Sequence and conformation effects on ionization potential and charge distribution of homo-nucleobase stacks using M06-2X hybrid density functional theory calculations
DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was perfo...
Saved in:
Published in | Journal of biomolecular structure & dynamics Vol. 32; no. 4; pp. 532 - 545 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
03.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was performed here, on the basis of single- and double-stranded homo-nucleobase stacks of 1-10 bases or 1-8 base pairs in standard A-, B-, and Z-conformation. First, several levels of theory were tested for calculating the vertical ionization potentials of individual nucleobases; the M06-2X/6-31G
∗
hybrid density functional theory method was selected by comparison with experimental data. Next, the vertical ionization potential, and the Mulliken charge and spin density distributions were calculated and considered on all nucleobase stacks. We found that (1) the ionization potential decreases with the number of bases, the lowest being reached by Gua≡Cyt tracts; (2) the association of two single strands into a double-stranded tract lowers the ionization potential significantly (3) differences in ionization potential due to sequence variation are roughly three times larger than those due to conformational modifications. The charge and spin density distributions were found (1) to be located toward the 5′-end for single-stranded Gua-stacks and toward the 3′-end for Cyt-stacks and basically delocalized over all bases for Ade- and Thy-stacks; (2) the association into double-stranded tracts empties the Cyt- and Thy-strands of most of the charge and all the spin density and concentrates them on the Gua- and Ade-strands. The possible biological implications of these results for transcription are discussed. |
---|---|
AbstractList | DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was performed here, on the basis of single- and double-stranded homo-nucleobase stacks of 1-10 bases or 1-8 base pairs in standard A-, B-, and Z-conformation. First, several levels of theory were tested for calculating the vertical ionization potentials of individual nucleobases; the M06-2X/6-31G
∗
hybrid density functional theory method was selected by comparison with experimental data. Next, the vertical ionization potential, and the Mulliken charge and spin density distributions were calculated and considered on all nucleobase stacks. We found that (1) the ionization potential decreases with the number of bases, the lowest being reached by Gua≡Cyt tracts; (2) the association of two single strands into a double-stranded tract lowers the ionization potential significantly (3) differences in ionization potential due to sequence variation are roughly three times larger than those due to conformational modifications. The charge and spin density distributions were found (1) to be located toward the 5′-end for single-stranded Gua-stacks and toward the 3′-end for Cyt-stacks and basically delocalized over all bases for Ade- and Thy-stacks; (2) the association into double-stranded tracts empties the Cyt- and Thy-strands of most of the charge and all the spin density and concentrates them on the Gua- and Ade-strands. The possible biological implications of these results for transcription are discussed. DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was performed here, on the basis of single- and double-stranded homo-nucleobase stacks of 1-10 bases or 1-8 base pairs in standard A-, B-, and Z-conformation. First, several levels of theory were tested for calculating the vertical ionization potentials of individual nucleobases; the M06-2X/6-31G* hybrid density functional theory method was selected by comparison with experimental data. Next, the vertical ionization potential, and the Mulliken charge and spin density distributions were calculated and considered on all nucleobase stacks. We found that (1) the ionization potential decreases with the number of bases, the lowest being reached by Gua≡Cyt tracts; (2) the association of two single strands into a double-stranded tract lowers the ionization potential significantly (3) differences in ionization potential due to sequence variation are roughly three times larger than those due to conformational modifications. The charge and spin density distributions were found (1) to be located toward the 5'-end for single-stranded Gua-stacks and toward the 3'-end for Cyt-stacks and basically delocalized over all bases for Ade- and Thy-stacks; (2) the association into double-stranded tracts empties the Cyt- and Thy-strands of most of the charge and all the spin density and concentrates them on the Gua- and Ade-strands. The possible biological implications of these results for transcription are discussed. DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was performed here, on the basis of single- and double-stranded homo-nucleobase stacks of 1-10 bases or 1-8 base pairs in standard A-, B-, and Z-conformation. First, several levels of theory were tested for calculating the vertical ionization potentials of individual nucleobases; the M06-2X/6-31G* hybrid density functional theory method was selected by comparison with experimental data. Next, the vertical ionization potential, and the Mulliken charge and spin density distributions were calculated and considered on all nucleo-base stacks. We found that (1) the ionization potential decreases with the number of bases, the lowest being reached by Gua=Cyt tracts; (2) the association of two single strands into a double-stranded tract lowers the ionization potential significantly (3) differences in ionization potential due to sequence variation are roughly three times larger than those due to conformational modifications. The charge and spin density distributions were found (1) to be located toward the 5'-end for single-stranded Gua-stacks and toward the 3'-end for Cyt-stacks and basically delocalized over all bases for Ade- and Thy-stacks; (2) the association into double-stranded tracts empties the Cyt- and Thy-strands of most of the charge and all the spin density and concentrates them on the Gua- and Ade-strands. The possible biological implications of these results for transcription are discussed. DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was performed here, on the basis of single- and double-stranded homo-nucleobase stacks of 1-10 bases or 1-8 base pairs in standard A-, B-, and Z-conformation. First, several levels of theory were tested for calculating the vertical ionization potentials of individual nucleobases; the M06-2X/6-31G* hybrid density functional theory method was selected by comparison with experimental data. Next, the vertical ionization potential, and the Mulliken charge and spin density distributions were calculated and considered on all nucleobase stacks. We found that (1) the ionization potential decreases with the number of bases, the lowest being reached by Gua≡Cyt tracts; (2) the association of two single strands into a double-stranded tract lowers the ionization potential significantly (3) differences in ionization potential due to sequence variation are roughly three times larger than those due to conformational modifications. The charge and spin density distributions were found (1) to be located toward the 5'-end for single-stranded Gua-stacks and toward the 3'-end for Cyt-stacks and basically delocalized over all bases for Ade- and Thy-stacks; (2) the association into double-stranded tracts empties the Cyt- and Thy-strands of most of the charge and all the spin density and concentrates them on the Gua- and Ade-strands. The possible biological implications of these results for transcription are discussed.DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was performed here, on the basis of single- and double-stranded homo-nucleobase stacks of 1-10 bases or 1-8 base pairs in standard A-, B-, and Z-conformation. First, several levels of theory were tested for calculating the vertical ionization potentials of individual nucleobases; the M06-2X/6-31G* hybrid density functional theory method was selected by comparison with experimental data. Next, the vertical ionization potential, and the Mulliken charge and spin density distributions were calculated and considered on all nucleobase stacks. We found that (1) the ionization potential decreases with the number of bases, the lowest being reached by Gua≡Cyt tracts; (2) the association of two single strands into a double-stranded tract lowers the ionization potential significantly (3) differences in ionization potential due to sequence variation are roughly three times larger than those due to conformational modifications. The charge and spin density distributions were found (1) to be located toward the 5'-end for single-stranded Gua-stacks and toward the 3'-end for Cyt-stacks and basically delocalized over all bases for Ade- and Thy-stacks; (2) the association into double-stranded tracts empties the Cyt- and Thy-strands of most of the charge and all the spin density and concentrates them on the Gua- and Ade-strands. The possible biological implications of these results for transcription are discussed. |
Author | Rooman, Marianne Wintjens, René |
Author_xml | – sequence: 1 givenname: Marianne surname: Rooman fullname: Rooman, Marianne email: mrooman@ulb.ac.be organization: BioModeling, BioInformatics and BioProcesses Department, CP 165/61 Université Libre de Bruxelles – sequence: 2 givenname: René surname: Wintjens fullname: Wintjens, René organization: Laboratory of Biopolymers and Supramolecular Nanomaterials/Structural Biology Unit, CP 206/04, Université Libre de Bruxelles |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23582046$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksuOFCEUhokZ41z0DYxh6aZarl1VLjSTibdkjAs1cUcoONWN0tACpWkfyOeU7po26sIJCyj4_r8OnP8cnYQYAKGHlCwo6cgT0vKeUsIWjFC-aDsuSXcHnVHJu4YwKU7Q2R5p9swpOs_5MyGM0pbeQ6eMy44RsTxDP9_D1wmCAayDxSaGMaaNLi4GDOMIpmRcl_XT_Zh3t7FAKE77WbDWaQXYulySG6YDEUe8jpvYhMl4iIPOgHPR5kvGU3Zhhd-SZcM-4fVuSM5iCyG7ssPjFMxeXo3LGmLaYaO9mfzhr_k-ujtqn-HBzXyBPr588eHqdXP97tWbq8vrxoi-LQ1tZTuYwQCMYKEHYwWTfdtKM1guLLNSS2hhSbXWXWf02PVC0IFJxgfOjOAX6Nnsu52GDVhTr5q0V9vkNjrtVNRO_X0S3Fqt4jdVe1FHVw0e3xikWB82F7Vx2YD3OkCcsqJSiNovype3o6KnZFlBVtFHf5b1u55jHyvwdAZMijknGJVx5fB0tUrnFSVqHxp1DI3ah0bNoali8Y_46H-L7Pksc3NovsfkrSp652Makw7GZcX_6_ALnKjdZw |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_9b04622 crossref_primary_10_3390_molecules29163756 crossref_primary_10_1039_D0CP04970K crossref_primary_10_1039_C5CP07804K crossref_primary_10_1039_D0RA01357A crossref_primary_10_3390_ijms231810621 crossref_primary_10_3390_molecules24224044 crossref_primary_10_1039_C4CP02541E crossref_primary_10_1063_1674_0068_29_cjcp1509187 crossref_primary_10_1021_acs_jpca_3c08232 crossref_primary_10_1063_1_5138658 crossref_primary_10_1021_jp410009a crossref_primary_10_1016_j_omtn_2018_10_014 crossref_primary_10_1021_acs_jctc_0c00568 crossref_primary_10_1039_D3CP00884C crossref_primary_10_1186_s40203_016_0019_4 crossref_primary_10_3987_COM_21_14590 crossref_primary_10_1134_S1068162022020224 crossref_primary_10_1002_qua_26574 crossref_primary_10_1021_acs_est_4c04449 crossref_primary_10_1021_acs_langmuir_4c01512 crossref_primary_10_1039_C9CP06244K crossref_primary_10_1038_srep07391 crossref_primary_10_1039_C4RA09270H crossref_primary_10_1039_C5CP04894J crossref_primary_10_1021_acs_jcim_4c00528 crossref_primary_10_1186_s12864_019_5867_y crossref_primary_10_1021_acs_jcim_2c01525 crossref_primary_10_1021_acs_jctc_8b00645 crossref_primary_10_1007_s10853_020_05567_6 crossref_primary_10_1002_jcc_25836 crossref_primary_10_1021_acs_biochem_3c00324 crossref_primary_10_1039_C4CP04282D crossref_primary_10_3390_molecules26185479 |
Cites_doi | 10.1021/jp0259059 10.1016/0368-2048(78)85042-7 10.1063/1.555819 10.1016/S0040-4039(00)91259-0 10.1021/ja9014869 10.1021/j100446a015 10.1021/jp9054582 10.1021/ja0563399 10.1080/073911011010524985 10.1021/jp026772u 10.1126/science.177.4047.451 10.1126/science.1062864 10.1021/jp071772l 10.1021/jp022056g 10.1021/ja00429a013 10.1016/S0022-2836(02)00263-2 10.1021/jp0617625 10.1021/jp801872e 10.1021/ct800308k 10.1021/jp050985c 10.1002/jcc.540040303 10.1080/09553009514550751 10.1021/jp805308p 10.1073/pnas.96.15.8353 10.1063/1.1674902 10.1021/ja015947v 10.1038/srep00272 10.1103/PhysRev.46.618 10.1021/jp201281t 10.1021/jp910788e 10.1146/annurev.biochem.71.083101.134037 10.1021/ja904777h 10.1021/j100003a032 10.1016/0022-2860(89)80020-1 10.1039/c2ra22389a 10.1021/ja00128a050 10.1006/jmbi.2000.4040 10.1007/978-3-540-72494-0 10.1021/jp200537t 10.1016/S0959-440X(02)00327-5 10.1016/0009-2614(76)80810-X 10.1021/ja9609821 10.1016/j.cbpa.2008.01.046 10.1021/ja00081a036 10.1039/b719370j 10.1007/s00214-007-0310-x 10.1002/anie.200602106 10.1007/978-1-4612-5190-3 10.1021/jp046660y 10.1007/s002140050307 10.1021/ja00107a023 10.1016/0009-2614(89)87234-3 10.1063/1.1740588 10.1021/ar990040b 10.1021/ja981888i 10.1073/pnas.0501406102 10.1021/j100153a067 10.1016/0009-2614(75)80190-4 10.1039/b919930f 10.1021/jp101711z 10.1021/jp8076134 10.1039/b718562f 10.1093/nass/nrp043 10.1039/b006196o 10.1021/ja00534a010 10.1103/PhysRevB.37.785 10.1016/0040-4039(76)80120-7 10.1021/jp9120723 10.1021/jp953306e 10.1063/1.2336217 10.1063/1.434949 10.1021/jp061184s 10.1021/ja9826892 10.1021/ja972331q 10.1021/ja00476a006 10.1063/1.3269030 10.1073/pnas.95.10.5550 10.1103/RevModPhys.23.69 10.1038/382731a0 10.1021/cr100023g 10.1039/b817284f 10.1016/S0031-8914(34)90011-2 10.1063/1.447079 10.1093/nar/28.1.235 10.1016/0006-291X(72)90243-4 10.1021/jp0132329 10.1021/ja808998q 10.1021/jp049270k 10.1103/PhysRevA.38.3098 10.1021/ja8091246 10.1016/0079-6107(70)90027-1 10.1021/cr9800255 10.2174/187221009788490040 10.1007/BF00533485 10.1021/ja907669c 10.1107/S0567739476001873 10.1021/jp901888r |
ContentType | Journal Article |
Copyright | 2013 The Author(s). Published by Taylor & Francis 2013 |
Copyright_xml | – notice: 2013 The Author(s). Published by Taylor & Francis 2013 |
DBID | 0YH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 5PM |
DOI | 10.1080/07391102.2013.783508 |
DatabaseName | Taylor & Francis Free Journals (Free resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Nucleic Acids Abstracts |
DatabaseTitleList | MEDLINE Nucleic Acids Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 0YH name: Taylor & Francis Free Journals (Free resource, activated by CARLI) url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1538-0254 |
EndPage | 545 |
ExternalDocumentID | PMC3919198 23582046 10_1080_07391102_2013_783508 783508 |
Genre | Article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .QJ 0BK 0R~ 0YH 30N 4.4 5GY AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AGDLA AGMYJ AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG DGEBU DKSSO EBS EJD EMOBN E~A E~B F5P GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM M4Z NX0 O9- P2P RIG RNANH ROSJB RTWRZ S-T SJN SNACF TBQAZ TDBHL TEI TFL TFT TFW TQWBC TTHFI TUROJ UT5 ZGOLN ~KM ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 07X 53G AAGME AAOAP ABFMO ABTAA ACBBU ACDHJ ACQMU ACZPZ ADGTR ADOPC AFDYB AFFVI AI. AMATQ APNXG AURDB BFWEY C0. CGR CUY CVF CWRZV DLOXE ECM EIF HGUVV JEPSP LJTGL NPM NUSFT OWHGL PCLFJ S70 VH1 7X8 7TM 5PM TASJS |
ID | FETCH-LOGICAL-c497t-1757bcbceefede9ecd4259775cbd34d2d5a5e7e61aaa88caf89441b2523b32c43 |
IEDL.DBID | 0YH |
ISSN | 0739-1102 1538-0254 |
IngestDate | Thu Aug 21 14:12:39 EDT 2025 Fri Jul 11 10:04:05 EDT 2025 Fri Jul 11 02:54:51 EDT 2025 Thu Apr 03 06:52:44 EDT 2025 Thu Apr 24 22:56:35 EDT 2025 Tue Jul 01 00:56:21 EDT 2025 Wed Dec 25 08:59:26 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | open-access: This is an Open Access article. Non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly attributed, cited, and is not altered, transformed, or built upon in any way, is permitted. The moral rights of the named author(s) have been asserted. This is an open access article distributed under the Supplemental Terms and Conditions for iOpenAccess articles published in Taylor & Francis journals, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This is an Open Access article. Non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly attributed, cited, and is not altered, transformed, or built upon in any way, is permitted. The moral rights of the named author(s) have been asserted. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c497t-1757bcbceefede9ecd4259775cbd34d2d5a5e7e61aaa88caf89441b2523b32c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Communicated by Ramaswamy H. Sarma |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/07391102.2013.783508 |
PMID | 23582046 |
PQID | 1491063632 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1544013136 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3919198 proquest_miscellaneous_1491063632 pubmed_primary_23582046 crossref_citationtrail_10_1080_07391102_2013_783508 crossref_primary_10_1080_07391102_2013_783508 informaworld_taylorfrancis_310_1080_07391102_2013_783508 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-03 |
PublicationDateYYYYMMDD | 2014-04-03 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of biomolecular structure & dynamics |
PublicationTitleAlternate | J Biomol Struct Dyn |
PublicationYear | 2014 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | CIT0072 Kabsch W. (CIT0048) 1976; 32 Arnott S. (CIT0002) 1970; 21 Hobza P. (CIT0044) 1995; 117 Cauët E. (CIT0012) 2006; 110 Ditchfield R. (CIT0027) 1971; 54 Fernando H. (CIT0031) 1998; 95 Arnott S. (CIT0004) 1972; 177 Politzer P. (CIT0069) 1998; 99 Urano S. (CIT0094) 1989; 214 Heller A. (CIT0042) 2000; 116 Dougherty D. (CIT0030) 1978; 13 Close D. M. (CIT0018) 2003; 107 Prat F. (CIT0070) 1998; 120 Schuster G. B. (CIT0080) 2009; 53 Arnott S. (CIT0003) 1972; 47 Henderson P. T. (CIT0043) 1999; 96 Sugiyama H. (CIT0091) 1996; 118 Wintjens R. (CIT0096) 2000; 302 Barnett R. N. (CIT0005) 2001; 294 Paukku Y. (CIT0068) 2011; 115 CIT0099 CIT0014 Møller C. (CIT0064) 1934; 46 Hariharan P. C. (CIT0041) 1973; 28 Blancafort L. (CIT0008) 2006; 110 Steinbrecher T. (CIT0089) 2008; 112 Colson A.-O. (CIT0022) 1995; 67 Lias S. G. (CIT0058) 1988; 17 Kumar A. (CIT0052) 2011; 115 Šponer J. (CIT0086) 1999; 99 Lin J. (CIT0060) 1980; 84 Padva A. (CIT0067) 1976; 41 Slavíček P. (CIT0084) 2009; 131 Šponer J. (CIT0088) 2008; 10 Lewis J. P. (CIT0057) 2003; 107 Dougherty D. (CIT0029) 1976; 98 Berman H. M. (CIT0007) 2000; 28 Golubeva A. A. (CIT0038) 2009; 11 Hall D. B. (CIT0040) 1996; 382 Salzner U. (CIT0078) 2009; 131 CIT0032 Cauët E. (CIT0013) 2010; 114 Dougherty D. (CIT0028) 1977; 67 Gus J. D. (CIT0039) 2008; 458 Santoro F. (CIT0079) 2009; 131 Mulliken R. S. (CIT0065) 1955; 23 Saito I. (CIT0077) 1995; 117 Improta R. (CIT0047) 2008; 10 Yu C. (CIT0098) 1978; 100 Bravaya K. B. (CIT0011) 2010; 12 Giese B. (CIT0036) 2000; 33 Sevilla M. D. (CIT0081) 1995; 99 Yokojima S. (CIT0097) 2009; 113 Shao F. (CIT0082) 2005; 127 Kumar A. (CIT0051) 2010; 110 Hush N. S. (CIT0046) 1975; 34 Roca-Sanjuán D. (CIT0071) 2006; 125 Rooman M. (CIT0073) 2002; 319 Saito I. (CIT0076) 1998; 120 Adhikary A. (CIT0001) 2009; 131 Clark T. (CIT0017) 1983; 4 Hohenstein E. G. (CIT0045) 2008; 4 Stowasser R. (CIT0090) 1999; 121 Close D. M. (CIT0019) 2004; 108 Šponer J. (CIT0085) 1994; 116 Maksic Z. B. (CIT0061) 2002; 106 Gervasio F. L. (CIT0035) 2006; 45 Šponer J. (CIT0087) 1996; 100 Roothaan C. C. J. (CIT0074) 1951; 23 Shih C.-T. (CIT0083) 2012; 2 Cerón-Carrasco J. P. (CIT0015) 2010; 114 Lee C. (CIT0056) 1988; 37 Boon E. M. (CIT0010) 2002; 12 Genereux J. (CIT0034) 2010; 132 Giese B. (CIT0037) 2002; 71 Voityuk A. A. (CIT0095) 2005; 109 Lin J. (CIT0059) 1980; 102 Chakraborty T. (CIT0016) 2007 Colson A.-O. (CIT0021) 1993; 97 Crespo-Hernández C. E. (CIT0025) 2004; 108 Kurnikov I. V. (CIT0053) 2002; 106 Bongiorno A. (CIT0009) 2009; 112 Koopmans T. (CIT0049) 1934; 1 Saenger W. (CIT0075) 1984 Close D. M. (CIT0020) 2008; 112 Kubar T. (CIT0050) 2009; 113 Lauer G. (CIT0055) 1975; 45 Miehlich B. (CIT0063) 1989; 157 Zhao Y. (CIT0100) 2008; 120 Orlov V. M. (CIT0066) 1976; 17 Svozil D. (CIT0092) 2010; 114 Becke A. D. (CIT0006) 1988; 38 Conwell E. M. (CIT0023) 2005; 102 Lange A. W. (CIT0054) 2009; 131 Merino E. J. (CIT0062) 2008; 12 Frisch M. J. (CIT0033) 1984; 80 Conwell E. M. (CIT0024) 2001; 123 Triberis G. P. (CIT0093) 2009; 3 21417208 - J Phys Chem B. 2011 May 5;115(17):4990-5000 26620472 - J Chem Theory Comput. 2008 Dec 9;4(12):1996-2000 20394358 - J Phys Chem B. 2010 May 6;114(17):5886-94 19331336 - J Phys Chem B. 2009 Apr 23;113(16):5653-6 20449342 - Phys Chem Chem Phys. 2010 Mar 14;12(10):2292-307 19947608 - J Phys Chem B. 2009 Dec 24;113(51):16384-92 20443634 - Chem Rev. 2010 Dec 8;110(12):7002-23 19519596 - Recent Pat Nanotechnol. 2009;3(2):135-53 9576920 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5550-5 20025305 - J Chem Phys. 2009 Dec 21;131(23):231101 21469755 - J Biomol Struct Dyn. 2011 Jun;28(6):949-53 10970741 - J Mol Biol. 2000 Sep 15;302(2):395-410 19803481 - J Am Chem Soc. 2009 Oct 28;131(42):15232-45 19224030 - Phys Chem Chem Phys. 2009 Mar 7;11(9):1303-11 16965007 - J Chem Phys. 2006 Aug 28;125(8):084302 18464980 - Phys Chem Chem Phys. 2008 May 21;10(19):2656-64 12051937 - J Mol Biol. 2002 May 24;319(1):67-76 18855364 - J Phys Chem A. 2008 Nov 6;112(44):11207-12 12127450 - Curr Opin Struct Biol. 2002 Jun;12(3):320-9 20000584 - J Phys Chem B. 2010 Jan 21;114(2):1191-203 18314014 - Curr Opin Chem Biol. 2008 Apr;12(2):229-37 10995201 - Acc Chem Res. 2000 Sep;33(9):631-6 19749272 - Nucleic Acids Symp Ser (Oxf). 2009;(53):85-6 18844392 - J Phys Chem B. 2008 Nov 6;112(44):13945-50 17506547 - J Phys Chem B. 2007 Jun 14;111(23):6571-6 8751447 - Nature. 1996 Aug 22;382(6593):731-5 21500846 - J Phys Chem A. 2011 May 12;115(18):4804-10 15956188 - Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):8795-9 11707121 - J Am Chem Soc. 2001 Nov 21;123(46):11441-5 5040245 - Biochem Biophys Res Commun. 1972 Jun 28;47(6):1504-9 16706397 - J Phys Chem A. 2006 May 25;110(20):6426-32 932347 - J Am Chem Soc. 1976 Jun 23;98(13):3815-20 11197472 - Faraday Discuss. 2000;(116):1-13 16888729 - Angew Chem Int Ed Engl. 2006 Aug 25;45(34):5606-9 20047321 - J Am Chem Soc. 2010 Jan 27;132(3):891-905 19292489 - J Am Chem Soc. 2009 Mar 25;131(11):3913-22 16854034 - J Phys Chem A. 2006 Jul 27;110(29):9200-11 9900728 - Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100 19374336 - J Am Chem Soc. 2009 May 13;131(18):6460-7 10411879 - Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8353-8 5043149 - Science. 1972 Aug 4;177(4047):451-2 19469533 - J Am Chem Soc. 2009 Jun 24;131(24):8614-9 16332096 - J Am Chem Soc. 2005 Dec 14;127(49):17445-52 16852312 - J Phys Chem B. 2005 Jun 2;109(21):10793-6 11641491 - Science. 2001 Oct 19;294(5542):567-71 9944570 - Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 22355784 - Sci Rep. 2012;2:272 20883043 - J Phys Chem B. 2010 Oct 28;114(42):13439-45 4913289 - Prog Biophys Mol Biol. 1970;21:265-319 10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42 7608626 - Int J Radiat Biol. 1995 Jun;67(6):627-45 18464974 - Phys Chem Chem Phys. 2008 May 21;10(19):2595-610 12045090 - Annu Rev Biochem. 2002;71:51-70 19049302 - J Phys Chem B. 2008 Dec 25;112(51):16935-44 11749516 - Chem Rev. 1999 Nov 10;99(11):3247-76 |
References_xml | – volume: 106 start-page: 6515 year: 2002 ident: CIT0061 publication-title: Journal of Physical Chemistry A doi: 10.1021/jp0259059 – volume: 13 start-page: 379 year: 1978 ident: CIT0030 publication-title: Journal of Electron Spectroscopy and related Phenomena doi: 10.1016/0368-2048(78)85042-7 – volume: 17 start-page: 1 issue: 1 year: 1988 ident: CIT0058 publication-title: Journal of Physical and Chemical Reference Data doi: 10.1063/1.555819 – volume: 45 start-page: 3939 year: 1975 ident: CIT0055 publication-title: Tetrahedron Letters doi: 10.1016/S0040-4039(00)91259-0 – volume: 131 start-page: 8614 year: 2009 ident: CIT0001 publication-title: Journal of the American Chemical Society doi: 10.1021/ja9014869 – volume: 84 start-page: 1006 year: 1980 ident: CIT0060 publication-title: Journal of Physical Chemistry doi: 10.1021/j100446a015 – volume: 113 start-page: 16384 year: 2009 ident: CIT0097 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp9054582 – volume: 127 start-page: 17445 year: 2005 ident: CIT0082 publication-title: Journal of the American Chemical Society doi: 10.1021/ja0563399 – ident: CIT0072 doi: 10.1080/073911011010524985 – volume: 107 start-page: 2581 year: 2003 ident: CIT0057 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp026772u – volume: 177 start-page: 451 year: 1972 ident: CIT0004 publication-title: Science doi: 10.1126/science.177.4047.451 – volume: 294 start-page: 567 year: 2001 ident: CIT0005 publication-title: Science doi: 10.1126/science.1062864 – ident: CIT0099 doi: 10.1021/jp071772l – volume: 107 start-page: 864 year: 2003 ident: CIT0018 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp022056g – volume: 98 start-page: 3815 year: 1976 ident: CIT0029 publication-title: Journal of the American Chemical Society doi: 10.1021/ja00429a013 – volume: 319 start-page: 67 year: 2002 ident: CIT0073 publication-title: Journal of Molecular Biology doi: 10.1016/S0022-2836(02)00263-2 – volume: 110 start-page: 9200 year: 2006 ident: CIT0012 publication-title: Journal of Physical Chemistry A doi: 10.1021/jp0617625 – volume: 112 start-page: 13945 year: 2009 ident: CIT0009 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp801872e – volume: 4 start-page: 1996 year: 2008 ident: CIT0045 publication-title: Journal of Chemical Theory and Computation doi: 10.1021/ct800308k – volume: 109 start-page: 10793 year: 2005 ident: CIT0095 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp050985c – volume: 4 start-page: 294 year: 1983 ident: CIT0017 publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.540040303 – volume: 67 start-page: 627 year: 1995 ident: CIT0022 publication-title: International Journal of Radiation Biology doi: 10.1080/09553009514550751 – ident: CIT0032 – volume: 112 start-page: 11207 year: 2008 ident: CIT0020 publication-title: Journal of Physical Chemistry A doi: 10.1021/jp805308p – volume: 96 start-page: 8353 year: 1999 ident: CIT0043 publication-title: Proceedings of the National academy of Sciences of the USA doi: 10.1073/pnas.96.15.8353 – volume: 54 start-page: 724 year: 1971 ident: CIT0027 publication-title: Journal of Chemical Physics doi: 10.1063/1.1674902 – volume: 123 start-page: 11441 year: 2001 ident: CIT0024 publication-title: Journal of the American Chemical Society doi: 10.1021/ja015947v – volume: 2 start-page: 272 year: 2012 ident: CIT0083 publication-title: Science Reports doi: 10.1038/srep00272 – volume: 46 start-page: 618 year: 1934 ident: CIT0064 publication-title: Physical Review doi: 10.1103/PhysRev.46.618 – volume: 115 start-page: 4804 year: 2011 ident: CIT0068 publication-title: Journal of Physical Chemistry A doi: 10.1021/jp201281t – volume: 114 start-page: 1191 year: 2010 ident: CIT0092 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp910788e – volume: 71 start-page: 51 year: 2002 ident: CIT0037 publication-title: Annual Review of Biochemistry doi: 10.1146/annurev.biochem.71.083101.134037 – volume: 131 start-page: 15232 year: 2009 ident: CIT0079 publication-title: Journal of the American Chemical Society doi: 10.1021/ja904777h – volume: 99 start-page: 1060 year: 1995 ident: CIT0081 publication-title: Journal of Physical Chemistry doi: 10.1021/j100003a032 – volume: 214 start-page: 315 year: 1989 ident: CIT0094 publication-title: Journal of Molecular Structure doi: 10.1016/0022-2860(89)80020-1 – ident: CIT0014 doi: 10.1039/c2ra22389a – volume: 117 start-page: 6406 year: 1995 ident: CIT0077 publication-title: Journal of the American Chemical Society doi: 10.1021/ja00128a050 – volume: 302 start-page: 393 year: 2000 ident: CIT0096 publication-title: Journal of Molecular Biology doi: 10.1006/jmbi.2000.4040 – volume-title: Charge migration in DNA: Perspectives from physics, chemistry and biology year: 2007 ident: CIT0016 doi: 10.1007/978-3-540-72494-0 – volume: 115 start-page: 4990 year: 2011 ident: CIT0052 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp200537t – volume: 12 start-page: 320 year: 2002 ident: CIT0010 publication-title: Current Opinion in Structural Biology doi: 10.1016/S0959-440X(02)00327-5 – volume: 41 start-page: 278 year: 1976 ident: CIT0067 publication-title: Chemical Physics Letters doi: 10.1016/0009-2614(76)80810-X – volume: 118 start-page: 7063 year: 1996 ident: CIT0091 publication-title: Journal of the American Chemical Society doi: 10.1021/ja9609821 – volume: 12 start-page: 229 year: 2008 ident: CIT0062 publication-title: Current Opinion in Chemical Biology doi: 10.1016/j.cbpa.2008.01.046 – volume: 116 start-page: 709 year: 1994 ident: CIT0085 publication-title: Journal of the American Chemical Society doi: 10.1021/ja00081a036 – volume: 10 start-page: 2595 year: 2008 ident: CIT0088 publication-title: Physical Chemistry Chemical Physics: PCCP doi: 10.1039/b719370j – volume: 458 start-page: 164 year: 2008 ident: CIT0039 publication-title: Chemical Physics Letters – volume: 120 start-page: 215 year: 2008 ident: CIT0100 publication-title: Theoretical Chemistry Accounts doi: 10.1007/s00214-007-0310-x – volume: 45 start-page: 5606 year: 2006 ident: CIT0035 publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.200602106 – volume-title: Principles of nucleic acid structure year: 1984 ident: CIT0075 doi: 10.1007/978-1-4612-5190-3 – volume: 108 start-page: 10376 year: 2004 ident: CIT0019 publication-title: Journal of Physical Chemistry A doi: 10.1021/jp046660y – volume: 99 start-page: 83 year: 1998 ident: CIT0069 publication-title: Theoretical Chemistry Accounts doi: 10.1007/s002140050307 – volume: 117 start-page: 792 year: 1995 ident: CIT0044 publication-title: Journal of the American Chemical Society doi: 10.1021/ja00107a023 – volume: 157 start-page: 200 year: 1989 ident: CIT0063 publication-title: Chemical Physics Letters doi: 10.1016/0009-2614(89)87234-3 – volume: 23 start-page: 1833 year: 1955 ident: CIT0065 publication-title: Journal of Chemical Physics doi: 10.1063/1.1740588 – volume: 33 start-page: 631 year: 2000 ident: CIT0036 publication-title: Accounts of Chemical Research doi: 10.1021/ar990040b – volume: 120 start-page: 12686 year: 1998 ident: CIT0076 publication-title: Journal of the American Chemical Society doi: 10.1021/ja981888i – volume: 102 start-page: 8795 year: 2005 ident: CIT0023 publication-title: Proceedings of the National Academy of Sciences of the USA doi: 10.1073/pnas.0501406102 – volume: 97 start-page: 13852 year: 1993 ident: CIT0021 publication-title: Journal of Physical Chemistry doi: 10.1021/j100153a067 – volume: 34 start-page: 11 year: 1975 ident: CIT0046 publication-title: Chemical Physics Letters doi: 10.1016/0009-2614(75)80190-4 – volume: 12 start-page: 2292 year: 2010 ident: CIT0011 publication-title: Physical Chemistry Chemical Physics: PCCP doi: 10.1039/b919930f – volume: 114 start-page: 13439 year: 2010 ident: CIT0015 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp101711z – volume: 112 start-page: 16935 year: 2008 ident: CIT0089 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp8076134 – volume: 10 start-page: 2656 year: 2008 ident: CIT0047 publication-title: Physical Chemistry Chemical Physics: PCCP doi: 10.1039/b718562f – volume: 53 start-page: 85 year: 2009 ident: CIT0080 publication-title: Nucleic Acids Symposium Series doi: 10.1093/nass/nrp043 – volume: 116 start-page: 1 year: 2000 ident: CIT0042 publication-title: Faraday Discussions doi: 10.1039/b006196o – volume: 102 start-page: 4627 year: 1980 ident: CIT0059 publication-title: Journal of the American Chemical Society doi: 10.1021/ja00534a010 – volume: 37 start-page: 785 year: 1988 ident: CIT0056 publication-title: Physical Review B doi: 10.1103/PhysRevB.37.785 – volume: 17 start-page: 4315 year: 1976 ident: CIT0066 publication-title: Tetrahedron Letters doi: 10.1016/0040-4039(76)80120-7 – volume: 114 start-page: 5886 year: 2010 ident: CIT0013 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp9120723 – volume: 100 start-page: 5590 year: 1996 ident: CIT0087 publication-title: Journal of Physical Chemistry doi: 10.1021/jp953306e – volume: 125 start-page: 084302 year: 2006 ident: CIT0071 publication-title: Journal of Chemical Physics doi: 10.1063/1.2336217 – volume: 67 start-page: 1289 year: 1977 ident: CIT0028 publication-title: Journal of Chemical Physics doi: 10.1063/1.434949 – volume: 110 start-page: 6426 year: 2006 ident: CIT0008 publication-title: Journal of Physical Chemistry A doi: 10.1021/jp061184s – volume: 121 start-page: 3414 year: 1999 ident: CIT0090 publication-title: Journal of the American Chemical Society doi: 10.1021/ja9826892 – volume: 120 start-page: 845 year: 1998 ident: CIT0070 publication-title: Journal of the American Chemical Society doi: 10.1021/ja972331q – volume: 100 start-page: 2303 year: 1978 ident: CIT0098 publication-title: Journal of the American Chemical Society doi: 10.1021/ja00476a006 – volume: 131 start-page: 231101 year: 2009 ident: CIT0078 publication-title: Journal of Chemical Physics doi: 10.1063/1.3269030 – volume: 95 start-page: 5550 year: 1998 ident: CIT0031 publication-title: Proceedings of the National academy of Sciences of the USA doi: 10.1073/pnas.95.10.5550 – volume: 23 start-page: 69 year: 1951 ident: CIT0074 publication-title: Reviews of Modern Physics doi: 10.1103/RevModPhys.23.69 – volume: 382 start-page: 731 year: 1996 ident: CIT0040 publication-title: Nature doi: 10.1038/382731a0 – volume: 110 start-page: 7002 year: 2010 ident: CIT0051 publication-title: Chemical Reviews doi: 10.1021/cr100023g – volume: 11 start-page: 1303 year: 2009 ident: CIT0038 publication-title: Physical Chemistry Chemical Physics: PCCP doi: 10.1039/b817284f – volume: 1 start-page: 104 year: 1934 ident: CIT0049 publication-title: Physica doi: 10.1016/S0031-8914(34)90011-2 – volume: 80 start-page: 3265 year: 1984 ident: CIT0033 publication-title: Journal of Chemical Physics doi: 10.1063/1.447079 – volume: 28 start-page: 235 year: 2000 ident: CIT0007 publication-title: Nucleic Acids Research doi: 10.1093/nar/28.1.235 – volume: 47 start-page: 1504 year: 1972 ident: CIT0003 publication-title: Biochemical and Biophysical Research Communications doi: 10.1016/0006-291X(72)90243-4 – volume: 106 start-page: 2381 year: 2002 ident: CIT0053 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp0132329 – volume: 131 start-page: 3913 year: 2009 ident: CIT0054 publication-title: Journal of the American Chemical Society doi: 10.1021/ja808998q – volume: 108 start-page: 6373 year: 2004 ident: CIT0025 publication-title: Journal of Physical Chemistry A doi: 10.1021/jp049270k – volume: 38 start-page: 3098 year: 1988 ident: CIT0006 publication-title: Physical Review A doi: 10.1103/PhysRevA.38.3098 – volume: 131 start-page: 6460 year: 2009 ident: CIT0084 publication-title: Journal of the American Chemical Society doi: 10.1021/ja8091246 – volume: 21 start-page: 265 year: 1970 ident: CIT0002 publication-title: Progress in Biophysics and Molecular Biology doi: 10.1016/0079-6107(70)90027-1 – volume: 99 start-page: 3247 year: 1999 ident: CIT0086 publication-title: Chemical Reviews doi: 10.1021/cr9800255 – volume: 3 start-page: 135 year: 2009 ident: CIT0093 publication-title: Recent Patents on Nanotechnology doi: 10.2174/187221009788490040 – volume: 28 start-page: 213 year: 1973 ident: CIT0041 publication-title: Theoretica Chimica Acta doi: 10.1007/BF00533485 – volume: 132 start-page: 891 year: 2010 ident: CIT0034 publication-title: Journal of the American Chemical Society doi: 10.1021/ja907669c – volume: 32 start-page: 922 year: 1976 ident: CIT0048 publication-title: Acta Crystallographica A doi: 10.1107/S0567739476001873 – volume: 113 start-page: 5653 year: 2009 ident: CIT0050 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp901888r – reference: 9576920 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5550-5 – reference: 19049302 - J Phys Chem B. 2008 Dec 25;112(51):16935-44 – reference: 19947608 - J Phys Chem B. 2009 Dec 24;113(51):16384-92 – reference: 20394358 - J Phys Chem B. 2010 May 6;114(17):5886-94 – reference: 16852312 - J Phys Chem B. 2005 Jun 2;109(21):10793-6 – reference: 17506547 - J Phys Chem B. 2007 Jun 14;111(23):6571-6 – reference: 20000584 - J Phys Chem B. 2010 Jan 21;114(2):1191-203 – reference: 8751447 - Nature. 1996 Aug 22;382(6593):731-5 – reference: 19331336 - J Phys Chem B. 2009 Apr 23;113(16):5653-6 – reference: 9944570 - Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 – reference: 10411879 - Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8353-8 – reference: 10995201 - Acc Chem Res. 2000 Sep;33(9):631-6 – reference: 22355784 - Sci Rep. 2012;2:272 – reference: 21469755 - J Biomol Struct Dyn. 2011 Jun;28(6):949-53 – reference: 4913289 - Prog Biophys Mol Biol. 1970;21:265-319 – reference: 16706397 - J Phys Chem A. 2006 May 25;110(20):6426-32 – reference: 932347 - J Am Chem Soc. 1976 Jun 23;98(13):3815-20 – reference: 5040245 - Biochem Biophys Res Commun. 1972 Jun 28;47(6):1504-9 – reference: 26620472 - J Chem Theory Comput. 2008 Dec 9;4(12):1996-2000 – reference: 20443634 - Chem Rev. 2010 Dec 8;110(12):7002-23 – reference: 11749516 - Chem Rev. 1999 Nov 10;99(11):3247-76 – reference: 11197472 - Faraday Discuss. 2000;(116):1-13 – reference: 19292489 - J Am Chem Soc. 2009 Mar 25;131(11):3913-22 – reference: 18844392 - J Phys Chem B. 2008 Nov 6;112(44):13945-50 – reference: 19374336 - J Am Chem Soc. 2009 May 13;131(18):6460-7 – reference: 19749272 - Nucleic Acids Symp Ser (Oxf). 2009;(53):85-6 – reference: 20449342 - Phys Chem Chem Phys. 2010 Mar 14;12(10):2292-307 – reference: 18464974 - Phys Chem Chem Phys. 2008 May 21;10(19):2595-610 – reference: 18314014 - Curr Opin Chem Biol. 2008 Apr;12(2):229-37 – reference: 5043149 - Science. 1972 Aug 4;177(4047):451-2 – reference: 16854034 - J Phys Chem A. 2006 Jul 27;110(29):9200-11 – reference: 7608626 - Int J Radiat Biol. 1995 Jun;67(6):627-45 – reference: 20047321 - J Am Chem Soc. 2010 Jan 27;132(3):891-905 – reference: 20883043 - J Phys Chem B. 2010 Oct 28;114(42):13439-45 – reference: 16888729 - Angew Chem Int Ed Engl. 2006 Aug 25;45(34):5606-9 – reference: 19803481 - J Am Chem Soc. 2009 Oct 28;131(42):15232-45 – reference: 10970741 - J Mol Biol. 2000 Sep 15;302(2):395-410 – reference: 11707121 - J Am Chem Soc. 2001 Nov 21;123(46):11441-5 – reference: 12051937 - J Mol Biol. 2002 May 24;319(1):67-76 – reference: 10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42 – reference: 18464980 - Phys Chem Chem Phys. 2008 May 21;10(19):2656-64 – reference: 21417208 - J Phys Chem B. 2011 May 5;115(17):4990-5000 – reference: 21500846 - J Phys Chem A. 2011 May 12;115(18):4804-10 – reference: 11641491 - Science. 2001 Oct 19;294(5542):567-71 – reference: 20025305 - J Chem Phys. 2009 Dec 21;131(23):231101 – reference: 9900728 - Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100 – reference: 12127450 - Curr Opin Struct Biol. 2002 Jun;12(3):320-9 – reference: 16965007 - J Chem Phys. 2006 Aug 28;125(8):084302 – reference: 16332096 - J Am Chem Soc. 2005 Dec 14;127(49):17445-52 – reference: 19469533 - J Am Chem Soc. 2009 Jun 24;131(24):8614-9 – reference: 15956188 - Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):8795-9 – reference: 12045090 - Annu Rev Biochem. 2002;71:51-70 – reference: 19224030 - Phys Chem Chem Phys. 2009 Mar 7;11(9):1303-11 – reference: 19519596 - Recent Pat Nanotechnol. 2009;3(2):135-53 – reference: 18855364 - J Phys Chem A. 2008 Nov 6;112(44):11207-12 |
SSID | ssj0021171 |
Score | 2.1967628 |
Snippet | DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 532 |
SubjectTerms | charge distribution charge transfer DNA - chemistry DNA stacks electron holes homo-nucleobase stacks hybrid density functional theory Models, Theoretical Nucleic Acid Conformation oxidative damage quantum chemistry calculations radical cations spin density distribution vertical ionization potential |
Title | Sequence and conformation effects on ionization potential and charge distribution of homo-nucleobase stacks using M06-2X hybrid density functional theory calculations |
URI | https://www.tandfonline.com/doi/abs/10.1080/07391102.2013.783508 https://www.ncbi.nlm.nih.gov/pubmed/23582046 https://www.proquest.com/docview/1491063632 https://www.proquest.com/docview/1544013136 https://pubmed.ncbi.nlm.nih.gov/PMC3919198 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF6kRfBF_O1ZKyP4urrJbjbJY5GWQ2hftHA-hf3piZoUL324f8i_05lsEu6KVpCD40J2Q8LM3nyzme8bxt5Ea20sfM6przFXPtTcaBu5NEJbL0SUJRGFzy_08lJ9WBWrHRY_lVVSDh2TUMTwX02L29jNVBH3jl4uYdQiGlUm39LWBbF9D3NyVvRo8Xk5p1xZNqRcNIPTlIk895er7AWnPenSPwHQm3WUO4Hp7AG7PyJKOEku8JDdCe0jdjf1mNw-Zr8-jsXSgM8LmP3OdEUYazkAf9KubCJkwlXXUwURXnKYQEpKATzp646tsaCLsO5-dLwlLeSO4iAgxnTfNkBV9F_gXGier2C9JTYYeCqR77dAETRtPMLAntwCuocbu4dtnrDLs9NP75d8bM7AnarLniPsKK2zGGNjQAsH53H1I5gsnPVS-dwXpghl0JkxpqqciVWNyMvmmPhamTsln7KDtmvDcwbK1EU0dYbYTCgZhM2rgCjOYHJqdRHkgsnJKo0blcupgcb3JpsETkdbNmTLJtlywfg86yopd_xjfLVr8KYfdkxiam_SyNunvp6co8HVSa9cTBu66w0mVgjHtNQyv2VMoSjJzaResGfJoeYbHojMQuGZcs_V5gGkDr5_pv26HlTC8TbxU734_8c6YvfwKNUpyZfsoP95HY4RgvX21bDK8FuKi9_R_iwe |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQEYJLKc8u5WEkrl6S-JHkiCqqBbp7oZV6i2zHZlEhqdjsYflB_E5mYifqVrRIoL1EsicbyxPPI998Q8gbb4zxss4Y9jVmonYl08p4xnWiTJ0knudYKDxfqNmp-HgmBzThKsIqMYb2gSiiP6vx5cZk9ACJe4tfl8BsYR1VyqeYu8By39uyVDk2MeDJYoy50rSPuVCCochQPXfNXbas0xZ36Z880KtAykuW6eg-McOaAiDlfLruzNT-vEL3-F-L3iO70W-l74KiPSC3XPOQ3AmdLDePyK_PEZJN4Q8oxNhjUSSNiBEKl5j7DWWf9KLtEKcEt-wFkK_J0RpZfGMDLtp6umy_t6xBxuUWrS0FT9aeryhi9b_QeaJYdkaXG6w5ozUC8bsNRTsd0pu0r9HcUFBCG3uUrR6T06P3J4czFltAMCvKvGPg3OTGGrDk3oEeOVvDGQMuq7Sm5qLOaqmly51KtdZFYbUvSvDvTAbhteGZFfwJ2Wnaxu0TKnQpvS5T8AATwV1issKBr6ghBDZKOj4hfNj6ykZ-dGzT8a1KBxrVuAMV7kAVdmBC2Ch1EfhB_jK_uKxVVdfnZXxoolLxm0VfDxpYwRmAH3Z049r1CsI3cPoUVzy7YY4UGEqnXE3I06C14wP35dKJgJF8S5_HCchBvj3SfF32XOTwmPArnv37sl6Ru7OT-XF1_GHx6YDcg5GAjOLPyU73Y-1egNPXmZf9a_0bvohOjw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQIhCX5Q3lOUhcXZI4cZIjAqrlsRUSrNRb5CdFC0m1TQ_lB_E7mYmTqF3BIoF6qRTbiuWx5xtnvm8Ye-611j6zCae6xjy1ruRKas-FiqS2UeRFTkTh47k8OknfLbLFDouf0iophvZBKKI7q2lzr6wfMuJe0Mcl9FpEo4rFlK4uiO17WZJ2OJE4ovkYcsVxF3JRD05dBvLcH0bZc0570qW_A6Dn8yh3HNPsOlPDlEI-yul00-qp-XFO7fF_5nyDHfaoFV4GM7vJLrn6FrsS6lhub7Ofn_qEbMDxASPskRIJfb4I4F-6-Q2kT1g1LWUp4ZBdB1JrcmBJw7cvvwWNh2XzveE16S035GsBcaw5XQNl6n-B40jyZAHLLTHOwFIafrsF8tLhchM6huYW0ARNX6FsfYedzN58fnXE-wIQ3KRl3nKENrk2Gv24d2hFzlg8YRCwZkZbkdrEZipzuZOxUqoojPJFiehOJxhca5GYVNxlB3VTu_sMUlVmXpUx4r8oFS7SSeEQKSoMgLXMnJgwMax8ZXp1dCrS8a2KBxHVfgUqWoEqrMCE8bHXKqiD_KV9sWtUVdvdyvhQQqUSF3d9NhhghScAfdZRtWs2awzeEPJJIUVyQZsspUA6FnLC7gWjHV-4I0vj3pmwfM-cxwakQL7_pP667JTI8TXxVzz492k9ZVc_vp5VH97O3z9k1_BBSIsSj9hBe7ZxjxHxtfpJt6l_AWgXTTM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequence+and+conformation+effects+on+ionization+potential+and+charge+distribution+of+homo-nucleobase+stacks+using+M06-2X+hybrid+density+functional+theory+calculations&rft.jtitle=Journal+of+biomolecular+structure+%26+dynamics&rft.au=Rooman%2C+Marianne&rft.au=Wintjens%2C+Ren%C3%A9&rft.date=2014-04-03&rft.issn=1538-0254&rft.eissn=1538-0254&rft.volume=32&rft.issue=4&rft.spage=532&rft_id=info:doi/10.1080%2F07391102.2013.783508&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0739-1102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0739-1102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0739-1102&client=summon |