In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure
The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic‐co‐glycolic acid) (PLGA)/calcium phosphate cement (CPC) scaffold with unidirectional lamellar pore structure. CPC‐based scaffold was fabricated by unidirectional freeze casti...
Saved in:
Published in | Journal of biomedical materials research. Part A Vol. 100A; no. 12; pp. 3239 - 3250 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.12.2012
Wiley-Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic‐co‐glycolic acid) (PLGA)/calcium phosphate cement (CPC) scaffold with unidirectional lamellar pore structure. CPC‐based scaffold was fabricated by unidirectional freeze casting, and PLGA was used to improve the mechanical properties of the CPC‐based scaffold, which covered the surface of the pore wall as coating. The in vitro degradation results demonstrated that the PLGA/CPC scaffold had good degradability. The degradation of PLGA film on the surface of the scaffold made the CPC matrix exposed, which facilitated cell response and osteogenesis. Rat bone mesenchymal stem cells (rMSCs) were seeded on the PLGA/CPC composite scaffold. Cell viability, proliferation, and differentiation on the PLGA/CPC composite scaffold were evaluated. The results showed that viable rMSCs attached on the surface of pore wall gradually penetrated into the internal pores of the scaffold as prolongation of culture time. In addition, the rMSCs seeded on the scaffold exhibited good proliferation and growing alkaline phosphatase activity. The scaffold was implanted in the defects in distal end of femora of New Zealand white rabbits. Histological evaluation indicated that the PLGA/CPC scaffold with unidirectional lamellar pore structure had good biocompatibility and effective osteogenesis. These results suggest PLGA/CPC composite scaffold with unidirectional lamellar pore structure is a promising scaffold for bone tissue engineering. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A:3239–3250, 2012. |
---|---|
AbstractList | The aim of this study was to investigate the
in vitro
degradation, cytocompatibility, and
in vivo
osteogenesis of poly(lactic‐
co
‐glycolic acid) (PLGA)/calcium phosphate cement (CPC) scaffold with unidirectional lamellar pore structure. CPC‐based scaffold was fabricated by unidirectional freeze casting, and PLGA was used to improve the mechanical properties of the CPC‐based scaffold, which covered the surface of the pore wall as coating. The
in vitro
degradation results demonstrated that the PLGA/CPC scaffold had good degradability. The degradation of PLGA film on the surface of the scaffold made the CPC matrix exposed, which facilitated cell response and osteogenesis. Rat bone mesenchymal stem cells (rMSCs) were seeded on the PLGA/CPC composite scaffold. Cell viability, proliferation, and differentiation on the PLGA/CPC composite scaffold were evaluated. The results showed that viable rMSCs attached on the surface of pore wall gradually penetrated into the internal pores of the scaffold as prolongation of culture time. In addition, the rMSCs seeded on the scaffold exhibited good proliferation and growing alkaline phosphatase activity. The scaffold was implanted in the defects in distal end of femora of New Zealand white rabbits. Histological evaluation indicated that the PLGA/CPC scaffold with unidirectional lamellar pore structure had good biocompatibility and effective osteogenesis. These results suggest PLGA/CPC composite scaffold with unidirectional lamellar pore structure is a promising scaffold for bone tissue engineering. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A:3239–3250, 2012. The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid) (PLGA)/calcium phosphate cement (CPC) scaffold with unidirectional lamellar pore structure. CPC-based scaffold was fabricated by unidirectional freeze casting, and PLGA was used to improve the mechanical properties of the CPC-based scaffold, which covered the surface of the pore wall as coating. The in vitro degradation results demonstrated that the PLGA/CPC scaffold had good degradability. The degradation of PLGA film on the surface of the scaffold made the CPC matrix exposed, which facilitated cell response and osteogenesis. Rat bone mesenchymal stem cells (rMSCs) were seeded on the PLGA/CPC composite scaffold. Cell viability, proliferation, and differentiation on the PLGA/CPC composite scaffold were evaluated. The results showed that viable rMSCs attached on the surface of pore wall gradually penetrated into the internal pores of the scaffold as prolongation of culture time. In addition, the rMSCs seeded on the scaffold exhibited good proliferation and growing alkaline phosphatase activity. The scaffold was implanted in the defects in distal end of femora of New Zealand white rabbits. Histological evaluation indicated that the PLGA/CPC scaffold with unidirectional lamellar pore structure had good biocompatibility and effective osteogenesis. These results suggest PLGA/CPC composite scaffold with unidirectional lamellar pore structure is a promising scaffold for bone tissue engineering.The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid) (PLGA)/calcium phosphate cement (CPC) scaffold with unidirectional lamellar pore structure. CPC-based scaffold was fabricated by unidirectional freeze casting, and PLGA was used to improve the mechanical properties of the CPC-based scaffold, which covered the surface of the pore wall as coating. The in vitro degradation results demonstrated that the PLGA/CPC scaffold had good degradability. The degradation of PLGA film on the surface of the scaffold made the CPC matrix exposed, which facilitated cell response and osteogenesis. Rat bone mesenchymal stem cells (rMSCs) were seeded on the PLGA/CPC composite scaffold. Cell viability, proliferation, and differentiation on the PLGA/CPC composite scaffold were evaluated. The results showed that viable rMSCs attached on the surface of pore wall gradually penetrated into the internal pores of the scaffold as prolongation of culture time. In addition, the rMSCs seeded on the scaffold exhibited good proliferation and growing alkaline phosphatase activity. The scaffold was implanted in the defects in distal end of femora of New Zealand white rabbits. Histological evaluation indicated that the PLGA/CPC scaffold with unidirectional lamellar pore structure had good biocompatibility and effective osteogenesis. These results suggest PLGA/CPC composite scaffold with unidirectional lamellar pore structure is a promising scaffold for bone tissue engineering. The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic‐co‐glycolic acid) (PLGA)/calcium phosphate cement (CPC) scaffold with unidirectional lamellar pore structure. CPC‐based scaffold was fabricated by unidirectional freeze casting, and PLGA was used to improve the mechanical properties of the CPC‐based scaffold, which covered the surface of the pore wall as coating. The in vitro degradation results demonstrated that the PLGA/CPC scaffold had good degradability. The degradation of PLGA film on the surface of the scaffold made the CPC matrix exposed, which facilitated cell response and osteogenesis. Rat bone mesenchymal stem cells (rMSCs) were seeded on the PLGA/CPC composite scaffold. Cell viability, proliferation, and differentiation on the PLGA/CPC composite scaffold were evaluated. The results showed that viable rMSCs attached on the surface of pore wall gradually penetrated into the internal pores of the scaffold as prolongation of culture time. In addition, the rMSCs seeded on the scaffold exhibited good proliferation and growing alkaline phosphatase activity. The scaffold was implanted in the defects in distal end of femora of New Zealand white rabbits. Histological evaluation indicated that the PLGA/CPC scaffold with unidirectional lamellar pore structure had good biocompatibility and effective osteogenesis. These results suggest PLGA/CPC composite scaffold with unidirectional lamellar pore structure is a promising scaffold for bone tissue engineering. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A:3239–3250, 2012. The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid) (PLGA)/calcium phosphate cement (CPC) scaffold with unidirectional lamellar pore structure. CPC-based scaffold was fabricated by unidirectional freeze casting, and PLGA was used to improve the mechanical properties of the CPC-based scaffold, which covered the surface of the pore wall as coating. The in vitro degradation results demonstrated that the PLGA/CPC scaffold had good degradability. The degradation of PLGA film on the surface of the scaffold made the CPC matrix exposed, which facilitated cell response and osteogenesis. Rat bone mesenchymal stem cells (rMSCs) were seeded on the PLGA/CPC composite scaffold. Cell viability, proliferation, and differentiation on the PLGA/CPC composite scaffold were evaluated. The results showed that viable rMSCs attached on the surface of pore wall gradually penetrated into the internal pores of the scaffold as prolongation of culture time. In addition, the rMSCs seeded on the scaffold exhibited good proliferation and growing alkaline phosphatase activity. The scaffold was implanted in the defects in distal end of femora of New Zealand white rabbits. Histological evaluation indicated that the PLGA/CPC scaffold with unidirectional lamellar pore structure had good biocompatibility and effective osteogenesis. These results suggest PLGA/CPC composite scaffold with unidirectional lamellar pore structure is a promising scaffold for bone tissue engineering. |
Author | He, Fupo Ye, Jiandong |
Author_xml | – sequence: 1 givenname: Fupo surname: He fullname: He, Fupo organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China – sequence: 2 givenname: Jiandong surname: Ye fullname: Ye, Jiandong email: jdye@scut.edu.cn organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26811253$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22733543$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl9r1TAYxotM3Hb0ynsJiDBxPWuSpj291KlzMicDRfAmpMnbc3KWNjVJN_up_IqmO-coDPEqCfyeJ--f5zDZ62wHSfIUZ3OcZeRkXbdzMac5KdiD5AAzRtK8KtjedM-rlJKq2E8OvV9HuMgYeZTsE1JSynJ6kPw679CNDs4iBUsnlAjadseo1lbato-vWhsdxmMkOoX0xN5YZH0Au4QOvPbINqi3ZjwyQgYtU2nTpRmlNVoiIbV6eSKFkXpoUb-yvl-JAEhCC11AXoqmsUahWx1WaOi00g7kVIAwyIgWjBEumjtAPrhBhsHB4-RhI4yHJ9tzlnx9_-7L6Yf04vPZ-enri1TmVcnSPMN5SQiBTDR1QRosaaUwXlSqhKqus5pBRUkDCpOM1EAXsixAqqqCEhdYKTpLjja-vbM_BvCBt9rLqaIO7OA5xjivWMbiHGfJ83vo2g4u9uA5yRnGrCQUR-rZlhrqFhTvnW6FG_luFRF4sQVEHIxpnOik9n-5YoExYROHN5x01nsHDZc63K0tOKENxxmfYsFjLLjgd7GImlf3NDvbf9PbH261gfF_KP_45tNOk240Ombj5x-NcNe8KGnJ-LfLM04u86v8qnzLv9PfpwrakA |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2017_02_094 crossref_primary_10_1002_adem_202201559 crossref_primary_10_1021_acsbiomaterials_3c01956 crossref_primary_10_1016_j_msec_2016_08_008 crossref_primary_10_3390_ijms24087161 crossref_primary_10_1016_j_msec_2013_10_018 crossref_primary_10_1016_j_pmatsci_2018_01_001 crossref_primary_10_1002_wnan_1925 crossref_primary_10_1088_1758_5082_6_1_015006 crossref_primary_10_1007_s10853_015_9664_y crossref_primary_10_1089_ten_tea_2013_0670 crossref_primary_10_3390_jfb6041036 crossref_primary_10_1016_j_ceramint_2016_06_092 crossref_primary_10_1016_j_actbio_2020_03_026 crossref_primary_10_1002_jbm_a_35641 crossref_primary_10_1002_adhm_202203205 crossref_primary_10_3389_fbioe_2024_1362913 crossref_primary_10_1002_jbm_a_35248 crossref_primary_10_1515_polyeng_2019_0219 crossref_primary_10_3390_nano10050875 crossref_primary_10_1002_jbm_a_36270 crossref_primary_10_1016_j_colsurfb_2016_03_020 crossref_primary_10_4103_1673_5374_152380 crossref_primary_10_1007_s13770_017_0056_z crossref_primary_10_1016_j_colsurfb_2012_10_018 crossref_primary_10_1080_00914037_2021_1990056 crossref_primary_10_1016_j_jmbbm_2017_07_026 crossref_primary_10_1177_0885328214550897 crossref_primary_10_1016_j_ceramint_2014_09_020 crossref_primary_10_1002_asia_201300142 crossref_primary_10_1016_j_bioadv_2022_213098 crossref_primary_10_1016_j_materresbull_2014_04_008 crossref_primary_10_1002_adhm_201801325 crossref_primary_10_1016_j_heliyon_2023_e16309 crossref_primary_10_1089_ten_tec_2015_0016 crossref_primary_10_1016_j_biomaterials_2020_120553 crossref_primary_10_1002_masy_201300108 crossref_primary_10_1016_j_progpolymsci_2020_101289 crossref_primary_10_1016_j_jmst_2013_03_004 crossref_primary_10_1021_acsbiomaterials_9b00426 crossref_primary_10_1039_c3tb20552e crossref_primary_10_1016_j_mtcomm_2024_109332 crossref_primary_10_1002_jbm_a_36844 crossref_primary_10_1016_j_actbio_2013_12_052 crossref_primary_10_1002_jbm_a_36644 |
