ICESat-2 Pointing Calibration and Geolocation Performance

ICESat-2 science requirements are dependent on the accurate real-time pointing control (i.e. geolocation control) and post-processed geolocation knowledge of the laser altimeter surface returns. Pre-launch pointing alignment errors and post-launch pointing alignment variation result in large geoloca...

Full description

Saved in:
Bibliographic Details
Published inEarth and space science (Hoboken, N.J.) Vol. 8; no. 3
Main Authors Luthcke, S. B., Thomas, T. C., Pennington, T. A., Rebold, T. W., Nicholas, J. B., Rowlands, D. D., Gardner, A. S., Bae, S.
Format Journal Article
LanguageEnglish
Published Goddard Space Flight Center American Geophysical Union / Wiley Open Access 01.03.2021
John Wiley & Sons, Inc
American Geophysical Union (AGU)
Subjects
Online AccessGet full text
ISSN2333-5084
2333-5084
DOI10.1029/2020EA001494

Cover

Abstract ICESat-2 science requirements are dependent on the accurate real-time pointing control (i.e. geolocation control) and post-processed geolocation knowledge of the laser altimeter surface returns. Pre-launch pointing alignment errors and post-launch pointing alignment variation result in large geolocation errors that must be calibrated on orbit. In addition, the changing sun-orbit geometry causes thermal-mechanical forced laser frame alignment variations at the orbit period and trends from days, weeks and months. Early mission analysis computed precise post-launch laser beam alignment calibration. The alignment calibration was uploaded to the spacecraft and enabled the pointing control performance to achieve 4.4 ± 6.0 m, a significant improvement over the 45 m (1 σ) mission requirement. Laser frame alignment calibrations are used to reduce the alignment bias and time variation, as well as the orbital variation contributions to geolocation knowledge error from 6 m to 1.7 m (1 σ). Relative beam alignment of the six beams is calibrated and shown to contribute between 0.5 ± 0.1 m and 2.4 ± 0.2 m of remaining geolocation knowledge error. Independent geolocation assessment based on comparison to high-resolution digital elevation models agrees well with the calibration geolocation error estimates. The analysis demonstrates the ICESat-2 mission is performing far better than its geolocation knowledge requirement of 6.5 m (1 σ) after the laser frame alignment bias variation and orbital variation calibrations have been applied. Remaining geolocation error is beam dependent and ranges from 2.5 m for beam 6 to 4.4 m for beam 2 (mean + 1 σ).
AbstractList Abstract ICESat‐2 science requirements are dependent on the accurate real‐time pointing control (i.e., geolocation control) and postprocessed geolocation knowledge of the laser altimeter surface returns. Prelaunch pointing alignment errors and postlaunch pointing alignment variation result in large geolocation errors that must be calibrated on orbit. In addition, the changing sun‐orbit geometry causes thermal‐mechanical forced laser frame alignment variations at the orbit period and trends from days, weeks, and months. Early mission analysis computed precise postlaunch laser beam alignment calibration. The alignment calibration was uploaded to the spacecraft and enabled the pointing control performance to achieve 4.4 ± 6.0 m, a significant improvement over the 45 m (1 σ) mission requirement. Laser frame alignment calibrations are used to reduce the alignment bias and time variation, as well as the orbital variation contributions to geolocation knowledge error from 6 to 1.7 m (1 σ). Relative beam alignment of the six beams is calibrated and shown to contribute between 0.5 ± 0.1 m and 2.4 ± 0.2 m of remaining geolocation knowledge error. Independent geolocation assessment based on comparison to high‐resolution digital elevation models agrees well with the calibration geolocation error estimates. The analysis demonstrates the ICESat‐2 mission is performing far better than its geolocation knowledge requirement of 6.5 m (1 σ) after the laser frame alignment bias variation and orbital variation calibrations have been applied. Remaining geolocation error is beam dependent and ranges from 2.5 m for beam 6 to 4.4 m for beam 2 (mean + 1 σ).
ICESat‐2 science requirements are dependent on the accurate real‐time pointing control (i.e., geolocation control) and postprocessed geolocation knowledge of the laser altimeter surface returns. Prelaunch pointing alignment errors and postlaunch pointing alignment variation result in large geolocation errors that must be calibrated on orbit. In addition, the changing sun‐orbit geometry causes thermal‐mechanical forced laser frame alignment variations at the orbit period and trends from days, weeks, and months. Early mission analysis computed precise postlaunch laser beam alignment calibration. The alignment calibration was uploaded to the spacecraft and enabled the pointing control performance to achieve 4.4 ± 6.0 m, a significant improvement over the 45 m (1 σ) mission requirement. Laser frame alignment calibrations are used to reduce the alignment bias and time variation, as well as the orbital variation contributions to geolocation knowledge error from 6 to 1.7 m (1 σ). Relative beam alignment of the six beams is calibrated and shown to contribute between 0.5 ± 0.1 m and 2.4 ± 0.2 m of remaining geolocation knowledge error. Independent geolocation assessment based on comparison to high‐resolution digital elevation models agrees well with the calibration geolocation error estimates. The analysis demonstrates the ICESat‐2 mission is performing far better than its geolocation knowledge requirement of 6.5 m (1 σ) after the laser frame alignment bias variation and orbital variation calibrations have been applied. Remaining geolocation error is beam dependent and ranges from 2.5 m for beam 6 to 4.4 m for beam 2 (mean + 1 σ).
ICESat-2 science requirements are dependent on the accurate real-time pointing control (i.e. geolocation control) and post-processed geolocation knowledge of the laser altimeter surface returns. Pre-launch pointing alignment errors and post-launch pointing alignment variation result in large geolocation errors that must be calibrated on orbit. In addition, the changing sun-orbit geometry causes thermal-mechanical forced laser frame alignment variations at the orbit period and trends from days, weeks and months. Early mission analysis computed precise post-launch laser beam alignment calibration. The alignment calibration was uploaded to the spacecraft and enabled the pointing control performance to achieve 4.4 ± 6.0 m, a significant improvement over the 45 m (1 σ) mission requirement. Laser frame alignment calibrations are used to reduce the alignment bias and time variation, as well as the orbital variation contributions to geolocation knowledge error from 6 m to 1.7 m (1 σ). Relative beam alignment of the six beams is calibrated and shown to contribute between 0.5 ± 0.1 m and 2.4 ± 0.2 m of remaining geolocation knowledge error. Independent geolocation assessment based on comparison to high-resolution digital elevation models agrees well with the calibration geolocation error estimates. The analysis demonstrates the ICESat-2 mission is performing far better than its geolocation knowledge requirement of 6.5 m (1 σ) after the laser frame alignment bias variation and orbital variation calibrations have been applied. Remaining geolocation error is beam dependent and ranges from 2.5 m for beam 6 to 4.4 m for beam 2 (mean + 1 σ).
ICESat‐2 science requirements are dependent on the accurate real‐time pointing control (i.e., geolocation control) and postprocessed geolocation knowledge of the laser altimeter surface returns. Prelaunch pointing alignment errors and postlaunch pointing alignment variation result in large geolocation errors that must be calibrated on orbit. In addition, the changing sun‐orbit geometry causes thermal‐mechanical forced laser frame alignment variations at the orbit period and trends from days, weeks, and months. Early mission analysis computed precise postlaunch laser beam alignment calibration. The alignment calibration was uploaded to the spacecraft and enabled the pointing control performance to achieve 4.4 ± 6.0 m, a significant improvement over the 45 m (1 σ) mission requirement. Laser frame alignment calibrations are used to reduce the alignment bias and time variation, as well as the orbital variation contributions to geolocation knowledge error from 6 to 1.7 m (1 σ). Relative beam alignment of the six beams is calibrated and shown to contribute between 0.5 ± 0.1 m and 2.4 ± 0.2 m of remaining geolocation knowledge error. Independent geolocation assessment based on comparison to high‐resolution digital elevation models agrees well with the calibration geolocation error estimates. The analysis demonstrates the ICESat‐2 mission is performing far better than its geolocation knowledge requirement of 6.5 m (1 σ) after the laser frame alignment bias variation and orbital variation calibrations have been applied. Remaining geolocation error is beam dependent and ranges from 2.5 m for beam 6 to 4.4 m for beam 2 (mean + 1 σ). Systematic time varying pointing errors are the largest ICESat‐2 pointing control and geolocation knowledge error source The systematic pointing errors have been calibrated and corrected to meet and exceed the mission geolocation requirements Further geolocation improvements can be made through the application of the relative beam alignment calibration
ICESat‐2 science requirements are dependent on the accurate real‐time pointing control (i.e., geolocation control) and postprocessed geolocation knowledge of the laser altimeter surface returns. Prelaunch pointing alignment errors and postlaunch pointing alignment variation result in large geolocation errors that must be calibrated on orbit. In addition, the changing sun‐orbit geometry causes thermal‐mechanical forced laser frame alignment variations at the orbit period and trends from days, weeks, and months. Early mission analysis computed precise postlaunch laser beam alignment calibration. The alignment calibration was uploaded to the spacecraft and enabled the pointing control performance to achieve 4.4 ± 6.0 m, a significant improvement over the 45 m (1 σ) mission requirement. Laser frame alignment calibrations are used to reduce the alignment bias and time variation, as well as the orbital variation contributions to geolocation knowledge error from 6 to 1.7 m (1 σ). Relative beam alignment of the six beams is calibrated and shown to contribute between 0.5 ± 0.1 m and 2.4 ± 0.2 m of remaining geolocation knowledge error. Independent geolocation assessment based on comparison to high‐resolution digital elevation models agrees well with the calibration geolocation error estimates. The analysis demonstrates the ICESat‐2 mission is performing far better than its geolocation knowledge requirement of 6.5 m (1 σ) after the laser frame alignment bias variation and orbital variation calibrations have been applied. Remaining geolocation error is beam dependent and ranges from 2.5 m for beam 6 to 4.4 m for beam 2 (mean + 1 σ). Key Points Systematic time varying pointing errors are the largest ICESat‐2 pointing control and geolocation knowledge error source The systematic pointing errors have been calibrated and corrected to meet and exceed the mission geolocation requirements Further geolocation improvements can be made through the application of the relative beam alignment calibration
Audience PUBLIC
Author Luthcke, S. B.
Bae, S.
Thomas, T. C.
Rebold, T. W.
Rowlands, D. D.
Pennington, T. A.
Nicholas, J. B.
Gardner, A. S.
Author_xml – sequence: 1
  givenname: S. B.
  orcidid: 0000-0002-0558-3634
  surname: Luthcke
  fullname: Luthcke, S. B.
  organization: Goddard Space Flight Center
– sequence: 2
  givenname: T. C.
  orcidid: 0000-0002-4282-6762
  surname: Thomas
  fullname: Thomas, T. C.
  organization: Emergent Space Technologies (United States)
– sequence: 3
  givenname: T. A.
  surname: Pennington
  fullname: Pennington, T. A.
  organization: Stinger Ghaffarian Technologies (United States)
– sequence: 4
  givenname: T. W.
  surname: Rebold
  fullname: Rebold, T. W.
  organization: Emergent Space Technologies (United States)
– sequence: 5
  givenname: J. B.
  surname: Nicholas
  fullname: Nicholas, J. B.
  organization: Emergent Space Technologies (United States)
– sequence: 6
  givenname: D. D.
  surname: Rowlands
  fullname: Rowlands, D. D.
  organization: Goddard Space Flight Center
– sequence: 7
  givenname: A. S.
  orcidid: 0000-0002-8394-8889
  surname: Gardner
  fullname: Gardner, A. S.
  organization: Jet Propulsion Lab
– sequence: 8
  givenname: S.
  surname: Bae
  fullname: Bae, S.
  organization: The University of Texas at Austin
BookMark eNp9kUFrGzEQhUVxIYmbW449GHLNtqORVrKOwTiJIVCD27OYlbRBZiOl2g3B_z7rbCmh0JxGI773Zph3xmYpp8DYBYdvHNB8R0BYXwNwaeQndopCiKqGpZy9e5-w877fwwhhrQDlKTOb1XpHQ4WLbY5piOlhsaIuNoWGmNOCkl_chtxlN_XbUNpcHim58IV9bqnrw_mfOme_btY_V3fV_Y_bzer6vnLSaKwEgmoarp1uAYRxQbeenNINNo1RtYNQO9Mq7rnQgZT3vpWm9qoJQgkMXMzZZvL1mfb2qcRHKgebKdq3j1weLJUhui5YALM0jXdBeJKa-BKJuJegnQsGFYxel5PXU8m_n0M_2H1-Lmlc304HMUaqjymopeRKH72uJsqV3PcltH9342CPidj3iYw4_oO7OLwddSgUu_-J-CR6iV04fDjArnc71ApHzddJk6gnO7r3R46PoRuDXLwCYS-ipg
CitedBy_id crossref_primary_10_3390_rs16040611
crossref_primary_10_3390_rs15010030
crossref_primary_10_5194_tc_17_4079_2023
crossref_primary_10_1029_2020EA001478
crossref_primary_10_1029_2020EA001555
crossref_primary_10_1109_TGRS_2022_3147722
crossref_primary_10_1029_2024EA003735
crossref_primary_10_1080_17538947_2023_2220617
crossref_primary_10_1038_s43017_023_00508_8
crossref_primary_10_1016_j_srs_2022_100074
crossref_primary_10_3390_rs14246210
crossref_primary_10_3390_s23218752
crossref_primary_10_5194_amt_17_1879_2024
crossref_primary_10_5194_tc_15_3083_2021
crossref_primary_10_1109_JSTARS_2024_3479315
crossref_primary_10_3390_jmse11112082
crossref_primary_10_3390_rs14205125
crossref_primary_10_1016_j_rse_2024_114458
crossref_primary_10_3390_rs14010142
crossref_primary_10_1093_gji_ggae280
crossref_primary_10_3390_rs14092201
crossref_primary_10_1088_2752_664X_ad39f2
crossref_primary_10_5194_tc_18_5431_2024
crossref_primary_10_1080_01490419_2024_2416661
crossref_primary_10_5194_tc_17_1411_2023
crossref_primary_10_11728_cjss2023_06_2023_0074
crossref_primary_10_3390_rs17071159
crossref_primary_10_1016_j_rse_2023_113570
crossref_primary_10_5194_tc_17_789_2023
crossref_primary_10_1029_2020EA001538
crossref_primary_10_1029_2024EA003551
crossref_primary_10_3390_rs17050773
crossref_primary_10_1029_2020EA001414
crossref_primary_10_1088_1361_6633_acaf8e
crossref_primary_10_1007_s11629_024_8820_8
crossref_primary_10_1016_j_isprsjprs_2022_04_015
crossref_primary_10_1016_j_rse_2025_114602
crossref_primary_10_1109_TGRS_2024_3383600
Cites_doi 10.1016/j.rse.2016.12.029
10.1016/j.rse.2019.111325
10.1016/S0264‐3707(02)00047‐9
10.1029/2005GL023689
10.2514/2.3571
10.1029/1999GL900223
10.5194/tc‐5‐271‐2011
ContentType Journal Article
Copyright Copyright Determination: PUBLIC_USE_PERMITTED
2021. The Authors. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright Determination: PUBLIC_USE_PERMITTED
– notice: 2021. The Authors. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID CYE
CYI
24P
AAYXX
CITATION
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1029/2020EA001494
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
Wiley Online Library Open Access
CrossRef
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2333-5084
EndPage n/a
ExternalDocumentID oai_doaj_org_article_00989bdce3da47a182aa1d407cce9260
10_1029_2020EA001494
ESS2762
20210009921
Genre article
GrantInformation NSF-OPP 1043681
306615.06.01.10
NSF-OPP 1559691
NSF-OPP 1542736
GrantInformation_xml – fundername: NASA Goddard Space Flight Center
  funderid: ICESat‐2 Mission
GroupedDBID 0R~
1OC
24P
5VS
AAFWJ
AAMMB
AAZKR
ABDBF
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEUYN
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CYE
CYI
EBS
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IEP
IGS
ITC
KQ8
O9-
OK1
PCBAR
PHGZM
PHGZT
PIMPY
WIN
EJD
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c4972-3206bb17c7f0039ce7fdac67b2bb965c0e5c9f61d137ea6dddf495d6be3632e13
IEDL.DBID BENPR
ISSN 2333-5084
IngestDate Wed Aug 27 00:30:23 EDT 2025
Fri Jul 25 06:46:10 EDT 2025
Fri Jul 25 06:45:46 EDT 2025
Tue Jul 01 01:06:20 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
Sun Jul 06 04:45:31 EDT 2025
Fri Aug 15 15:29:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4972-3206bb17c7f0039ce7fdac67b2bb965c0e5c9f61d137ea6dddf495d6be3632e13
Notes GSFC
Goddard Space Flight Center
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0558-3634
0000-0002-4282-6762
0000-0002-8394-8889
OpenAccessLink https://www.proquest.com/docview/2560249946?pq-origsite=%requestingapplication%
PQID 2505441670
PQPubID 4368366
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_00989bdce3da47a182aa1d407cce9260
proquest_journals_2560249946
proquest_journals_2505441670
crossref_primary_10_1029_2020EA001494
crossref_citationtrail_10_1029_2020EA001494
wiley_primary_10_1029_2020EA001494_ESS2762
nasa_ntrs_20210009921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
– name: Hoboken
PublicationTitle Earth and space science (Hoboken, N.J.)
PublicationYear 2021
Publisher American Geophysical Union / Wiley Open Access
John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: American Geophysical Union / Wiley Open Access
– name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References 2018
2005; 32
2000; 37
2019b
2020
2011; 5
2019a
2002; 34
2019; 233
1999; 26
2017; 190
Bae S. (e_1_2_9_2_1) 2018
e_1_2_9_10_1
Neumann T. A. (e_1_2_9_11_1) 2020
Luthcke S. (e_1_2_9_4_1) 2019
e_1_2_9_12_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
Martino A. J. (e_1_2_9_9_1) 2020
Porter C. (e_1_2_9_13_1) 2018
e_1_2_9_14_1
Luthcke S. (e_1_2_9_3_1) 2019
References_xml – volume: 5
  start-page: 271
  issue: 1
  year: 2011
  end-page: 290
  article-title: Co‐registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change
  publication-title: The Cryosphere
– volume: 233
  year: 2019
  article-title: The ice, cloud, and land elevation satellite – 2 mission: A global geolocated photon product derived from the advanced topographic laser altimeter system
  publication-title: Remote Sensing of Environment
– volume: 34
  start-page: 447
  year: 2002
  end-page: 475
  article-title: Enhanced geolocation of spaceborne laser altimeter surface returns: parameter calibration from the simultaneous reduction of altimeter range and navigation tracking data
  publication-title: Journal of Geodynamics
– year: 2019a
– year: 2019b
– year: 2018
– volume: 32
  year: 2005
  article-title: Calibration and reduction of ICESat geolocation errors and the impact on ice sheet elevation change detection
  publication-title: Geophysical Research Letters
– volume: 37
  start-page: 374
  year: 2000
  end-page: 384
  article-title: Spaceborne laser altimeter pointing bias calibration from range residual analysis
  publication-title: Journal of Spacecraft and Rockets
– volume: 190
  start-page: 260
  year: 2017
  end-page: 273
  article-title: The ice, cloud and land elevation satellite‐2 (icesat‐2): Science requirements, concept, and implementation
  publication-title: Remote Sensing of Environment
– volume: 26
  start-page: 1191
  issue: 9
  year: 1999
  end-page: 1194
  article-title: The use of laser altimetry in the orbit and attitude determination of mars global surveyor
  publication-title: Geophysical Research Letters
– year: 2020
– ident: e_1_2_9_8_1
  doi: 10.1016/j.rse.2016.12.029
– ident: e_1_2_9_10_1
  doi: 10.1016/j.rse.2019.111325
– volume-title: ICESat‐2 algorithm theoretical basis document for precision orbit determination and geolocation parameter calibration version 2.0, ICESat‐2‐SIPS‐SPEC‐0140
  year: 2019
  ident: e_1_2_9_4_1
– ident: e_1_2_9_5_1
  doi: 10.1016/S0264‐3707(02)00047‐9
– ident: e_1_2_9_7_1
  doi: 10.1029/2005GL023689
– volume-title: ArcticDEM
  year: 2018
  ident: e_1_2_9_13_1
– volume-title: ICESat‐2 algorithm theoretical basis document for precision pointing determination version 2.0, ICESat‐2‐SIPS‐SPEC‐1595
  year: 2018
  ident: e_1_2_9_2_1
– volume-title: ATLAS/ICESat‐2 L1B converted telemetry data, Version 3
  year: 2020
  ident: e_1_2_9_9_1
– ident: e_1_2_9_6_1
  doi: 10.2514/2.3571
– ident: e_1_2_9_14_1
  doi: 10.1029/1999GL900223
– volume-title: ICESat‐2 algorithm theoretical basis document for ATL03g ICESat‐2 receive photon geolocation version 6.0, ICESat‐2‐SIPS‐SPEC‐0142
  year: 2019
  ident: e_1_2_9_3_1
– ident: e_1_2_9_12_1
  doi: 10.5194/tc‐5‐271‐2011
– volume-title: ATLAS/ICESat‐2 L2A global geolocated photon data, Version 3
  year: 2020
  ident: e_1_2_9_11_1
SSID ssj0001256024
Score 2.3815975
Snippet ICESat-2 science requirements are dependent on the accurate real-time pointing control (i.e. geolocation control) and post-processed geolocation knowledge of...
ICESat‐2 science requirements are dependent on the accurate real‐time pointing control (i.e., geolocation control) and postprocessed geolocation knowledge of...
Abstract ICESat‐2 science requirements are dependent on the accurate real‐time pointing control (i.e., geolocation control) and postprocessed geolocation...
SourceID doaj
proquest
crossref
wiley
nasa
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Calibration
Geosciences (General)
Ice sheets
Lasers
Parameter estimation
Space Sciences (General)
Spacecraft
Sun
Trends
Vegetation mapping
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EELyIj4rRKjnoRQlmH9nt4qmW1gcoBS30FvYVEKQVWw_e_An-Rn-Js5u0pofqxVMgGcLsfLs73-xjBqHjlOgC5v0isYbphOGWSqTwG64tI6jmVrhQtO_unl8P2O0wG9ZKffkzYWV64NJw5z7hpdTWOGoVEwrosFLYQhhijJNAxv3sm8q0FkyVqyvgyQmrTrqnRPogP-22Q0TAFnxQSNUPj5GaqAWaWSerwdv0NtFGRRPjdqneFlpxo220dhXK8L7voIubTvdBTb8-PkncHz-Fag-xv2alS0BjNbJxkC5X5OL-z_2ABhr0uo-d66Qqg5AYJgVJKEm51lgYUfibtMaJwirDhSZaS56Z1GVGFhxbTIVT3FpbQNRjuXaUU-Iw3YXGjUduD8VFxogxIOJoxniBlQH-BQGRyxzThusInc0Mk5sqR7gvVfGch71qIvO6GSN0Mpd-KXNjLJG79Daey_iM1uEF4JxXOOd_4RyhhkcoB30m_u84kFuCI9ScQZZXww--A68DnsdFuuSz7xxSMh6h04Dyr_rnMBQIOI39_2jHAVr32pfH2Jpodfr65g6B10z1UejC304m7oE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-ELyIT6wvetCLUmweTQyeVllfoCyo4K3kVRFkV3bXgzd_gr_RX-JMWtfdg4KnQjuENJNJvplkviFkN2e2gnW_yrwTNhP0yGRa4YHrkVPcSq9CLNp3fSMv7sXVQ_HQBNwwF6bmhxgF3NAy4nqNBm7soCEbQI5M8NrzditCfDFNZjG7Fks3MNEZi7HAfh7r2jLOeQZYRDR336GJw_EGJnalSN4Pj64ZmAngOQ5f4_5ztkgWGuCYtmpNL5Gp0F0mc-exMO_bCjm-PG3fmuHn-wdLO72nWP8hxcQrW6s4NV2fRuk6Rpd2fjIGVsn9Wfvu9CJrCiNkTmjFMs5yaS1VTlWYW-uCqrxxUllmrZaFy0PhdCWpp1wFI733FfhBXtrAJWeB8jX4uV43rJO0KgRzDkQCL4SsqHGAyMBFCkUQ1kmbkIPvgSldwxqOxSuey3h6zXQ5PowJ2RtJv9RsGb_IneAYj2SQ4zq-6PUfy8ZkSqQ61da7wL0RyoAjZAz14IA6FzS4YQlZRQ2V0J8Btk4j3GU0IVvfKisbg4TvgPQA-UmV__IZJ4rWQiZkP2r5z_6XYBwMtpGN_whvknnsZX2BbYvMDPuvYRsQzdDuxGn7BQGG510
  priority: 102
  providerName: Wiley-Blackwell
Title ICESat-2 Pointing Calibration and Geolocation Performance
URI https://ntrs.nasa.gov/citations/20210009921
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020EA001494
https://www.proquest.com/docview/2505441670
https://www.proquest.com/docview/2560249946
https://doaj.org/article/00989bdce3da47a182aa1d407cce9260
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwEB0VUCUuiLYgUugqh_ZCFRE7jr1WD2gXLaWVQKu2SNwie-ygStXull0O3PoJ_cZ-CWPHS5cDnCLFE8vx2OP3xvYMwPuS25bsfls4FLYQrG8KrcKGax9VZaVTPibtO7-QZ5fi61V9lRxu83SscmkTo6F2Uww-8qOwNBNV0EIez34XIWtU2F1NKTTWYINMcJ_G-cZwdDH-tuJliZ-lE-8l14Hsl6NBZAbi0VoUQ_bTY2Lm5hHcXAWtcdU53YatBBfzQaffV_DCT17Dy88xHe_dG_j05WT03Sz-_fnL8_H0Z8z6kIfrVrZTbG4mLo_SnWcuH_-_J7ADl6ejHydnRUqHUKDQihcVL6W1TKFqw41a9Kp1BqWy3Fotayx9jbqVzLFKeSOdcy2xHyetr2TFPat26eemE78HeVsLjkgivqqFbJlBwmFEjHzthUVpM_i47JgGU6zwkLLiVxP3rLluVrsxgw8P0rMuRsYTcsPQxw8yIbJ1fDG9uW7SRGlCgFNtHfrKGaEM0R9jmCPaieg1ka8MdoKGGmrPPNTOIsjlLIODpcqaNA2pnPAd4T2pyieKl2Mqg8Oo5Wfb39CU4LR4vH2-rn3YDO3qDqodwPri5ta_I-SysD1Y42LcS4O0F_n_PVL-6Ns
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcERBVblUpVCRlpYcyoUqauw4NlaFKh5LdwusVi1I3IxfqSpVu5TdquLGJ_AlfFS_pGMngeUAN06RkpE1mYfnYc8MwPucmgr3_SpzlpmMkQ2dSREOXDesKAx3wsehfYd93j1mX0_Kkxm4bmthwrXKdk-MG7Ub2ZAj_xhMM4YKkvHPZ7-zMDUqnK62IzRqsdj3F38xZBtv9naRv2uU7nWOdrpZM1Ugs0wKmhU058YQYUUVClOtF5XTlgtDjZG8tLkvraw4caQQXnPnXIVBhOPGF7ygnhS47hOYY6GidRbmtjv9wbeprE5Es7lhn1MZkgt5ZytGIuyO7YsjAvAx1GN9x72ddpKjldt7Ac8b9zTdquVpAWb88CU8_RLH_14swqfeTue7nvy7vKLpYPQzTplIQ3mXqQUp1UOXRug6E5gObusSluD4UQj1Cn9uNPTLkFYlo9YiiC9KxiuiLfp9GIj50jNjuUngQ0sYZZve5GFExi8Vz8ipVNNkTGDtBvqs7slxD9x2oPENTOikHV-Mzn-oRjFVaKgqjbO-cJoJjeGW1sRhmGutlxjsJbAUOKQQn3FYnUSnmpIEVlqWqUbt8Tv6k-hfcpHf87mV4QTWI5cfxF-hClI0Vq8fXmsVnnWPDg_UQa-__wbmA471JbkVmJ2c__Fv0WuamHeNqKZw-tja8R8KKCTZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VVqBeED9FBArkQC-gqLHj2LVQhfqzS5fCagVU6s34t6pU7ZbuItQbj9Dn4XF4EsZOUraH9tZTpGRkOeMZz3zj8QzA65KagPt-KJxlpmBkQxdSxAPXDSsqw53wqWnf5yHfO2AfD-vDBfjT3YWJaZXdnpg2ajexMUa-Hk0zQgXJ-Hpo0yJGu_33pz-K2EEqnrR27TQaEdn3578Qvk03B7u41muU9nvfdvaKtsNAYZkUtKhoyY0hwooQL6laL4LTlgtDjZG8tqWvrQycOFIJr7lzLiCgcNz4ilfUkwrHvQNLAq0iW4Sl7d5w9GUuwpOm3Gbbl1TGQEPZ20qohF2xg6ldAD7GeqqvuLrzDnOyeP0HcL91VfOtRrYewoIfP4K7H1Ir4PPH8G6w0_uqZ39_X9B8NDlOHSfyeNXLNEKV67HLE3UTFcxH_-8orMDBrTDqCf7cZOyfQh5qRq1FEl_VjAeiLfqACMp87Zmx3GTwtmOMsm2d8tgu40Sl83Iq1TwbM1i7pD5t6nNcQ7cdeXxJE6tqpxeTsyPVKqmKxVWlcdZXTjOhEXppTRxCXmu9ROCXwUpcIYXzmcbRSXKwKclgtVsy1W4B-B19S_Q1uSiv-dzJcwZv0irfOH-F6kjRcD27eaxXcA-1Qn0aDPefw3KcYpMvtwqLs7Of_gU6UDPzspXUHL7ftnL8A7NEKQU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ICESat%E2%80%902+Pointing+Calibration+and+Geolocation+Performance&rft.jtitle=Earth+and+space+science+%28Hoboken%2C+N.J.%29&rft.au=Luthcke%2C+S+B&rft.au=Thomas%2C+T+C&rft.au=Pennington%2C+T+A&rft.au=Rebold%2C+T+W&rft.date=2021-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2333-5084&rft.volume=8&rft.issue=3&rft_id=info:doi/10.1029%2F2020EA001494&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2333-5084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2333-5084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2333-5084&client=summon