Ubiquitin-specific peptidase 8 regulates the trafficking and stability of the human organic anion transporter 1

Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degrada...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1864; no. 12; p. 129701
Main Authors Zhang, Jinghui, Liu, Chenchang, You, Guofeng
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degradation. Ubiquitination is a dynamic process, where deubiquitination is catalyzed by a class of ubiquitin-specific peptidases. Methods The role of ubiquitin-specific peptidase 8 (USP8) in hOAT1 function, expression and ubiquitination was assessed by conducting transporter uptake assay, biotinylation assay and ubiquitination assay. Results We demonstrated that USP8 overexpression in hOAT1-expressing cells led to an increased hOAT1 transporter activity and expression, which correlated well with a reduced hOAT1 ubiquitination. Such phenomenon was not observed in inactive USP8 mutant-transfected cells. In addition, the knockdown of endogenous USP8 by USP8-specific siRNA resulted in an increased hOAT1 ubiquitination, which correlated well with a decrease in hOAT1 expression and transport activity. Biotinylation experiments demonstrated that USP8-induced increase in hOAT1 expression and transport activity occurred through a deceleration of the rates of hOAT1 internalization and degradation. Conclusions These results indicated the regulatory role of USP8 in OAT1 function, expression, trafficking, and stability. General significance USP8 could be a new target for modulating OAT1-mediated drug transport. [Display omitted] •USP8 overexpression increased OAT1 function while reduced OAT1 ubiquitination.•USP8 knockdown decreased OAT1 function while enhanced OAT1 ubiquitination.•USP8 overexpression decelerated the rates of OAT1 internalization and degradation.
AbstractList BackgroundOrganic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degradation. Ubiquitination is a dynamic process, where deubiquitination is catalyzed by a class of ubiquitin-specific peptidases.MethodsThe role of ubiquitin-specific peptidase 8 (USP8) in hOAT1 function, expression and ubiquitination was assessed by conducting transporter uptake assay, biotinylation assay and ubiquitination assay.ResultsWe demonstrated that USP8 overexpression in hOAT1-expressing cells led to an increased hOAT1 transporter activity and expression, which correlated well with a reduced hOAT1 ubiquitination. Such phenomenon was not observed in inactive USP8 mutant-transfected cells. In addition, the knockdown of endogenous USP8 by USP8-specific siRNA resulted in an increased hOAT1 ubiquitination, which correlated well with a decrease in hOAT1 expression and transport activity. Biotinylation experiments demonstrated that USP8-induced increase in hOAT1 expression and transport activity occurred through a deceleration of the rates of hOAT1 internalization and degradation.ConclusionsThese results indicated the regulatory role of USP8 in OAT1 function, expression, trafficking, and stability.General significanceUSP8 could be a new target for modulating OAT1-mediated drug transport.
Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degradation. Ubiquitination is a dynamic process, where deubiquitination is catalyzed by a class of ubiquitin-specific peptidases. Methods The role of ubiquitin-specific peptidase 8 (USP8) in hOAT1 function, expression and ubiquitination was assessed by conducting transporter uptake assay, biotinylation assay and ubiquitination assay. Results We demonstrated that USP8 overexpression in hOAT1-expressing cells led to an increased hOAT1 transporter activity and expression, which correlated well with a reduced hOAT1 ubiquitination. Such phenomenon was not observed in inactive USP8 mutant-transfected cells. In addition, the knockdown of endogenous USP8 by USP8-specific siRNA resulted in an increased hOAT1 ubiquitination, which correlated well with a decrease in hOAT1 expression and transport activity. Biotinylation experiments demonstrated that USP8-induced increase in hOAT1 expression and transport activity occurred through a deceleration of the rates of hOAT1 internalization and degradation. Conclusions These results indicated the regulatory role of USP8 in OAT1 function, expression, trafficking, and stability. General significance USP8 could be a new target for modulating OAT1-mediated drug transport.Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degradation. Ubiquitination is a dynamic process, where deubiquitination is catalyzed by a class of ubiquitin-specific peptidases. Methods The role of ubiquitin-specific peptidase 8 (USP8) in hOAT1 function, expression and ubiquitination was assessed by conducting transporter uptake assay, biotinylation assay and ubiquitination assay. Results We demonstrated that USP8 overexpression in hOAT1-expressing cells led to an increased hOAT1 transporter activity and expression, which correlated well with a reduced hOAT1 ubiquitination. Such phenomenon was not observed in inactive USP8 mutant-transfected cells. In addition, the knockdown of endogenous USP8 by USP8-specific siRNA resulted in an increased hOAT1 ubiquitination, which correlated well with a decrease in hOAT1 expression and transport activity. Biotinylation experiments demonstrated that USP8-induced increase in hOAT1 expression and transport activity occurred through a deceleration of the rates of hOAT1 internalization and degradation. Conclusions These results indicated the regulatory role of USP8 in OAT1 function, expression, trafficking, and stability. General significance USP8 could be a new target for modulating OAT1-mediated drug transport.
Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degradation. Ubiquitination is a dynamic process, where deubiquitination is catalyzed by a class of ubiquitin-specific peptidases. Methods The role of ubiquitin-specific peptidase 8 (USP8) in hOAT1 function, expression and ubiquitination was assessed by conducting transporter uptake assay, biotinylation assay and ubiquitination assay. Results We demonstrated that USP8 overexpression in hOAT1-expressing cells led to an increased hOAT1 transporter activity and expression, which correlated well with a reduced hOAT1 ubiquitination. Such phenomenon was not observed in inactive USP8 mutant-transfected cells. In addition, the knockdown of endogenous USP8 by USP8-specific siRNA resulted in an increased hOAT1 ubiquitination, which correlated well with a decrease in hOAT1 expression and transport activity. Biotinylation experiments demonstrated that USP8-induced increase in hOAT1 expression and transport activity occurred through a deceleration of the rates of hOAT1 internalization and degradation. Conclusions These results indicated the regulatory role of USP8 in OAT1 function, expression, trafficking, and stability. General significance USP8 could be a new target for modulating OAT1-mediated drug transport.
Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degradation. Ubiquitination is a dynamic process, where deubiquitination is catalyzed by a class of ubiquitin-specific peptidases. Methods The role of ubiquitin-specific peptidase 8 (USP8) in hOAT1 function, expression and ubiquitination was assessed by conducting transporter uptake assay, biotinylation assay and ubiquitination assay. Results We demonstrated that USP8 overexpression in hOAT1-expressing cells led to an increased hOAT1 transporter activity and expression, which correlated well with a reduced hOAT1 ubiquitination. Such phenomenon was not observed in inactive USP8 mutant-transfected cells. In addition, the knockdown of endogenous USP8 by USP8-specific siRNA resulted in an increased hOAT1 ubiquitination, which correlated well with a decrease in hOAT1 expression and transport activity. Biotinylation experiments demonstrated that USP8-induced increase in hOAT1 expression and transport activity occurred through a deceleration of the rates of hOAT1 internalization and degradation. Conclusions These results indicated the regulatory role of USP8 in OAT1 function, expression, trafficking, and stability. General significance USP8 could be a new target for modulating OAT1-mediated drug transport. [Display omitted] •USP8 overexpression increased OAT1 function while reduced OAT1 ubiquitination.•USP8 knockdown decreased OAT1 function while enhanced OAT1 ubiquitination.•USP8 overexpression decelerated the rates of OAT1 internalization and degradation.
ArticleNumber 129701
Author You, Guofeng
Zhang, Jinghui
Liu, Chenchang
Author_xml – sequence: 1
  givenname: Jinghui
  surname: Zhang
  fullname: Zhang, Jinghui
– sequence: 2
  givenname: Chenchang
  surname: Liu
  fullname: Liu, Chenchang
– sequence: 3
  givenname: Guofeng
  surname: You
  fullname: You, Guofeng
  email: gyou@pharmacy.rutgers.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32818533$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URKeFf4BQlmwy-BEnDgskVPGSKrGha-vGuZ7xkLFT26nUf18PM0XAgnphS9fnfDq654Kc-eCRkNeMrhll7bvdehhgg37NKS8j3neUPSMrpjpeK0rbM7KigjZ1w1p5Ti5S2tFyZC9fkHPBFVNSiBUJN4O7XVx2vk4zGmedqWacsxshYaWqiJtlgoypyluscgRbFD-d31TgxyplGNzk8n0V7C_BdtmDr0LcgC-gcgV_MPk0h5gxVuwleW5hSvjq9F6Sm8-fflx9ra-_f_l29fG6Nk3f5tpCg8hBUgtoRMuFbalEULQ3ivfWguoEHflAjRRKCNtLZi3rh5EqGMF04pJ8OHLnZdjjaNCXGJOeo9tDvNcBnP77x7ut3oQ73alWyJ4WwNsTIIbbBVPWe5cMThN4DEvSXErWKyV587S0EW1DOaeySN_8Get3nsdCiuD9UWBiSCmi1cZlyGWPJaWbNKP60L7e6WP7-tC-PrZfzM0_5kf-E7bTrrAUcucw6mQceoOji2iyHoP7P-ABIJTNOQ
CitedBy_id crossref_primary_10_1186_s12882_025_03974_y
crossref_primary_10_1002_cpt_2605
crossref_primary_10_1016_j_pharmthera_2024_108723
crossref_primary_10_3390_pharmaceutics16111355
Cites_doi 10.1016/j.bbamcr.2004.10.003
10.1074/jbc.M112.425272
10.1074/jbc.M116.718023
10.1146/annurev-biochem-060815-014922
10.1208/s12248-019-0303-4
10.1002/cmdc.200900409
10.12688/f1000research.7220.1
10.1210/jc.2015-1453
10.1038/nrm2731
10.1074/jbc.M800298200
10.1158/1078-0432.CCR-12-3696
10.1124/mol.109.056564
10.1073/pnas.1418335112
10.1038/ng.3166
10.1074/jbc.M110.129411
10.1016/j.bbamem.2003.08.015
10.1124/mol.112.082065
10.1111/tra.12341
10.4103/0366-6999.189047
10.1016/j.ejphar.2009.10.048
10.1080/00498250801927435
10.1074/jbc.M808078200
10.1002/embr.201337688
10.1007/s12013-011-9181-9
10.1507/endocrj.EJ19-0239
10.1146/annurev-biochem-061516-044916
10.1016/j.ejps.2005.09.014
10.1152/ajprenal.00272.2005
10.1208/s12248-012-9413-y
10.1074/jbc.M200943200
10.1097/MAJ.0b013e3182831740
10.15430/JCP.2015.20.1.57
10.1016/j.bcp.2006.10.010
10.1002/med.10019
10.1074/jbc.M109.016287
10.1152/ajprenal.00352.2002
10.1124/dmd.117.075861
10.1096/fj.11-187005
10.1038/ni.3230
10.1152/ajprenal.00153.2016
10.1016/j.bcp.2015.11.024
10.1152/physrev.00002.2013
10.1152/ajprenal.00522.2015
10.1016/j.molcel.2016.05.009
10.1097/MED.0000000000000344
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.bbagen.2020.129701
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 129701
ExternalDocumentID PMC7863590
32818533
10_1016_j_bbagen_2020_129701
S0304416520302130
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM079123
– fundername: NIGMS NIH HHS
  grantid: R01 GM127788
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c496t-fa4ee2a50faec3623f605ea809c829ffa8730d2b0c53833f951ff19bd08adac73
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Thu Aug 21 18:18:10 EDT 2025
Thu Jul 10 22:52:35 EDT 2025
Sun Aug 24 03:50:52 EDT 2025
Thu Apr 03 07:04:37 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Tue Jul 01 00:22:14 EDT 2025
Fri Feb 23 02:47:57 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Drug transport
Regulation
Ubiquitin-specific peptidase
Deubiquitination
Organic anion transporter
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-fa4ee2a50faec3623f605ea809c829ffa8730d2b0c53833f951ff19bd08adac73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7863590
PMID 32818533
PQID 2436402205
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7863590
proquest_miscellaneous_2551988524
proquest_miscellaneous_2436402205
pubmed_primary_32818533
crossref_citationtrail_10_1016_j_bbagen_2020_129701
crossref_primary_10_1016_j_bbagen_2020_129701
elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129701
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Smith, Fearnley, Abdul-Zani, Wheatcroft, Tomlinson, Harrison, Ponnambalam (bb0100) 2016; 17
Hunter, Sun (bb0235) 2008
Jeong (bb0225) 2015; 20
Ahn, Nigam (bb0005) 2009; 76
Barros, Srimaroeng, Perry, Walden, Dembla-Rajpal, Sweet, Pritchard (bb0195) 2009; 284
Coyne, Wing (bb0085) 2016; 5
Zhang, Li, Patterson, You (bb0040) 2013; 83
Wang, Zhang, You (bb0205) 2019; 21
Zheng, Shabek (bb0120) 2017; 86
Byun, Lee, Lee, Jeong, Farrand, Lim, Reddy, Kim, Lee, Lee, Bode, Won Lee, Dong (bb0160) 2013; 19
Jian, Li, Chen, Jiang, Chen, Zheng, Zhao, Wang, Ning, Bian, Sun (bb0220) 2016; 129
Wang, Sweet (bb0030) 2013; 15
Komander, Clague, Urbe (bb0065) 2009; 10
Balut, Loch, Devor (bb0090) 2011; 25
Kageyama, Asari, Sugimoto, Niioka, Daimon (bb0210) 2020; 67
Dantzler, Wright (bb0010) 2003; 1618
Xu, Zhang, Zhang, Fan, Liu, You (bb0050) 2017; 45
Bhardwaj, Herrera-Ruiz, Eltoukhy, Saad, Knipp (bb0185) 2006; 27
Phatchawan, Chutima, Varanuj, Anusorn (bb0200) 2014; 347
Mevissen, Komander (bb0125) 2017; 86
Duan, Li, You (bb0175) 2010; 627
Zhang, Hong, Duan, Pan, Ma, You (bb0055) 2008; 283
Reincke, Sbiera, Hayakawa, Theodoropoulou, Osswald, Beuschlein, Meitinger, Mizuno-Yamasaki, Kawaguchi, Saeki, Tanaka, Wieland, Graf, Saeger, Ronchi, Allolio, Buchfelder, Strom, Fassnacht, Komada (bb0150) 2015; 47
Troilo, Alexander, Muehl, Jaramillo, Knobeloch, Krek (bb0170) 2014; 15
Berlin, Higginbotham, Dise, Sierra, Nash (bb0165) 2010; 285
Zhang, Suh, Pan, You (bb0045) 2012; 3
Wang, Xu, Toh, Pao, You (bb0130) 2016; 102
Clague, Barsukov, Coulson, Liu, Rigden, Urbe (bb0080) 2013; 93
Ge, Che, Ren, Pandita, Lu, Li, Pandita, Du (bb0115) 2015; 112
Berlin, Schwartz, Nash (bb0095) 2010; 285
Xu, Wang, Zhang, You (bb0140) 2016; 310
Perez-Rivas, Theodoropoulou, Ferrau, Nusser, Kawaguchi, Stratakis, Faucz, Wildemberg, Assie, Beschorner, Dimopoulou, Buchfelder, Popovic, Berr, Toth, Ardisasmita, Honegger, Bertherat, Gadelha, Beuschlein, Stalla, Komada, Korbonits, Reincke (bb0155) 2015; 100
Segawa, Kaneko, Takahashi, Kuwahata, Ito, Ohkido, Tatsumi, Miyamoto (bb0180) 2002; 277
Dufner, Kisser, Niendorf, Basters, Reissig, Schonle, Aichem, Kurz, Schlosser, Yablonski, Groettrup, Buch, Waisman, Schamel, Prinz, Knobeloch (bb0145) 2015; 16
Wright, Berlin, Nash (bb0070) 2011; 60
Abdul Rehman, Kristariyanto, Choi, Nkosi, Weidlich, Labib, Hofmann, Kulathu (bb0075) 2016; 63
Srimaroeng, Perry, Pritchard (bb0020) 2008; 38
Zhou, Tomkovicz, Butler, Ochoa, Peterson, Snyder (bb0110) 2013; 288
Goyal, Vanden Heuvel, Aronson (bb0190) 2003; 284
You (bb0035) 2002; 22
Erdman, Mangravite, Urban, Lagpacan, Castro, de la Cruz, Chan, Huang, Johns, Kawamoto, Stryke, Taylor, Carlson, Ferrin, Brett, Burchard, Giacomini (bb0015) 2006; 290
Ben-Shlomo, Cooper (bb0215) 2017; 24
Terada, Inui (bb0025) 2007; 73
Amerik, Hochstrasser (bb0060) 2004; 1695
Xu, Wang, Gardner, Pan, Zhang, Zhang, You (bb0135) 2016; 311
Yeates, Tesco (bb0105) 2016; 291
Colombo, Vallese, Peretto, Jacq, Rain, Colland, Guedat (bb0230) 2010; 5
Zhang (10.1016/j.bbagen.2020.129701_bb0045) 2012; 3
Amerik (10.1016/j.bbagen.2020.129701_bb0060) 2004; 1695
Ben-Shlomo (10.1016/j.bbagen.2020.129701_bb0215) 2017; 24
Komander (10.1016/j.bbagen.2020.129701_bb0065) 2009; 10
Abdul Rehman (10.1016/j.bbagen.2020.129701_bb0075) 2016; 63
Zhou (10.1016/j.bbagen.2020.129701_bb0110) 2013; 288
Wang (10.1016/j.bbagen.2020.129701_bb0030) 2013; 15
Byun (10.1016/j.bbagen.2020.129701_bb0160) 2013; 19
Kageyama (10.1016/j.bbagen.2020.129701_bb0210) 2020; 67
Hunter (10.1016/j.bbagen.2020.129701_bb0235) 2008
Xu (10.1016/j.bbagen.2020.129701_bb0135) 2016; 311
Phatchawan (10.1016/j.bbagen.2020.129701_bb0200) 2014; 347
You (10.1016/j.bbagen.2020.129701_bb0035) 2002; 22
Wright (10.1016/j.bbagen.2020.129701_bb0070) 2011; 60
Erdman (10.1016/j.bbagen.2020.129701_bb0015) 2006; 290
Berlin (10.1016/j.bbagen.2020.129701_bb0095) 2010; 285
Barros (10.1016/j.bbagen.2020.129701_bb0195) 2009; 284
Duan (10.1016/j.bbagen.2020.129701_bb0175) 2010; 627