Cites_doi | 10.1016/S0142-9612(98)00256-7 10.1016/j.biomaterials.2008.04.011 10.1002/jbm.a.10432 10.1111/j.1151-2916.1998.tb02540.x 10.1016/j.matlet.2005.07.062 10.1007/s10856-006-0029-6 10.1016/j.actbio.2007.09.010 10.1126/science.8493529 10.1097/00003086-198807000-00017 10.1002/(SICI)1097-4636(199705)35:2<249::AID-JBM12>3.0.CO;2-C 10.1016/0142-9612(95)93575-X 10.1002/1097-4636(20010615)55:4<475::AID-JBM1039>3.0.CO;2-Q 10.1016/j.biomaterials.2003.10.066 10.1002/(SICI)1097-4636(19980915)41:4<527::AID-JBM3>3.0.CO;2-E 10.1016/j.progsolidstchem.2004.07.001 10.4028/www.scientific.net/KEM.192-195.773 10.1016/j.biomaterials.2004.01.012 10.1002/jbm.a.31059 10.1002/jbm.1028 10.1038/nmat2240 10.1002/jbm.a.10458 10.1007/b99997 10.1016/S0142-9612(00)00030-2 10.1023/A:1008917910468 10.1007/s10856-011-4290-y 10.1002/jbm.820050611 10.1002/jbm.a.32054 10.1002/1097-4636(20010605)55:3<295::AID-JBM1017>3.0.CO;2-W 10.1016/j.engfracmech.2003.08.003 10.1016/j.biomaterials.2006.05.028 10.1016/0142-9612(89)90090-2 10.1034/j.1600-0501.2002.130311.x 10.1016/j.actbio.2009.01.010 10.1016/j.actbio.2009.08.041 10.1002/jbm.b.30997 10.1016/j.actbio.2007.10.006 10.1016/j.biomaterials.2005.02.002 10.1073/pnas.0631609100 10.1002/jbm.10029 10.1002/(SICI)1097-4636(20000605)50:3<388::AID-JBM13>3.0.CO;2-F 10.1016/j.biomaterials.2006.08.010 10.1016/S0142-9612(02)00101-1 10.1002/jbm.b.30581 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Wiley Periodicals, Inc. 2014 INIST-CNRS Copyright Wiley Subscription Services, Inc. Dec 2012 |
Copyright_xml | – notice: Copyright © 2012 Wiley Periodicals, Inc. – notice: 2014 INIST-CNRS – notice: Copyright Wiley Subscription Services, Inc. Dec 2012 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/jbm.a.34265 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4965 |
EndPage | 3250 |
ExternalDocumentID | 22733543 26811253 10_1002_jbm_a_34265 JBM34265 ark_67375_WNG_2N4Q4Q7D_Z |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51172074 – fundername: National Basic Research Program of China funderid: 2012CB619100 |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BSCLL BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL RWI RYL SUPJJ SV3 UB1 V2E W8V W99 WIH WIK WJL WQJ WRC WXSBR XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION IQODW AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c4975-40147222e0afb62f1c39d1189d7e9bb0b5e932fed1202be38c76ecd99e7161dd3 |
IEDL.DBID | DR2 |
ISSN | 1549-3296 1552-4965 |
IngestDate | Thu Jul 10 23:08:28 EDT 2025 Wed Aug 13 09:46:53 EDT 2025 Mon Jul 21 06:07:15 EDT 2025 Wed Apr 02 07:15:08 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Tue Jul 01 01:11:33 EDT 2025 Wed Jan 22 16:57:35 EST 2025 Wed Oct 30 09:52:20 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Biodegradation Glycolic acid copolymer Biological properties Lactone copolymer Biodegradability Lactic acid copolymer calcium phosphate cement Calcium phosphate degradation Scaffold In vivo Lamellar structure PLGA cytocompatibility Biocompatibility Biomaterial Osteogenesis Biomedical engineering unidirectional lamellar pore |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2012 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4975-40147222e0afb62f1c39d1189d7e9bb0b5e932fed1202be38c76ecd99e7161dd3 |
Notes | istex:E4478ADC6261A00AF2CAD48B1F00E3490B2B204B ark:/67375/WNG-2N4Q4Q7D-Z How to cite this article: He F, Ye J. 2012. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. J Biomed Mater Res Part A 2012:100A:3239-3250. National Basic Research Program of China - No. 2012CB619100 National Natural Science Foundation of China - No. 51172074 ArticleID:JBM34265 How to cite this article He F, Ye J. 2012. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic‐co‐glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. J Biomed Mater Res Part A 2012:100A:3239–3250. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 22733543 |
PQID | 2451157231 |
PQPubID | 2034572 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1114950573 proquest_journals_2451157231 pubmed_primary_22733543 pascalfrancis_primary_26811253 crossref_citationtrail_10_1002_jbm_a_34265 crossref_primary_10_1002_jbm_a_34265 wiley_primary_10_1002_jbm_a_34265_JBM34265 istex_primary_ark_67375_WNG_2N4Q4Q7D_Z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2012 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: December 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States – name: Mount Laurel |
PublicationTitle | Journal of biomedical materials research. Part A |
PublicationTitleAlternate | J. Biomed. Mater. Res |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Blackwell – name: Wiley Subscription Services, Inc |
References | Yoshikawa T, Suwa Y, Ohgushi H, Tamai S, Ichijima K. Self setting hydroxyapatite cement as a carrier for bone-forming cells. Biomed Mater Eng 1996; 6: 345-351. Langer R, Vacanti JP. Tissue engineering. Science 1993; 260: 920-926.2. Park TG. Degradation of poly(lactic-co-glycolic acid) microspheres: Effect of copolymer composition. Biomaterials 1995; 16: 1123-1130. Rose FR, Cyster LA, Grant DM, Scotchford CA, Howdle SM, Shakesheff KM. In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials 2004; 25: 5507-5514. Mistry AS, Mikos AG. Tissue engineering strategies for bone regeneration. Adv Biochem Eng Biotechnol 2005; 94: 1-22. Fu Q, Rahaman MN, Dogan F, Bal BS. Freeze casting of porous hydroxyapatite scaffolds. I. processing and general microstructure. J Biomed Mater Res B Appl Biomater 2008; 86: 125-135. Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, Park KW. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 2000; 21: 1291-1298. Doblare M, Garcia JM, Gomez MJ. Modeling bone tissue fracture and healing: A review. J Eng Fract Mech 2004; 71: 1809-1840. Miao X, Tan DM, Li J, Xiao Y, Crawford R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater 2008; 4: 638-645. Yunoki S, Ikoma T, Tsuchiya A, Monkawa A, Ohta K, Sotome S, Shinomiya K, Tanaka J. Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite. J Biomed Mater Res B Appl Biomater 2007; 80: 166-173. Shi XT, Wang YJ, Ren L, Zhao NR, Gong YH, Wang D-A. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Acta Biomater 2009; 5: 1697-1707. Del Real RP, Ooms E, Wolke J, Vallet-Regi M, Jansen JA. In vivo bone response to porous calcium phosphate cement. J Biomed Mater Res 2003; 65: 30-36. Lee SJ, Park YJ, Park SN, Lee YM, Seol YJ, Ku Y, Chung CP. Molded porous poly(L-Lactide) membranes for guided bone regeneration with enhanced effects by controlled growth factor release. J Biomedical Mater Res 2001; 55: 295-303. Felicity RR, Lesley AC, David MG, Colin AS, Steven MH, Kevin MS. In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials 2004; 25: 5507-5514. Wheeler DL, Stokes KE, Hoellrich RG, Chamberland DL, McLoughlin SW. Effect of bioactive glass particle size on osseous regeneration of cancellous defects. J Biomed Mater Res 1998; 41: 527-533. Vallet-Regí M, Gonz′alez-Calbet J. Calcium phosphates in the substitution of bone tissue. Prog Sol State Chem 2004; 32: 1-31. Del Real RP, Wolke JGC, Vallet-Regi M, Jansen JA. A new method to produce macropores in calcium phosphate cements. Biomaterials 2002; 23: 3673-3680. Eggli PS, Muller W, Schenk CRK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. Clin Orthop Relat Res 1988; 232: 127-138. Martin RB, Chapman MW, Holmes RE, Sartoris DJ, Shors EC, Gordon JE, Heitter DO, Sharkey NA, Zissimos AG. Effects of bone ingrowth on the strength and noninvasive assessment of a coralline hydroxyapatite material. Biomaterials 1989; 10: 481-488. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971; 5: 117-141. Schoof H, Apel J, Heschel I, Rau G. Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res B Appl Biomater 2001; 58: 352-357. Yang F, Qu X, Cui W, Bei J, Yu F, Lu S, Wang S. Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds. Biomaterials; 27: 4923-4933. Taiyo Y, Kawazoe N, Tateishi T, Chen G. In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges. Biomaterials 2008; 29: 3438-3443. Comuzzi L, Ooms E, Jansen JA. Injectable calcium phosphate cement as a filler for bone defects around oral implants: An experimental study in goats. Clin Oral Impl Res 2002; 13: 304-311. Eliaz RE, Kost J. Characterization of a polymeric PLGA injectable implant delivery system for the controlled release of proteins. J Biomed Mater Res 2000; 50: 388-396. Wilda H, Julie EG. Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass® composite foam scaffolds in vitro. Acta Biomater 2008; 4: 230-243. Rizzi SC, Heath DJ, Coombes AG, Bock N, Textor M, Downes S. Biodegradable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res 2001; 55: 475-486. Holy CE, Dang SM, Davies JE, Shoichet MS. In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. Biomaterials 1999; 20: 1177-1185. Wheeler DL, Stokes KE, Park HE, Hollinger JO. Evaluation of particulate bioglass in a rabbit radius ostectomy model. J Biomed Mater Res 1997; 35: 249-254. Miao X, Lim WK, Huang X, Chen Y. Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites. Mater Lett 2005; 59: 4000-4005. Almirall A, Larrecq G, Delgado JA, Martinez S, Planell JA, Ginebra MP. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials 2004; 25: 3671-3680. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26: 5474-5491. Wang XP, Ye JD, Wang YJ. Hydration mechanism of a novel PCCP+DCPA cement system. J Mater Sci: Mater Med 2008; 19: 813-816. Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater 2010; 6: 1167-1177. Ooms EM, Wolke JGC, van der Waerden JPCM, Jansen JA. Trabecular bone response to injectable calcium phosphate (Ca-P) cement. J Biomed Mater Res 2002; 61: 9-18. Fratzl P. Bone fracture. When the cracks begin to show. Nat Mater 2008; 7: 610-612. Silva MMCG, Cyster LA, Barry JJA, Yangd XB, Oreffo ROC, Grant DM, Scotchford CA, Howdle SM, Shakesheff KM, Rose FR. The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds. Biomaterials 2006; 27: 5909-5917. Takagi S, Chow LC. Formation of macropores in calcium phosphate cement implants. J Mater Sci: Mater Med 2001; 12: 135-139. Gao H, Ji B, Jägel IL, Arzt E, Fratzl P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc Natl Acad Sci USA 2003; 100: 5597-5600. Qi X, Ye J, Wang Y. Alginate/poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. J Biomed Mater Res A 2009; 89: 980-987. Sarda S, Nilsson M, Balcells M, Fernandez E. Influence of surfactant molecules as air-entraining agent for bone cement macroporosity. J Biomed Mater Res A 2003; 65: 215-221. Hench LL. Bioceramics. J Am Ceram Soc 1998; 81: 1705-1728. Henriksen SS, Ding M, Juhl MV, Theilgaard N, Overgaard S. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone. J Mater Sci: Mater Med 2011; 22: 1111-1118. Markovic M, Takagi S, Chow LC. Formation of macropores in calcium phosphate cements through the use of mannitol crystals. Key Eng Mater 2000; 192-5: 773-776. Wang X, Ye J, Wang Y, Wu X, Bai B. Control of crystallinity of hydrated products in a calcium phosphate bone cement. J Biomed Mater Res A 2007; 81: 781-790. 2009; 89 27 1995; 16 2004; 25 2000; 21 2002; 13 2008; 19 1993; 260 2000; 50 2000; 192–5 2008; 7 1998; 81 1999; 20 2008; 4 1998; 41 2005; 26 2004; 32 2004; 71 1989; 10 2002; 61 2002; 23 2008; 29 2006; 27 1997; 35 2007; 80 2011; 22 1988; 232 2007; 81 2009; 5 2005; 94 2008; 86 2001; 55 2005; 59 2001; 12 2001; 58 2003; 100 2010; 6 2003; 65 1971; 5 1996; 6 e_1_2_6_31_2 e_1_2_6_30_2 Markovic M (e_1_2_6_36_2) 2000; 192 e_1_2_6_18_2 e_1_2_6_19_2 Yoshikawa T (e_1_2_6_35_2) 1996; 6 e_1_2_6_12_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 Eggli PS (e_1_2_6_4_2) 1988; 232 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_42_2 e_1_2_6_20_2 Yang F (e_1_2_6_8_2); 27 e_1_2_6_41_2 e_1_2_6_40_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – reference: Rizzi SC, Heath DJ, Coombes AG, Bock N, Textor M, Downes S. Biodegradable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res 2001; 55: 475-486. – reference: Holy CE, Dang SM, Davies JE, Shoichet MS. In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. Biomaterials 1999; 20: 1177-1185. – reference: Felicity RR, Lesley AC, David MG, Colin AS, Steven MH, Kevin MS. In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials 2004; 25: 5507-5514. – reference: Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26: 5474-5491. – reference: Comuzzi L, Ooms E, Jansen JA. Injectable calcium phosphate cement as a filler for bone defects around oral implants: An experimental study in goats. Clin Oral Impl Res 2002; 13: 304-311. – reference: Yang F, Qu X, Cui W, Bei J, Yu F, Lu S, Wang S. Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds. Biomaterials; 27: 4923-4933. – reference: Vallet-Regí M, Gonz′alez-Calbet J. Calcium phosphates in the substitution of bone tissue. Prog Sol State Chem 2004; 32: 1-31. – reference: Park TG. Degradation of poly(lactic-co-glycolic acid) microspheres: Effect of copolymer composition. Biomaterials 1995; 16: 1123-1130. – reference: Wang X, Ye J, Wang Y, Wu X, Bai B. Control of crystallinity of hydrated products in a calcium phosphate bone cement. J Biomed Mater Res A 2007; 81: 781-790. – reference: Henriksen SS, Ding M, Juhl MV, Theilgaard N, Overgaard S. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone. J Mater Sci: Mater Med 2011; 22: 1111-1118. – reference: Taiyo Y, Kawazoe N, Tateishi T, Chen G. In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges. Biomaterials 2008; 29: 3438-3443. – reference: Yunoki S, Ikoma T, Tsuchiya A, Monkawa A, Ohta K, Sotome S, Shinomiya K, Tanaka J. Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite. J Biomed Mater Res B Appl Biomater 2007; 80: 166-173. – reference: Ooms EM, Wolke JGC, van der Waerden JPCM, Jansen JA. Trabecular bone response to injectable calcium phosphate (Ca-P) cement. J Biomed Mater Res 2002; 61: 9-18. – reference: Gao H, Ji B, Jägel IL, Arzt E, Fratzl P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc Natl Acad Sci USA 2003; 100: 5597-5600. – reference: Shi XT, Wang YJ, Ren L, Zhao NR, Gong YH, Wang D-A. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Acta Biomater 2009; 5: 1697-1707. – reference: Takagi S, Chow LC. Formation of macropores in calcium phosphate cement implants. J Mater Sci: Mater Med 2001; 12: 135-139. – reference: Eliaz RE, Kost J. Characterization of a polymeric PLGA injectable implant delivery system for the controlled release of proteins. J Biomed Mater Res 2000; 50: 388-396. – reference: Doblare M, Garcia JM, Gomez MJ. Modeling bone tissue fracture and healing: A review. J Eng Fract Mech 2004; 71: 1809-1840. – reference: Miao X, Lim WK, Huang X, Chen Y. Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites. Mater Lett 2005; 59: 4000-4005. – reference: Wheeler DL, Stokes KE, Hoellrich RG, Chamberland DL, McLoughlin SW. Effect of bioactive glass particle size on osseous regeneration of cancellous defects. J Biomed Mater Res 1998; 41: 527-533. – reference: Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater 2010; 6: 1167-1177. – reference: Rose FR, Cyster LA, Grant DM, Scotchford CA, Howdle SM, Shakesheff KM. In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials 2004; 25: 5507-5514. – reference: Mistry AS, Mikos AG. Tissue engineering strategies for bone regeneration. Adv Biochem Eng Biotechnol 2005; 94: 1-22. – reference: Fu Q, Rahaman MN, Dogan F, Bal BS. Freeze casting of porous hydroxyapatite scaffolds. I. processing and general microstructure. J Biomed Mater Res B Appl Biomater 2008; 86: 125-135. – reference: Schoof H, Apel J, Heschel I, Rau G. Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res B Appl Biomater 2001; 58: 352-357. – reference: Fratzl P. Bone fracture. When the cracks begin to show. Nat Mater 2008; 7: 610-612. – reference: Almirall A, Larrecq G, Delgado JA, Martinez S, Planell JA, Ginebra MP. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials 2004; 25: 3671-3680. – reference: Del Real RP, Ooms E, Wolke J, Vallet-Regi M, Jansen JA. In vivo bone response to porous calcium phosphate cement. J Biomed Mater Res 2003; 65: 30-36. – reference: Del Real RP, Wolke JGC, Vallet-Regi M, Jansen JA. A new method to produce macropores in calcium phosphate cements. Biomaterials 2002; 23: 3673-3680. – reference: Yoshikawa T, Suwa Y, Ohgushi H, Tamai S, Ichijima K. Self setting hydroxyapatite cement as a carrier for bone-forming cells. Biomed Mater Eng 1996; 6: 345-351. – reference: Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, Park KW. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 2000; 21: 1291-1298. – reference: Wilda H, Julie EG. Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass® composite foam scaffolds in vitro. Acta Biomater 2008; 4: 230-243. – reference: Miao X, Tan DM, Li J, Xiao Y, Crawford R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater 2008; 4: 638-645. – reference: Martin RB, Chapman MW, Holmes RE, Sartoris DJ, Shors EC, Gordon JE, Heitter DO, Sharkey NA, Zissimos AG. Effects of bone ingrowth on the strength and noninvasive assessment of a coralline hydroxyapatite material. Biomaterials 1989; 10: 481-488. – reference: Silva MMCG, Cyster LA, Barry JJA, Yangd XB, Oreffo ROC, Grant DM, Scotchford CA, Howdle SM, Shakesheff KM, Rose FR. The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds. Biomaterials 2006; 27: 5909-5917. – reference: Sarda S, Nilsson M, Balcells M, Fernandez E. Influence of surfactant molecules as air-entraining agent for bone cement macroporosity. J Biomed Mater Res A 2003; 65: 215-221. – reference: Langer R, Vacanti JP. Tissue engineering. Science 1993; 260: 920-926.2. – reference: Wheeler DL, Stokes KE, Park HE, Hollinger JO. Evaluation of particulate bioglass in a rabbit radius ostectomy model. J Biomed Mater Res 1997; 35: 249-254. – reference: Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971; 5: 117-141. – reference: Eggli PS, Muller W, Schenk CRK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. Clin Orthop Relat Res 1988; 232: 127-138. – reference: Wang XP, Ye JD, Wang YJ. Hydration mechanism of a novel PCCP+DCPA cement system. J Mater Sci: Mater Med 2008; 19: 813-816. – reference: Hench LL. Bioceramics. J Am Ceram Soc 1998; 81: 1705-1728. – reference: Lee SJ, Park YJ, Park SN, Lee YM, Seol YJ, Ku Y, Chung CP. Molded porous poly(L-Lactide) membranes for guided bone regeneration with enhanced effects by controlled growth factor release. J Biomedical Mater Res 2001; 55: 295-303. – reference: Qi X, Ye J, Wang Y. Alginate/poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. J Biomed Mater Res A 2009; 89: 980-987. – reference: Markovic M, Takagi S, Chow LC. Formation of macropores in calcium phosphate cements through the use of mannitol crystals. Key Eng Mater 2000; 192-5: 773-776. – volume: 23 start-page: 3673 year: 2002 end-page: 3680 article-title: A new method to produce macropores in calcium phosphate cements publication-title: Biomaterials – volume: 80 start-page: 166 year: 2007 end-page: 173 article-title: Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite publication-title: J Biomed Mater Res B Appl Biomater – volume: 7 start-page: 610 year: 2008 end-page: 612 article-title: Bone fracture. When the cracks begin to show publication-title: Nat Mater – volume: 71 start-page: 1809 year: 2004 end-page: 1840 article-title: Modeling bone tissue fracture and healing: A review publication-title: J Eng Fract Mech – volume: 20 start-page: 1177 year: 1999 end-page: 1185 article-title: In vitro degradation of a novel poly(lactide‐co‐glycolide) 75/25 foam publication-title: Biomaterials – volume: 94 start-page: 1 year: 2005 end-page: 22 article-title: Tissue engineering strategies for bone regeneration publication-title: Adv Biochem Eng Biotechnol – volume: 6 start-page: 345 year: 1996 end-page: 351 article-title: Self setting hydroxyapatite cement as a carrier for bone‐forming cells publication-title: Biomed Mater Eng – volume: 65 start-page: 215 year: 2003 end-page: 221 article-title: Influence of surfactant molecules as air‐entraining agent for bone cement macroporosity publication-title: J Biomed Mater Res A – volume: 260 start-page: 920 year: 1993 end-page: 926 article-title: Tissue engineering publication-title: Science – volume: 16 start-page: 1123 year: 1995 end-page: 1130 article-title: Degradation of poly(lactic‐co‐glycolic acid) microspheres: Effect of copolymer composition publication-title: Biomaterials – volume: 25 start-page: 3671 year: 2004 end-page: 3680 article-title: Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α‐TCP paste publication-title: Biomaterials – volume: 19 start-page: 813 year: 2008 end-page: 816 article-title: Hydration mechanism of a novel PCCP+DCPA cement system publication-title: J Mater Sci: Mater Med – volume: 5 start-page: 117 year: 1971 end-page: 141 article-title: Bonding mechanism at the interface of ceramic prosthetic materials publication-title: J Biomed Mater Res – volume: 50 start-page: 388 year: 2000 end-page: 396 article-title: Characterization of a polymeric PLGA injectable implant delivery system for the controlled release of proteins publication-title: J Biomed Mater Res – volume: 192–5 start-page: 773 year: 2000 end-page: 776 article-title: Formation of macropores in calcium phosphate cements through the use of mannitol crystals publication-title: Key Eng Mater – volume: 5 start-page: 1697 year: 2009 end-page: 1707 article-title: Novel mesoporous silica‐based antibiotic releasing scaffold for bone repair publication-title: Acta Biomater – volume: 6 start-page: 1167 year: 2010 end-page: 1177 article-title: Preparation of aligned porous gelatin scaffolds by unidirectional freeze‐drying method publication-title: Acta Biomater – volume: 25 start-page: 5507 year: 2004 end-page: 5514 article-title: In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel publication-title: Biomaterials – volume: 12 start-page: 135 year: 2001 end-page: 139 article-title: Formation of macropores in calcium phosphate cement implants publication-title: J Mater Sci: Mater Med – volume: 27 start-page: 5909 year: 2006 end-page: 5917 article-title: The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds publication-title: Biomaterials – volume: 86 start-page: 125 year: 2008 end-page: 135 article-title: Freeze casting of porous hydroxyapatite scaffolds. I. processing and general microstructure publication-title: J Biomed Mater Res B Appl Biomater – volume: 4 start-page: 230 year: 2008 end-page: 243 article-title: Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass® composite foam scaffolds in vitro publication-title: Acta Biomater – volume: 22 start-page: 1111 year: 2011 end-page: 1118 article-title: Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone publication-title: J Mater Sci: Mater Med – volume: 58 start-page: 352 year: 2001 end-page: 357 article-title: Control of pore structure and size in freeze‐dried collagen sponges publication-title: J Biomed Mater Res B Appl Biomater – volume: 81 start-page: 1705 year: 1998 end-page: 1728 article-title: Bioceramics publication-title: J Am Ceram Soc – volume: 26 start-page: 5474 year: 2005 end-page: 5491 article-title: Porosity of 3D biomaterial scaffolds and osteogenesis publication-title: Biomaterials – volume: 10 start-page: 481 year: 1989 end-page: 488 article-title: Effects of bone ingrowth on the strength and noninvasive assessment of a coralline hydroxyapatite material publication-title: Biomaterials – volume: 232 start-page: 127 year: 1988 end-page: 138 article-title: Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits publication-title: Clin Orthop Relat Res – volume: 65 start-page: 30 year: 2003 end-page: 36 article-title: In vivo bone response to porous calcium phosphate cement publication-title: J Biomed Mater Res – volume: 21 start-page: 1291 year: 2000 end-page: 1298 article-title: Osteoconduction at porous hydroxyapatite with various pore configurations publication-title: Biomaterials – volume: 32 start-page: 1 year: 2004 end-page: 31 article-title: Calcium phosphates in the substitution of bone tissue publication-title: Prog Sol State Chem – volume: 59 start-page: 4000 year: 2005 end-page: 4005 article-title: Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites publication-title: Mater Lett – volume: 4 start-page: 638 year: 2008 end-page: 645 article-title: Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic‐co‐glycolic acid) publication-title: Acta Biomater – volume: 35 start-page: 249 year: 1997 end-page: 254 article-title: Evaluation of particulate bioglass in a rabbit radius ostectomy model publication-title: J Biomed Mater Res – volume: 27 start-page: 4923 end-page: 4933 article-title: Manufacturing and morphology structure of polylactide‐type microtubules orientation‐structured scaffolds publication-title: Biomaterials – volume: 55 start-page: 295 year: 2001 end-page: 303 article-title: Molded porous poly(L‐Lactide) membranes for guided bone regeneration with enhanced effects by controlled growth factor release publication-title: J Biomedical Mater Res – volume: 29 start-page: 3438 year: 2008 end-page: 3443 article-title: In vitro evaluation of biodegradation of poly(lactic‐co‐glycolic acid) sponges publication-title: Biomaterials – volume: 13 start-page: 304 year: 2002 end-page: 311 article-title: Injectable calcium phosphate cement as a filler for bone defects around oral implants: An experimental study in goats publication-title: Clin Oral Impl Res – volume: 100 start-page: 5597 year: 2003 end-page: 5600 article-title: Materials become insensitive to flaws at nanoscale: Lessons from nature publication-title: Proc Natl Acad Sci USA – volume: 89 start-page: 980 year: 2009 end-page: 987 article-title: Alginate/poly(lactic‐co‐glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering publication-title: J Biomed Mater Res A – volume: 55 start-page: 475 year: 2001 end-page: 486 article-title: Biodegradable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts publication-title: J Biomed Mater Res – volume: 41 start-page: 527 year: 1998 end-page: 533 article-title: Effect of bioactive glass particle size on osseous regeneration of cancellous defects publication-title: J Biomed Mater Res – volume: 61 start-page: 9 year: 2002 end-page: 18 article-title: Trabecular bone response to injectable calcium phosphate (Ca‐P) cement publication-title: J Biomed Mater Res – volume: 81 start-page: 781 year: 2007 end-page: 790 article-title: Control of crystallinity of hydrated products in a calcium phosphate bone cement publication-title: J Biomed Mater Res A – ident: e_1_2_6_27_2 doi: 10.1016/S0142-9612(98)00256-7 – ident: e_1_2_6_41_2 doi: 10.1016/j.biomaterials.2008.04.011 – ident: e_1_2_6_12_2 doi: 10.1002/jbm.a.10432 – ident: e_1_2_6_17_2 doi: 10.1111/j.1151-2916.1998.tb02540.x – ident: e_1_2_6_28_2 doi: 10.1016/j.matlet.2005.07.062 – ident: e_1_2_6_32_2 doi: 10.1007/s10856-006-0029-6 – ident: e_1_2_6_9_2 doi: 10.1016/j.actbio.2007.09.010 – ident: e_1_2_6_2_2 doi: 10.1126/science.8493529 – volume: 232 start-page: 127 year: 1988 ident: e_1_2_6_4_2 article-title: Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-198807000-00017 – ident: e_1_2_6_14_2 doi: 10.1002/(SICI)1097-4636(199705)35:2<249::AID-JBM12>3.0.CO;2-C – ident: e_1_2_6_26_2 doi: 10.1016/0142-9612(95)93575-X – ident: e_1_2_6_13_2 doi: 10.1002/1097-4636(20010615)55:4<475::AID-JBM1039>3.0.CO;2-Q – ident: e_1_2_6_38_2 doi: 10.1016/j.biomaterials.2003.10.066 – ident: e_1_2_6_15_2 doi: 10.1002/(SICI)1097-4636(19980915)41:4<527::AID-JBM3>3.0.CO;2-E – ident: e_1_2_6_18_2 doi: 10.1016/j.progsolidstchem.2004.07.001 – volume: 192 start-page: 773 year: 2000 ident: e_1_2_6_36_2 article-title: Formation of macropores in calcium phosphate cements through the use of mannitol crystals publication-title: Key Eng Mater doi: 10.4028/www.scientific.net/KEM.192-195.773 – ident: e_1_2_6_45_2 doi: 10.1016/j.biomaterials.2004.01.012 – ident: e_1_2_6_31_2 doi: 10.1002/jbm.a.31059 – ident: e_1_2_6_7_2 doi: 10.1002/jbm.1028 – ident: e_1_2_6_22_2 doi: 10.1038/nmat2240 – ident: e_1_2_6_39_2 doi: 10.1002/jbm.a.10458 – ident: e_1_2_6_3_2 doi: 10.1007/b99997 – ident: e_1_2_6_46_2 doi: 10.1016/S0142-9612(00)00030-2 – ident: e_1_2_6_34_2 doi: 10.1023/A:1008917910468 – ident: e_1_2_6_23_2 doi: 10.1007/s10856-011-4290-y – ident: e_1_2_6_16_2 doi: 10.1002/jbm.820050611 – ident: e_1_2_6_30_2 doi: 10.1002/jbm.a.32054 – ident: e_1_2_6_24_2 doi: 10.1002/1097-4636(20010605)55:3<295::AID-JBM1017>3.0.CO;2-W – ident: e_1_2_6_5_2 doi: 10.1016/j.engfracmech.2003.08.003 – volume: 27 start-page: 4923 ident: e_1_2_6_8_2 article-title: Manufacturing and morphology structure of polylactide‐type microtubules orientation‐structured scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.05.028 – ident: e_1_2_6_42_2 doi: 10.1016/0142-9612(89)90090-2 – ident: e_1_2_6_20_2 doi: 10.1034/j.1600-0501.2002.130311.x – ident: e_1_2_6_33_2 doi: 10.1016/j.actbio.2009.01.010 – ident: e_1_2_6_10_2 doi: 10.1016/j.actbio.2009.08.041 – ident: e_1_2_6_6_2 doi: 10.1002/jbm.b.30997 – volume: 6 start-page: 345 year: 1996 ident: e_1_2_6_35_2 article-title: Self setting hydroxyapatite cement as a carrier for bone‐forming cells publication-title: Biomed Mater Eng – ident: e_1_2_6_29_2 doi: 10.1016/j.actbio.2007.10.006 – ident: e_1_2_6_43_2 doi: 10.1016/j.biomaterials.2005.02.002 – ident: e_1_2_6_21_2 doi: 10.1073/pnas.0631609100 – ident: e_1_2_6_19_2 doi: 10.1002/jbm.10029 – ident: e_1_2_6_25_2 doi: 10.1002/(SICI)1097-4636(20000605)50:3<388::AID-JBM13>3.0.CO;2-F – ident: e_1_2_6_44_2 doi: 10.1016/j.biomaterials.2006.08.010 – ident: e_1_2_6_37_2 doi: 10.1016/S0142-9612(02)00101-1 – ident: e_1_2_6_40_2 doi: 10.1016/j.biomaterials.2004.01.012 – ident: e_1_2_6_11_2 doi: 10.1002/jbm.b.30581 |
SSID | ssj0026052 |
Score | 2.27209 |
Snippet | The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic‐co‐glycolic acid) (PLGA)/calcium... The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic‐ co ‐glycolic acid)... The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid) (PLGA)/calcium... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3239 |
SubjectTerms | Alkaline phosphatase Animals Biocompatibility Biocompatible Materials - pharmacology Biological and medical sciences Biomedical materials Bone Cements - pharmacology calcium phosphate cement Calcium phosphates Calcium Phosphates - pharmacology Cell culture Cell differentiation Cell Proliferation - drug effects Cell Survival - drug effects Cell viability Cement Compressive Strength - drug effects cytocompatibility Degradability Degradation Femur - drug effects Femur - pathology Glycolic acid Hydrogen-Ion Concentration - drug effects In vivo methods and tests Lactic Acid - pharmacology Lamellar structure Materials Testing - methods Mechanical properties Medical sciences Mesenchymal Stem Cell Transplantation Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - drug effects Mesenchymal Stromal Cells - enzymology Mesenchyme Microscopy, Electron, Scanning Microscopy, Fluorescence Orthopedic surgery Osteogenesis Osteogenesis - drug effects PLGA Polyglycolic Acid - pharmacology Polylactide-co-glycolide Porosity Prolongation Rabbits Rats scaffold Scaffolds Stem cell transplantation Stem cells Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Surgical implants Technology. Biomaterials. Equipments Time Factors Tissue engineering Tissue Scaffolds - chemistry unidirectional lamellar pore |
Title | In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure |
URI | https://api.istex.fr/ark:/67375/WNG-2N4Q4Q7D-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.34265 https://www.ncbi.nlm.nih.gov/pubmed/22733543 https://www.proquest.com/docview/2451157231 https://www.proquest.com/docview/1114950573 |
Volume | 100A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVQeYEH7pdAqYxUIaia7ca5P3IrpVIrFVFR8RL52oZu49Vmt2J54hP4F_6IL2HGTtMuqpDgZRXJTlaxxzNnJjNnCFkVBsxyKoqQ61SHiYpZKKTMQh6DecrBBjGNAf2d3WxrP9k-SA-63ByshfH8EH3ADU-G09d4wLloN85JQ7-IkwEfxGBhsMQcs7UQEn3oyaMQqLtvneABhTErs646D0Y2Lty7YI-u4tJ-xfxI3sISGd_b4jLwuYhlnTHavOk7rraOwxBzUI4Hs6kYyG9_MDz-93veIjc6mEpferm6Ta7o5g65foG88C75-b6hp_V0YqlCwgnfm2mditq6vPapT7udr1PeKFrj3FNLsaTEHqJ-rVtqDR3b0fz5yBVq_fr-Q1r4ORzNJZIVUy5r9QKLTWQ9O6HjI9uOjwAZU-kimhSWzhg7UhRDyXTW1N46u9AmBTnHtK4J_MFEU0-SO5voe2R_8-3H11th1wIilEmZp-DdRshmyfSQG5ExE8m4VOATlSrXpRBDkWoAoEariA2Z0HEh80xLVZYa_MBIqfg-WWpsox8SKhMGplezWMZFUhamMMNER1oPC21AEUUBWTsThEp2_OjYpmNUeWZnVsFOVLxyOxGQ1X7y2NOCXD7tmZOofg6fHGMmXZ5Wn3bfVWw32Uv28jfV54CsLIhcfwPLCkDEaRyQ5TMZrDot01YMyeXSHCB6QJ72w6Af8KMPb7SdtejhgQ-MtJcBeeBl9_zhgF3jNIGRNSeBf3uVavvVjrt49C-TH5NrgDCZz_9ZJkuw3foJoLipWHGH9TfhokeV |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6V9gAc-P8xlLJIBUFVp8n6_8ABCCVpm0hFrai4LN71ujVN7ShOCuHEI_AkXHgQ3oEnYWY3cRtUIXHogUtkaddOsjOz88149htClkUKbtkToR0rT9lu4jBbSOnbsQPuKQAfxBQm9Dtdv7Xrbux5e3Pk-_QsjOGHqBJuaBl6v0YDx4T02glr6EdxVItrDriYaVHlphp_gpCtfN5ugnwfM7b-eudVy550FbClGwUeBEwNJEhkqh6nwmdpQzpRAjA7SgIVCVEXngJMk6qkwepMKCeUga9kEkUKQotGkjjw3AtkAXuII1d_821FV4WhgX67CjGX7bDIn5wHhJG1Uz92xgMuoDA_Y0VmXIJQUtNN4yy4O4uetftbv0p-ThfOVL0c1kZDUZNf_uCU_H9W9hq5MkHi9IUxnetkTuU3yOVT_Iw3yY92To-z4aCgCXJqmPZTq1RkhS7dH5rK4vEqjfOEZjj3uKB4aqbYRxeSlbRIab_ojZ_29Fm0X1-_yQI-9ntjiXzMNJZZ8gzP08hsdET7B0XZPwDwT6VO2lKQVZoWvYRitpyO8swAEJ29pWDKWLk2gC8YKGp4gEcDdYvsnsuq3SbzeZGru4RKlwG6UMyRTuhGYRqmdVc1lKqHKoW9tmGRlanmcTmhgMdOJD1uyKsZB8nzmGvJW2S5mtw3zCdnT3uiVbiaEw8OsVgw8Pi77hvOuu62ux00-XuLLM3oeHUD80MA_Z5jkcWp0vPJRlpyhvx5XgBRiEUeVcOwBeJ7rThXxajEIBbCfGT2tMgdYywnDwd47ngujKxolf_bX-EbLzv64t6_TH5ILrZ2Olt8q93dvE8uAaBmptxpkcyD6NUDAK1DsaR3Cko-nLcB_QYOsqVu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB2VVkKw4P0wlDJIBUFVp874vWABhNAHjWhFRcVm8Lxa09SO4qQQVnwCP8KK_-Aj-BLuzCRugyokFl2wiSzN2Enmvs4d33sGoUWmICyHLHEzGUo3ED5xGeeRm_kQnmKIQUTqDf3NTrS6E6zvhrsz6PukF8byQ9QbbtoyjL_WBt4TauWYNPQjO2xkDR8izKSmckOOPkHGVj1da4F4HxLSfvn2xao7PlTA5UEah5AvNTU_IpFeplhEVJP7qQCUnYpYpox5LJQAaZQUTeIRJv2Ex5HkIk0lZBZNIXx47jk0F0Reqk-KaG3XbFU6MzAvVyHlcn2SRuN2QBhZOfFjpwLgnJblZ12QmVUgE2UP0zgN7U6DZxP92pfRz8m62aKXg8ZwwBr8yx-Ukv_Nwl5Bl8Y4HD-zhnMVzcjiGrp4gp3xOvqxVuCjfNAvsdCMGvbwqWXM8tIU7g9sXfFoGWeFwLmee1Ri3TNT7ukAkle4VLhXdkePu6YT7dfXb7yEj73uiGs2ZpzxXDzR3TQ8Hx7i3n5Z9fYB-mNutmwxiEqpsiuw3ivHwyK38MPs3WIwZF231ocv6EtsWYCHfXkD7ZzJqt1Es0VZyNsI84AAtpDE534SpIlKlBfIppReIhV42qaDliaKR_mYAF6fQ9KllrqaUJA8zaiRvIMW68k9y3ty-rRHRoPrOVn_QJcKxiF913lFSSfYCrbiFn3voIUpFa9vIFECkD_0HTQ_0Xk6dqMVJZo9L4whB3HQg3oYHKB-q5UVshxWOoWFJF_zejrolrWV44cDOPfDAEaWjMb_7a_Q9eeb5uLOv0y-j86_abXp67XOxl10AdA0sbVO82gWJC_vAWIdsAXjJzD6cNb28xt91qQd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vitro+degradation%2C+biocompatibility%2C+and+in+vivo+osteogenesis+of+poly%28lactic-co-glycolic+acid%29%2Fcalcium+phosphate+cement+scaffold+with+unidirectional+lamellar+pore+structure&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=He%2C+Fupo&rft.au=Ye%2C+Jiandong&rft.date=2012-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1549-3296&rft.eissn=1552-4965&rft.volume=100A&rft.issue=12&rft.spage=3239&rft.epage=3250&rft_id=info:doi/10.1002%2Fjbm.a.34265&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_2N4Q4Q7D_Z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |