In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure

The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic‐co‐glycolic acid) (PLGA)/calcium phosphate cement (CPC) scaffold with unidirectional lamellar pore structure. CPC‐based scaffold was fabricated by unidirectional freeze casti...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part A Vol. 100A; no. 12; pp. 3239 - 3250
Main Authors He, Fupo, Ye, Jiandong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.12.2012
Wiley-Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic‐co‐glycolic acid) (PLGA)/calcium phosphate cement (CPC) scaffold with unidirectional lamellar pore structure. CPC‐based scaffold was fabricated by unidirectional freeze casting, and PLGA was used to improve the mechanical properties of the CPC‐based scaffold, which covered the surface of the pore wall as coating. The in vitro degradation results demonstrated that the PLGA/CPC scaffold had good degradability. The degradation of PLGA film on the surface of the scaffold made the CPC matrix exposed, which facilitated cell response and osteogenesis. Rat bone mesenchymal stem cells (rMSCs) were seeded on the PLGA/CPC composite scaffold. Cell viability, proliferation, and differentiation on the PLGA/CPC composite scaffold were evaluated. The results showed that viable rMSCs attached on the surface of pore wall gradually penetrated into the internal pores of the scaffold as prolongation of culture time. In addition, the rMSCs seeded on the scaffold exhibited good proliferation and growing alkaline phosphatase activity. The scaffold was implanted in the defects in distal end of femora of New Zealand white rabbits. Histological evaluation indicated that the PLGA/CPC scaffold with unidirectional lamellar pore structure had good biocompatibility and effective osteogenesis. These results suggest PLGA/CPC composite scaffold with unidirectional lamellar pore structure is a promising scaffold for bone tissue engineering. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A:3239–3250, 2012.
AbstractList The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic‐ co ‐glycolic acid) (PLGA)/calcium phosphate cement (CPC) scaffold with unidirectional lamellar pore structure. CPC‐based scaffold was fabricated by unidirectional freeze casting, and PLGA was used to improve the mechanical properties of the CPC‐based scaffold, which covered the surface of the pore wall as coating. The in vitro degradation results demonstrated that the PLGA/CPC scaffold had good degradability. The degradation of PLGA film on the surface of the scaffold made the CPC matrix exposed, which facilitated cell response and osteogenesis. Rat bone mesenchymal stem cells (rMSCs) were seeded on the PLGA/CPC composite scaffold. Cell viability, proliferation, and differentiation on the PLGA/CPC composite scaffold were evaluated. The results showed that viable rMSCs attached on the surface of pore wall gradually penetrated into the internal pores of the scaffold as prolongation of culture time. In addition, the rMSCs seeded on the scaffold exhibited good proliferation and growing alkaline phosphatase activity. The scaffold was implanted in the defects in distal end of femora of New Zealand white rabbits. Histological evaluation indicated that the PLGA/CPC scaffold with unidirectional lamellar pore structure had good biocompatibility and effective osteogenesis. These results suggest PLGA/CPC composite scaffold with unidirectional lamellar pore structure is a promising scaffold for bone tissue engineering. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A:3239–3250, 2012.
The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid) (PLGA)/calcium phosphate cement (CPC) scaffold with unidirectional lamellar pore structure. CPC-based scaffold was fabricated by unidirectional freeze casting, and PLGA was used to improve the mechanical properties of the CPC-based scaffold, which covered the surface of the pore wall as coating. The in vitro degradation results demonstrated that the PLGA/CPC scaffold had good degradability. The degradation of PLGA film on the surface of the scaffold made the CPC matrix exposed, which facilitated cell response and osteogenesis. Rat bone mesenchymal stem cells (rMSCs) were seeded on the PLGA/CPC composite scaffold. Cell viability, proliferation, and differentiation on the PLGA/CPC composite scaffold were evaluated. The results showed that viable rMSCs attached on the surface of pore wall gradually penetrated into the internal pores of the scaffold as prolongation of culture time. In addition, the rMSCs seeded on the scaffold exhibited good proliferation and growing alkaline phosphatase activity. The scaffold was implanted in the defects in distal end of femora of New Zealand white rabbits. Histological evaluation indicated that the PLGA/CPC scaffold with unidirectional lamellar pore structure had good biocompatibility and effective osteogenesis. These results suggest PLGA/CPC composite scaffold with unidirectional lamellar pore structure is a promising scaffold for bone tissue engineering.The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid) (PLGA)/calcium phosphate cement (CPC) scaffold with unidirectional lamellar pore structure. CPC-based scaffold was fabricated by unidirectional freeze casting, and PLGA was used to improve the mechanical properties of the CPC-based scaffold, which covered the surface of the pore wall as coating. The in vitro degradation results demonstrated that the PLGA/CPC scaffold had good degradability. The degradation of PLGA film on the surface of the scaffold made the CPC matrix exposed, which facilitated cell response and osteogenesis. Rat bone mesenchymal stem cells (rMSCs) were seeded on the PLGA/CPC composite scaffold. Cell viability, proliferation, and differentiation on the PLGA/CPC composite scaffold were evaluated. The results showed that viable rMSCs attached on the surface of pore wall gradually penetrated into the internal pores of the scaffold as prolongation of culture time. In addition, the rMSCs seeded on the scaffold exhibited good proliferation and growing alkaline phosphatase activity. The scaffold was implanted in the defects in distal end of femora of New Zealand white rabbits. Histological evaluation indicated that the PLGA/CPC scaffold with unidirectional lamellar pore structure had good biocompatibility and effective osteogenesis. These results suggest PLGA/CPC composite scaffold with unidirectional lamellar pore structure is a promising scaffold for bone tissue engineering.
The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic‐co‐glycolic acid) (PLGA)/calcium phosphate cement (CPC) scaffold with unidirectional lamellar pore structure. CPC‐based scaffold was fabricated by unidirectional freeze casting, and PLGA was used to improve the mechanical properties of the CPC‐based scaffold, which covered the surface of the pore wall as coating. The in vitro degradation results demonstrated that the PLGA/CPC scaffold had good degradability. The degradation of PLGA film on the surface of the scaffold made the CPC matrix exposed, which facilitated cell response and osteogenesis. Rat bone mesenchymal stem cells (rMSCs) were seeded on the PLGA/CPC composite scaffold. Cell viability, proliferation, and differentiation on the PLGA/CPC composite scaffold were evaluated. The results showed that viable rMSCs attached on the surface of pore wall gradually penetrated into the internal pores of the scaffold as prolongation of culture time. In addition, the rMSCs seeded on the scaffold exhibited good proliferation and growing alkaline phosphatase activity. The scaffold was implanted in the defects in distal end of femora of New Zealand white rabbits. Histological evaluation indicated that the PLGA/CPC scaffold with unidirectional lamellar pore structure had good biocompatibility and effective osteogenesis. These results suggest PLGA/CPC composite scaffold with unidirectional lamellar pore structure is a promising scaffold for bone tissue engineering. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A:3239–3250, 2012.
The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid) (PLGA)/calcium phosphate cement (CPC) scaffold with unidirectional lamellar pore structure. CPC-based scaffold was fabricated by unidirectional freeze casting, and PLGA was used to improve the mechanical properties of the CPC-based scaffold, which covered the surface of the pore wall as coating. The in vitro degradation results demonstrated that the PLGA/CPC scaffold had good degradability. The degradation of PLGA film on the surface of the scaffold made the CPC matrix exposed, which facilitated cell response and osteogenesis. Rat bone mesenchymal stem cells (rMSCs) were seeded on the PLGA/CPC composite scaffold. Cell viability, proliferation, and differentiation on the PLGA/CPC composite scaffold were evaluated. The results showed that viable rMSCs attached on the surface of pore wall gradually penetrated into the internal pores of the scaffold as prolongation of culture time. In addition, the rMSCs seeded on the scaffold exhibited good proliferation and growing alkaline phosphatase activity. The scaffold was implanted in the defects in distal end of femora of New Zealand white rabbits. Histological evaluation indicated that the PLGA/CPC scaffold with unidirectional lamellar pore structure had good biocompatibility and effective osteogenesis. These results suggest PLGA/CPC composite scaffold with unidirectional lamellar pore structure is a promising scaffold for bone tissue engineering.
Author He, Fupo
Ye, Jiandong
Author_xml – sequence: 1
  givenname: Fupo
  surname: He
  fullname: He, Fupo
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
– sequence: 2
  givenname: Jiandong
  surname: Ye
  fullname: Ye, Jiandong
  email: jdye@scut.edu.cn
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26811253$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22733543$$D View this record in MEDLINE/PubMed
BookMark eNp9kl9r1TAYxotM3Hb0ynsJiDBxPWuSpj291KlzMicDRfAmpMnbc3KWNjVJN_up_IqmO-coDPEqCfyeJ--f5zDZ62wHSfIUZ3OcZeRkXbdzMac5KdiD5AAzRtK8KtjedM-rlJKq2E8OvV9HuMgYeZTsE1JSynJ6kPw679CNDs4iBUsnlAjadseo1lbato-vWhsdxmMkOoX0xN5YZH0Au4QOvPbINqi3ZjwyQgYtU2nTpRmlNVoiIbV6eSKFkXpoUb-yvl-JAEhCC11AXoqmsUahWx1WaOi00g7kVIAwyIgWjBEumjtAPrhBhsHB4-RhI4yHJ9tzlnx9_-7L6Yf04vPZ-enri1TmVcnSPMN5SQiBTDR1QRosaaUwXlSqhKqus5pBRUkDCpOM1EAXsixAqqqCEhdYKTpLjja-vbM_BvCBt9rLqaIO7OA5xjivWMbiHGfJ83vo2g4u9uA5yRnGrCQUR-rZlhrqFhTvnW6FG_luFRF4sQVEHIxpnOik9n-5YoExYROHN5x01nsHDZc63K0tOKENxxmfYsFjLLjgd7GImlf3NDvbf9PbH261gfF_KP_45tNOk240Ombj5x-NcNe8KGnJ-LfLM04u86v8qnzLv9PfpwrakA
CitedBy_id crossref_primary_10_1016_j_ceramint_2017_02_094
crossref_primary_10_1002_adem_202201559
crossref_primary_10_1021_acsbiomaterials_3c01956
crossref_primary_10_1016_j_msec_2016_08_008
crossref_primary_10_3390_ijms24087161
crossref_primary_10_1016_j_msec_2013_10_018
crossref_primary_10_1016_j_pmatsci_2018_01_001
crossref_primary_10_1002_wnan_1925
crossref_primary_10_1088_1758_5082_6_1_015006
crossref_primary_10_1007_s10853_015_9664_y
crossref_primary_10_1089_ten_tea_2013_0670
crossref_primary_10_3390_jfb6041036
crossref_primary_10_1016_j_ceramint_2016_06_092
crossref_primary_10_1016_j_actbio_2020_03_026
crossref_primary_10_1002_jbm_a_35641
crossref_primary_10_1002_adhm_202203205
crossref_primary_10_3389_fbioe_2024_1362913
crossref_primary_10_1002_jbm_a_35248
crossref_primary_10_1515_polyeng_2019_0219
crossref_primary_10_3390_nano10050875
crossref_primary_10_1002_jbm_a_36270
crossref_primary_10_1016_j_colsurfb_2016_03_020
crossref_primary_10_4103_1673_5374_152380
crossref_primary_10_1007_s13770_017_0056_z
crossref_primary_10_1016_j_colsurfb_2012_10_018
crossref_primary_10_1080_00914037_2021_1990056
crossref_primary_10_1016_j_jmbbm_2017_07_026
crossref_primary_10_1177_0885328214550897
crossref_primary_10_1016_j_ceramint_2014_09_020
crossref_primary_10_1002_asia_201300142
crossref_primary_10_1016_j_bioadv_2022_213098
crossref_primary_10_1016_j_materresbull_2014_04_008
crossref_primary_10_1002_adhm_201801325
crossref_primary_10_1016_j_heliyon_2023_e16309
crossref_primary_10_1089_ten_tec_2015_0016
crossref_primary_10_1016_j_biomaterials_2020_120553
crossref_primary_10_1002_masy_201300108
crossref_primary_10_1016_j_progpolymsci_2020_101289
crossref_primary_10_1016_j_jmst_2013_03_004
crossref_primary_10_1021_acsbiomaterials_9b00426
crossref_primary_10_1039_c3tb20552e
crossref_primary_10_1016_j_mtcomm_2024_109332
crossref_primary_10_1002_jbm_a_36844
crossref_primary_10_1016_j_actbio_2013_12_052
crossref_primary_10_1002_jbm_a_36644
Cites_doi 10.1016/S0142-9612(98)00256-7
10.1016/j.biomaterials.2008.04.011
10.1002/jbm.a.10432
10.1111/j.1151-2916.1998.tb02540.x
10.1016/j.matlet.2005.07.062
10.1007/s10856-006-0029-6
10.1016/j.actbio.2007.09.010
10.1126/science.8493529
10.1097/00003086-198807000-00017
10.1002/(SICI)1097-4636(199705)35:2<249::AID-JBM12>3.0.CO;2-C
10.1016/0142-9612(95)93575-X
10.1002/1097-4636(20010615)55:4<475::AID-JBM1039>3.0.CO;2-Q
10.1016/j.biomaterials.2003.10.066
10.1002/(SICI)1097-4636(19980915)41:4<527::AID-JBM3>3.0.CO;2-E
10.1016/j.progsolidstchem.2004.07.001
10.4028/www.scientific.net/KEM.192-195.773
10.1016/j.biomaterials.2004.01.012
10.1002/jbm.a.31059
10.1002/jbm.1028
10.1038/nmat2240
10.1002/jbm.a.10458
10.1007/b99997
10.1016/S0142-9612(00)00030-2
10.1023/A:1008917910468
10.1007/s10856-011-4290-y
10.1002/jbm.820050611
10.1002/jbm.a.32054
10.1002/1097-4636(20010605)55:3<295::AID-JBM1017>3.0.CO;2-W
10.1016/j.engfracmech.2003.08.003
10.1016/j.biomaterials.2006.05.028
10.1016/0142-9612(89)90090-2
10.1034/j.1600-0501.2002.130311.x
10.1016/j.actbio.2009.01.010
10.1016/j.actbio.2009.08.041
10.1002/jbm.b.30997
10.1016/j.actbio.2007.10.006
10.1016/j.biomaterials.2005.02.002
10.1073/pnas.0631609100
10.1002/jbm.10029
10.1002/(SICI)1097-4636(20000605)50:3<388::AID-JBM13>3.0.CO;2-F
10.1016/j.biomaterials.2006.08.010
10.1016/S0142-9612(02)00101-1
10.1002/jbm.b.30581
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
2014 INIST-CNRS
Copyright Wiley Subscription Services, Inc. Dec 2012
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
– notice: 2014 INIST-CNRS
– notice: Copyright Wiley Subscription Services, Inc. Dec 2012
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/jbm.a.34265
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4965
EndPage 3250
ExternalDocumentID 22733543
26811253
10_1002_jbm_a_34265
JBM34265
ark_67375_WNG_2N4Q4Q7D_Z
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51172074
– fundername: National Basic Research Program of China
  funderid: 2012CB619100
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WIH
WIK
WJL
WQJ
WRC
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
IQODW
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c4975-40147222e0afb62f1c39d1189d7e9bb0b5e932fed1202be38c76ecd99e7161dd3
IEDL.DBID DR2
ISSN 1549-3296
1552-4965
IngestDate Thu Jul 10 23:08:28 EDT 2025
Wed Aug 13 09:46:53 EDT 2025
Mon Jul 21 06:07:15 EDT 2025
Wed Apr 02 07:15:08 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Tue Jul 01 01:11:33 EDT 2025
Wed Jan 22 16:57:35 EST 2025
Wed Oct 30 09:52:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Biodegradation
Glycolic acid copolymer
Biological properties
Lactone copolymer
Biodegradability
Lactic acid copolymer
calcium phosphate cement
Calcium phosphate
degradation
Scaffold
In vivo
Lamellar structure
PLGA
cytocompatibility
Biocompatibility
Biomaterial
Osteogenesis
Biomedical engineering
unidirectional lamellar pore
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2012 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4975-40147222e0afb62f1c39d1189d7e9bb0b5e932fed1202be38c76ecd99e7161dd3
Notes istex:E4478ADC6261A00AF2CAD48B1F00E3490B2B204B
ark:/67375/WNG-2N4Q4Q7D-Z
How to cite this article: He F, Ye J. 2012. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. J Biomed Mater Res Part A 2012:100A:3239-3250.
National Basic Research Program of China - No. 2012CB619100
National Natural Science Foundation of China - No. 51172074
ArticleID:JBM34265
How to cite this article
He F, Ye J. 2012. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic‐co‐glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. J Biomed Mater Res Part A 2012:100A:3239–3250.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 22733543
PQID 2451157231
PQPubID 2034572
PageCount 12
ParticipantIDs proquest_miscellaneous_1114950573
proquest_journals_2451157231
pubmed_primary_22733543
pascalfrancis_primary_26811253
crossref_citationtrail_10_1002_jbm_a_34265
crossref_primary_10_1002_jbm_a_34265
wiley_primary_10_1002_jbm_a_34265_JBM34265
istex_primary_ark_67375_WNG_2N4Q4Q7D_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
– name: Mount Laurel
PublicationTitle Journal of biomedical materials research. Part A
PublicationTitleAlternate J. Biomed. Mater. Res
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Blackwell
– name: Wiley Subscription Services, Inc
References Yoshikawa T, Suwa Y, Ohgushi H, Tamai S, Ichijima K. Self setting hydroxyapatite cement as a carrier for bone-forming cells. Biomed Mater Eng 1996; 6: 345-351.
Langer R, Vacanti JP. Tissue engineering. Science 1993; 260: 920-926.2.
Park TG. Degradation of poly(lactic-co-glycolic acid) microspheres: Effect of copolymer composition. Biomaterials 1995; 16: 1123-1130.
Rose FR, Cyster LA, Grant DM, Scotchford CA, Howdle SM, Shakesheff KM. In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials 2004; 25: 5507-5514.
Mistry AS, Mikos AG. Tissue engineering strategies for bone regeneration. Adv Biochem Eng Biotechnol 2005; 94: 1-22.
Fu Q, Rahaman MN, Dogan F, Bal BS. Freeze casting of porous hydroxyapatite scaffolds. I. processing and general microstructure. J Biomed Mater Res B Appl Biomater 2008; 86: 125-135.
Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, Park KW. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 2000; 21: 1291-1298.
Doblare M, Garcia JM, Gomez MJ. Modeling bone tissue fracture and healing: A review. J Eng Fract Mech 2004; 71: 1809-1840.
Miao X, Tan DM, Li J, Xiao Y, Crawford R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater 2008; 4: 638-645.
Yunoki S, Ikoma T, Tsuchiya A, Monkawa A, Ohta K, Sotome S, Shinomiya K, Tanaka J. Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite. J Biomed Mater Res B Appl Biomater 2007; 80: 166-173.
Shi XT, Wang YJ, Ren L, Zhao NR, Gong YH, Wang D-A. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Acta Biomater 2009; 5: 1697-1707.
Del Real RP, Ooms E, Wolke J, Vallet-Regi M, Jansen JA. In vivo bone response to porous calcium phosphate cement. J Biomed Mater Res 2003; 65: 30-36.
Lee SJ, Park YJ, Park SN, Lee YM, Seol YJ, Ku Y, Chung CP. Molded porous poly(L-Lactide) membranes for guided bone regeneration with enhanced effects by controlled growth factor release. J Biomedical Mater Res 2001; 55: 295-303.
Felicity RR, Lesley AC, David MG, Colin AS, Steven MH, Kevin MS. In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials 2004; 25: 5507-5514.
Wheeler DL, Stokes KE, Hoellrich RG, Chamberland DL, McLoughlin SW. Effect of bioactive glass particle size on osseous regeneration of cancellous defects. J Biomed Mater Res 1998; 41: 527-533.
Vallet-Regí M, Gonz′alez-Calbet J. Calcium phosphates in the substitution of bone tissue. Prog Sol State Chem 2004; 32: 1-31.
Del Real RP, Wolke JGC, Vallet-Regi M, Jansen JA. A new method to produce macropores in calcium phosphate cements. Biomaterials 2002; 23: 3673-3680.
Eggli PS, Muller W, Schenk CRK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. Clin Orthop Relat Res 1988; 232: 127-138.
Martin RB, Chapman MW, Holmes RE, Sartoris DJ, Shors EC, Gordon JE, Heitter DO, Sharkey NA, Zissimos AG. Effects of bone ingrowth on the strength and noninvasive assessment of a coralline hydroxyapatite material. Biomaterials 1989; 10: 481-488.
Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971; 5: 117-141.
Schoof H, Apel J, Heschel I, Rau G. Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res B Appl Biomater 2001; 58: 352-357.
Yang F, Qu X, Cui W, Bei J, Yu F, Lu S, Wang S. Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds. Biomaterials; 27: 4923-4933.
Taiyo Y, Kawazoe N, Tateishi T, Chen G. In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges. Biomaterials 2008; 29: 3438-3443.
Comuzzi L, Ooms E, Jansen JA. Injectable calcium phosphate cement as a filler for bone defects around oral implants: An experimental study in goats. Clin Oral Impl Res 2002; 13: 304-311.
Eliaz RE, Kost J. Characterization of a polymeric PLGA injectable implant delivery system for the controlled release of proteins. J Biomed Mater Res 2000; 50: 388-396.
Wilda H, Julie EG. Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass® composite foam scaffolds in vitro. Acta Biomater 2008; 4: 230-243.
Rizzi SC, Heath DJ, Coombes AG, Bock N, Textor M, Downes S. Biodegradable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res 2001; 55: 475-486.
Holy CE, Dang SM, Davies JE, Shoichet MS. In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. Biomaterials 1999; 20: 1177-1185.
Wheeler DL, Stokes KE, Park HE, Hollinger JO. Evaluation of particulate bioglass in a rabbit radius ostectomy model. J Biomed Mater Res 1997; 35: 249-254.
Miao X, Lim WK, Huang X, Chen Y. Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites. Mater Lett 2005; 59: 4000-4005.
Almirall A, Larrecq G, Delgado JA, Martinez S, Planell JA, Ginebra MP. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials 2004; 25: 3671-3680.
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26: 5474-5491.
Wang XP, Ye JD, Wang YJ. Hydration mechanism of a novel PCCP+DCPA cement system. J Mater Sci: Mater Med 2008; 19: 813-816.
Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater 2010; 6: 1167-1177.
Ooms EM, Wolke JGC, van der Waerden JPCM, Jansen JA. Trabecular bone response to injectable calcium phosphate (Ca-P) cement. J Biomed Mater Res 2002; 61: 9-18.
Fratzl P. Bone fracture. When the cracks begin to show. Nat Mater 2008; 7: 610-612.
Silva MMCG, Cyster LA, Barry JJA, Yangd XB, Oreffo ROC, Grant DM, Scotchford CA, Howdle SM, Shakesheff KM, Rose FR. The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds. Biomaterials 2006; 27: 5909-5917.
Takagi S, Chow LC. Formation of macropores in calcium phosphate cement implants. J Mater Sci: Mater Med 2001; 12: 135-139.
Gao H, Ji B, Jägel IL, Arzt E, Fratzl P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc Natl Acad Sci USA 2003; 100: 5597-5600.
Qi X, Ye J, Wang Y. Alginate/poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. J Biomed Mater Res A 2009; 89: 980-987.
Sarda S, Nilsson M, Balcells M, Fernandez E. Influence of surfactant molecules as air-entraining agent for bone cement macroporosity. J Biomed Mater Res A 2003; 65: 215-221.
Hench LL. Bioceramics. J Am Ceram Soc 1998; 81: 1705-1728.
Henriksen SS, Ding M, Juhl MV, Theilgaard N, Overgaard S. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone. J Mater Sci: Mater Med 2011; 22: 1111-1118.
Markovic M, Takagi S, Chow LC. Formation of macropores in calcium phosphate cements through the use of mannitol crystals. Key Eng Mater 2000; 192-5: 773-776.
Wang X, Ye J, Wang Y, Wu X, Bai B. Control of crystallinity of hydrated products in a calcium phosphate bone cement. J Biomed Mater Res A 2007; 81: 781-790.
2009; 89
27
1995; 16
2004; 25
2000; 21
2002; 13
2008; 19
1993; 260
2000; 50
2000; 192–5
2008; 7
1998; 81
1999; 20
2008; 4
1998; 41
2005; 26
2004; 32
2004; 71
1989; 10
2002; 61
2002; 23
2008; 29
2006; 27
1997; 35
2007; 80
2011; 22
1988; 232
2007; 81
2009; 5
2005; 94
2008; 86
2001; 55
2005; 59
2001; 12
2001; 58
2003; 100
2010; 6
2003; 65
1971; 5
1996; 6
e_1_2_6_31_2
e_1_2_6_30_2
Markovic M (e_1_2_6_36_2) 2000; 192
e_1_2_6_18_2
e_1_2_6_19_2
Yoshikawa T (e_1_2_6_35_2) 1996; 6
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
Eggli PS (e_1_2_6_4_2) 1988; 232
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_42_2
e_1_2_6_20_2
Yang F (e_1_2_6_8_2); 27
e_1_2_6_41_2
e_1_2_6_40_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: Rizzi SC, Heath DJ, Coombes AG, Bock N, Textor M, Downes S. Biodegradable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res 2001; 55: 475-486.
– reference: Holy CE, Dang SM, Davies JE, Shoichet MS. In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. Biomaterials 1999; 20: 1177-1185.
– reference: Felicity RR, Lesley AC, David MG, Colin AS, Steven MH, Kevin MS. In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials 2004; 25: 5507-5514.
– reference: Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26: 5474-5491.
– reference: Comuzzi L, Ooms E, Jansen JA. Injectable calcium phosphate cement as a filler for bone defects around oral implants: An experimental study in goats. Clin Oral Impl Res 2002; 13: 304-311.
– reference: Yang F, Qu X, Cui W, Bei J, Yu F, Lu S, Wang S. Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds. Biomaterials; 27: 4923-4933.
– reference: Vallet-Regí M, Gonz′alez-Calbet J. Calcium phosphates in the substitution of bone tissue. Prog Sol State Chem 2004; 32: 1-31.
– reference: Park TG. Degradation of poly(lactic-co-glycolic acid) microspheres: Effect of copolymer composition. Biomaterials 1995; 16: 1123-1130.
– reference: Wang X, Ye J, Wang Y, Wu X, Bai B. Control of crystallinity of hydrated products in a calcium phosphate bone cement. J Biomed Mater Res A 2007; 81: 781-790.
– reference: Henriksen SS, Ding M, Juhl MV, Theilgaard N, Overgaard S. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone. J Mater Sci: Mater Med 2011; 22: 1111-1118.
– reference: Taiyo Y, Kawazoe N, Tateishi T, Chen G. In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges. Biomaterials 2008; 29: 3438-3443.
– reference: Yunoki S, Ikoma T, Tsuchiya A, Monkawa A, Ohta K, Sotome S, Shinomiya K, Tanaka J. Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite. J Biomed Mater Res B Appl Biomater 2007; 80: 166-173.
– reference: Ooms EM, Wolke JGC, van der Waerden JPCM, Jansen JA. Trabecular bone response to injectable calcium phosphate (Ca-P) cement. J Biomed Mater Res 2002; 61: 9-18.
– reference: Gao H, Ji B, Jägel IL, Arzt E, Fratzl P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc Natl Acad Sci USA 2003; 100: 5597-5600.
– reference: Shi XT, Wang YJ, Ren L, Zhao NR, Gong YH, Wang D-A. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Acta Biomater 2009; 5: 1697-1707.
– reference: Takagi S, Chow LC. Formation of macropores in calcium phosphate cement implants. J Mater Sci: Mater Med 2001; 12: 135-139.
– reference: Eliaz RE, Kost J. Characterization of a polymeric PLGA injectable implant delivery system for the controlled release of proteins. J Biomed Mater Res 2000; 50: 388-396.
– reference: Doblare M, Garcia JM, Gomez MJ. Modeling bone tissue fracture and healing: A review. J Eng Fract Mech 2004; 71: 1809-1840.
– reference: Miao X, Lim WK, Huang X, Chen Y. Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites. Mater Lett 2005; 59: 4000-4005.
– reference: Wheeler DL, Stokes KE, Hoellrich RG, Chamberland DL, McLoughlin SW. Effect of bioactive glass particle size on osseous regeneration of cancellous defects. J Biomed Mater Res 1998; 41: 527-533.
– reference: Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater 2010; 6: 1167-1177.
– reference: Rose FR, Cyster LA, Grant DM, Scotchford CA, Howdle SM, Shakesheff KM. In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials 2004; 25: 5507-5514.
– reference: Mistry AS, Mikos AG. Tissue engineering strategies for bone regeneration. Adv Biochem Eng Biotechnol 2005; 94: 1-22.
– reference: Fu Q, Rahaman MN, Dogan F, Bal BS. Freeze casting of porous hydroxyapatite scaffolds. I. processing and general microstructure. J Biomed Mater Res B Appl Biomater 2008; 86: 125-135.
– reference: Schoof H, Apel J, Heschel I, Rau G. Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res B Appl Biomater 2001; 58: 352-357.
– reference: Fratzl P. Bone fracture. When the cracks begin to show. Nat Mater 2008; 7: 610-612.
– reference: Almirall A, Larrecq G, Delgado JA, Martinez S, Planell JA, Ginebra MP. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials 2004; 25: 3671-3680.
– reference: Del Real RP, Ooms E, Wolke J, Vallet-Regi M, Jansen JA. In vivo bone response to porous calcium phosphate cement. J Biomed Mater Res 2003; 65: 30-36.
– reference: Del Real RP, Wolke JGC, Vallet-Regi M, Jansen JA. A new method to produce macropores in calcium phosphate cements. Biomaterials 2002; 23: 3673-3680.
– reference: Yoshikawa T, Suwa Y, Ohgushi H, Tamai S, Ichijima K. Self setting hydroxyapatite cement as a carrier for bone-forming cells. Biomed Mater Eng 1996; 6: 345-351.
– reference: Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, Park KW. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 2000; 21: 1291-1298.
– reference: Wilda H, Julie EG. Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass® composite foam scaffolds in vitro. Acta Biomater 2008; 4: 230-243.
– reference: Miao X, Tan DM, Li J, Xiao Y, Crawford R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater 2008; 4: 638-645.
– reference: Martin RB, Chapman MW, Holmes RE, Sartoris DJ, Shors EC, Gordon JE, Heitter DO, Sharkey NA, Zissimos AG. Effects of bone ingrowth on the strength and noninvasive assessment of a coralline hydroxyapatite material. Biomaterials 1989; 10: 481-488.
– reference: Silva MMCG, Cyster LA, Barry JJA, Yangd XB, Oreffo ROC, Grant DM, Scotchford CA, Howdle SM, Shakesheff KM, Rose FR. The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds. Biomaterials 2006; 27: 5909-5917.
– reference: Sarda S, Nilsson M, Balcells M, Fernandez E. Influence of surfactant molecules as air-entraining agent for bone cement macroporosity. J Biomed Mater Res A 2003; 65: 215-221.
– reference: Langer R, Vacanti JP. Tissue engineering. Science 1993; 260: 920-926.2.
– reference: Wheeler DL, Stokes KE, Park HE, Hollinger JO. Evaluation of particulate bioglass in a rabbit radius ostectomy model. J Biomed Mater Res 1997; 35: 249-254.
– reference: Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971; 5: 117-141.
– reference: Eggli PS, Muller W, Schenk CRK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. Clin Orthop Relat Res 1988; 232: 127-138.
– reference: Wang XP, Ye JD, Wang YJ. Hydration mechanism of a novel PCCP+DCPA cement system. J Mater Sci: Mater Med 2008; 19: 813-816.
– reference: Hench LL. Bioceramics. J Am Ceram Soc 1998; 81: 1705-1728.
– reference: Lee SJ, Park YJ, Park SN, Lee YM, Seol YJ, Ku Y, Chung CP. Molded porous poly(L-Lactide) membranes for guided bone regeneration with enhanced effects by controlled growth factor release. J Biomedical Mater Res 2001; 55: 295-303.
– reference: Qi X, Ye J, Wang Y. Alginate/poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. J Biomed Mater Res A 2009; 89: 980-987.
– reference: Markovic M, Takagi S, Chow LC. Formation of macropores in calcium phosphate cements through the use of mannitol crystals. Key Eng Mater 2000; 192-5: 773-776.
– volume: 23
  start-page: 3673
  year: 2002
  end-page: 3680
  article-title: A new method to produce macropores in calcium phosphate cements
  publication-title: Biomaterials
– volume: 80
  start-page: 166
  year: 2007
  end-page: 173
  article-title: Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite
  publication-title: J Biomed Mater Res B Appl Biomater
– volume: 7
  start-page: 610
  year: 2008
  end-page: 612
  article-title: Bone fracture. When the cracks begin to show
  publication-title: Nat Mater
– volume: 71
  start-page: 1809
  year: 2004
  end-page: 1840
  article-title: Modeling bone tissue fracture and healing: A review
  publication-title: J Eng Fract Mech
– volume: 20
  start-page: 1177
  year: 1999
  end-page: 1185
  article-title: In vitro degradation of a novel poly(lactide‐co‐glycolide) 75/25 foam
  publication-title: Biomaterials
– volume: 94
  start-page: 1
  year: 2005
  end-page: 22
  article-title: Tissue engineering strategies for bone regeneration
  publication-title: Adv Biochem Eng Biotechnol
– volume: 6
  start-page: 345
  year: 1996
  end-page: 351
  article-title: Self setting hydroxyapatite cement as a carrier for bone‐forming cells
  publication-title: Biomed Mater Eng
– volume: 65
  start-page: 215
  year: 2003
  end-page: 221
  article-title: Influence of surfactant molecules as air‐entraining agent for bone cement macroporosity
  publication-title: J Biomed Mater Res A
– volume: 260
  start-page: 920
  year: 1993
  end-page: 926
  article-title: Tissue engineering
  publication-title: Science
– volume: 16
  start-page: 1123
  year: 1995
  end-page: 1130
  article-title: Degradation of poly(lactic‐co‐glycolic acid) microspheres: Effect of copolymer composition
  publication-title: Biomaterials
– volume: 25
  start-page: 3671
  year: 2004
  end-page: 3680
  article-title: Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α‐TCP paste
  publication-title: Biomaterials
– volume: 19
  start-page: 813
  year: 2008
  end-page: 816
  article-title: Hydration mechanism of a novel PCCP+DCPA cement system
  publication-title: J Mater Sci: Mater Med
– volume: 5
  start-page: 117
  year: 1971
  end-page: 141
  article-title: Bonding mechanism at the interface of ceramic prosthetic materials
  publication-title: J Biomed Mater Res
– volume: 50
  start-page: 388
  year: 2000
  end-page: 396
  article-title: Characterization of a polymeric PLGA injectable implant delivery system for the controlled release of proteins
  publication-title: J Biomed Mater Res
– volume: 192–5
  start-page: 773
  year: 2000
  end-page: 776
  article-title: Formation of macropores in calcium phosphate cements through the use of mannitol crystals
  publication-title: Key Eng Mater
– volume: 5
  start-page: 1697
  year: 2009
  end-page: 1707
  article-title: Novel mesoporous silica‐based antibiotic releasing scaffold for bone repair
  publication-title: Acta Biomater
– volume: 6
  start-page: 1167
  year: 2010
  end-page: 1177
  article-title: Preparation of aligned porous gelatin scaffolds by unidirectional freeze‐drying method
  publication-title: Acta Biomater
– volume: 25
  start-page: 5507
  year: 2004
  end-page: 5514
  article-title: In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel
  publication-title: Biomaterials
– volume: 12
  start-page: 135
  year: 2001
  end-page: 139
  article-title: Formation of macropores in calcium phosphate cement implants
  publication-title: J Mater Sci: Mater Med
– volume: 27
  start-page: 5909
  year: 2006
  end-page: 5917
  article-title: The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds
  publication-title: Biomaterials
– volume: 86
  start-page: 125
  year: 2008
  end-page: 135
  article-title: Freeze casting of porous hydroxyapatite scaffolds. I. processing and general microstructure
  publication-title: J Biomed Mater Res B Appl Biomater
– volume: 4
  start-page: 230
  year: 2008
  end-page: 243
  article-title: Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass® composite foam scaffolds in vitro
  publication-title: Acta Biomater
– volume: 22
  start-page: 1111
  year: 2011
  end-page: 1118
  article-title: Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone
  publication-title: J Mater Sci: Mater Med
– volume: 58
  start-page: 352
  year: 2001
  end-page: 357
  article-title: Control of pore structure and size in freeze‐dried collagen sponges
  publication-title: J Biomed Mater Res B Appl Biomater
– volume: 81
  start-page: 1705
  year: 1998
  end-page: 1728
  article-title: Bioceramics
  publication-title: J Am Ceram Soc
– volume: 26
  start-page: 5474
  year: 2005
  end-page: 5491
  article-title: Porosity of 3D biomaterial scaffolds and osteogenesis
  publication-title: Biomaterials
– volume: 10
  start-page: 481
  year: 1989
  end-page: 488
  article-title: Effects of bone ingrowth on the strength and noninvasive assessment of a coralline hydroxyapatite material
  publication-title: Biomaterials
– volume: 232
  start-page: 127
  year: 1988
  end-page: 138
  article-title: Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits
  publication-title: Clin Orthop Relat Res
– volume: 65
  start-page: 30
  year: 2003
  end-page: 36
  article-title: In vivo bone response to porous calcium phosphate cement
  publication-title: J Biomed Mater Res
– volume: 21
  start-page: 1291
  year: 2000
  end-page: 1298
  article-title: Osteoconduction at porous hydroxyapatite with various pore configurations
  publication-title: Biomaterials
– volume: 32
  start-page: 1
  year: 2004
  end-page: 31
  article-title: Calcium phosphates in the substitution of bone tissue
  publication-title: Prog Sol State Chem
– volume: 59
  start-page: 4000
  year: 2005
  end-page: 4005
  article-title: Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites
  publication-title: Mater Lett
– volume: 4
  start-page: 638
  year: 2008
  end-page: 645
  article-title: Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic‐co‐glycolic acid)
  publication-title: Acta Biomater
– volume: 35
  start-page: 249
  year: 1997
  end-page: 254
  article-title: Evaluation of particulate bioglass in a rabbit radius ostectomy model
  publication-title: J Biomed Mater Res
– volume: 27
  start-page: 4923
  end-page: 4933
  article-title: Manufacturing and morphology structure of polylactide‐type microtubules orientation‐structured scaffolds
  publication-title: Biomaterials
– volume: 55
  start-page: 295
  year: 2001
  end-page: 303
  article-title: Molded porous poly(L‐Lactide) membranes for guided bone regeneration with enhanced effects by controlled growth factor release
  publication-title: J Biomedical Mater Res
– volume: 29
  start-page: 3438
  year: 2008
  end-page: 3443
  article-title: In vitro evaluation of biodegradation of poly(lactic‐co‐glycolic acid) sponges
  publication-title: Biomaterials
– volume: 13
  start-page: 304
  year: 2002
  end-page: 311
  article-title: Injectable calcium phosphate cement as a filler for bone defects around oral implants: An experimental study in goats
  publication-title: Clin Oral Impl Res
– volume: 100
  start-page: 5597
  year: 2003
  end-page: 5600
  article-title: Materials become insensitive to flaws at nanoscale: Lessons from nature
  publication-title: Proc Natl Acad Sci USA
– volume: 89
  start-page: 980
  year: 2009
  end-page: 987
  article-title: Alginate/poly(lactic‐co‐glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering
  publication-title: J Biomed Mater Res A
– volume: 55
  start-page: 475
  year: 2001
  end-page: 486
  article-title: Biodegradable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts
  publication-title: J Biomed Mater Res
– volume: 41
  start-page: 527
  year: 1998
  end-page: 533
  article-title: Effect of bioactive glass particle size on osseous regeneration of cancellous defects
  publication-title: J Biomed Mater Res
– volume: 61
  start-page: 9
  year: 2002
  end-page: 18
  article-title: Trabecular bone response to injectable calcium phosphate (Ca‐P) cement
  publication-title: J Biomed Mater Res
– volume: 81
  start-page: 781
  year: 2007
  end-page: 790
  article-title: Control of crystallinity of hydrated products in a calcium phosphate bone cement
  publication-title: J Biomed Mater Res A
– ident: e_1_2_6_27_2
  doi: 10.1016/S0142-9612(98)00256-7
– ident: e_1_2_6_41_2
  doi: 10.1016/j.biomaterials.2008.04.011
– ident: e_1_2_6_12_2
  doi: 10.1002/jbm.a.10432
– ident: e_1_2_6_17_2
  doi: 10.1111/j.1151-2916.1998.tb02540.x
– ident: e_1_2_6_28_2
  doi: 10.1016/j.matlet.2005.07.062
– ident: e_1_2_6_32_2
  doi: 10.1007/s10856-006-0029-6
– ident: e_1_2_6_9_2
  doi: 10.1016/j.actbio.2007.09.010
– ident: e_1_2_6_2_2
  doi: 10.1126/science.8493529
– volume: 232
  start-page: 127
  year: 1988
  ident: e_1_2_6_4_2
  article-title: Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/00003086-198807000-00017
– ident: e_1_2_6_14_2
  doi: 10.1002/(SICI)1097-4636(199705)35:2<249::AID-JBM12>3.0.CO;2-C
– ident: e_1_2_6_26_2
  doi: 10.1016/0142-9612(95)93575-X
– ident: e_1_2_6_13_2
  doi: 10.1002/1097-4636(20010615)55:4<475::AID-JBM1039>3.0.CO;2-Q
– ident: e_1_2_6_38_2
  doi: 10.1016/j.biomaterials.2003.10.066
– ident: e_1_2_6_15_2
  doi: 10.1002/(SICI)1097-4636(19980915)41:4<527::AID-JBM3>3.0.CO;2-E
– ident: e_1_2_6_18_2
  doi: 10.1016/j.progsolidstchem.2004.07.001
– volume: 192
  start-page: 773
  year: 2000
  ident: e_1_2_6_36_2
  article-title: Formation of macropores in calcium phosphate cements through the use of mannitol crystals
  publication-title: Key Eng Mater
  doi: 10.4028/www.scientific.net/KEM.192-195.773
– ident: e_1_2_6_45_2
  doi: 10.1016/j.biomaterials.2004.01.012
– ident: e_1_2_6_31_2
  doi: 10.1002/jbm.a.31059
– ident: e_1_2_6_7_2
  doi: 10.1002/jbm.1028
– ident: e_1_2_6_22_2
  doi: 10.1038/nmat2240
– ident: e_1_2_6_39_2
  doi: 10.1002/jbm.a.10458
– ident: e_1_2_6_3_2
  doi: 10.1007/b99997
– ident: e_1_2_6_46_2
  doi: 10.1016/S0142-9612(00)00030-2
– ident: e_1_2_6_34_2
  doi: 10.1023/A:1008917910468
– ident: e_1_2_6_23_2
  doi: 10.1007/s10856-011-4290-y
– ident: e_1_2_6_16_2
  doi: 10.1002/jbm.820050611
– ident: e_1_2_6_30_2
  doi: 10.1002/jbm.a.32054
– ident: e_1_2_6_24_2
  doi: 10.1002/1097-4636(20010605)55:3<295::AID-JBM1017>3.0.CO;2-W
– ident: e_1_2_6_5_2
  doi: 10.1016/j.engfracmech.2003.08.003
– volume: 27
  start-page: 4923
  ident: e_1_2_6_8_2
  article-title: Manufacturing and morphology structure of polylactide‐type microtubules orientation‐structured scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.05.028
– ident: e_1_2_6_42_2
  doi: 10.1016/0142-9612(89)90090-2
– ident: e_1_2_6_20_2
  doi: 10.1034/j.1600-0501.2002.130311.x
– ident: e_1_2_6_33_2
  doi: 10.1016/j.actbio.2009.01.010
– ident: e_1_2_6_10_2
  doi: 10.1016/j.actbio.2009.08.041
– ident: e_1_2_6_6_2
  doi: 10.1002/jbm.b.30997
– volume: 6
  start-page: 345
  year: 1996
  ident: e_1_2_6_35_2
  article-title: Self setting hydroxyapatite cement as a carrier for bone‐forming cells
  publication-title: Biomed Mater Eng
– ident: e_1_2_6_29_2
  doi: 10.1016/j.actbio.2007.10.006
– ident: e_1_2_6_43_2
  doi: 10.1016/j.biomaterials.2005.02.002
– ident: e_1_2_6_21_2
  doi: 10.1073/pnas.0631609100
– ident: e_1_2_6_19_2
  doi: 10.1002/jbm.10029
– ident: e_1_2_6_25_2
  doi: 10.1002/(SICI)1097-4636(20000605)50:3<388::AID-JBM13>3.0.CO;2-F
– ident: e_1_2_6_44_2
  doi: 10.1016/j.biomaterials.2006.08.010
– ident: e_1_2_6_37_2
  doi: 10.1016/S0142-9612(02)00101-1
– ident: e_1_2_6_40_2
  doi: 10.1016/j.biomaterials.2004.01.012
– ident: e_1_2_6_11_2
  doi: 10.1002/jbm.b.30581
SSID ssj0026052
Score 2.27209
Snippet The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic‐co‐glycolic acid) (PLGA)/calcium...
The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic‐ co ‐glycolic acid)...
The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid) (PLGA)/calcium...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3239
SubjectTerms Alkaline phosphatase
Animals
Biocompatibility
Biocompatible Materials - pharmacology
Biological and medical sciences
Biomedical materials
Bone Cements - pharmacology
calcium phosphate cement
Calcium phosphates
Calcium Phosphates - pharmacology
Cell culture
Cell differentiation
Cell Proliferation - drug effects
Cell Survival - drug effects
Cell viability
Cement
Compressive Strength - drug effects
cytocompatibility
Degradability
Degradation
Femur - drug effects
Femur - pathology
Glycolic acid
Hydrogen-Ion Concentration - drug effects
In vivo methods and tests
Lactic Acid - pharmacology
Lamellar structure
Materials Testing - methods
Mechanical properties
Medical sciences
Mesenchymal Stem Cell Transplantation
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - drug effects
Mesenchymal Stromal Cells - enzymology
Mesenchyme
Microscopy, Electron, Scanning
Microscopy, Fluorescence
Orthopedic surgery
Osteogenesis
Osteogenesis - drug effects
PLGA
Polyglycolic Acid - pharmacology
Polylactide-co-glycolide
Porosity
Prolongation
Rabbits
Rats
scaffold
Scaffolds
Stem cell transplantation
Stem cells
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Surgical implants
Technology. Biomaterials. Equipments
Time Factors
Tissue engineering
Tissue Scaffolds - chemistry
unidirectional lamellar pore
Title In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure
URI https://api.istex.fr/ark:/67375/WNG-2N4Q4Q7D-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.34265
https://www.ncbi.nlm.nih.gov/pubmed/22733543
https://www.proquest.com/docview/2451157231
https://www.proquest.com/docview/1114950573
Volume 100A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVQeYEH7pdAqYxUIaia7ca5P3IrpVIrFVFR8RL52oZu49Vmt2J54hP4F_6IL2HGTtMuqpDgZRXJTlaxxzNnJjNnCFkVBsxyKoqQ61SHiYpZKKTMQh6DecrBBjGNAf2d3WxrP9k-SA-63ByshfH8EH3ADU-G09d4wLloN85JQ7-IkwEfxGBhsMQcs7UQEn3oyaMQqLtvneABhTErs646D0Y2Lty7YI-u4tJ-xfxI3sISGd_b4jLwuYhlnTHavOk7rraOwxBzUI4Hs6kYyG9_MDz-93veIjc6mEpferm6Ta7o5g65foG88C75-b6hp_V0YqlCwgnfm2mditq6vPapT7udr1PeKFrj3FNLsaTEHqJ-rVtqDR3b0fz5yBVq_fr-Q1r4ORzNJZIVUy5r9QKLTWQ9O6HjI9uOjwAZU-kimhSWzhg7UhRDyXTW1N46u9AmBTnHtK4J_MFEU0-SO5voe2R_8-3H11th1wIilEmZp-DdRshmyfSQG5ExE8m4VOATlSrXpRBDkWoAoEariA2Z0HEh80xLVZYa_MBIqfg-WWpsox8SKhMGplezWMZFUhamMMNER1oPC21AEUUBWTsThEp2_OjYpmNUeWZnVsFOVLxyOxGQ1X7y2NOCXD7tmZOofg6fHGMmXZ5Wn3bfVWw32Uv28jfV54CsLIhcfwPLCkDEaRyQ5TMZrDot01YMyeXSHCB6QJ72w6Af8KMPb7SdtejhgQ-MtJcBeeBl9_zhgF3jNIGRNSeBf3uVavvVjrt49C-TH5NrgDCZz_9ZJkuw3foJoLipWHGH9TfhokeV
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6V9gAc-P8xlLJIBUFVp8n6_8ABCCVpm0hFrai4LN71ujVN7ShOCuHEI_AkXHgQ3oEnYWY3cRtUIXHogUtkaddOsjOz88149htClkUKbtkToR0rT9lu4jBbSOnbsQPuKQAfxBQm9Dtdv7Xrbux5e3Pk-_QsjOGHqBJuaBl6v0YDx4T02glr6EdxVItrDriYaVHlphp_gpCtfN5ugnwfM7b-eudVy550FbClGwUeBEwNJEhkqh6nwmdpQzpRAjA7SgIVCVEXngJMk6qkwepMKCeUga9kEkUKQotGkjjw3AtkAXuII1d_821FV4WhgX67CjGX7bDIn5wHhJG1Uz92xgMuoDA_Y0VmXIJQUtNN4yy4O4uetftbv0p-ThfOVL0c1kZDUZNf_uCU_H9W9hq5MkHi9IUxnetkTuU3yOVT_Iw3yY92To-z4aCgCXJqmPZTq1RkhS7dH5rK4vEqjfOEZjj3uKB4aqbYRxeSlbRIab_ojZ_29Fm0X1-_yQI-9ntjiXzMNJZZ8gzP08hsdET7B0XZPwDwT6VO2lKQVZoWvYRitpyO8swAEJ29pWDKWLk2gC8YKGp4gEcDdYvsnsuq3SbzeZGru4RKlwG6UMyRTuhGYRqmdVc1lKqHKoW9tmGRlanmcTmhgMdOJD1uyKsZB8nzmGvJW2S5mtw3zCdnT3uiVbiaEw8OsVgw8Pi77hvOuu62ux00-XuLLM3oeHUD80MA_Z5jkcWp0vPJRlpyhvx5XgBRiEUeVcOwBeJ7rThXxajEIBbCfGT2tMgdYywnDwd47ngujKxolf_bX-EbLzv64t6_TH5ILrZ2Olt8q93dvE8uAaBmptxpkcyD6NUDAK1DsaR3Cko-nLcB_QYOsqVu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB2VVkKw4P0wlDJIBUFVp874vWABhNAHjWhFRcVm8Lxa09SO4qQQVnwCP8KK_-Aj-BLuzCRugyokFl2wiSzN2Enmvs4d33sGoUWmICyHLHEzGUo3ED5xGeeRm_kQnmKIQUTqDf3NTrS6E6zvhrsz6PukF8byQ9QbbtoyjL_WBt4TauWYNPQjO2xkDR8izKSmckOOPkHGVj1da4F4HxLSfvn2xao7PlTA5UEah5AvNTU_IpFeplhEVJP7qQCUnYpYpox5LJQAaZQUTeIRJv2Ex5HkIk0lZBZNIXx47jk0F0Reqk-KaG3XbFU6MzAvVyHlcn2SRuN2QBhZOfFjpwLgnJblZ12QmVUgE2UP0zgN7U6DZxP92pfRz8m62aKXg8ZwwBr8yx-Ukv_Nwl5Bl8Y4HD-zhnMVzcjiGrp4gp3xOvqxVuCjfNAvsdCMGvbwqWXM8tIU7g9sXfFoGWeFwLmee1Ri3TNT7ukAkle4VLhXdkePu6YT7dfXb7yEj73uiGs2ZpzxXDzR3TQ8Hx7i3n5Z9fYB-mNutmwxiEqpsiuw3ivHwyK38MPs3WIwZF231ocv6EtsWYCHfXkD7ZzJqt1Es0VZyNsI84AAtpDE534SpIlKlBfIppReIhV42qaDliaKR_mYAF6fQ9KllrqaUJA8zaiRvIMW68k9y3ty-rRHRoPrOVn_QJcKxiF913lFSSfYCrbiFn3voIUpFa9vIFECkD_0HTQ_0Xk6dqMVJZo9L4whB3HQg3oYHKB-q5UVshxWOoWFJF_zejrolrWV44cDOPfDAEaWjMb_7a_Q9eeb5uLOv0y-j86_abXp67XOxl10AdA0sbVO82gWJC_vAWIdsAXjJzD6cNb28xt91qQd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vitro+degradation%2C+biocompatibility%2C+and+in+vivo+osteogenesis+of+poly%28lactic-co-glycolic+acid%29%2Fcalcium+phosphate+cement+scaffold+with+unidirectional+lamellar+pore+structure&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=He%2C+Fupo&rft.au=Ye%2C+Jiandong&rft.date=2012-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1549-3296&rft.eissn=1552-4965&rft.volume=100A&rft.issue=12&rft.spage=3239&rft.epage=3250&rft_id=info:doi/10.1002%2Fjbm.a.34265&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_2N4Q4Q7D_Z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon