Acorus calamus recycled as an additional carbon source in a microbial fuel cell-constructed wetland for enhanced nitrogen removal

[Display omitted] •Acorus calamus was successfully recycled in MFC-CW as carbon source.•Efficient nitrogen removal and energy recovery were attained with biomass addition.•Biomass recycling enhanced the interactions between nitrifying microbes.•Biomass recycling enriched the functional genes of anam...

Full description

Saved in:
Bibliographic Details
Published inBioresource Technology Vol. 384; p. 129324
Main Authors Tao, Mengni, Kong, Yu, Jing, Zhaoqian, Guan, Lin, Jia, Qiusheng, Shen, Yiwei, Hu, Meijia, Li, Yu-You
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2023
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Acorus calamus was successfully recycled in MFC-CW as carbon source.•Efficient nitrogen removal and energy recovery were attained with biomass addition.•Biomass recycling enhanced the interactions between nitrifying microbes.•Biomass recycling enriched the functional genes of anammox. Acorus calamus was recycled as an additional carbon source in microbial fuel cell-constructed wetlands (MFC-CWs), for efficient nitrogen removal of low carbon wastewater. The pretreatment methods, adding positions, and nitrogen transformations were investigated. Results indicated that alkali-pretreatment cleaved the benzene rings in dominant released organics, producing chemical oxygen demand of 164.5 mg from per gram of A. calamus. Pretreated biomass addition in the anode of MFC-CW attained the maximum total nitrogen removal of 97.6% and power generation of 12.5 mW/m2, which were higher than those with biomass in the cathode (97.6% and 1.6 mW/m2, respectively). However, the duration of a cycle with biomass in the cathode (20–25 days) was longer than that in the anode (10–15 days). Microbial metabolisms related to organics degradation, nitrification, denitrification, and anammox were intensified after biomass recycling. This study provides a promising method to improve nitrogen removal and energy recovery in MFC-CWs.
AbstractList Acorus calamus was recycled as an additional carbon source in microbial fuel cell-constructed wetlands (MFC-CWs), for efficient nitrogen removal of low carbon wastewater. The pretreatment methods, adding positions, and nitrogen transformations were investigated. Results indicated that alkali-pretreatment cleaved the benzene rings in dominant released organics, producing chemical oxygen demand of 164.5 mg from per gram of A. calamus. Pretreated biomass addition in the anode of MFC-CW attained the maximum total nitrogen removal of 97.6% and power generation of 12.5 mW/m², which were higher than those with biomass in the cathode (97.6% and 1.6 mW/m², respectively). However, the duration of a cycle with biomass in the cathode (20–25 days) was longer than that in the anode (10–15 days). Microbial metabolisms related to organics degradation, nitrification, denitrification, and anammox were intensified after biomass recycling. This study provides a promising method to improve nitrogen removal and energy recovery in MFC-CWs.
Acorus calamus was recycled as an additional carbon source in microbial fuel cell-constructed wetlands (MFC-CWs), for efficient nitrogen removal of low carbon wastewater. The pretreatment methods, adding positions, and nitrogen transformations were investigated. Results indicated that alkali-pretreatment cleaved the benzene rings in dominant released organics, producing chemical oxygen demand of 164.5 mg from per gram of A. calamus. Pretreated biomass addition in the anode of MFC-CW attained the maximum total nitrogen removal of 97.6% and power generation of 12.5 mW/m2, which were higher than those with biomass in the cathode (97.6% and 1.6 mW/m2, respectively). However, the duration of a cycle with biomass in the cathode (20-25 days) was longer than that in the anode (10-15 days). Microbial metabolisms related to organics degradation, nitrification, denitrification, and anammox were intensified after biomass recycling. This study provides a promising method to improve nitrogen removal and energy recovery in MFC-CWs.Acorus calamus was recycled as an additional carbon source in microbial fuel cell-constructed wetlands (MFC-CWs), for efficient nitrogen removal of low carbon wastewater. The pretreatment methods, adding positions, and nitrogen transformations were investigated. Results indicated that alkali-pretreatment cleaved the benzene rings in dominant released organics, producing chemical oxygen demand of 164.5 mg from per gram of A. calamus. Pretreated biomass addition in the anode of MFC-CW attained the maximum total nitrogen removal of 97.6% and power generation of 12.5 mW/m2, which were higher than those with biomass in the cathode (97.6% and 1.6 mW/m2, respectively). However, the duration of a cycle with biomass in the cathode (20-25 days) was longer than that in the anode (10-15 days). Microbial metabolisms related to organics degradation, nitrification, denitrification, and anammox were intensified after biomass recycling. This study provides a promising method to improve nitrogen removal and energy recovery in MFC-CWs.
[Display omitted] •Acorus calamus was successfully recycled in MFC-CW as carbon source.•Efficient nitrogen removal and energy recovery were attained with biomass addition.•Biomass recycling enhanced the interactions between nitrifying microbes.•Biomass recycling enriched the functional genes of anammox. Acorus calamus was recycled as an additional carbon source in microbial fuel cell-constructed wetlands (MFC-CWs), for efficient nitrogen removal of low carbon wastewater. The pretreatment methods, adding positions, and nitrogen transformations were investigated. Results indicated that alkali-pretreatment cleaved the benzene rings in dominant released organics, producing chemical oxygen demand of 164.5 mg from per gram of A. calamus. Pretreated biomass addition in the anode of MFC-CW attained the maximum total nitrogen removal of 97.6% and power generation of 12.5 mW/m2, which were higher than those with biomass in the cathode (97.6% and 1.6 mW/m2, respectively). However, the duration of a cycle with biomass in the cathode (20–25 days) was longer than that in the anode (10–15 days). Microbial metabolisms related to organics degradation, nitrification, denitrification, and anammox were intensified after biomass recycling. This study provides a promising method to improve nitrogen removal and energy recovery in MFC-CWs.