Reincke (10.1016/j.bbagen.2020.129701_bb0150) 2015; 47
Goyal (10.1016/j.bbagen.2020.129701_bb0190) 2003; 284
Dantzler (10.1016/j.bbagen.2020.129701_bb0010) 2003; 1618
Xu (10.1016/j.bbagen.2020.129701_bb0050) 2017; 45
Xu (10.1016/j.bbagen.2020.129701_bb0140) 2016; 310
Zhang (10.1016/j.bbagen.2020.129701_bb0040) 2013; 83
Berlin (10.1016/j.bbagen.2020.129701_bb0165) 2010; 285
Colombo (10.1016/j.bbagen.2020.129701_bb0230) 2010; 5
Ge (10.1016/j.bbagen.2020.129701_bb0115) 2015; 112
Jeong (10.1016/j.bbagen.2020.129701_bb0225) 2015; 20
Terada (10.1016/j.bbagen.2020.129701_bb0025) 2007; 73
Zhang (10.1016/j.bbagen.2020.129701_bb0055) 2008; 283
Jian (10.1016/j.bbagen.2020.129701_bb0220) 2016; 129
Ahn (10.1016/j.bbagen.2020.129701_bb0005) 2009; 76
Smith (10.1016/j.bbagen.2020.129701_bb0100) 2016; 17
Balut (10.1016/j.bbagen.2020.129701_bb0090) 2011; 25
Srimaroeng (10.1016/j.bbagen.2020.129701_bb0020) 2008; 38
Clague (10.1016/j.bbagen.2020.129701_bb0080) 2013; 93
Coyne (10.1016/j.bbagen.2020.129701_bb0085) 2016; 5
Perez-Rivas (10.1016/j.bbagen.2020.129701_bb0155) 2015; 100
Segawa (10.1016/j.bbagen.2020.129701_bb0180) 2002; 277
Bhardwaj (10.1016/j.bbagen.2020.129701_bb0185) 2006; 27
Yeates (10.1016/j.bbagen.2020.129701_bb0105) 2016; 291
Dufner (10.1016/j.bbagen.2020.129701_bb0145) 2015; 16
Zheng (10.1016/j.bbagen.2020.129701_bb0120) 2017; 86
Mevissen (10.1016/j.bbagen.2020.129701_bb0125) 2017; 86
Wang (10.1016/j.bbagen.2020.129701_bb0130) 2016; 102
Troilo (10.1016/j.bbagen.2020.129701_bb0170) 2014; 15
Wang (10.1016/j.bbagen.2020.129701_bb0205) 2019; 21
References_xml – volume: 73
  start-page: 440
  year: 2007
  end-page: 449
  ident: bb0025
  article-title: Gene expression and regulation of drug transporters in the intestine and kidney
  publication-title: Biochem. Pharmacol.
– volume: 45
  start-page: 887
  year: 2017
  end-page: 895
  ident: bb0050
  article-title: PKC/Nedd4–2 signaling pathway regulates the cell surface expression of drug transporter hOAT1
  publication-title: Drug Metab Dispos
– volume: 5
  start-page: 552
  year: 2010
  end-page: 558
  ident: bb0230
  article-title: Synthesis and biological evaluation of 9-oxo-9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile analogues as potential inhibitors of deubiquitinating enzymes
  publication-title: ChemMedChem
– volume: 102
  start-page: 120
  year: 2016
  end-page: 129
  ident: bb0130
  article-title: Serum- and glucocorticoid-inducible kinase SGK2 regulates human organic anion transporters 4 via ubiquitin ligase Nedd4-2
  publication-title: Biochem. Pharmacol.
– volume: 60
  start-page: 39
  year: 2011
  end-page: 46
  ident: bb0070
  article-title: Regulation of endocytic sorting by ESCRT-DUB-mediated deubiquitination
  publication-title: Cell Biochem. Biophys.
– volume: 347
  start-page: 221
  year: 2014
  end-page: 227
  ident: bb0200
  article-title: Decreased renal organic anion transporter 3 expression in type 1 diabetic rats
  publication-title: Am J Med Sci
– volume: 311
  start-page: F320
  year: 2016
  end-page: F329
  ident: bb0135
  article-title: The role of Nedd4–1 WW domains in binding and regulating human organic anion transporter 1
  publication-title: Am J Physiol Renal Physiol
– volume: 627
  start-page: 49
  year: 2010
  end-page: 55
  ident: bb0175
  article-title: Angiotensin II inhibits activity of human organic anion transporter 3 through activation of protein kinase Calpha: accelerating endocytosis of the transporter
  publication-title: Eur. J. Pharmacol.
– volume: 19
  start-page: 3894
  year: 2013
  end-page: 3904
  ident: bb0160
  article-title: USP8 is a novel target for overcoming gefitinib resistance in lung cancer
  publication-title: Clin. Cancer Res.
– volume: 15
  start-page: 53
  year: 2013
  end-page: 69
  ident: bb0030
  article-title: Renal organic anion transporters (SLC22 family): expression, regulation, roles in toxicity, and impact on injury and disease
  publication-title: AAPS J.
– volume: 10
  start-page: 550
  year: 2009
  end-page: 563
  ident: bb0065
  article-title: Breaking the chains: structure and function of the deubiquitinases
  publication-title: Nat Rev Mol Cell Biol
– volume: 285
  start-page: 34909
  year: 2010
  end-page: 34921
  ident: bb0095
  article-title: Regulation of epidermal growth factor receptor ubiquitination and trafficking by the USP8.STAM complex
  publication-title: J. Biol. Chem.
– volume: 67
  start-page: 177
  year: 2020
  end-page: 184
  ident: bb0210
  article-title: Ubiquitin-specific protease 8 inhibitor suppresses adrenocorticotropic hormone production and corticotroph tumor cell proliferation
  publication-title: Endocr. J.
– volume: 83
  start-page: 217
  year: 2013
  end-page: 224
  ident: bb0040
  article-title: Lysine 48-linked polyubiquitination of organic anion transporter-1 is essential for its protein kinase C-regulated endocytosis
  publication-title: Mol. Pharmacol.
– volume: 16
  start-page: 950
  year: 2015
  end-page: 960
  ident: bb0145
  article-title: The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells
  publication-title: Nat. Immunol.
– volume: 5
  year: 2016
  ident: bb0085
  article-title: The business of deubiquitination - location, location, location
  publication-title: F1000Res
– volume: 291
  start-page: 15753
  year: 2016
  end-page: 15766
  ident: bb0105
  article-title: The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation
  publication-title: J. Biol. Chem.
– start-page: 1
  year: 2008
  end-page: 16
  ident: bb0235
  article-title: Crosstalk between the SUMO and ubiquitin pathways
  publication-title: Ernst Schering Found Symp Proc
– volume: 86
  start-page: 129
  year: 2017
  end-page: 157
  ident: bb0120
  article-title: Ubiquitin ligases: structure, function, and regulation
  publication-title: Annu. Rev. Biochem.
– volume: 129
  start-page: 2102
  year: 2016
  end-page: 2108
  ident: bb0220
  article-title: Inhibition of ubiquitin-specific peptidase 8 suppresses adrenocorticotropic hormone production and tumorous Corticotroph cell growth in AtT20 cells
  publication-title: Chin. Med. J.
– volume: 27
  start-page: 533
  year: 2006
  end-page: 542
  ident: bb0185
  article-title: The functional evaluation of human peptide/histidine transporter 1 (hPHT1) in transiently transfected COS-7 cells
  publication-title: Eur. J. Pharm. Sci.
– volume: 1618
  start-page: 185
  year: 2003
  end-page: 193
  ident: bb0010
  article-title: The molecular and cellular physiology of basolateral organic anion transport in mammalian renal tubules
  publication-title: Biochim. Biophys. Acta
– volume: 21
  year: 2019
  ident: bb0205
  article-title: Activation of protein kinase a stimulates SUMOylation, expression, and transport activity of organic anion transporter 3
  publication-title: AAPS J.
– volume: 100
  start-page: E997
  year: 2015
  end-page: 1004
  ident: bb0155
  article-title: The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing’s disease
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 112
  start-page: E1210
  year: 2015
  end-page: E1219
  ident: bb0115
  article-title: BRUCE regulates DNA double-strand break response by promoting USP8 deubiquitination of BRIT1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 283
  start-page: 32570
  year: 2008
  end-page: 32579
  ident: bb0055
  article-title: Organic anion transporter OAT1 undergoes constitutive and protein kinase C-regulated trafficking through a dynamin- and clathrin-dependent pathway
  publication-title: J. Biol. Chem.
– volume: 38
  start-page: 889
  year: 2008
  end-page: 935
  ident: bb0020
  article-title: Physiology, structure, and regulation of the cloned organic anion transporters
  publication-title: Xenobiotica
– volume: 288
  start-page: 5389
  year: 2013
  end-page: 5397
  ident: bb0110
  article-title: Ubiquitin-specific peptidase 8 (USP8) regulates endosomal trafficking of the epithelial Na+ channel
  publication-title: J. Biol. Chem.
– volume: 25
  start-page: 3938
  year: 2011
  end-page: 3948
  ident: bb0090
  article-title: Role of ubiquitylation and USP8-dependent deubiquitylation in the endocytosis and lysosomal targeting of plasma membrane KCa3.1
  publication-title: FASEB J
– volume: 284
  start-page: F467
  year: 2003
  end-page: F473
  ident: bb0190
  article-title: Renal expression of novel Na+/H+ exchanger isoform NHE8
  publication-title: Am J Physiol Renal Physiol
– volume: 76
  start-page: 481
  year: 2009
  end-page: 490
  ident: bb0005
  article-title: Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis
  publication-title: Mol. Pharmacol.
– volume: 86
  start-page: 159
  year: 2017
  end-page: 192
  ident: bb0125
  article-title: Mechanisms of Deubiquitinase specificity and regulation
  publication-title: Annu. Rev. Biochem.
– volume: 3
  start-page: 242
  year: 2012
  end-page: 249
  ident: bb0045
  article-title: Short-term and long-term effects of protein kinase C on the trafficking and stability of human organic anion transporter 3
  publication-title: Int J Biochem Mol Biol
– volume: 47
  start-page: 31
  year: 2015
  end-page: 38
  ident: bb0150
  article-title: Mutations in the deubiquitinase gene USP8 cause Cushing’s disease
  publication-title: Nat. Genet.
– volume: 310
  start-page: F821
  year: 2016
  end-page: F831
  ident: bb0140
  article-title: Nedd4–2 but not Nedd4–1 is critical for protein kinase C-regulated ubiquitination, expression, and transport activity of human organic anion transporter 1
  publication-title: Am J Physiol Renal Physiol
– volume: 17
  start-page: 53
  year: 2016
  end-page: 65
  ident: bb0100
  article-title: VEGFR2 trafficking, Signaling and proteolysis is regulated by the ubiquitin Isopeptidase USP8
  publication-title: Traffic
– volume: 15
  start-page: 77
  year: 2014
  end-page: 85
  ident: bb0170
  article-title: HIF1alpha deubiquitination by USP8 is essential for ciliogenesis in normoxia
  publication-title: EMBO Rep.
– volume: 285
  start-page: 37895
  year: 2010
  end-page: 37908
  ident: bb0165
  article-title: The deubiquitinating enzyme USP8 promotes trafficking and degradation of the chemokine receptor 4 at the sorting endosome
  publication-title: J. Biol. Chem.
– volume: 284
  start-page: 2672
  year: 2009
  end-page: 2679
  ident: bb0195
  article-title: Activation of protein kinase Czeta increases OAT1 (SLC22A6)- and OAT3 (SLC22A8)-mediated transport
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 301
  year: 2017
  end-page: 305
  ident: bb0215
  article-title: Role of tyrosine kinase inhibitors in the treatment of pituitary tumours: from bench to bedside
  publication-title: Curr Opin Endocrinol Diabetes Obes
– volume: 20
  start-page: 57
  year: 2015
  end-page: 63
  ident: bb0225
  article-title: Inhibition of ubiquitin-specific peptidase 8 suppresses growth of Gefitinib-resistant non-small cell lung Cancer cells by inducing apoptosis
  publication-title: J Cancer Prev
– volume: 290
  start-page: F905
  year: 2006
  end-page: F912
  ident: bb0015
  article-title: The human organic anion transporter 3 (OAT3; SLC22A8): genetic variation and functional genomics
  publication-title: Am J Physiol Renal Physiol
– volume: 93
  start-page: 1289
  year: 2013
  end-page: 1315
  ident: bb0080
  article-title: Deubiquitylases from genes to organism
  publication-title: Physiol. Rev.
– volume: 277
  start-page: 19665
  year: 2002
  end-page: 19672
  ident: bb0180
  article-title: Growth-related renal type II Na/pi cotransporter
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 602
  year: 2002
  end-page: 616
  ident: bb0035
  article-title: Structure, function, and regulation of renal organic anion transporters
  publication-title: Med. Res. Rev.
– volume: 1695
  start-page: 189
  year: 2004
  end-page: 207
  ident: bb0060
  article-title: Mechanism and function of deubiquitinating enzymes
  publication-title: Biochim. Biophys. Acta
– volume: 63
  start-page: 146
  year: 2016
  end-page: 155
  ident: bb0075
  article-title: MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of Deubiquitinating enzymes
  publication-title: Mol. Cell
– volume: 1695
  start-page: 189
  year: 2004
  ident: 10.1016/j.bbagen.2020.129701_bb0060
  article-title: Mechanism and function of deubiquitinating enzymes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2004.10.003
– volume: 288
  start-page: 5389
  year: 2013
  ident: 10.1016/j.bbagen.2020.129701_bb0110
  article-title: Ubiquitin-specific peptidase 8 (USP8) regulates endosomal trafficking of the epithelial Na+ channel
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.425272
– volume: 291
  start-page: 15753
  year: 2016
  ident: 10.1016/j.bbagen.2020.129701_bb0105
  article-title: The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.718023
– volume: 86
  start-page: 129
  year: 2017
  ident: 10.1016/j.bbagen.2020.129701_bb0120
  article-title: Ubiquitin ligases: structure, function, and regulation
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060815-014922
– volume: 21
  year: 2019
  ident: 10.1016/j.bbagen.2020.129701_bb0205
  article-title: Activation of protein kinase a stimulates SUMOylation, expression, and transport activity of organic anion transporter 3
  publication-title: AAPS J.
  doi: 10.1208/s12248-019-0303-4
– volume: 5
  start-page: 552
  year: 2010
  ident: 10.1016/j.bbagen.2020.129701_bb0230
  article-title: Synthesis and biological evaluation of 9-oxo-9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile analogues as potential inhibitors of deubiquitinating enzymes
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.200900409
– volume: 5
  year: 2016
  ident: 10.1016/j.bbagen.2020.129701_bb0085
  article-title: The business of deubiquitination - location, location, location
  publication-title: F1000Res
  doi: 10.12688/f1000research.7220.1
– volume: 100
  start-page: E997
  year: 2015
  ident: 10.1016/j.bbagen.2020.129701_bb0155
  article-title: The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing’s disease
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2015-1453
– volume: 10
  start-page: 550
  year: 2009
  ident: 10.1016/j.bbagen.2020.129701_bb0065
  article-title: Breaking the chains: structure and function of the deubiquitinases
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2731
– volume: 283
  start-page: 32570
  year: 2008
  ident: 10.1016/j.bbagen.2020.129701_bb0055
  article-title: Organic anion transporter OAT1 undergoes constitutive and protein kinase C-regulated trafficking through a dynamin- and clathrin-dependent pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M800298200
– volume: 19
  start-page: 3894
  year: 2013
  ident: 10.1016/j.bbagen.2020.129701_bb0160
  article-title: USP8 is a novel target for overcoming gefitinib resistance in lung cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-12-3696
– volume: 76
  start-page: 481
  year: 2009
  ident: 10.1016/j.bbagen.2020.129701_bb0005
  article-title: Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.109.056564
– volume: 112
  start-page: E1210
  year: 2015
  ident: 10.1016/j.bbagen.2020.129701_bb0115
  article-title: BRUCE regulates DNA double-strand break response by promoting USP8 deubiquitination of BRIT1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1418335112
– volume: 47
  start-page: 31
  year: 2015
  ident: 10.1016/j.bbagen.2020.129701_bb0150
  article-title: Mutations in the deubiquitinase gene USP8 cause Cushing’s disease
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3166
– volume: 285
  start-page: 37895
  year: 2010
  ident: 10.1016/j.bbagen.2020.129701_bb0165
  article-title: The deubiquitinating enzyme USP8 promotes trafficking and degradation of the chemokine receptor 4 at the sorting endosome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.129411
– volume: 1618
  start-page: 185
  year: 2003
  ident: 10.1016/j.bbagen.2020.129701_bb0010
  article-title: The molecular and cellular physiology of basolateral organic anion transport in mammalian renal tubules
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2003.08.015
– volume: 83
  start-page: 217
  year: 2013
  ident: 10.1016/j.bbagen.2020.129701_bb0040
  article-title: Lysine 48-linked polyubiquitination of organic anion transporter-1 is essential for its protein kinase C-regulated endocytosis
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.112.082065
– volume: 17
  start-page: 53
  year: 2016
  ident: 10.1016/j.bbagen.2020.129701_bb0100
  article-title: VEGFR2 trafficking, Signaling and proteolysis is regulated by the ubiquitin Isopeptidase USP8
  publication-title: Traffic
  doi: 10.1111/tra.12341
– volume: 129
  start-page: 2102
  year: 2016
  ident: 10.1016/j.bbagen.2020.129701_bb0220
  article-title: Inhibition of ubiquitin-specific peptidase 8 suppresses adrenocorticotropic hormone production and tumorous Corticotroph cell growth in AtT20 cells
  publication-title: Chin. Med. J.
  doi: 10.4103/0366-6999.189047
– volume: 627
  start-page: 49
  year: 2010
  ident: 10.1016/j.bbagen.2020.129701_bb0175
  article-title: Angiotensin II inhibits activity of human organic anion transporter 3 through activation of protein kinase Calpha: accelerating endocytosis of the transporter
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2009.10.048
– volume: 38
  start-page: 889
  year: 2008
  ident: 10.1016/j.bbagen.2020.129701_bb0020
  article-title: Physiology, structure, and regulation of the cloned organic anion transporters
  publication-title: Xenobiotica
  doi: 10.1080/00498250801927435
– volume: 284
  start-page: 2672
  year: 2009
  ident: 10.1016/j.bbagen.2020.129701_bb0195
  article-title: Activation of protein kinase Czeta increases OAT1 (SLC22A6)- and OAT3 (SLC22A8)-mediated transport
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M808078200
– volume: 15
  start-page: 77
  year: 2014
  ident: 10.1016/j.bbagen.2020.129701_bb0170
  article-title: HIF1alpha deubiquitination by USP8 is essential for ciliogenesis in normoxia
  publication-title: EMBO Rep.
  doi: 10.1002/embr.201337688
– volume: 60
  start-page: 39
  year: 2011
  ident: 10.1016/j.bbagen.2020.129701_bb0070
  article-title: Regulation of endocytic sorting by ESCRT-DUB-mediated deubiquitination
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-011-9181-9
– volume: 67
  start-page: 177
  year: 2020
  ident: 10.1016/j.bbagen.2020.129701_bb0210
  article-title: Ubiquitin-specific protease 8 inhibitor suppresses adrenocorticotropic hormone production and corticotroph tumor cell proliferation
  publication-title: Endocr. J.
  doi: 10.1507/endocrj.EJ19-0239
– volume: 86
  start-page: 159
  year: 2017
  ident: 10.1016/j.bbagen.2020.129701_bb0125
  article-title: Mechanisms of Deubiquitinase specificity and regulation
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-061516-044916
– volume: 27
  start-page: 533
  year: 2006
  ident: 10.1016/j.bbagen.2020.129701_bb0185
  article-title: The functional evaluation of human peptide/histidine transporter 1 (hPHT1) in transiently transfected COS-7 cells
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2005.09.014
– volume: 290
  start-page: F905
  year: 2006
  ident: 10.1016/j.bbagen.2020.129701_bb0015
  article-title: The human organic anion transporter 3 (OAT3; SLC22A8): genetic variation and functional genomics
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.00272.2005
– volume: 3
  start-page: 242
  year: 2012
  ident: 10.1016/j.bbagen.2020.129701_bb0045
  article-title: Short-term and long-term effects of protein kinase C on the trafficking and stability of human organic anion transporter 3
  publication-title: Int J Biochem Mol Biol
– start-page: 1
  year: 2008
  ident: 10.1016/j.bbagen.2020.129701_bb0235
  article-title: Crosstalk between the SUMO and ubiquitin pathways
  publication-title: Ernst Schering Found Symp Proc
– volume: 15
  start-page: 53
  year: 2013
  ident: 10.1016/j.bbagen.2020.129701_bb0030
  article-title: Renal organic anion transporters (SLC22 family): expression, regulation, roles in toxicity, and impact on injury and disease
  publication-title: AAPS J.
  doi: 10.1208/s12248-012-9413-y
– volume: 277
  start-page: 19665
  year: 2002
  ident: 10.1016/j.bbagen.2020.129701_bb0180
  article-title: Growth-related renal type II Na/pi cotransporter
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M200943200
– volume: 347
  start-page: 221
  year: 2014
  ident: 10.1016/j.bbagen.2020.129701_bb0200
  article-title: Decreased renal organic anion transporter 3 expression in type 1 diabetic rats
  publication-title: Am J Med Sci
  doi: 10.1097/MAJ.0b013e3182831740
– volume: 20
  start-page: 57
  year: 2015
  ident: 10.1016/j.bbagen.2020.129701_bb0225
  article-title: Inhibition of ubiquitin-specific peptidase 8 suppresses growth of Gefitinib-resistant non-small cell lung Cancer cells by inducing apoptosis
  publication-title: J Cancer Prev
  doi: 10.15430/JCP.2015.20.1.57
– volume: 73
  start-page: 440
  year: 2007
  ident: 10.1016/j.bbagen.2020.129701_bb0025
  article-title: Gene expression and regulation of drug transporters in the intestine and kidney
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2006.10.010
– volume: 22
  start-page: 602
  year: 2002
  ident: 10.1016/j.bbagen.2020.129701_bb0035
  article-title: Structure, function, and regulation of renal organic anion transporters
  publication-title: Med. Res. Rev.
  doi: 10.1002/med.10019
– volume: 285
  start-page: 34909
  year: 2010
  ident: 10.1016/j.bbagen.2020.129701_bb0095
  article-title: Regulation of epidermal growth factor receptor ubiquitination and trafficking by the USP8.STAM complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.016287
– volume: 284
  start-page: F467
  year: 2003
  ident: 10.1016/j.bbagen.2020.129701_bb0190
  article-title: Renal expression of novel Na+/H+ exchanger isoform NHE8
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.00352.2002
– volume: 45
  start-page: 887
  year: 2017
  ident: 10.1016/j.bbagen.2020.129701_bb0050
  article-title: PKC/Nedd4–2 signaling pathway regulates the cell surface expression of drug transporter hOAT1
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.117.075861
– volume: 25
  start-page: 3938
  year: 2011
  ident: 10.1016/j.bbagen.2020.129701_bb0090
  article-title: Role of ubiquitylation and USP8-dependent deubiquitylation in the endocytosis and lysosomal targeting of plasma membrane KCa3.1
  publication-title: FASEB J
  doi: 10.1096/fj.11-187005
– volume: 16
  start-page: 950
  year: 2015
  ident: 10.1016/j.bbagen.2020.129701_bb0145
  article-title: The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3230
– volume: 311
  start-page: F320
  year: 2016
  ident: 10.1016/j.bbagen.2020.129701_bb0135
  article-title: The role of Nedd4–1 WW domains in binding and regulating human organic anion transporter 1
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.00153.2016
– volume: 102
  start-page: 120
  year: 2016
  ident: 10.1016/j.bbagen.2020.129701_bb0130
  article-title: Serum- and glucocorticoid-inducible kinase SGK2 regulates human organic anion transporters 4 via ubiquitin ligase Nedd4-2
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2015.11.024
– volume: 93
  start-page: 1289
  year: 2013
  ident: 10.1016/j.bbagen.2020.129701_bb0080
  article-title: Deubiquitylases from genes to organism
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00002.2013
– volume: 310
  start-page: F821
  year: 2016
  ident: 10.1016/j.bbagen.2020.129701_bb0140
  article-title: Nedd4–2 but not Nedd4–1 is critical for protein kinase C-regulated ubiquitination, expression, and transport activity of human organic anion transporter 1
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.00522.2015
– volume: 63
  start-page: 146
  year: 2016
  ident: 10.1016/j.bbagen.2020.129701_bb0075
  article-title: MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of Deubiquitinating enzymes
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.05.009
– volume: 24
  start-page: 301
  year: 2017
  ident: 10.1016/j.bbagen.2020.129701_bb0215
  article-title: Role of tyrosine kinase inhibitors in the treatment of pituitary tumours: from bench to bedside
  publication-title: Curr Opin Endocrinol Diabetes Obes
  doi: 10.1097/MED.0000000000000344
SSID ssj0000595
Score 2.347883
Snippet Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney...
Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney...
BackgroundOrganic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129701
SubjectTerms Animals
biotinylation
Chlorocebus aethiops
COS Cells
Deubiquitination
Drug transport
drugs
Endopeptidases - metabolism
Endosomal Sorting Complexes Required for Transport - metabolism
Humans
kidneys
Organic Anion Transport Protein 1 - metabolism
Organic anion transporter
Protein Stability
Protein Transport
Regulation
toxicity
ubiquitin
Ubiquitin Thiolesterase - metabolism
Ubiquitin-specific peptidase
Ubiquitination
Title Ubiquitin-specific peptidase 8 regulates the trafficking and stability of the human organic anion transporter 1
URI https://dx.doi.org/10.1016/j.bbagen.2020.129701
https://www.ncbi.nlm.nih.gov/pubmed/32818533
https://www.proquest.com/docview/2436402205
https://www.proquest.com/docview/2551988524
https://pubmed.ncbi.nlm.nih.gov/PMC7863590
Volume 1864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamoQkuE4wf6waTkbiGJraT2MepYiqg7TIq7WY5_iGCUNp17WEX_nbes5OOjolJ3NL0WXXznPe-xN_7HiEfmKqsLwqXWeHzTDjpM1mgPJ63hgkTmKiwUPj8oprOxJer8mqHTIZaGKRV9rE_xfQYrfsz4_5qjhdtO77ETT2AEyWDAwahGCvYRY2r_OOvO5oHwIcy7SSIDK2H8rnI8WoauGlRBZWhzIKq-9YwD6Snv-HnfRblH2np7DnZ7_EkPU1TfkF2fHdA9lKHydsD8nQyNHR7Seazpr1et6u2y7C-EjlCdIGkFgeZjEq6TG3p_Q0FUEjhx1BdAt-kU9M5Cigy8mhv6TxEg9jdj6auUBZMwME4qJdKX9LiFZmdffo2mWZ9vwVwlKpWWTDCe2bKPBhvIbHxAM863shcWclUCEZCOHCsyS1ESc4DgLMQCtW4XBpnbM1fk91u3vlDQn3eBClN8KHiQpnK2LIxplDWOQOoI4wIHy6ztr0YOfbE-KkH1tkPnZyj0Tk6OWdEss2oRRLjeMS-HjyotxaVhnzxyMj3g8M1eAk3UUzn5-sbzQSvRCxP_ocNwFAlZcnEiLxJi2QzXx7ltziHuW0tn40B6n1vf9O136Pudy0BHar86L__1TF5hp8SG-ct2V0t1_4dYKpVcxJvmhPy5PTz1-nFb_IZJEk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxEB2VIlQuCMpX-DQS1yW7tndjH1FEFaDthUbqzfJ6bbEIbUKaHHrpb--MvRsIICpxi7JjxfHYMy_xmzcAb7munC-KJnPS55lslM9UQfJ43lkubeCyokLhk9NqNpefzsvzPZgOtTBEq-xjf4rpMVr374z71Rwv23b8hS71EE6UHF9wDMW34LbE40ttDN5d_eR5IH4o01WCzMh8qJ-LJK-6xlNLMqicdBb0pO8N85f89Cf-_J1G-UteOroP93pAyd6nOT-APd8dwp3UYvLyEA6mQ0e3h7CY1-2PTbtuu4wKLIkkxJbEamkwlTHFVqkvvb9giAoZfhjJS9Bf6cx2DUMYGYm0l2wRokFs78dSWyiHJuhhGtRrpa9Y8QjmRx_OprOsb7iAntLVOgtWes9tmQfrHWY2EfDHjrcq105xHYJVGA8aXucO11mIgOgshELXTa5sY91EPIb9btH5p8B8XgelbPChElLbyrqytrbQrmkswo4wAjEss3G9Gjk1xfhuBtrZN5OcY8g5JjlnBNl21DKpcdxgPxk8aHZ2lcGEccPIN4PDDXqJblFs5xebC8OlqGSsT_6HDeJQrVTJ5QiepE2yna-I-ltC4Nx2ts_WgAS_d5907dco_D1RCA91_uy_v9VrOJidnRyb44-nn5_DXXqSqDkvYH-92viXCLDW9at4gK4BYTEl1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ubiquitin-specific+peptidase+8+regulates+the+trafficking+and+stability+of+the+human+organic+anion+transporter+1&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Zhang%2C+Jinghui&rft.au=Liu%2C+Chenchang&rft.au=You%2C+Guofeng&rft.date=2020-12-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1864&rft.issue=12&rft.spage=129701&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129701&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon