvvwWNh2XzveE16S035GsBcaw5XQNl6n-B40jyZAHLLTHOwFIafrsF8tLhchM6huYW0ARNX6FsfYedzN58fnXE-wIQ3KRl3nKENrk2Gv24d2hFzlg8YRCwZkZbkdrEZipzuZOxUqoojPJFiehOJxhca5GYVNxlB3VTu_sMUlVmXpUx4r8oFS7SSeEQKSoMgLXMnJgwMax8ZXp1dCrS8a2KBxHVfgUqWoEqrMCE8bHXKqiD_KV9sWtUVdvdyvhQQqUSF3d9NhhghScAfdZRtWs2awzeEPJJIUVyQZsspUA6FnLC7gWjHV-4I0vj3pmwfM-cxwakQL7_pP667JTI8TXxVzz492k9ZVc_vp5VH97O3z9k1_BBSIsSj9hBe7ZxjxHxtfpJt6l_AWgXTTM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequence+and+conformation+effects+on+ionization+potential+and+charge+distribution+of+homo-nucleobase+stacks+using+M06-2X+hybrid+density+functional+theory+calculations&rft.jtitle=Journal+of+biomolecular+structure+%26+dynamics&rft.au=Rooman%2C+Marianne&rft.au=Wintjens%2C+Ren%C3%A9&rft.date=2014-04-03&rft.issn=1538-0254&rft.eissn=1538-0254&rft.volume=32&rft.issue=4&rft.spage=532&rft_id=info:doi/10.1080%2F07391102.2013.783508&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0739-1102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0739-1102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0739-1102&client=summon