Acorus calamus was recycled as an additional carbon source in microbial fuel cell-constructed wetlands (MFC-CWs), for efficient nitrogen removal of low carbon wastewater. The pretreatment methods, adding positions, and nitrogen transformations were investigated. Results indicated that alkali-pretreatment cleaved the benzene rings in dominant released organics, producing chemical oxygen demand of 164.5 mg from per gram of A. calamus. Pretreated biomass addition in the anode of MFC-CW attained the maximum total nitrogen removal of 97.6% and power generation of 12.5 mW/m , which were higher than those with biomass in the cathode (97.6% and 1.6 mW/m , respectively). However, the duration of a cycle with biomass in the cathode (20-25 days) was longer than that in the anode (10-15 days). Microbial metabolisms related to organics degradation, nitrification, denitrification, and anammox were intensified after biomass recycling. This study provides a promising method to improve nitrogen removal and energy recovery in MFC-CWs.
ArticleNumber 129324
Author Guan, Lin
Jing, Zhaoqian
Shen, Yiwei
Jia, Qiusheng
Kong, Yu
Hu, Meijia
Tao, Mengni
Li, Yu-You
Author_xml – sequence: 1
  givenname: Mengni
  surname: Tao
  fullname: Tao, Mengni
  organization: College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
– sequence: 2
  givenname: Yu
  surname: Kong
  fullname: Kong, Yu
  organization: Nanjing Municipal Design and Research Institute Co., Ltd., Nanjing 210008, China
– sequence: 3
  givenname: Zhaoqian
  surname: Jing
  fullname: Jing, Zhaoqian
  email: zqjing@njfu.edu.cn
  organization: College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
– sequence: 4
  givenname: Lin
  surname: Guan
  fullname: Guan, Lin
  organization: Nanjing Municipal Design and Research Institute Co., Ltd., Nanjing 210008, China
– sequence: 5
  givenname: Qiusheng
  surname: Jia
  fullname: Jia, Qiusheng
  organization: College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
– sequence: 6
  givenname: Yiwei
  surname: Shen
  fullname: Shen, Yiwei
  organization: College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
– sequence: 7
  givenname: Meijia
  surname: Hu
  fullname: Hu, Meijia
  organization: College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
– sequence: 8
  givenname: Yu-You
  orcidid: 0000-0002-3659-5005
  surname: Li
  fullname: Li, Yu-You
  organization: Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
BackLink https://cir.nii.ac.jp/crid/1871991018155560960$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/37315619$$D View this record in MEDLINE/PubMed
BookMark eNqNkktr3TAQhUVJaW7S_oXgRRfd-EYPW5agi4bQRyDQTbsW8njc6GJLqSQnZNl_XhnnbrpJNxrQfEdHzJkzcuKDR0IuGN0zyuTlYd-7EDPC3Z5TLvaMa8GbV2THVCdqrjt5QnZUS1qrljen5CylA6VUsI6_IaeiE6yVTO_InysIcUkV2MnOpUaEJ5hwqGyqrK_sMLjsgrdTIWIffJXCEgErV3rV7CCG3pXmuGAhcJpqCD7luEAubzxinqwfqjHECv2d9VAuvcsx_EJfrObwYKe35PVop4Tvnus5-fnl84_rb_Xt968311e3NTRa5nqEUXPVYI_IcBRUMQmtbAEEo1wPktEexKi7TlgFQqlGD1RRqaRq2lHjIM7Jh-3d-xh-L5iymV1av2w9hiUZrlQnBaW8-Q-US86kaGRBL57RpZ9xMPfRzTY-meOEC_BxA8qoUoo4GnDZrjPN0brJMGrWQM3BHAM1a6BmC7TI5T_yo8OLwveb0DtXLNezrAbTuogUa9tWrttRsE8bhmX0Dw6jSeBwDcqVVchmCO4lp7_k58mM
CitedBy_id crossref_primary_10_1016_j_jclepro_2024_142018
crossref_primary_10_1061_JOEEDU_EEENG_7658
crossref_primary_10_1016_j_biortech_2024_131419
crossref_primary_10_1016_j_cej_2024_150753
crossref_primary_10_1016_j_jwpe_2024_106407
crossref_primary_10_1016_j_biortech_2023_129759
crossref_primary_10_1007_s11356_024_32137_z
crossref_primary_10_1016_j_jclepro_2024_143262
crossref_primary_10_1016_j_biortech_2023_130090
crossref_primary_10_1016_j_jclepro_2024_143399
crossref_primary_10_1016_j_jclepro_2025_145272
crossref_primary_10_1016_j_cej_2024_153476
crossref_primary_10_3390_w15244285
crossref_primary_10_1016_j_scitotenv_2024_172979
Cites_doi 10.1016/j.biortech.2022.126997
10.1016/j.biortech.2022.127013
10.1186/s13068-019-1354-6
10.1016/j.scitotenv.2022.153452
10.1016/j.biortech.2022.127062
10.1016/j.cej.2023.141619
10.1016/j.eti.2021.101843
10.1016/j.chemosphere.2022.134882
10.1016/j.envpol.2017.07.049
10.1016/j.jclepro.2021.130108
10.1016/j.scitotenv.2019.136159
10.1016/j.watres.2023.119754
10.1016/j.fuel.2022.127326
10.3168/jds.S0022-0302(91)78551-2
10.1016/j.watres.2022.119258
10.1016/j.scitotenv.2021.147761
10.1016/j.biortech.2019.122350
10.1016/j.ecoleng.2018.07.032
10.1016/j.cej.2020.124840
10.1016/j.envpol.2021.118170
10.1016/j.biortech.2022.127902
10.1016/j.biortech.2022.127114
10.1016/j.cej.2023.141541
10.1021/acs.est.8b04871
10.1016/j.biortech.2022.126817
10.1016/j.watres.2019.114988
10.1016/j.jenvman.2022.114624
10.1016/j.jclepro.2022.133581
10.1016/j.chemosphere.2019.125342
10.1016/j.biortech.2022.127312
10.1016/j.jclepro.2020.119986
10.1016/j.jece.2021.106447
10.1016/j.watres.2010.02.015
10.1016/j.scitotenv.2022.156568
10.1016/j.indcrop.2017.12.049
10.1016/j.chemosphere.2022.135377
10.1007/s11356-016-6324-y
10.1016/j.biortech.2022.127205
10.1016/j.biortech.2022.127947
10.1016/j.jclepro.2022.132368
10.1016/j.ecoleng.2016.02.039
10.1016/j.jwpe.2022.103335
10.1016/j.cej.2022.136248
10.1016/j.scitotenv.2021.145171
10.1016/j.chemosphere.2020.127863
10.1016/j.cej.2021.128507
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID RYH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2023.129324
DatabaseName CiNii Complete
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 37315619
10_1016_j_biortech_2023_129324
S0960852423007502
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AATTM
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
RYH
SSH
AAYXX
ABWVN
ACRPL
ADNMO
AEGFY
AGQPQ
CITATION
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c496t-fcf9284ebee1ef30816c565cc31029d610bc3f9773a8c38849d080686845f9ed3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Wed Jul 02 04:51:53 EDT 2025
Sun Aug 24 03:55:43 EDT 2025
Wed Feb 19 02:23:26 EST 2025
Tue Jul 01 03:19:16 EDT 2025
Thu Apr 24 23:10:10 EDT 2025
Thu Jun 26 22:56:08 EDT 2025
Sat Oct 05 15:36:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Denitrification
Low carbon wastewater
Co-occurrence network
Bioelectrochemical assisted constructed wetland
Plant biomass
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-fcf9284ebee1ef30816c565cc31029d610bc3f9773a8c38849d080686845f9ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3659-5005
0000-0003-4067-8855
PMID 37315619
PQID 2826216346
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2887630024
proquest_miscellaneous_2826216346
pubmed_primary_37315619
crossref_citationtrail_10_1016_j_biortech_2023_129324
crossref_primary_10_1016_j_biortech_2023_129324
nii_cinii_1871991018155560960
elsevier_sciencedirect_doi_10_1016_j_biortech_2023_129324
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-01
2023-09-00
2023-Sep
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource Technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Li, Xu, Yang, Yang, Wu, Zhang, Song (b0090) 2019; 165
Wu, He, Gu, Yan, Peng, Sun, Liu (b0165) 2022; 308
Zhang, Yang, Wang, Luo, Chen, Zhang, Ma, An, Chen, Cheng, Chen, Mo, Fan, Xiao (b0205) 2022; 363
Dai, Wu, Wang, Lv, Li, Zhang, Kong (b0025) 2022; 305
Wang, Li, Ning, Fu, Wang, Tan (b0135) 2022; 821
Yuan, Zhao, Zhao, Zhao (b0180) 2020; 392
Cai, Zhang, Wang, Zhang, Lu, Zhen (b0010) 2022; 442
Jia, Gou, Liu, Lu, Wu, Wu (b0070) 2019; 53
Wang, Teng, Li, Chen, Liu, Liu, He, Wang (b0150) 2022; 364
Tao, Guan, Jing, Tao, Wang, Luo, Wang (b0110) 2020; 709
Wang, Liu, Yang, Fang, Luo, Cheng, Wang (b0145) 2022; 226
Tao, Jing, Tao, Luo, Zuo, Li (b0115) 2022; 332
Tao, Kong, Jing, Jia, Tao, Li (b0125) 2022; 363
Li, Wang, Lin, Wang, Li, Li (b0085) 2022; 50
Zhang, Huang, Su, Hu, Yang, Huang, Chen, Wu, Feng (b0185) 2019; 12
Zhang, Yin, Wen, Guo, Liu, Zhou (b0210) 2016; 91
Zhou, Zhao, Zhuang (b0230) 2023; 233
Cao, Huang, Yan, Zhang, Ma (b0015) 2021; 777
Wang, Zhang, Yu, Yao, Lin (b0155) 2023; 338
El Achaby, Kassab, Barakat, Aboulkas (b0035) 2018; 112
Yang, Fu, Wang, Chen, Wang, He, Pi, Zhou, Liang, Chen (b0175) 2021; 24
Saeed, Jihad Miah (b0100) 2021; 411
Zhou, Liu, Lie, Lai (b0225) 2022; 357
Chen, Luo, Bu, Zhang, Ma (b0020) 2022; 838
Li, Liu, Zheng, Ma, Zhao, Wang, Liu (b0075) 2023; 460
Zhang, Wu, Li, Kim, Bi, Zhang, Jiang, Yong Ng, Shi (b0200) 2022; 348
Zhang, Wei, Hu, Zhang, Li, Zhang, Wu, Tang (b0195) 2018; 122
Ge, Cao, Song, Wang, Si, Zhao, Wang, Tesfahunegn (b0040) 2020; 296
Zheng, Zhang, Sun, Yang, Liu, Cao, Chen, Dzakpasu, Wang (b0215) 2022; 351
Guo, Sanjaya, Rong, Wang, Luo, Chen, Wang, Hanaoka, Sakemi, Ito, Kobayashi, Kobayashi, Li (b0060) 2022; 351
Wang, Li, Song, Cao, Xu, Huang, Wang, Wang, Sand (b0140) 2022; 352
Van Soest, Robertson, Lewis (b0130) 1991; 74
Ajibade, Yin, Guadie, Ajibade, Liu, Kumwimba, Liu, Han, Wang, Wang (b0005) 2023; 459
Li, Sun, Song (b0080) 2020; 243
Zhong, Yang, Ding, Wang, Chen, Xie, Xu, Yuan, Ren (b0220) 2021; 789
Xiong, Su, He, Han, Guo, Qiao, Huang (b0170) 2022; 354
Gu, Chen, Wu, He, Huang (b0050) 2021; 262
Dhali, Daver, Cass, Adhikari (b0030) 2021; 9
Gu, He, Huang (b0055) 2021; 291
Hang, Wang, Chu, Ye, Li, Hou (b0065) 2016; 23
Wu, He, Zhou, Gu, Huang, Gao, Zhang (b0160) 2017; 231
Sun, Dzakpasu, Zhao, Wang, Zhang, Qu, Chen, Wang, Zheng (b0105) 2022; 370
Grafias, Xekoukoulotakis, Mantzavinos, Diamadopoulos (b0045) 2010; 44
Tao, Jing, Tao, Chen (b0120) 2022; 302
Mateus, Pinho (b0095) 2020; 253
Zhang, Ma, Huang, Yang, Liu, Niu (b0190) 2022; 351
Zheng (10.1016/j.biortech.2023.129324_b0215) 2022; 351
Li (10.1016/j.biortech.2023.129324_b0085) 2022; 50
Yuan (10.1016/j.biortech.2023.129324_b0180) 2020; 392
Tao (10.1016/j.biortech.2023.129324_b0115) 2022; 332
Tao (10.1016/j.biortech.2023.129324_b0120) 2022; 302
Hang (10.1016/j.biortech.2023.129324_b0065) 2016; 23
Wu (10.1016/j.biortech.2023.129324_b0160) 2017; 231
Ge (10.1016/j.biortech.2023.129324_b0040) 2020; 296
Zhang (10.1016/j.biortech.2023.129324_b0200) 2022; 348
Van Soest (10.1016/j.biortech.2023.129324_b0130) 1991; 74
Gu (10.1016/j.biortech.2023.129324_b0050) 2021; 262
Li (10.1016/j.biortech.2023.129324_b0080) 2020; 243
Xiong (10.1016/j.biortech.2023.129324_b0170) 2022; 354
Zhang (10.1016/j.biortech.2023.129324_b0205) 2022; 363
Ajibade (10.1016/j.biortech.2023.129324_b0005) 2023; 459
Dai (10.1016/j.biortech.2023.129324_b0025) 2022; 305
Wang (10.1016/j.biortech.2023.129324_b0150) 2022; 364
Cao (10.1016/j.biortech.2023.129324_b0015) 2021; 777
Zhang (10.1016/j.biortech.2023.129324_b0195) 2018; 122
Zhang (10.1016/j.biortech.2023.129324_b0190) 2022; 351
Zhong (10.1016/j.biortech.2023.129324_b0220) 2021; 789
Grafias (10.1016/j.biortech.2023.129324_b0045) 2010; 44
Wang (10.1016/j.biortech.2023.129324_b0145) 2022; 226
Wang (10.1016/j.biortech.2023.129324_b0135) 2022; 821
Jia (10.1016/j.biortech.2023.129324_b0070) 2019; 53
Zhou (10.1016/j.biortech.2023.129324_b0230) 2023; 233
Chen (10.1016/j.biortech.2023.129324_b0020) 2022; 838
Wu (10.1016/j.biortech.2023.129324_b0165) 2022; 308
Zhang (10.1016/j.biortech.2023.129324_b0185) 2019; 12
Li (10.1016/j.biortech.2023.129324_b0075) 2023; 460
Zhang (10.1016/j.biortech.2023.129324_b0210) 2016; 91
Zhou (10.1016/j.biortech.2023.129324_b0225) 2022; 357
Dhali (10.1016/j.biortech.2023.129324_b0030) 2021; 9
Saeed (10.1016/j.biortech.2023.129324_b0100) 2021; 411
Tao (10.1016/j.biortech.2023.129324_b0110) 2020; 709
Gu (10.1016/j.biortech.2023.129324_b0055) 2021; 291
Tao (10.1016/j.biortech.2023.129324_b0125) 2022; 363
Wang (10.1016/j.biortech.2023.129324_b0155) 2023; 338
Li (10.1016/j.biortech.2023.129324_b0090) 2019; 165
Guo (10.1016/j.biortech.2023.129324_b0060) 2022; 351
Cai (10.1016/j.biortech.2023.129324_b0010) 2022; 442
Mateus (10.1016/j.biortech.2023.129324_b0095) 2020; 253
Wang (10.1016/j.biortech.2023.129324_b0140) 2022; 352
El Achaby (10.1016/j.biortech.2023.129324_b0035) 2018; 112
Yang (10.1016/j.biortech.2023.129324_b0175) 2021; 24
Sun (10.1016/j.biortech.2023.129324_b0105) 2022; 370
References_xml – volume: 351
  year: 2022
  ident: b0060
  article-title: Treating the filtrate of mainstream anaerobic membrane bioreactor with the pilot-scale sludge-type one-stage partial nitritation/anammox process operated from 25 to 15 degrees C
  publication-title: Bioresour. Technol.
– volume: 253
  year: 2020
  ident: b0095
  article-title: Evaluation of solid waste stratified mixtures as constructed wetland fillers under different operation modes
  publication-title: J. Clean. Prod.
– volume: 348
  year: 2022
  ident: b0200
  article-title: Novel intertidal wetland sediment-inoculated moving bed biofilm reactor treating high-salinity wastewater: metagenomic sequencing revealing key functional microorganisms
  publication-title: Bioresour. Technol.
– volume: 165
  year: 2019
  ident: b0090
  article-title: Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland
  publication-title: Water Res.
– volume: 91
  start-page: 310
  year: 2016
  end-page: 316
  ident: b0210
  article-title: Enhanced nitrate removal in self-supplying carbon source constructed wetlands treating secondary effluent: the roles of plants and plant fermentation broth
  publication-title: Ecol. Eng.
– volume: 442
  year: 2022
  ident: b0010
  article-title: Electrochemically active microorganisms sense charge transfer resistance for regulating biofilm electroactivity, spatio-temporal distribution, and catabolic pathway
  publication-title: Chem. Eng. J.
– volume: 112
  start-page: 499
  year: 2018
  end-page: 510
  ident: b0035
  article-title: Alfa fibers as viable sustainable source for cellulose nanocrystals extraction: application for improving the tensile properties of biopolymer nanocomposite films
  publication-title: Ind. Crop. Prod.
– volume: 351
  year: 2022
  ident: b0215
  article-title: Stereoselective degradation pathway of amide chiral herbicides and its impacts on plant and bacterial communities in integrated vertical flow constructed wetlands
  publication-title: Bioresour. Technol.
– volume: 296
  year: 2020
  ident: b0040
  article-title: Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell
  publication-title: Bioresour. Technol.
– volume: 233
  year: 2023
  ident: b0230
  article-title: Double-edged sword effects of dissimilatory nitrate reduction to ammonium (DNRA) bacteria on anammox bacteria performance in an MBR reactor
  publication-title: Water Res.
– volume: 460
  year: 2023
  ident: b0075
  article-title: Influence of plants on anammox process in constructed Wetland: irrelevance, inhibition or enhancement
  publication-title: Chem. Eng. J.
– volume: 352
  year: 2022
  ident: b0140
  article-title: Intensifying anoxic ammonium removal by manganese ores and granular active carbon fillings in constructed wetland-microbial fuel cells: metagenomics reveals functional genes and microbial mechanisms
  publication-title: Bioresour. Technol.
– volume: 24
  year: 2021
  ident: b0175
  article-title: Removal of organic pollutants by effluent recirculation constructed wetlands system treating landfill leachate
  publication-title: Environ. Technol. Innov.
– volume: 74
  start-page: 3583
  year: 1991
  end-page: 3597
  ident: b0130
  article-title: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition
  publication-title: J. Dairy Sci.
– volume: 354
  year: 2022
  ident: b0170
  article-title: Effects of functional-membrane covering technique on nitrogen succession during aerobic composting: metabolic pathways, functional enzymes, and functional genes
  publication-title: Bioresour. Technol.
– volume: 392
  year: 2020
  ident: b0180
  article-title: Woodchips as sustained-release carbon source to enhance the nitrogen transformation of low C/N wastewater in a baffle subsurface flow constructed wetland
  publication-title: Chem. Eng. J.
– volume: 363
  year: 2022
  ident: b0205
  article-title: Bioelectrochemical processes and cellulosic carbon source enhance the autotrophic and heterotrophic denitrification of low C/N ratio wastewater in tidal flow constructed wetland - microbial fuel cells
  publication-title: J. Clean. Prod.
– volume: 357
  year: 2022
  ident: b0225
  article-title: Effects of applying different carbon substrates on nutrient removal and greenhouse gas emissions by constructed wetlands treating carbon-depleted hydroponic wastewater
  publication-title: Bioresour. Technol.
– volume: 291
  year: 2021
  ident: b0055
  article-title: Efficient utilization of Iris pseudacorus biomass for nitrogen removal in constructed wetlands: combining alkali treatment
  publication-title: Environ. Pollut.
– volume: 364
  year: 2022
  ident: b0150
  article-title: A novel vertical dual-loop reactor for rapid start-up of simultaneous partial nitrification and anammox process in treating landfill leachate: performances and mechanisms
  publication-title: Bioresour. Technol.
– volume: 338
  year: 2023
  ident: b0155
  article-title: Effects of flow pattern, Leersia hexandra, and circuit mode on the Cr(VI) removal capacity, electricity generation performance, and microbial community of constructed wetland-microbial fuel cells
  publication-title: Fuel
– volume: 351
  year: 2022
  ident: b0190
  article-title: Nitrogen removal from low carbon/nitrogen polluted water is enhanced by a novel synthetic micro-ecosystem under aerobic conditions: novel insight into abundance of denitrification genes and community interactions
  publication-title: Bioresour. Technol.
– volume: 838
  year: 2022
  ident: b0020
  article-title: Efficacy of a large-scale integrated constructed wetland for pesticide removal in tail water from a sewage treatment plant
  publication-title: Sci. Total Environ.
– volume: 370
  year: 2022
  ident: b0105
  article-title: Enhancement of partial denitrification-anammox pathways in constructed wetlands by plant-based external carbon sources
  publication-title: J. Clean. Prod.
– volume: 23
  start-page: 8260
  year: 2016
  end-page: 8274
  ident: b0065
  article-title: Application of plant carbon source for denitrification by constructed wetland and bioreactor: review of recent development
  publication-title: Environ. Sci. Pollut. R.
– volume: 9
  year: 2021
  ident: b0030
  article-title: Isolation and characterization of cellulose nanomaterials from jute bast fibers
  publication-title: J. Environ. Chem. Eng.
– volume: 12
  start-page: 12
  year: 2019
  ident: b0185
  article-title: Overcoming biomass recalcitrance by synergistic pretreatment of mechanical activation and metal salt for enhancing enzymatic conversion of lignocellulose
  publication-title: Biotechnol. Biofuels
– volume: 709
  year: 2020
  ident: b0110
  article-title: Enhanced denitrification and power generation of municipal wastewater treatment plants (WWTPs) effluents with biomass in microbial fuel cell coupled with constructed wetland
  publication-title: Sci. Total Environ.
– volume: 305
  year: 2022
  ident: b0025
  article-title: Constructed wetland-microbial fuel cells enhanced with iron carbon fillers for ciprofloxacin wastewater treatment and power generation
  publication-title: Chemosphere
– volume: 44
  start-page: 2773
  year: 2010
  end-page: 2780
  ident: b0045
  article-title: Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: an efficient hybrid process
  publication-title: Water Res.
– volume: 53
  start-page: 1258
  year: 2019
  end-page: 1268
  ident: b0070
  article-title: Exploring utilization of recycled agricultural biomass in constructed wetlands: characterization of the driving force for high-rate nitrogen removal
  publication-title: Environ. Sci. Technol.
– volume: 231
  start-page: 1122
  year: 2017
  end-page: 1133
  ident: b0160
  article-title: Decomposition characteristics of three different kinds of aquatic macrophytes and their potential application as carbon resource in constructed wetland
  publication-title: Environ. Pollut.
– volume: 50
  year: 2022
  ident: b0085
  article-title: Purification effects of recycled aggregates from construction waste as constructed wetland filler
  publication-title: J. Water Process. Eng.
– volume: 332
  year: 2022
  ident: b0115
  article-title: Efficient nitrogen removal in microbial fuel cell - constructed wetland with corncobs addition for secondary effluent treatment
  publication-title: J. Clean. Prod.
– volume: 821
  year: 2022
  ident: b0135
  article-title: Simultaneously enhanced treatment efficiency of simulated hypersaline azo dye wastewater and membrane antifouling by a novel static magnetic field membrane bioreactor (SMFMBR)
  publication-title: Sci. Total Environ.
– volume: 302
  year: 2022
  ident: b0120
  article-title: Recycled utilization of ryegrass litter in constructed wetland coupled microbial fuel cell for carbon-limited wastewater treatment
  publication-title: Chemosphere
– volume: 308
  year: 2022
  ident: b0165
  article-title: The suitable biomass carbon source for improving nitrogen removal in surface flow constructed wetland system: fresh vs. withered
  publication-title: J. Environ. Manage.
– volume: 243
  year: 2020
  ident: b0080
  article-title: Carbon sources derived from maize cobs enhanced nitrogen removal in saline constructed wetland microcosms treating mariculture effluents under greenhouse condition
  publication-title: Chemosphere
– volume: 226
  year: 2022
  ident: b0145
  article-title: Element sulfur-based autotrophic denitrification constructed wetland as an efficient approach for nitrogen removal from low C/N wastewater
  publication-title: Water Res.
– volume: 363
  year: 2022
  ident: b0125
  article-title: Denitrification performance, bioelectricity generation and microbial response in microbial fuel cell-constructed wetland treating carbon constraint wastewater
  publication-title: Bioresour. Technol.
– volume: 411
  year: 2021
  ident: b0100
  article-title: Organic matter and nutrient removal in tidal flow-based microbial fuel cell constructed wetlands: media and flood-dry period ratio
  publication-title: Chem. Eng. J.
– volume: 777
  year: 2021
  ident: b0015
  article-title: Impacts of Ag and Ag2S nanoparticles on the nitrogen removal within vertical flow constructed wetlands treating secondary effluent
  publication-title: Sci. Total Environ.
– volume: 122
  start-page: 107
  year: 2018
  end-page: 111
  ident: b0195
  article-title: Tolerance and physiological responses of sweet flag (Acorus calamus L.) under nitrite stress during wastewater treatment
  publication-title: Ecol. Eng.
– volume: 459
  year: 2023
  ident: b0005
  article-title: Impact of biochar amendment on antibiotic removal and ARGs accumulation in constructed wetlands for low C/N wastewater treatment
  publication-title: Chem. Eng. J.
– volume: 262
  year: 2021
  ident: b0050
  article-title: Recycled utilization of Iris pseudacorus in constructed wetlands: litters self-consumption and nitrogen removal improvement
  publication-title: Chemosphere
– volume: 789
  year: 2021
  ident: b0220
  article-title: Enhanced nitrogen removal in an electrochemically coupled biochar-amended constructed wetland microcosms: the interactive effects of biochar and electrochemistry
  publication-title: Sci. Total Environ.
– volume: 351
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0215
  article-title: Stereoselective degradation pathway of amide chiral herbicides and its impacts on plant and bacterial communities in integrated vertical flow constructed wetlands
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.126997
– volume: 351
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0190
  article-title: Nitrogen removal from low carbon/nitrogen polluted water is enhanced by a novel synthetic micro-ecosystem under aerobic conditions: novel insight into abundance of denitrification genes and community interactions
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127013
– volume: 12
  start-page: 12
  issue: 1
  year: 2019
  ident: 10.1016/j.biortech.2023.129324_b0185
  article-title: Overcoming biomass recalcitrance by synergistic pretreatment of mechanical activation and metal salt for enhancing enzymatic conversion of lignocellulose
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-019-1354-6
– volume: 821
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0135
  article-title: Simultaneously enhanced treatment efficiency of simulated hypersaline azo dye wastewater and membrane antifouling by a novel static magnetic field membrane bioreactor (SMFMBR)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.153452
– volume: 351
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0060
  article-title: Treating the filtrate of mainstream anaerobic membrane bioreactor with the pilot-scale sludge-type one-stage partial nitritation/anammox process operated from 25 to 15 degrees C
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127062
– volume: 460
  year: 2023
  ident: 10.1016/j.biortech.2023.129324_b0075
  article-title: Influence of plants on anammox process in constructed Wetland: irrelevance, inhibition or enhancement
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141619
– volume: 24
  year: 2021
  ident: 10.1016/j.biortech.2023.129324_b0175
  article-title: Removal of organic pollutants by effluent recirculation constructed wetlands system treating landfill leachate
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2021.101843
– volume: 302
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0120
  article-title: Recycled utilization of ryegrass litter in constructed wetland coupled microbial fuel cell for carbon-limited wastewater treatment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.134882
– volume: 231
  start-page: 1122
  year: 2017
  ident: 10.1016/j.biortech.2023.129324_b0160
  article-title: Decomposition characteristics of three different kinds of aquatic macrophytes and their potential application as carbon resource in constructed wetland
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.07.049
– volume: 332
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0115
  article-title: Efficient nitrogen removal in microbial fuel cell - constructed wetland with corncobs addition for secondary effluent treatment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.130108
– volume: 709
  year: 2020
  ident: 10.1016/j.biortech.2023.129324_b0110
  article-title: Enhanced denitrification and power generation of municipal wastewater treatment plants (WWTPs) effluents with biomass in microbial fuel cell coupled with constructed wetland
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.136159
– volume: 233
  year: 2023
  ident: 10.1016/j.biortech.2023.129324_b0230
  article-title: Double-edged sword effects of dissimilatory nitrate reduction to ammonium (DNRA) bacteria on anammox bacteria performance in an MBR reactor
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.119754
– volume: 338
  year: 2023
  ident: 10.1016/j.biortech.2023.129324_b0155
  article-title: Effects of flow pattern, Leersia hexandra, and circuit mode on the Cr(VI) removal capacity, electricity generation performance, and microbial community of constructed wetland-microbial fuel cells
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.127326
– volume: 74
  start-page: 3583
  issue: 10
  year: 1991
  ident: 10.1016/j.biortech.2023.129324_b0130
  article-title: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(91)78551-2
– volume: 226
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0145
  article-title: Element sulfur-based autotrophic denitrification constructed wetland as an efficient approach for nitrogen removal from low C/N wastewater
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.119258
– volume: 789
  year: 2021
  ident: 10.1016/j.biortech.2023.129324_b0220
  article-title: Enhanced nitrogen removal in an electrochemically coupled biochar-amended constructed wetland microcosms: the interactive effects of biochar and electrochemistry
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147761
– volume: 296
  year: 2020
  ident: 10.1016/j.biortech.2023.129324_b0040
  article-title: Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122350
– volume: 122
  start-page: 107
  year: 2018
  ident: 10.1016/j.biortech.2023.129324_b0195
  article-title: Tolerance and physiological responses of sweet flag (Acorus calamus L.) under nitrite stress during wastewater treatment
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2018.07.032
– volume: 392
  year: 2020
  ident: 10.1016/j.biortech.2023.129324_b0180
  article-title: Woodchips as sustained-release carbon source to enhance the nitrogen transformation of low C/N wastewater in a baffle subsurface flow constructed wetland
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124840
– volume: 291
  year: 2021
  ident: 10.1016/j.biortech.2023.129324_b0055
  article-title: Efficient utilization of Iris pseudacorus biomass for nitrogen removal in constructed wetlands: combining alkali treatment
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.118170
– volume: 363
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0125
  article-title: Denitrification performance, bioelectricity generation and microbial response in microbial fuel cell-constructed wetland treating carbon constraint wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127902
– volume: 352
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0140
  article-title: Intensifying anoxic ammonium removal by manganese ores and granular active carbon fillings in constructed wetland-microbial fuel cells: metagenomics reveals functional genes and microbial mechanisms
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127114
– volume: 459
  year: 2023
  ident: 10.1016/j.biortech.2023.129324_b0005
  article-title: Impact of biochar amendment on antibiotic removal and ARGs accumulation in constructed wetlands for low C/N wastewater treatment
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141541
– volume: 53
  start-page: 1258
  issue: 3
  year: 2019
  ident: 10.1016/j.biortech.2023.129324_b0070
  article-title: Exploring utilization of recycled agricultural biomass in constructed wetlands: characterization of the driving force for high-rate nitrogen removal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b04871
– volume: 348
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0200
  article-title: Novel intertidal wetland sediment-inoculated moving bed biofilm reactor treating high-salinity wastewater: metagenomic sequencing revealing key functional microorganisms
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.126817
– volume: 165
  year: 2019
  ident: 10.1016/j.biortech.2023.129324_b0090
  article-title: Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.114988
– volume: 308
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0165
  article-title: The suitable biomass carbon source for improving nitrogen removal in surface flow constructed wetland system: fresh vs. withered
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2022.114624
– volume: 370
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0105
  article-title: Enhancement of partial denitrification-anammox pathways in constructed wetlands by plant-based external carbon sources
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.133581
– volume: 243
  year: 2020
  ident: 10.1016/j.biortech.2023.129324_b0080
  article-title: Carbon sources derived from maize cobs enhanced nitrogen removal in saline constructed wetland microcosms treating mariculture effluents under greenhouse condition
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125342
– volume: 357
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0225
  article-title: Effects of applying different carbon substrates on nutrient removal and greenhouse gas emissions by constructed wetlands treating carbon-depleted hydroponic wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127312
– volume: 253
  year: 2020
  ident: 10.1016/j.biortech.2023.129324_b0095
  article-title: Evaluation of solid waste stratified mixtures as constructed wetland fillers under different operation modes
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.119986
– volume: 9
  issue: 6
  year: 2021
  ident: 10.1016/j.biortech.2023.129324_b0030
  article-title: Isolation and characterization of cellulose nanomaterials from jute bast fibers
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106447
– volume: 44
  start-page: 2773
  issue: 9
  year: 2010
  ident: 10.1016/j.biortech.2023.129324_b0045
  article-title: Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: an efficient hybrid process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.02.015
– volume: 838
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0020
  article-title: Efficacy of a large-scale integrated constructed wetland for pesticide removal in tail water from a sewage treatment plant
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.156568
– volume: 112
  start-page: 499
  year: 2018
  ident: 10.1016/j.biortech.2023.129324_b0035
  article-title: Alfa fibers as viable sustainable source for cellulose nanocrystals extraction: application for improving the tensile properties of biopolymer nanocomposite films
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2017.12.049
– volume: 305
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0025
  article-title: Constructed wetland-microbial fuel cells enhanced with iron carbon fillers for ciprofloxacin wastewater treatment and power generation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.135377
– volume: 23
  start-page: 8260
  issue: 9
  year: 2016
  ident: 10.1016/j.biortech.2023.129324_b0065
  article-title: Application of plant carbon source for denitrification by constructed wetland and bioreactor: review of recent development
  publication-title: Environ. Sci. Pollut. R.
  doi: 10.1007/s11356-016-6324-y
– volume: 354
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0170
  article-title: Effects of functional-membrane covering technique on nitrogen succession during aerobic composting: metabolic pathways, functional enzymes, and functional genes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127205
– volume: 364
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0150
  article-title: A novel vertical dual-loop reactor for rapid start-up of simultaneous partial nitrification and anammox process in treating landfill leachate: performances and mechanisms
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127947
– volume: 363
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0205
  article-title: Bioelectrochemical processes and cellulosic carbon source enhance the autotrophic and heterotrophic denitrification of low C/N ratio wastewater in tidal flow constructed wetland - microbial fuel cells
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.132368
– volume: 91
  start-page: 310
  year: 2016
  ident: 10.1016/j.biortech.2023.129324_b0210
  article-title: Enhanced nitrate removal in self-supplying carbon source constructed wetlands treating secondary effluent: the roles of plants and plant fermentation broth
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2016.02.039
– volume: 50
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0085
  article-title: Purification effects of recycled aggregates from construction waste as constructed wetland filler
  publication-title: J. Water Process. Eng.
  doi: 10.1016/j.jwpe.2022.103335
– volume: 442
  year: 2022
  ident: 10.1016/j.biortech.2023.129324_b0010
  article-title: Electrochemically active microorganisms sense charge transfer resistance for regulating biofilm electroactivity, spatio-temporal distribution, and catabolic pathway
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136248
– volume: 777
  year: 2021
  ident: 10.1016/j.biortech.2023.129324_b0015
  article-title: Impacts of Ag and Ag2S nanoparticles on the nitrogen removal within vertical flow constructed wetlands treating secondary effluent
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145171
– volume: 262
  year: 2021
  ident: 10.1016/j.biortech.2023.129324_b0050
  article-title: Recycled utilization of Iris pseudacorus in constructed wetlands: litters self-consumption and nitrogen removal improvement
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127863
– volume: 411
  year: 2021
  ident: 10.1016/j.biortech.2023.129324_b0100
  article-title: Organic matter and nutrient removal in tidal flow-based microbial fuel cell constructed wetlands: media and flood-dry period ratio
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128507
SSID ssj0003172
ssib000366023
ssib006546541
ssib006546542
ssib029851487
ssib006546540
Score 2.4993107
Snippet [Display omitted] •Acorus calamus was successfully recycled in MFC-CW as carbon source.•Efficient nitrogen removal and energy recovery were attained with...
Acorus calamus was recycled as an additional carbon source in microbial fuel cell-constructed wetlands (MFC-CWs), for efficient nitrogen removal of low carbon...
SourceID proquest
pubmed
crossref
nii
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129324
SubjectTerms Acorus
Acorus calamus
anaerobic ammonium oxidation
anodes
benzene
Bioelectric Energy Sources
Bioelectrochemical assisted constructed wetland
biomass
Carbon
cathodes
chemical oxygen demand
Co-occurrence network
Denitrification
energy recovery
fuels
Low carbon wastewater
Nitrogen
Plant biomass
power generation
total nitrogen
wastewater
Wetlands
Title Acorus calamus recycled as an additional carbon source in a microbial fuel cell-constructed wetland for enhanced nitrogen removal
URI https://dx.doi.org/10.1016/j.biortech.2023.129324
https://cir.nii.ac.jp/crid/1871991018155560960
https://www.ncbi.nlm.nih.gov/pubmed/37315619
https://www.proquest.com/docview/2826216346
https://www.proquest.com/docview/2887630024
Volume 384
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VcgAOCAqUBVoZiWt2SWynyXG1olpA9AKVerNsx4FUu0m1H0JcKvWf8yYfpRxKD1x2teux15s3mXnjjMdE7xBVSV0WaRRbXrrxwMLFykced1fIpE294v3OX07S-an6dKbPdmg27IXhtMre9nc2vbXW_TeT_mpOLqpq8pXJd6aZD7R-j-2wUkes5ePLP2ke8I_tkwQIRyx9Y5fw-dhVnNHaPpRI5JhdX6Juc1D36qq6nYa27uj4CT3ueaSYdlN9Sjuh3qNH0--rvpZG2KMHs-EwN7TcqDv4jK6miDm3awF87BLvuAK_MEoh7FrYWnCOUbdECImVa2rRLfGLCm1iWbW1m9BYbgMkwmIR-aYvRIsxfoYNZ0sKsGER6h9thoGA4Vg10FX81LKBcj-n0-MP32bzqD-LIfIqTzdR6cscngyQhziUko_r8OCC3oMeJnkBEua8LEEmpc28zDKVF-CiaZZmSpd5KOQL2q2bOrwk4VQaVKG8TKRD9Kqdtu89xrWJw9jWj0gPABjfFyrn8zIWZshIOzcDcIaBMx1wI5pc97voSnXc2SMf8DV_KZ2BP7mz7wEUAhPk1xhhJ4g2Fz_TGhwSyjait4OqGGDNYNg6NNu1QZCbJqDBKv2XDFcKZAI1ov1Oz67_kzySCLrj_NV_zP41PeRPXbLcG9qFioQDsKuNO2xvn0O6P_34eX7yG-SqIxk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7aFwQFBeCxSMxDVdEtshOa5WVFva7oVW6s1yHAdS7SbVPlT1yD_nmzxW5VB64JJI8SNOvsnMN854TPQZXpXURR4HoeWpGwcsslC5wOHr8om0sVO83vlsFk8v1PdLfblDk34tDIdVdrq_1emNtu6ujLq3Obouy9EPJt-JZj7Q2D3o4V3OTqUHtDs-PpnOtgoZJrL5mYD6ATe4s1D46jArOai1-S8RyUO2fpG6z0Y9qsryfibaWKSjZ_S0o5Ji3I72Oe34ap-ejH8uu3Qafp_2Jv1-bii5k3rwBf0ew-3crAQgsguc8RJu0Usu7ErYSnCYUTtLiBrLrK5EO8svSpSJRdmkb0JhsfGo4efzwNVdLlr0cePXHDApQIiFr341QQYCumNZQ1xxq0UN-X5JF0ffzifToNuOIXAqjddB4YoUxgyo-9AXknfscKCDzoEhRmkOHpY5WYBPSps4mSQqzUFH4yROlC5Sn8tXNKjqyr8hkanYq1w5GckMDqzOtP3i0K-NMvRt3ZB0D4BxXa5y3jJjbvqgtCvTA2cYONMCN6TRtt11m63jwRZpj6_5S-4MTMqDbQ8gEBggH0N4nuDanP9Ma9BICNuQPvWiYoA1g2ErX29WBn5uHIEJq_hfdThZIHOoIb1u5Wz7TPKrhN8dpm__Y_QfaW96fnZqTo9nJ-_oMZe0sXPvaQBx8QcgW-vsQ_cx_QHKayXK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acorus+calamus+recycled+as+an+additional+carbon+source+in+a+microbial+fuel+cell-constructed+wetland+for+enhanced+nitrogen+removal&rft.jtitle=Bioresource+technology&rft.au=Tao%2C+Mengni&rft.au=Kong%2C+Yu&rft.au=Jing%2C+Zhaoqian&rft.au=Guan%2C+Lin&rft.date=2023-09-01&rft.issn=0960-8524&rft.volume=384+p.129324-&rft_id=info:doi/10.1016%2Fj.biortech.2023.129324&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon