ICESat-2 Pointing Calibration and Geolocation Performance
ICESat-2 science requirements are dependent on the accurate real-time pointing control (i.e. geolocation control) and post-processed geolocation knowledge of the laser altimeter surface returns. Pre-launch pointing alignment errors and post-launch pointing alignment variation result in large geoloca...
Saved in:
Published in | Earth and space science (Hoboken, N.J.) Vol. 8; no. 3 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Goddard Space Flight Center
American Geophysical Union / Wiley Open Access
01.03.2021
John Wiley & Sons, Inc American Geophysical Union (AGU) |
Subjects | |
Online Access | Get full text |
ISSN | 2333-5084 2333-5084 |
DOI | 10.1029/2020EA001494 |
Cover
Abstract | ICESat-2 science requirements are dependent on the accurate real-time pointing control (i.e. geolocation control) and post-processed geolocation knowledge of the laser altimeter surface returns. Pre-launch pointing alignment errors and post-launch pointing alignment variation result in large geolocation errors that must be calibrated on orbit. In addition, the changing sun-orbit geometry causes thermal-mechanical forced laser frame alignment variations at the orbit period and trends from days, weeks and months. Early mission analysis computed precise post-launch laser beam alignment calibration. The alignment calibration was uploaded to the spacecraft and enabled the pointing control performance to achieve 4.4 ± 6.0 m, a significant improvement over the 45 m (1 σ) mission requirement. Laser frame alignment calibrations are used to reduce the alignment bias and time variation, as well as the orbital variation contributions to geolocation knowledge error from 6 m to 1.7 m (1 σ). Relative beam alignment of the six beams is calibrated and shown to contribute between 0.5 ± 0.1 m and 2.4 ± 0.2 m of remaining geolocation knowledge error. Independent geolocation assessment based on comparison to high-resolution digital elevation models agrees well with the calibration geolocation error estimates. The analysis demonstrates the ICESat-2 mission is performing far better than its geolocation knowledge requirement of 6.5 m (1 σ) after the laser frame alignment bias variation and orbital variation calibrations have been applied. Remaining geolocation error is beam dependent and ranges from 2.5 m for beam 6 to 4.4 m for beam 2 (mean + 1 σ). |
---|---|
AbstractList | Abstract ICESat‐2 science requirements are dependent on the accurate real‐time pointing control (i.e., geolocation control) and postprocessed geolocation knowledge of the laser altimeter surface returns. Prelaunch pointing alignment errors and postlaunch pointing alignment variation result in large geolocation errors that must be calibrated on orbit. In addition, the changing sun‐orbit geometry causes thermal‐mechanical forced laser frame alignment variations at the orbit period and trends from days, weeks, and months. Early mission analysis computed precise postlaunch laser beam alignment calibration. The alignment calibration was uploaded to the spacecraft and enabled the pointing control performance to achieve 4.4 ± 6.0 m, a significant improvement over the 45 m (1 σ) mission requirement. Laser frame alignment calibrations are used to reduce the alignment bias and time variation, as well as the orbital variation contributions to geolocation knowledge error from 6 to 1.7 m (1 σ). Relative beam alignment of the six beams is calibrated and shown to contribute between 0.5 ± 0.1 m and 2.4 ± 0.2 m of remaining geolocation knowledge error. Independent geolocation assessment based on comparison to high‐resolution digital elevation models agrees well with the calibration geolocation error estimates. The analysis demonstrates the ICESat‐2 mission is performing far better than its geolocation knowledge requirement of 6.5 m (1 σ) after the laser frame alignment bias variation and orbital variation calibrations have been applied. Remaining geolocation error is beam dependent and ranges from 2.5 m for beam 6 to 4.4 m for beam 2 (mean + 1 σ). ICESat‐2 science requirements are dependent on the accurate real‐time pointing control (i.e., geolocation control) and postprocessed geolocation knowledge of the laser altimeter surface returns. Prelaunch pointing alignment errors and postlaunch pointing alignment variation result in large geolocation errors that must be calibrated on orbit. In addition, the changing sun‐orbit geometry causes thermal‐mechanical forced laser frame alignment variations at the orbit period and trends from days, weeks, and months. Early mission analysis computed precise postlaunch laser beam alignment calibration. The alignment calibration was uploaded to the spacecraft and enabled the pointing control performance to achieve 4.4 ± 6.0 m, a significant improvement over the 45 m (1 σ) mission requirement. Laser frame alignment calibrations are used to reduce the alignment bias and time variation, as well as the orbital variation contributions to geolocation knowledge error from 6 to 1.7 m (1 σ). Relative beam alignment of the six beams is calibrated and shown to contribute between 0.5 ± 0.1 m and 2.4 ± 0.2 m of remaining geolocation knowledge error. Independent geolocation assessment based on comparison to high‐resolution digital elevation models agrees well with the calibration geolocation error estimates. The analysis demonstrates the ICESat‐2 mission is performing far better than its geolocation knowledge requirement of 6.5 m (1 σ) after the laser frame alignment bias variation and orbital variation calibrations have been applied. Remaining geolocation error is beam dependent and ranges from 2.5 m for beam 6 to 4.4 m for beam 2 (mean + 1 σ). ICESat-2 science requirements are dependent on the accurate real-time pointing control (i.e. geolocation control) and post-processed geolocation knowledge of the laser altimeter surface returns. Pre-launch pointing alignment errors and post-launch pointing alignment variation result in large geolocation errors that must be calibrated on orbit. In addition, the changing sun-orbit geometry causes thermal-mechanical forced laser frame alignment variations at the orbit period and trends from days, weeks and months. Early mission analysis computed precise post-launch laser beam alignment calibration. The alignment calibration was uploaded to the spacecraft and enabled the pointing control performance to achieve 4.4 ± 6.0 m, a significant improvement over the 45 m (1 σ) mission requirement. Laser frame alignment calibrations are used to reduce the alignment bias and time variation, as well as the orbital variation contributions to geolocation knowledge error from 6 m to 1.7 m (1 σ). Relative beam alignment of the six beams is calibrated and shown to contribute between 0.5 ± 0.1 m and 2.4 ± 0.2 m of remaining geolocation knowledge error. Independent geolocation assessment based on comparison to high-resolution digital elevation models agrees well with the calibration geolocation error estimates. The analysis demonstrates the ICESat-2 mission is performing far better than its geolocation knowledge requirement of 6.5 m (1 σ) after the laser frame alignment bias variation and orbital variation calibrations have been applied. Remaining geolocation error is beam dependent and ranges from 2.5 m for beam 6 to 4.4 m for beam 2 (mean + 1 σ). ICESat‐2 science requirements are dependent on the accurate real‐time pointing control (i.e., geolocation control) and postprocessed geolocation knowledge of the laser altimeter surface returns. Prelaunch pointing alignment errors and postlaunch pointing alignment variation result in large geolocation errors that must be calibrated on orbit. In addition, the changing sun‐orbit geometry causes thermal‐mechanical forced laser frame alignment variations at the orbit period and trends from days, weeks, and months. Early mission analysis computed precise postlaunch laser beam alignment calibration. The alignment calibration was uploaded to the spacecraft and enabled the pointing control performance to achieve 4.4 ± 6.0 m, a significant improvement over the 45 m (1 σ) mission requirement. Laser frame alignment calibrations are used to reduce the alignment bias and time variation, as well as the orbital variation contributions to geolocation knowledge error from 6 to 1.7 m (1 σ). Relative beam alignment of the six beams is calibrated and shown to contribute between 0.5 ± 0.1 m and 2.4 ± 0.2 m of remaining geolocation knowledge error. Independent geolocation assessment based on comparison to high‐resolution digital elevation models agrees well with the calibration geolocation error estimates. The analysis demonstrates the ICESat‐2 mission is performing far better than its geolocation knowledge requirement of 6.5 m (1 σ) after the laser frame alignment bias variation and orbital variation calibrations have been applied. Remaining geolocation error is beam dependent and ranges from 2.5 m for beam 6 to 4.4 m for beam 2 (mean + 1 σ). Systematic time varying pointing errors are the largest ICESat‐2 pointing control and geolocation knowledge error source The systematic pointing errors have been calibrated and corrected to meet and exceed the mission geolocation requirements Further geolocation improvements can be made through the application of the relative beam alignment calibration ICESat‐2 science requirements are dependent on the accurate real‐time pointing control (i.e., geolocation control) and postprocessed geolocation knowledge of the laser altimeter surface returns. Prelaunch pointing alignment errors and postlaunch pointing alignment variation result in large geolocation errors that must be calibrated on orbit. In addition, the changing sun‐orbit geometry causes thermal‐mechanical forced laser frame alignment variations at the orbit period and trends from days, weeks, and months. Early mission analysis computed precise postlaunch laser beam alignment calibration. The alignment calibration was uploaded to the spacecraft and enabled the pointing control performance to achieve 4.4 ± 6.0 m, a significant improvement over the 45 m (1 σ) mission requirement. Laser frame alignment calibrations are used to reduce the alignment bias and time variation, as well as the orbital variation contributions to geolocation knowledge error from 6 to 1.7 m (1 σ). Relative beam alignment of the six beams is calibrated and shown to contribute between 0.5 ± 0.1 m and 2.4 ± 0.2 m of remaining geolocation knowledge error. Independent geolocation assessment based on comparison to high‐resolution digital elevation models agrees well with the calibration geolocation error estimates. The analysis demonstrates the ICESat‐2 mission is performing far better than its geolocation knowledge requirement of 6.5 m (1 σ) after the laser frame alignment bias variation and orbital variation calibrations have been applied. Remaining geolocation error is beam dependent and ranges from 2.5 m for beam 6 to 4.4 m for beam 2 (mean + 1 σ). Key Points Systematic time varying pointing errors are the largest ICESat‐2 pointing control and geolocation knowledge error source The systematic pointing errors have been calibrated and corrected to meet and exceed the mission geolocation requirements Further geolocation improvements can be made through the application of the relative beam alignment calibration |
Audience | PUBLIC |
Author | Luthcke, S. B. Bae, S. Thomas, T. C. Rebold, T. W. Rowlands, D. D. Pennington, T. A. Nicholas, J. B. Gardner, A. S. |
Author_xml | – sequence: 1 givenname: S. B. orcidid: 0000-0002-0558-3634 surname: Luthcke fullname: Luthcke, S. B. organization: Goddard Space Flight Center – sequence: 2 givenname: T. C. orcidid: 0000-0002-4282-6762 surname: Thomas fullname: Thomas, T. C. organization: Emergent Space Technologies (United States) – sequence: 3 givenname: T. A. surname: Pennington fullname: Pennington, T. A. organization: Stinger Ghaffarian Technologies (United States) – sequence: 4 givenname: T. W. surname: Rebold fullname: Rebold, T. W. organization: Emergent Space Technologies (United States) – sequence: 5 givenname: J. B. surname: Nicholas fullname: Nicholas, J. B. organization: Emergent Space Technologies (United States) – sequence: 6 givenname: D. D. surname: Rowlands fullname: Rowlands, D. D. organization: Goddard Space Flight Center – sequence: 7 givenname: A. S. orcidid: 0000-0002-8394-8889 surname: Gardner fullname: Gardner, A. S. organization: Jet Propulsion Lab – sequence: 8 givenname: S. surname: Bae fullname: Bae, S. organization: The University of Texas at Austin |
BookMark | eNp9kUFrGzEQhUVxIYmbW449GHLNtqORVrKOwTiJIVCD27OYlbRBZiOl2g3B_z7rbCmh0JxGI773Zph3xmYpp8DYBYdvHNB8R0BYXwNwaeQndopCiKqGpZy9e5-w877fwwhhrQDlKTOb1XpHQ4WLbY5piOlhsaIuNoWGmNOCkl_chtxlN_XbUNpcHim58IV9bqnrw_mfOme_btY_V3fV_Y_bzer6vnLSaKwEgmoarp1uAYRxQbeenNINNo1RtYNQO9Mq7rnQgZT3vpWm9qoJQgkMXMzZZvL1mfb2qcRHKgebKdq3j1weLJUhui5YALM0jXdBeJKa-BKJuJegnQsGFYxel5PXU8m_n0M_2H1-Lmlc304HMUaqjymopeRKH72uJsqV3PcltH9342CPidj3iYw4_oO7OLwddSgUu_-J-CR6iV04fDjArnc71ApHzddJk6gnO7r3R46PoRuDXLwCYS-ipg |
CitedBy_id | crossref_primary_10_3390_rs16040611 crossref_primary_10_3390_rs15010030 crossref_primary_10_5194_tc_17_4079_2023 crossref_primary_10_1029_2020EA001478 crossref_primary_10_1029_2020EA001555 crossref_primary_10_1109_TGRS_2022_3147722 crossref_primary_10_1029_2024EA003735 crossref_primary_10_1080_17538947_2023_2220617 crossref_primary_10_1038_s43017_023_00508_8 crossref_primary_10_1016_j_srs_2022_100074 crossref_primary_10_3390_rs14246210 crossref_primary_10_3390_s23218752 crossref_primary_10_5194_amt_17_1879_2024 crossref_primary_10_5194_tc_15_3083_2021 crossref_primary_10_1109_JSTARS_2024_3479315 crossref_primary_10_3390_jmse11112082 crossref_primary_10_3390_rs14205125 crossref_primary_10_1016_j_rse_2024_114458 crossref_primary_10_3390_rs14010142 crossref_primary_10_1093_gji_ggae280 crossref_primary_10_3390_rs14092201 crossref_primary_10_1088_2752_664X_ad39f2 crossref_primary_10_5194_tc_18_5431_2024 crossref_primary_10_1080_01490419_2024_2416661 crossref_primary_10_5194_tc_17_1411_2023 crossref_primary_10_11728_cjss2023_06_2023_0074 crossref_primary_10_3390_rs17071159 crossref_primary_10_1016_j_rse_2023_113570 crossref_primary_10_5194_tc_17_789_2023 crossref_primary_10_1029_2020EA001538 crossref_primary_10_1029_2024EA003551 crossref_primary_10_3390_rs17050773 crossref_primary_10_1029_2020EA001414 crossref_primary_10_1088_1361_6633_acaf8e crossref_primary_10_1007_s11629_024_8820_8 crossref_primary_10_1016_j_isprsjprs_2022_04_015 crossref_primary_10_1016_j_rse_2025_114602 crossref_primary_10_1109_TGRS_2024_3383600 |
Cites_doi | 10.1016/j.rse.2016.12.029 10.1016/j.rse.2019.111325 10.1016/S0264‐3707(02)00047‐9 10.1029/2005GL023689 10.2514/2.3571 10.1029/1999GL900223 10.5194/tc‐5‐271‐2011 |
ContentType | Journal Article |
Copyright | Copyright Determination: PUBLIC_USE_PERMITTED 2021. The Authors. This article has been contributed to by US Government employees and their work is in the public domain in the USA. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright Determination: PUBLIC_USE_PERMITTED – notice: 2021. The Authors. This article has been contributed to by US Government employees and their work is in the public domain in the USA. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | CYE CYI 24P AAYXX CITATION ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1029/2020EA001494 |
DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server Wiley Online Library Open Access CrossRef ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2333-5084 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_00989bdce3da47a182aa1d407cce9260 10_1029_2020EA001494 ESS2762 20210009921 |
Genre | article |
GrantInformation | NSF-OPP 1043681 306615.06.01.10 NSF-OPP 1559691 NSF-OPP 1542736 |
GrantInformation_xml | – fundername: NASA Goddard Space Flight Center funderid: ICESat‐2 Mission |
GroupedDBID | 0R~ 1OC 24P 5VS AAFWJ AAMMB AAZKR ABDBF ACCMX ACUHS ACXQS ADBBV ADKYN ADZMN AEFGJ AEUYN AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV BENPR BHPHI BKSAR CCPQU CYE CYI EBS GODZA GROUPED_DOAJ HCIFZ IAO IEP IGS ITC KQ8 O9- OK1 PCBAR PHGZM PHGZT PIMPY WIN EJD AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c4972-3206bb17c7f0039ce7fdac67b2bb965c0e5c9f61d137ea6dddf495d6be3632e13 |
IEDL.DBID | BENPR |
ISSN | 2333-5084 |
IngestDate | Wed Aug 27 00:30:23 EDT 2025 Fri Jul 25 06:46:10 EDT 2025 Fri Jul 25 06:45:46 EDT 2025 Tue Jul 01 01:06:20 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Sun Jul 06 04:45:31 EDT 2025 Fri Aug 15 15:29:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4972-3206bb17c7f0039ce7fdac67b2bb965c0e5c9f61d137ea6dddf495d6be3632e13 |
Notes | GSFC Goddard Space Flight Center ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0558-3634 0000-0002-4282-6762 0000-0002-8394-8889 |
OpenAccessLink | https://www.proquest.com/docview/2560249946?pq-origsite=%requestingapplication% |
PQID | 2505441670 |
PQPubID | 4368366 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_00989bdce3da47a182aa1d407cce9260 proquest_journals_2560249946 proquest_journals_2505441670 crossref_primary_10_1029_2020EA001494 crossref_citationtrail_10_1029_2020EA001494 wiley_primary_10_1029_2020EA001494_ESS2762 nasa_ntrs_20210009921 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | Goddard Space Flight Center |
PublicationPlace_xml | – name: Goddard Space Flight Center – name: Hoboken |
PublicationTitle | Earth and space science (Hoboken, N.J.) |
PublicationYear | 2021 |
Publisher | American Geophysical Union / Wiley Open Access John Wiley & Sons, Inc American Geophysical Union (AGU) |
Publisher_xml | – name: American Geophysical Union / Wiley Open Access – name: John Wiley & Sons, Inc – name: American Geophysical Union (AGU) |
References | 2018 2005; 32 2000; 37 2019b 2020 2011; 5 2019a 2002; 34 2019; 233 1999; 26 2017; 190 Bae S. (e_1_2_9_2_1) 2018 e_1_2_9_10_1 Neumann T. A. (e_1_2_9_11_1) 2020 Luthcke S. (e_1_2_9_4_1) 2019 e_1_2_9_12_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 Martino A. J. (e_1_2_9_9_1) 2020 Porter C. (e_1_2_9_13_1) 2018 e_1_2_9_14_1 Luthcke S. (e_1_2_9_3_1) 2019 |
References_xml | – volume: 5 start-page: 271 issue: 1 year: 2011 end-page: 290 article-title: Co‐registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change publication-title: The Cryosphere – volume: 233 year: 2019 article-title: The ice, cloud, and land elevation satellite – 2 mission: A global geolocated photon product derived from the advanced topographic laser altimeter system publication-title: Remote Sensing of Environment – volume: 34 start-page: 447 year: 2002 end-page: 475 article-title: Enhanced geolocation of spaceborne laser altimeter surface returns: parameter calibration from the simultaneous reduction of altimeter range and navigation tracking data publication-title: Journal of Geodynamics – year: 2019a – year: 2019b – year: 2018 – volume: 32 year: 2005 article-title: Calibration and reduction of ICESat geolocation errors and the impact on ice sheet elevation change detection publication-title: Geophysical Research Letters – volume: 37 start-page: 374 year: 2000 end-page: 384 article-title: Spaceborne laser altimeter pointing bias calibration from range residual analysis publication-title: Journal of Spacecraft and Rockets – volume: 190 start-page: 260 year: 2017 end-page: 273 article-title: The ice, cloud and land elevation satellite‐2 (icesat‐2): Science requirements, concept, and implementation publication-title: Remote Sensing of Environment – volume: 26 start-page: 1191 issue: 9 year: 1999 end-page: 1194 article-title: The use of laser altimetry in the orbit and attitude determination of mars global surveyor publication-title: Geophysical Research Letters – year: 2020 – ident: e_1_2_9_8_1 doi: 10.1016/j.rse.2016.12.029 – ident: e_1_2_9_10_1 doi: 10.1016/j.rse.2019.111325 – volume-title: ICESat‐2 algorithm theoretical basis document for precision orbit determination and geolocation parameter calibration version 2.0, ICESat‐2‐SIPS‐SPEC‐0140 year: 2019 ident: e_1_2_9_4_1 – ident: e_1_2_9_5_1 doi: 10.1016/S0264‐3707(02)00047‐9 – ident: e_1_2_9_7_1 doi: 10.1029/2005GL023689 – volume-title: ArcticDEM year: 2018 ident: e_1_2_9_13_1 – volume-title: ICESat‐2 algorithm theoretical basis document for precision pointing determination version 2.0, ICESat‐2‐SIPS‐SPEC‐1595 year: 2018 ident: e_1_2_9_2_1 – volume-title: ATLAS/ICESat‐2 L1B converted telemetry data, Version 3 year: 2020 ident: e_1_2_9_9_1 – ident: e_1_2_9_6_1 doi: 10.2514/2.3571 – ident: e_1_2_9_14_1 doi: 10.1029/1999GL900223 – volume-title: ICESat‐2 algorithm theoretical basis document for ATL03g ICESat‐2 receive photon geolocation version 6.0, ICESat‐2‐SIPS‐SPEC‐0142 year: 2019 ident: e_1_2_9_3_1 – ident: e_1_2_9_12_1 doi: 10.5194/tc‐5‐271‐2011 – volume-title: ATLAS/ICESat‐2 L2A global geolocated photon data, Version 3 year: 2020 ident: e_1_2_9_11_1 |
SSID | ssj0001256024 |
Score | 2.3815975 |
Snippet | ICESat-2 science requirements are dependent on the accurate real-time pointing control (i.e. geolocation control) and post-processed geolocation knowledge of... ICESat‐2 science requirements are dependent on the accurate real‐time pointing control (i.e., geolocation control) and postprocessed geolocation knowledge of... Abstract ICESat‐2 science requirements are dependent on the accurate real‐time pointing control (i.e., geolocation control) and postprocessed geolocation... |
SourceID | doaj proquest crossref wiley nasa |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Calibration Geosciences (General) Ice sheets Lasers Parameter estimation Space Sciences (General) Spacecraft Sun Trends Vegetation mapping |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EELyIj4rRKjnoRQlmH9nt4qmW1gcoBS30FvYVEKQVWw_e_An-Rn-Js5u0pofqxVMgGcLsfLs73-xjBqHjlOgC5v0isYbphOGWSqTwG64tI6jmVrhQtO_unl8P2O0wG9ZKffkzYWV64NJw5z7hpdTWOGoVEwrosFLYQhhijJNAxv3sm8q0FkyVqyvgyQmrTrqnRPogP-22Q0TAFnxQSNUPj5GaqAWaWSerwdv0NtFGRRPjdqneFlpxo220dhXK8L7voIubTvdBTb8-PkncHz-Fag-xv2alS0BjNbJxkC5X5OL-z_2ABhr0uo-d66Qqg5AYJgVJKEm51lgYUfibtMaJwirDhSZaS56Z1GVGFhxbTIVT3FpbQNRjuXaUU-Iw3YXGjUduD8VFxogxIOJoxniBlQH-BQGRyxzThusInc0Mk5sqR7gvVfGch71qIvO6GSN0Mpd-KXNjLJG79Daey_iM1uEF4JxXOOd_4RyhhkcoB30m_u84kFuCI9ScQZZXww--A68DnsdFuuSz7xxSMh6h04Dyr_rnMBQIOI39_2jHAVr32pfH2Jpodfr65g6B10z1UejC304m7oE priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-ELyIT6wvetCLUmweTQyeVllfoCyo4K3kVRFkV3bXgzd_gr_RX-JMWtfdg4KnQjuENJNJvplkviFkN2e2gnW_yrwTNhP0yGRa4YHrkVPcSq9CLNp3fSMv7sXVQ_HQBNwwF6bmhxgF3NAy4nqNBm7soCEbQI5M8NrzditCfDFNZjG7Fks3MNEZi7HAfh7r2jLOeQZYRDR336GJw_EGJnalSN4Pj64ZmAngOQ5f4_5ztkgWGuCYtmpNL5Gp0F0mc-exMO_bCjm-PG3fmuHn-wdLO72nWP8hxcQrW6s4NV2fRuk6Rpd2fjIGVsn9Wfvu9CJrCiNkTmjFMs5yaS1VTlWYW-uCqrxxUllmrZaFy0PhdCWpp1wFI733FfhBXtrAJWeB8jX4uV43rJO0KgRzDkQCL4SsqHGAyMBFCkUQ1kmbkIPvgSldwxqOxSuey3h6zXQ5PowJ2RtJv9RsGb_IneAYj2SQ4zq-6PUfy8ZkSqQ61da7wL0RyoAjZAz14IA6FzS4YQlZRQ2V0J8Btk4j3GU0IVvfKisbg4TvgPQA-UmV__IZJ4rWQiZkP2r5z_6XYBwMtpGN_whvknnsZX2BbYvMDPuvYRsQzdDuxGn7BQGG510 priority: 102 providerName: Wiley-Blackwell |
Title | ICESat-2 Pointing Calibration and Geolocation Performance |
URI | https://ntrs.nasa.gov/citations/20210009921 https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020EA001494 https://www.proquest.com/docview/2505441670 https://www.proquest.com/docview/2560249946 https://doaj.org/article/00989bdce3da47a182aa1d407cce9260 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwEB0VUCUuiLYgUugqh_ZCFRE7jr1WD2gXLaWVQKu2SNwie-ygStXull0O3PoJ_cZ-CWPHS5cDnCLFE8vx2OP3xvYMwPuS25bsfls4FLYQrG8KrcKGax9VZaVTPibtO7-QZ5fi61V9lRxu83SscmkTo6F2Uww-8qOwNBNV0EIez34XIWtU2F1NKTTWYINMcJ_G-cZwdDH-tuJliZ-lE-8l14Hsl6NBZAbi0VoUQ_bTY2Lm5hHcXAWtcdU53YatBBfzQaffV_DCT17Dy88xHe_dG_j05WT03Sz-_fnL8_H0Z8z6kIfrVrZTbG4mLo_SnWcuH_-_J7ADl6ejHydnRUqHUKDQihcVL6W1TKFqw41a9Kp1BqWy3Fotayx9jbqVzLFKeSOdcy2xHyetr2TFPat26eemE78HeVsLjkgivqqFbJlBwmFEjHzthUVpM_i47JgGU6zwkLLiVxP3rLluVrsxgw8P0rMuRsYTcsPQxw8yIbJ1fDG9uW7SRGlCgFNtHfrKGaEM0R9jmCPaieg1ka8MdoKGGmrPPNTOIsjlLIODpcqaNA2pnPAd4T2pyieKl2Mqg8Oo5Wfb39CU4LR4vH2-rn3YDO3qDqodwPri5ta_I-SysD1Y42LcS4O0F_n_PVL-6Ns |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcERBVblUpVCRlpYcyoUqauw4NlaFKh5LdwusVi1I3IxfqSpVu5TdquLGJ_AlfFS_pGMngeUAN06RkpE1mYfnYc8MwPucmgr3_SpzlpmMkQ2dSREOXDesKAx3wsehfYd93j1mX0_Kkxm4bmthwrXKdk-MG7Ub2ZAj_xhMM4YKkvHPZ7-zMDUqnK62IzRqsdj3F38xZBtv9naRv2uU7nWOdrpZM1Ugs0wKmhU058YQYUUVClOtF5XTlgtDjZG8tLkvraw4caQQXnPnXIVBhOPGF7ygnhS47hOYY6GidRbmtjv9wbeprE5Es7lhn1MZkgt5ZytGIuyO7YsjAvAx1GN9x72ddpKjldt7Ac8b9zTdquVpAWb88CU8_RLH_14swqfeTue7nvy7vKLpYPQzTplIQ3mXqQUp1UOXRug6E5gObusSluD4UQj1Cn9uNPTLkFYlo9YiiC9KxiuiLfp9GIj50jNjuUngQ0sYZZve5GFExi8Vz8ipVNNkTGDtBvqs7slxD9x2oPENTOikHV-Mzn-oRjFVaKgqjbO-cJoJjeGW1sRhmGutlxjsJbAUOKQQn3FYnUSnmpIEVlqWqUbt8Tv6k-hfcpHf87mV4QTWI5cfxF-hClI0Vq8fXmsVnnWPDg_UQa-__wbmA471JbkVmJ2c__Fv0WuamHeNqKZw-tja8R8KKCTZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VVqBeED9FBArkQC-gqLHj2LVQhfqzS5fCagVU6s34t6pU7ZbuItQbj9Dn4XF4EsZOUraH9tZTpGRkOeMZz3zj8QzA65KagPt-KJxlpmBkQxdSxAPXDSsqw53wqWnf5yHfO2AfD-vDBfjT3YWJaZXdnpg2ajexMUa-Hk0zQgXJ-Hpo0yJGu_33pz-K2EEqnrR27TQaEdn3578Qvk03B7u41muU9nvfdvaKtsNAYZkUtKhoyY0hwooQL6laL4LTlgtDjZG8tqWvrQycOFIJr7lzLiCgcNz4ilfUkwrHvQNLAq0iW4Sl7d5w9GUuwpOm3Gbbl1TGQEPZ20qohF2xg6ldAD7GeqqvuLrzDnOyeP0HcL91VfOtRrYewoIfP4K7H1Ir4PPH8G6w0_uqZ39_X9B8NDlOHSfyeNXLNEKV67HLE3UTFcxH_-8orMDBrTDqCf7cZOyfQh5qRq1FEl_VjAeiLfqACMp87Zmx3GTwtmOMsm2d8tgu40Sl83Iq1TwbM1i7pD5t6nNcQ7cdeXxJE6tqpxeTsyPVKqmKxVWlcdZXTjOhEXppTRxCXmu9ROCXwUpcIYXzmcbRSXKwKclgtVsy1W4B-B19S_Q1uSiv-dzJcwZv0irfOH-F6kjRcD27eaxXcA-1Qn0aDPefw3KcYpMvtwqLs7Of_gU6UDPzspXUHL7ftnL8A7NEKQU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ICESat%E2%80%902+Pointing+Calibration+and+Geolocation+Performance&rft.jtitle=Earth+and+space+science+%28Hoboken%2C+N.J.%29&rft.au=Luthcke%2C+S+B&rft.au=Thomas%2C+T+C&rft.au=Pennington%2C+T+A&rft.au=Rebold%2C+T+W&rft.date=2021-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2333-5084&rft.volume=8&rft.issue=3&rft_id=info:doi/10.1029%2F2020EA001494&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2333-5084&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2333-5084&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2333-5084&client=summon |