Ubiquitin-specific peptidase 8 regulates the trafficking and stability of the human organic anion transporter 1
Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degrada...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 12; p. 129701 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degradation. Ubiquitination is a dynamic process, where deubiquitination is catalyzed by a class of ubiquitin-specific peptidases.
Methods
The role of ubiquitin-specific peptidase 8 (USP8) in hOAT1 function, expression and ubiquitination was assessed by conducting transporter uptake assay, biotinylation assay and ubiquitination assay.
Results
We demonstrated that USP8 overexpression in hOAT1-expressing cells led to an increased hOAT1 transporter activity and expression, which correlated well with a reduced hOAT1 ubiquitination. Such phenomenon was not observed in inactive USP8 mutant-transfected cells. In addition, the knockdown of endogenous USP8 by USP8-specific siRNA resulted in an increased hOAT1 ubiquitination, which correlated well with a decrease in hOAT1 expression and transport activity. Biotinylation experiments demonstrated that USP8-induced increase in hOAT1 expression and transport activity occurred through a deceleration of the rates of hOAT1 internalization and degradation.
Conclusions
These results indicated the regulatory role of USP8 in OAT1 function, expression, trafficking, and stability.
General significance
USP8 could be a new target for modulating OAT1-mediated drug transport.
[Display omitted]
•USP8 overexpression increased OAT1 function while reduced OAT1 ubiquitination.•USP8 knockdown decreased OAT1 function while enhanced OAT1 ubiquitination.•USP8 overexpression decelerated the rates of OAT1 internalization and degradation. |
---|---|
AbstractList | BackgroundOrganic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degradation. Ubiquitination is a dynamic process, where deubiquitination is catalyzed by a class of ubiquitin-specific peptidases.MethodsThe role of ubiquitin-specific peptidase 8 (USP8) in hOAT1 function, expression and ubiquitination was assessed by conducting transporter uptake assay, biotinylation assay and ubiquitination assay.ResultsWe demonstrated that USP8 overexpression in hOAT1-expressing cells led to an increased hOAT1 transporter activity and expression, which correlated well with a reduced hOAT1 ubiquitination. Such phenomenon was not observed in inactive USP8 mutant-transfected cells. In addition, the knockdown of endogenous USP8 by USP8-specific siRNA resulted in an increased hOAT1 ubiquitination, which correlated well with a decrease in hOAT1 expression and transport activity. Biotinylation experiments demonstrated that USP8-induced increase in hOAT1 expression and transport activity occurred through a deceleration of the rates of hOAT1 internalization and degradation.ConclusionsThese results indicated the regulatory role of USP8 in OAT1 function, expression, trafficking, and stability.General significanceUSP8 could be a new target for modulating OAT1-mediated drug transport. Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degradation. Ubiquitination is a dynamic process, where deubiquitination is catalyzed by a class of ubiquitin-specific peptidases. Methods The role of ubiquitin-specific peptidase 8 (USP8) in hOAT1 function, expression and ubiquitination was assessed by conducting transporter uptake assay, biotinylation assay and ubiquitination assay. Results We demonstrated that USP8 overexpression in hOAT1-expressing cells led to an increased hOAT1 transporter activity and expression, which correlated well with a reduced hOAT1 ubiquitination. Such phenomenon was not observed in inactive USP8 mutant-transfected cells. In addition, the knockdown of endogenous USP8 by USP8-specific siRNA resulted in an increased hOAT1 ubiquitination, which correlated well with a decrease in hOAT1 expression and transport activity. Biotinylation experiments demonstrated that USP8-induced increase in hOAT1 expression and transport activity occurred through a deceleration of the rates of hOAT1 internalization and degradation. Conclusions These results indicated the regulatory role of USP8 in OAT1 function, expression, trafficking, and stability. General significance USP8 could be a new target for modulating OAT1-mediated drug transport.Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degradation. Ubiquitination is a dynamic process, where deubiquitination is catalyzed by a class of ubiquitin-specific peptidases. Methods The role of ubiquitin-specific peptidase 8 (USP8) in hOAT1 function, expression and ubiquitination was assessed by conducting transporter uptake assay, biotinylation assay and ubiquitination assay. Results We demonstrated that USP8 overexpression in hOAT1-expressing cells led to an increased hOAT1 transporter activity and expression, which correlated well with a reduced hOAT1 ubiquitination. Such phenomenon was not observed in inactive USP8 mutant-transfected cells. In addition, the knockdown of endogenous USP8 by USP8-specific siRNA resulted in an increased hOAT1 ubiquitination, which correlated well with a decrease in hOAT1 expression and transport activity. Biotinylation experiments demonstrated that USP8-induced increase in hOAT1 expression and transport activity occurred through a deceleration of the rates of hOAT1 internalization and degradation. Conclusions These results indicated the regulatory role of USP8 in OAT1 function, expression, trafficking, and stability. General significance USP8 could be a new target for modulating OAT1-mediated drug transport. Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degradation. Ubiquitination is a dynamic process, where deubiquitination is catalyzed by a class of ubiquitin-specific peptidases. Methods The role of ubiquitin-specific peptidase 8 (USP8) in hOAT1 function, expression and ubiquitination was assessed by conducting transporter uptake assay, biotinylation assay and ubiquitination assay. Results We demonstrated that USP8 overexpression in hOAT1-expressing cells led to an increased hOAT1 transporter activity and expression, which correlated well with a reduced hOAT1 ubiquitination. Such phenomenon was not observed in inactive USP8 mutant-transfected cells. In addition, the knockdown of endogenous USP8 by USP8-specific siRNA resulted in an increased hOAT1 ubiquitination, which correlated well with a decrease in hOAT1 expression and transport activity. Biotinylation experiments demonstrated that USP8-induced increase in hOAT1 expression and transport activity occurred through a deceleration of the rates of hOAT1 internalization and degradation. Conclusions These results indicated the regulatory role of USP8 in OAT1 function, expression, trafficking, and stability. General significance USP8 could be a new target for modulating OAT1-mediated drug transport. Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degradation. Ubiquitination is a dynamic process, where deubiquitination is catalyzed by a class of ubiquitin-specific peptidases. Methods The role of ubiquitin-specific peptidase 8 (USP8) in hOAT1 function, expression and ubiquitination was assessed by conducting transporter uptake assay, biotinylation assay and ubiquitination assay. Results We demonstrated that USP8 overexpression in hOAT1-expressing cells led to an increased hOAT1 transporter activity and expression, which correlated well with a reduced hOAT1 ubiquitination. Such phenomenon was not observed in inactive USP8 mutant-transfected cells. In addition, the knockdown of endogenous USP8 by USP8-specific siRNA resulted in an increased hOAT1 ubiquitination, which correlated well with a decrease in hOAT1 expression and transport activity. Biotinylation experiments demonstrated that USP8-induced increase in hOAT1 expression and transport activity occurred through a deceleration of the rates of hOAT1 internalization and degradation. Conclusions These results indicated the regulatory role of USP8 in OAT1 function, expression, trafficking, and stability. General significance USP8 could be a new target for modulating OAT1-mediated drug transport. [Display omitted] •USP8 overexpression increased OAT1 function while reduced OAT1 ubiquitination.•USP8 knockdown decreased OAT1 function while enhanced OAT1 ubiquitination.•USP8 overexpression decelerated the rates of OAT1 internalization and degradation. |
ArticleNumber | 129701 |
Author | You, Guofeng Zhang, Jinghui Liu, Chenchang |
Author_xml | – sequence: 1 givenname: Jinghui surname: Zhang fullname: Zhang, Jinghui – sequence: 2 givenname: Chenchang surname: Liu fullname: Liu, Chenchang – sequence: 3 givenname: Guofeng surname: You fullname: You, Guofeng email: gyou@pharmacy.rutgers.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32818533$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URKeFf4BQlmwy-BEnDgskVPGSKrGha-vGuZ7xkLFT26nUf18PM0XAgnphS9fnfDq654Kc-eCRkNeMrhll7bvdehhgg37NKS8j3neUPSMrpjpeK0rbM7KigjZ1w1p5Ti5S2tFyZC9fkHPBFVNSiBUJN4O7XVx2vk4zGmedqWacsxshYaWqiJtlgoypyluscgRbFD-d31TgxyplGNzk8n0V7C_BdtmDr0LcgC-gcgV_MPk0h5gxVuwleW5hSvjq9F6Sm8-fflx9ra-_f_l29fG6Nk3f5tpCg8hBUgtoRMuFbalEULQ3ivfWguoEHflAjRRKCNtLZi3rh5EqGMF04pJ8OHLnZdjjaNCXGJOeo9tDvNcBnP77x7ut3oQ73alWyJ4WwNsTIIbbBVPWe5cMThN4DEvSXErWKyV587S0EW1DOaeySN_8Get3nsdCiuD9UWBiSCmi1cZlyGWPJaWbNKP60L7e6WP7-tC-PrZfzM0_5kf-E7bTrrAUcucw6mQceoOji2iyHoP7P-ABIJTNOQ |
CitedBy_id | crossref_primary_10_1186_s12882_025_03974_y crossref_primary_10_1002_cpt_2605 crossref_primary_10_1016_j_pharmthera_2024_108723 crossref_primary_10_3390_pharmaceutics16111355 |
Cites_doi | 10.1016/j.bbamcr.2004.10.003 10.1074/jbc.M112.425272 10.1074/jbc.M116.718023 10.1146/annurev-biochem-060815-014922 10.1208/s12248-019-0303-4 10.1002/cmdc.200900409 10.12688/f1000research.7220.1 10.1210/jc.2015-1453 10.1038/nrm2731 10.1074/jbc.M800298200 10.1158/1078-0432.CCR-12-3696 10.1124/mol.109.056564 10.1073/pnas.1418335112 10.1038/ng.3166 10.1074/jbc.M110.129411 10.1016/j.bbamem.2003.08.015 10.1124/mol.112.082065 10.1111/tra.12341 10.4103/0366-6999.189047 10.1016/j.ejphar.2009.10.048 10.1080/00498250801927435 10.1074/jbc.M808078200 10.1002/embr.201337688 10.1007/s12013-011-9181-9 10.1507/endocrj.EJ19-0239 10.1146/annurev-biochem-061516-044916 10.1016/j.ejps.2005.09.014 10.1152/ajprenal.00272.2005 10.1208/s12248-012-9413-y 10.1074/jbc.M200943200 10.1097/MAJ.0b013e3182831740 10.15430/JCP.2015.20.1.57 10.1016/j.bcp.2006.10.010 10.1002/med.10019 10.1074/jbc.M109.016287 10.1152/ajprenal.00352.2002 10.1124/dmd.117.075861 10.1096/fj.11-187005 10.1038/ni.3230 10.1152/ajprenal.00153.2016 10.1016/j.bcp.2015.11.024 10.1152/physrev.00002.2013 10.1152/ajprenal.00522.2015 10.1016/j.molcel.2016.05.009 10.1097/MED.0000000000000344 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.bbagen.2020.129701 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 129701 |
ExternalDocumentID | PMC7863590 32818533 10_1016_j_bbagen_2020_129701 S0304416520302130 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM079123 – fundername: NIGMS NIH HHS grantid: R01 GM127788 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c496t-fa4ee2a50faec3623f605ea809c829ffa8730d2b0c53833f951ff19bd08adac73 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Thu Aug 21 18:18:10 EDT 2025 Thu Jul 10 22:52:35 EDT 2025 Sun Aug 24 03:50:52 EDT 2025 Thu Apr 03 07:04:37 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Tue Jul 01 00:22:14 EDT 2025 Fri Feb 23 02:47:57 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Drug transport Regulation Ubiquitin-specific peptidase Deubiquitination Organic anion transporter |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-fa4ee2a50faec3623f605ea809c829ffa8730d2b0c53833f951ff19bd08adac73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7863590 |
PMID | 32818533 |
PQID | 2436402205 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7863590 proquest_miscellaneous_2551988524 proquest_miscellaneous_2436402205 pubmed_primary_32818533 crossref_citationtrail_10_1016_j_bbagen_2020_129701 crossref_primary_10_1016_j_bbagen_2020_129701 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129701 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Smith, Fearnley, Abdul-Zani, Wheatcroft, Tomlinson, Harrison, Ponnambalam (bb0100) 2016; 17 Hunter, Sun (bb0235) 2008 Jeong (bb0225) 2015; 20 Ahn, Nigam (bb0005) 2009; 76 Barros, Srimaroeng, Perry, Walden, Dembla-Rajpal, Sweet, Pritchard (bb0195) 2009; 284 Coyne, Wing (bb0085) 2016; 5 Zhang, Li, Patterson, You (bb0040) 2013; 83 Wang, Zhang, You (bb0205) 2019; 21 Zheng, Shabek (bb0120) 2017; 86 Byun, Lee, Lee, Jeong, Farrand, Lim, Reddy, Kim, Lee, Lee, Bode, Won Lee, Dong (bb0160) 2013; 19 Jian, Li, Chen, Jiang, Chen, Zheng, Zhao, Wang, Ning, Bian, Sun (bb0220) 2016; 129 Wang, Sweet (bb0030) 2013; 15 Komander, Clague, Urbe (bb0065) 2009; 10 Balut, Loch, Devor (bb0090) 2011; 25 Kageyama, Asari, Sugimoto, Niioka, Daimon (bb0210) 2020; 67 Dantzler, Wright (bb0010) 2003; 1618 Xu, Zhang, Zhang, Fan, Liu, You (bb0050) 2017; 45 Bhardwaj, Herrera-Ruiz, Eltoukhy, Saad, Knipp (bb0185) 2006; 27 Phatchawan, Chutima, Varanuj, Anusorn (bb0200) 2014; 347 Mevissen, Komander (bb0125) 2017; 86 Duan, Li, You (bb0175) 2010; 627 Zhang, Hong, Duan, Pan, Ma, You (bb0055) 2008; 283 Reincke, Sbiera, Hayakawa, Theodoropoulou, Osswald, Beuschlein, Meitinger, Mizuno-Yamasaki, Kawaguchi, Saeki, Tanaka, Wieland, Graf, Saeger, Ronchi, Allolio, Buchfelder, Strom, Fassnacht, Komada (bb0150) 2015; 47 Troilo, Alexander, Muehl, Jaramillo, Knobeloch, Krek (bb0170) 2014; 15 Berlin, Higginbotham, Dise, Sierra, Nash (bb0165) 2010; 285 Zhang, Suh, Pan, You (bb0045) 2012; 3 Wang, Xu, Toh, Pao, You (bb0130) 2016; 102 Clague, Barsukov, Coulson, Liu, Rigden, Urbe (bb0080) 2013; 93 Ge, Che, Ren, Pandita, Lu, Li, Pandita, Du (bb0115) 2015; 112 Berlin, Schwartz, Nash (bb0095) 2010; 285 Xu, Wang, Zhang, You (bb0140) 2016; 310 Perez-Rivas, Theodoropoulou, Ferrau, Nusser, Kawaguchi, Stratakis, Faucz, Wildemberg, Assie, Beschorner, Dimopoulou, Buchfelder, Popovic, Berr, Toth, Ardisasmita, Honegger, Bertherat, Gadelha, Beuschlein, Stalla, Komada, Korbonits, Reincke (bb0155) 2015; 100 Segawa, Kaneko, Takahashi, Kuwahata, Ito, Ohkido, Tatsumi, Miyamoto (bb0180) 2002; 277 Dufner, Kisser, Niendorf, Basters, Reissig, Schonle, Aichem, Kurz, Schlosser, Yablonski, Groettrup, Buch, Waisman, Schamel, Prinz, Knobeloch (bb0145) 2015; 16 Wright, Berlin, Nash (bb0070) 2011; 60 Abdul Rehman, Kristariyanto, Choi, Nkosi, Weidlich, Labib, Hofmann, Kulathu (bb0075) 2016; 63 Srimaroeng, Perry, Pritchard (bb0020) 2008; 38 Zhou, Tomkovicz, Butler, Ochoa, Peterson, Snyder (bb0110) 2013; 288 Goyal, Vanden Heuvel, Aronson (bb0190) 2003; 284 You (bb0035) 2002; 22 Erdman, Mangravite, Urban, Lagpacan, Castro, de la Cruz, Chan, Huang, Johns, Kawamoto, Stryke, Taylor, Carlson, Ferrin, Brett, Burchard, Giacomini (bb0015) 2006; 290 Ben-Shlomo, Cooper (bb0215) 2017; 24 Terada, Inui (bb0025) 2007; 73 Amerik, Hochstrasser (bb0060) 2004; 1695 Xu, Wang, Gardner, Pan, Zhang, Zhang, You (bb0135) 2016; 311 Yeates, Tesco (bb0105) 2016; 291 Colombo, Vallese, Peretto, Jacq, Rain, Colland, Guedat (bb0230) 2010; 5 Zhang (10.1016/j.bbagen.2020.129701_bb0045) 2012; 3 Amerik (10.1016/j.bbagen.2020.129701_bb0060) 2004; 1695 Ben-Shlomo (10.1016/j.bbagen.2020.129701_bb0215) 2017; 24 Komander (10.1016/j.bbagen.2020.129701_bb0065) 2009; 10 Abdul Rehman (10.1016/j.bbagen.2020.129701_bb0075) 2016; 63 Zhou (10.1016/j.bbagen.2020.129701_bb0110) 2013; 288 Wang (10.1016/j.bbagen.2020.129701_bb0030) 2013; 15 Byun (10.1016/j.bbagen.2020.129701_bb0160) 2013; 19 Kageyama (10.1016/j.bbagen.2020.129701_bb0210) 2020; 67 Hunter (10.1016/j.bbagen.2020.129701_bb0235) 2008 Xu (10.1016/j.bbagen.2020.129701_bb0135) 2016; 311 Phatchawan (10.1016/j.bbagen.2020.129701_bb0200) 2014; 347 You (10.1016/j.bbagen.2020.129701_bb0035) 2002; 22 Wright (10.1016/j.bbagen.2020.129701_bb0070) 2011; 60 Erdman (10.1016/j.bbagen.2020.129701_bb0015) 2006; 290 Berlin (10.1016/j.bbagen.2020.129701_bb0095) 2010; 285 Barros (10.1016/j.bbagen.2020.129701_bb0195) 2009; 284 Duan (10.1016/j.bbagen.2020.129701_bb0175) 2010; 627 Reincke (10.1016/j.bbagen.2020.129701_bb0150) 2015; 47 Goyal (10.1016/j.bbagen.2020.129701_bb0190) 2003; 284 Dantzler (10.1016/j.bbagen.2020.129701_bb0010) 2003; 1618 Xu (10.1016/j.bbagen.2020.129701_bb0050) 2017; 45 Xu (10.1016/j.bbagen.2020.129701_bb0140) 2016; 310 Zhang (10.1016/j.bbagen.2020.129701_bb0040) 2013; 83 Berlin (10.1016/j.bbagen.2020.129701_bb0165) 2010; 285 Colombo (10.1016/j.bbagen.2020.129701_bb0230) 2010; 5 Ge (10.1016/j.bbagen.2020.129701_bb0115) 2015; 112 Jeong (10.1016/j.bbagen.2020.129701_bb0225) 2015; 20 Terada (10.1016/j.bbagen.2020.129701_bb0025) 2007; 73 Zhang (10.1016/j.bbagen.2020.129701_bb0055) 2008; 283 Jian (10.1016/j.bbagen.2020.129701_bb0220) 2016; 129 Ahn (10.1016/j.bbagen.2020.129701_bb0005) 2009; 76 Smith (10.1016/j.bbagen.2020.129701_bb0100) 2016; 17 Balut (10.1016/j.bbagen.2020.129701_bb0090) 2011; 25 Srimaroeng (10.1016/j.bbagen.2020.129701_bb0020) 2008; 38 Clague (10.1016/j.bbagen.2020.129701_bb0080) 2013; 93 Coyne (10.1016/j.bbagen.2020.129701_bb0085) 2016; 5 Perez-Rivas (10.1016/j.bbagen.2020.129701_bb0155) 2015; 100 Segawa (10.1016/j.bbagen.2020.129701_bb0180) 2002; 277 Bhardwaj (10.1016/j.bbagen.2020.129701_bb0185) 2006; 27 Yeates (10.1016/j.bbagen.2020.129701_bb0105) 2016; 291 Dufner (10.1016/j.bbagen.2020.129701_bb0145) 2015; 16 Zheng (10.1016/j.bbagen.2020.129701_bb0120) 2017; 86 Mevissen (10.1016/j.bbagen.2020.129701_bb0125) 2017; 86 Wang (10.1016/j.bbagen.2020.129701_bb0130) 2016; 102 Troilo (10.1016/j.bbagen.2020.129701_bb0170) 2014; 15 Wang (10.1016/j.bbagen.2020.129701_bb0205) 2019; 21 |
References_xml | – volume: 73 start-page: 440 year: 2007 end-page: 449 ident: bb0025 article-title: Gene expression and regulation of drug transporters in the intestine and kidney publication-title: Biochem. Pharmacol. – volume: 45 start-page: 887 year: 2017 end-page: 895 ident: bb0050 article-title: PKC/Nedd4–2 signaling pathway regulates the cell surface expression of drug transporter hOAT1 publication-title: Drug Metab Dispos – volume: 5 start-page: 552 year: 2010 end-page: 558 ident: bb0230 article-title: Synthesis and biological evaluation of 9-oxo-9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile analogues as potential inhibitors of deubiquitinating enzymes publication-title: ChemMedChem – volume: 102 start-page: 120 year: 2016 end-page: 129 ident: bb0130 article-title: Serum- and glucocorticoid-inducible kinase SGK2 regulates human organic anion transporters 4 via ubiquitin ligase Nedd4-2 publication-title: Biochem. Pharmacol. – volume: 60 start-page: 39 year: 2011 end-page: 46 ident: bb0070 article-title: Regulation of endocytic sorting by ESCRT-DUB-mediated deubiquitination publication-title: Cell Biochem. Biophys. – volume: 347 start-page: 221 year: 2014 end-page: 227 ident: bb0200 article-title: Decreased renal organic anion transporter 3 expression in type 1 diabetic rats publication-title: Am J Med Sci – volume: 311 start-page: F320 year: 2016 end-page: F329 ident: bb0135 article-title: The role of Nedd4–1 WW domains in binding and regulating human organic anion transporter 1 publication-title: Am J Physiol Renal Physiol – volume: 627 start-page: 49 year: 2010 end-page: 55 ident: bb0175 article-title: Angiotensin II inhibits activity of human organic anion transporter 3 through activation of protein kinase Calpha: accelerating endocytosis of the transporter publication-title: Eur. J. Pharmacol. – volume: 19 start-page: 3894 year: 2013 end-page: 3904 ident: bb0160 article-title: USP8 is a novel target for overcoming gefitinib resistance in lung cancer publication-title: Clin. Cancer Res. – volume: 15 start-page: 53 year: 2013 end-page: 69 ident: bb0030 article-title: Renal organic anion transporters (SLC22 family): expression, regulation, roles in toxicity, and impact on injury and disease publication-title: AAPS J. – volume: 10 start-page: 550 year: 2009 end-page: 563 ident: bb0065 article-title: Breaking the chains: structure and function of the deubiquitinases publication-title: Nat Rev Mol Cell Biol – volume: 285 start-page: 34909 year: 2010 end-page: 34921 ident: bb0095 article-title: Regulation of epidermal growth factor receptor ubiquitination and trafficking by the USP8.STAM complex publication-title: J. Biol. Chem. – volume: 67 start-page: 177 year: 2020 end-page: 184 ident: bb0210 article-title: Ubiquitin-specific protease 8 inhibitor suppresses adrenocorticotropic hormone production and corticotroph tumor cell proliferation publication-title: Endocr. J. – volume: 83 start-page: 217 year: 2013 end-page: 224 ident: bb0040 article-title: Lysine 48-linked polyubiquitination of organic anion transporter-1 is essential for its protein kinase C-regulated endocytosis publication-title: Mol. Pharmacol. – volume: 16 start-page: 950 year: 2015 end-page: 960 ident: bb0145 article-title: The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells publication-title: Nat. Immunol. – volume: 5 year: 2016 ident: bb0085 article-title: The business of deubiquitination - location, location, location publication-title: F1000Res – volume: 291 start-page: 15753 year: 2016 end-page: 15766 ident: bb0105 article-title: The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation publication-title: J. Biol. Chem. – start-page: 1 year: 2008 end-page: 16 ident: bb0235 article-title: Crosstalk between the SUMO and ubiquitin pathways publication-title: Ernst Schering Found Symp Proc – volume: 86 start-page: 129 year: 2017 end-page: 157 ident: bb0120 article-title: Ubiquitin ligases: structure, function, and regulation publication-title: Annu. Rev. Biochem. – volume: 129 start-page: 2102 year: 2016 end-page: 2108 ident: bb0220 article-title: Inhibition of ubiquitin-specific peptidase 8 suppresses adrenocorticotropic hormone production and tumorous Corticotroph cell growth in AtT20 cells publication-title: Chin. Med. J. – volume: 27 start-page: 533 year: 2006 end-page: 542 ident: bb0185 article-title: The functional evaluation of human peptide/histidine transporter 1 (hPHT1) in transiently transfected COS-7 cells publication-title: Eur. J. Pharm. Sci. – volume: 1618 start-page: 185 year: 2003 end-page: 193 ident: bb0010 article-title: The molecular and cellular physiology of basolateral organic anion transport in mammalian renal tubules publication-title: Biochim. Biophys. Acta – volume: 21 year: 2019 ident: bb0205 article-title: Activation of protein kinase a stimulates SUMOylation, expression, and transport activity of organic anion transporter 3 publication-title: AAPS J. – volume: 100 start-page: E997 year: 2015 end-page: 1004 ident: bb0155 article-title: The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing’s disease publication-title: J. Clin. Endocrinol. Metab. – volume: 112 start-page: E1210 year: 2015 end-page: E1219 ident: bb0115 article-title: BRUCE regulates DNA double-strand break response by promoting USP8 deubiquitination of BRIT1 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 283 start-page: 32570 year: 2008 end-page: 32579 ident: bb0055 article-title: Organic anion transporter OAT1 undergoes constitutive and protein kinase C-regulated trafficking through a dynamin- and clathrin-dependent pathway publication-title: J. Biol. Chem. – volume: 38 start-page: 889 year: 2008 end-page: 935 ident: bb0020 article-title: Physiology, structure, and regulation of the cloned organic anion transporters publication-title: Xenobiotica – volume: 288 start-page: 5389 year: 2013 end-page: 5397 ident: bb0110 article-title: Ubiquitin-specific peptidase 8 (USP8) regulates endosomal trafficking of the epithelial Na+ channel publication-title: J. Biol. Chem. – volume: 25 start-page: 3938 year: 2011 end-page: 3948 ident: bb0090 article-title: Role of ubiquitylation and USP8-dependent deubiquitylation in the endocytosis and lysosomal targeting of plasma membrane KCa3.1 publication-title: FASEB J – volume: 284 start-page: F467 year: 2003 end-page: F473 ident: bb0190 article-title: Renal expression of novel Na+/H+ exchanger isoform NHE8 publication-title: Am J Physiol Renal Physiol – volume: 76 start-page: 481 year: 2009 end-page: 490 ident: bb0005 article-title: Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis publication-title: Mol. Pharmacol. – volume: 86 start-page: 159 year: 2017 end-page: 192 ident: bb0125 article-title: Mechanisms of Deubiquitinase specificity and regulation publication-title: Annu. Rev. Biochem. – volume: 3 start-page: 242 year: 2012 end-page: 249 ident: bb0045 article-title: Short-term and long-term effects of protein kinase C on the trafficking and stability of human organic anion transporter 3 publication-title: Int J Biochem Mol Biol – volume: 47 start-page: 31 year: 2015 end-page: 38 ident: bb0150 article-title: Mutations in the deubiquitinase gene USP8 cause Cushing’s disease publication-title: Nat. Genet. – volume: 310 start-page: F821 year: 2016 end-page: F831 ident: bb0140 article-title: Nedd4–2 but not Nedd4–1 is critical for protein kinase C-regulated ubiquitination, expression, and transport activity of human organic anion transporter 1 publication-title: Am J Physiol Renal Physiol – volume: 17 start-page: 53 year: 2016 end-page: 65 ident: bb0100 article-title: VEGFR2 trafficking, Signaling and proteolysis is regulated by the ubiquitin Isopeptidase USP8 publication-title: Traffic – volume: 15 start-page: 77 year: 2014 end-page: 85 ident: bb0170 article-title: HIF1alpha deubiquitination by USP8 is essential for ciliogenesis in normoxia publication-title: EMBO Rep. – volume: 285 start-page: 37895 year: 2010 end-page: 37908 ident: bb0165 article-title: The deubiquitinating enzyme USP8 promotes trafficking and degradation of the chemokine receptor 4 at the sorting endosome publication-title: J. Biol. Chem. – volume: 284 start-page: 2672 year: 2009 end-page: 2679 ident: bb0195 article-title: Activation of protein kinase Czeta increases OAT1 (SLC22A6)- and OAT3 (SLC22A8)-mediated transport publication-title: J. Biol. Chem. – volume: 24 start-page: 301 year: 2017 end-page: 305 ident: bb0215 article-title: Role of tyrosine kinase inhibitors in the treatment of pituitary tumours: from bench to bedside publication-title: Curr Opin Endocrinol Diabetes Obes – volume: 20 start-page: 57 year: 2015 end-page: 63 ident: bb0225 article-title: Inhibition of ubiquitin-specific peptidase 8 suppresses growth of Gefitinib-resistant non-small cell lung Cancer cells by inducing apoptosis publication-title: J Cancer Prev – volume: 290 start-page: F905 year: 2006 end-page: F912 ident: bb0015 article-title: The human organic anion transporter 3 (OAT3; SLC22A8): genetic variation and functional genomics publication-title: Am J Physiol Renal Physiol – volume: 93 start-page: 1289 year: 2013 end-page: 1315 ident: bb0080 article-title: Deubiquitylases from genes to organism publication-title: Physiol. Rev. – volume: 277 start-page: 19665 year: 2002 end-page: 19672 ident: bb0180 article-title: Growth-related renal type II Na/pi cotransporter publication-title: J. Biol. Chem. – volume: 22 start-page: 602 year: 2002 end-page: 616 ident: bb0035 article-title: Structure, function, and regulation of renal organic anion transporters publication-title: Med. Res. Rev. – volume: 1695 start-page: 189 year: 2004 end-page: 207 ident: bb0060 article-title: Mechanism and function of deubiquitinating enzymes publication-title: Biochim. Biophys. Acta – volume: 63 start-page: 146 year: 2016 end-page: 155 ident: bb0075 article-title: MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of Deubiquitinating enzymes publication-title: Mol. Cell – volume: 1695 start-page: 189 year: 2004 ident: 10.1016/j.bbagen.2020.129701_bb0060 article-title: Mechanism and function of deubiquitinating enzymes publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2004.10.003 – volume: 288 start-page: 5389 year: 2013 ident: 10.1016/j.bbagen.2020.129701_bb0110 article-title: Ubiquitin-specific peptidase 8 (USP8) regulates endosomal trafficking of the epithelial Na+ channel publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.425272 – volume: 291 start-page: 15753 year: 2016 ident: 10.1016/j.bbagen.2020.129701_bb0105 article-title: The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.718023 – volume: 86 start-page: 129 year: 2017 ident: 10.1016/j.bbagen.2020.129701_bb0120 article-title: Ubiquitin ligases: structure, function, and regulation publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060815-014922 – volume: 21 year: 2019 ident: 10.1016/j.bbagen.2020.129701_bb0205 article-title: Activation of protein kinase a stimulates SUMOylation, expression, and transport activity of organic anion transporter 3 publication-title: AAPS J. doi: 10.1208/s12248-019-0303-4 – volume: 5 start-page: 552 year: 2010 ident: 10.1016/j.bbagen.2020.129701_bb0230 article-title: Synthesis and biological evaluation of 9-oxo-9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile analogues as potential inhibitors of deubiquitinating enzymes publication-title: ChemMedChem doi: 10.1002/cmdc.200900409 – volume: 5 year: 2016 ident: 10.1016/j.bbagen.2020.129701_bb0085 article-title: The business of deubiquitination - location, location, location publication-title: F1000Res doi: 10.12688/f1000research.7220.1 – volume: 100 start-page: E997 year: 2015 ident: 10.1016/j.bbagen.2020.129701_bb0155 article-title: The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing’s disease publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2015-1453 – volume: 10 start-page: 550 year: 2009 ident: 10.1016/j.bbagen.2020.129701_bb0065 article-title: Breaking the chains: structure and function of the deubiquitinases publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2731 – volume: 283 start-page: 32570 year: 2008 ident: 10.1016/j.bbagen.2020.129701_bb0055 article-title: Organic anion transporter OAT1 undergoes constitutive and protein kinase C-regulated trafficking through a dynamin- and clathrin-dependent pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M800298200 – volume: 19 start-page: 3894 year: 2013 ident: 10.1016/j.bbagen.2020.129701_bb0160 article-title: USP8 is a novel target for overcoming gefitinib resistance in lung cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-12-3696 – volume: 76 start-page: 481 year: 2009 ident: 10.1016/j.bbagen.2020.129701_bb0005 article-title: Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis publication-title: Mol. Pharmacol. doi: 10.1124/mol.109.056564 – volume: 112 start-page: E1210 year: 2015 ident: 10.1016/j.bbagen.2020.129701_bb0115 article-title: BRUCE regulates DNA double-strand break response by promoting USP8 deubiquitination of BRIT1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1418335112 – volume: 47 start-page: 31 year: 2015 ident: 10.1016/j.bbagen.2020.129701_bb0150 article-title: Mutations in the deubiquitinase gene USP8 cause Cushing’s disease publication-title: Nat. Genet. doi: 10.1038/ng.3166 – volume: 285 start-page: 37895 year: 2010 ident: 10.1016/j.bbagen.2020.129701_bb0165 article-title: The deubiquitinating enzyme USP8 promotes trafficking and degradation of the chemokine receptor 4 at the sorting endosome publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.129411 – volume: 1618 start-page: 185 year: 2003 ident: 10.1016/j.bbagen.2020.129701_bb0010 article-title: The molecular and cellular physiology of basolateral organic anion transport in mammalian renal tubules publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2003.08.015 – volume: 83 start-page: 217 year: 2013 ident: 10.1016/j.bbagen.2020.129701_bb0040 article-title: Lysine 48-linked polyubiquitination of organic anion transporter-1 is essential for its protein kinase C-regulated endocytosis publication-title: Mol. Pharmacol. doi: 10.1124/mol.112.082065 – volume: 17 start-page: 53 year: 2016 ident: 10.1016/j.bbagen.2020.129701_bb0100 article-title: VEGFR2 trafficking, Signaling and proteolysis is regulated by the ubiquitin Isopeptidase USP8 publication-title: Traffic doi: 10.1111/tra.12341 – volume: 129 start-page: 2102 year: 2016 ident: 10.1016/j.bbagen.2020.129701_bb0220 article-title: Inhibition of ubiquitin-specific peptidase 8 suppresses adrenocorticotropic hormone production and tumorous Corticotroph cell growth in AtT20 cells publication-title: Chin. Med. J. doi: 10.4103/0366-6999.189047 – volume: 627 start-page: 49 year: 2010 ident: 10.1016/j.bbagen.2020.129701_bb0175 article-title: Angiotensin II inhibits activity of human organic anion transporter 3 through activation of protein kinase Calpha: accelerating endocytosis of the transporter publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2009.10.048 – volume: 38 start-page: 889 year: 2008 ident: 10.1016/j.bbagen.2020.129701_bb0020 article-title: Physiology, structure, and regulation of the cloned organic anion transporters publication-title: Xenobiotica doi: 10.1080/00498250801927435 – volume: 284 start-page: 2672 year: 2009 ident: 10.1016/j.bbagen.2020.129701_bb0195 article-title: Activation of protein kinase Czeta increases OAT1 (SLC22A6)- and OAT3 (SLC22A8)-mediated transport publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808078200 – volume: 15 start-page: 77 year: 2014 ident: 10.1016/j.bbagen.2020.129701_bb0170 article-title: HIF1alpha deubiquitination by USP8 is essential for ciliogenesis in normoxia publication-title: EMBO Rep. doi: 10.1002/embr.201337688 – volume: 60 start-page: 39 year: 2011 ident: 10.1016/j.bbagen.2020.129701_bb0070 article-title: Regulation of endocytic sorting by ESCRT-DUB-mediated deubiquitination publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-011-9181-9 – volume: 67 start-page: 177 year: 2020 ident: 10.1016/j.bbagen.2020.129701_bb0210 article-title: Ubiquitin-specific protease 8 inhibitor suppresses adrenocorticotropic hormone production and corticotroph tumor cell proliferation publication-title: Endocr. J. doi: 10.1507/endocrj.EJ19-0239 – volume: 86 start-page: 159 year: 2017 ident: 10.1016/j.bbagen.2020.129701_bb0125 article-title: Mechanisms of Deubiquitinase specificity and regulation publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-061516-044916 – volume: 27 start-page: 533 year: 2006 ident: 10.1016/j.bbagen.2020.129701_bb0185 article-title: The functional evaluation of human peptide/histidine transporter 1 (hPHT1) in transiently transfected COS-7 cells publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2005.09.014 – volume: 290 start-page: F905 year: 2006 ident: 10.1016/j.bbagen.2020.129701_bb0015 article-title: The human organic anion transporter 3 (OAT3; SLC22A8): genetic variation and functional genomics publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.00272.2005 – volume: 3 start-page: 242 year: 2012 ident: 10.1016/j.bbagen.2020.129701_bb0045 article-title: Short-term and long-term effects of protein kinase C on the trafficking and stability of human organic anion transporter 3 publication-title: Int J Biochem Mol Biol – start-page: 1 year: 2008 ident: 10.1016/j.bbagen.2020.129701_bb0235 article-title: Crosstalk between the SUMO and ubiquitin pathways publication-title: Ernst Schering Found Symp Proc – volume: 15 start-page: 53 year: 2013 ident: 10.1016/j.bbagen.2020.129701_bb0030 article-title: Renal organic anion transporters (SLC22 family): expression, regulation, roles in toxicity, and impact on injury and disease publication-title: AAPS J. doi: 10.1208/s12248-012-9413-y – volume: 277 start-page: 19665 year: 2002 ident: 10.1016/j.bbagen.2020.129701_bb0180 article-title: Growth-related renal type II Na/pi cotransporter publication-title: J. Biol. Chem. doi: 10.1074/jbc.M200943200 – volume: 347 start-page: 221 year: 2014 ident: 10.1016/j.bbagen.2020.129701_bb0200 article-title: Decreased renal organic anion transporter 3 expression in type 1 diabetic rats publication-title: Am J Med Sci doi: 10.1097/MAJ.0b013e3182831740 – volume: 20 start-page: 57 year: 2015 ident: 10.1016/j.bbagen.2020.129701_bb0225 article-title: Inhibition of ubiquitin-specific peptidase 8 suppresses growth of Gefitinib-resistant non-small cell lung Cancer cells by inducing apoptosis publication-title: J Cancer Prev doi: 10.15430/JCP.2015.20.1.57 – volume: 73 start-page: 440 year: 2007 ident: 10.1016/j.bbagen.2020.129701_bb0025 article-title: Gene expression and regulation of drug transporters in the intestine and kidney publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2006.10.010 – volume: 22 start-page: 602 year: 2002 ident: 10.1016/j.bbagen.2020.129701_bb0035 article-title: Structure, function, and regulation of renal organic anion transporters publication-title: Med. Res. Rev. doi: 10.1002/med.10019 – volume: 285 start-page: 34909 year: 2010 ident: 10.1016/j.bbagen.2020.129701_bb0095 article-title: Regulation of epidermal growth factor receptor ubiquitination and trafficking by the USP8.STAM complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.016287 – volume: 284 start-page: F467 year: 2003 ident: 10.1016/j.bbagen.2020.129701_bb0190 article-title: Renal expression of novel Na+/H+ exchanger isoform NHE8 publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.00352.2002 – volume: 45 start-page: 887 year: 2017 ident: 10.1016/j.bbagen.2020.129701_bb0050 article-title: PKC/Nedd4–2 signaling pathway regulates the cell surface expression of drug transporter hOAT1 publication-title: Drug Metab Dispos doi: 10.1124/dmd.117.075861 – volume: 25 start-page: 3938 year: 2011 ident: 10.1016/j.bbagen.2020.129701_bb0090 article-title: Role of ubiquitylation and USP8-dependent deubiquitylation in the endocytosis and lysosomal targeting of plasma membrane KCa3.1 publication-title: FASEB J doi: 10.1096/fj.11-187005 – volume: 16 start-page: 950 year: 2015 ident: 10.1016/j.bbagen.2020.129701_bb0145 article-title: The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells publication-title: Nat. Immunol. doi: 10.1038/ni.3230 – volume: 311 start-page: F320 year: 2016 ident: 10.1016/j.bbagen.2020.129701_bb0135 article-title: The role of Nedd4–1 WW domains in binding and regulating human organic anion transporter 1 publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.00153.2016 – volume: 102 start-page: 120 year: 2016 ident: 10.1016/j.bbagen.2020.129701_bb0130 article-title: Serum- and glucocorticoid-inducible kinase SGK2 regulates human organic anion transporters 4 via ubiquitin ligase Nedd4-2 publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2015.11.024 – volume: 93 start-page: 1289 year: 2013 ident: 10.1016/j.bbagen.2020.129701_bb0080 article-title: Deubiquitylases from genes to organism publication-title: Physiol. Rev. doi: 10.1152/physrev.00002.2013 – volume: 310 start-page: F821 year: 2016 ident: 10.1016/j.bbagen.2020.129701_bb0140 article-title: Nedd4–2 but not Nedd4–1 is critical for protein kinase C-regulated ubiquitination, expression, and transport activity of human organic anion transporter 1 publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.00522.2015 – volume: 63 start-page: 146 year: 2016 ident: 10.1016/j.bbagen.2020.129701_bb0075 article-title: MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of Deubiquitinating enzymes publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.05.009 – volume: 24 start-page: 301 year: 2017 ident: 10.1016/j.bbagen.2020.129701_bb0215 article-title: Role of tyrosine kinase inhibitors in the treatment of pituitary tumours: from bench to bedside publication-title: Curr Opin Endocrinol Diabetes Obes doi: 10.1097/MED.0000000000000344 |
SSID | ssj0000595 |
Score | 2.347883 |
Snippet | Background
Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney... Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney... BackgroundOrganic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129701 |
SubjectTerms | Animals biotinylation Chlorocebus aethiops COS Cells Deubiquitination Drug transport drugs Endopeptidases - metabolism Endosomal Sorting Complexes Required for Transport - metabolism Humans kidneys Organic Anion Transport Protein 1 - metabolism Organic anion transporter Protein Stability Protein Transport Regulation toxicity ubiquitin Ubiquitin Thiolesterase - metabolism Ubiquitin-specific peptidase Ubiquitination |
Title | Ubiquitin-specific peptidase 8 regulates the trafficking and stability of the human organic anion transporter 1 |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129701 https://www.ncbi.nlm.nih.gov/pubmed/32818533 https://www.proquest.com/docview/2436402205 https://www.proquest.com/docview/2551988524 https://pubmed.ncbi.nlm.nih.gov/PMC7863590 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamoQkuE4wf6waTkbiGJraT2MepYiqg7TIq7WY5_iGCUNp17WEX_nbes5OOjolJ3NL0WXXznPe-xN_7HiEfmKqsLwqXWeHzTDjpM1mgPJ63hgkTmKiwUPj8oprOxJer8mqHTIZaGKRV9rE_xfQYrfsz4_5qjhdtO77ETT2AEyWDAwahGCvYRY2r_OOvO5oHwIcy7SSIDK2H8rnI8WoauGlRBZWhzIKq-9YwD6Snv-HnfRblH2np7DnZ7_EkPU1TfkF2fHdA9lKHydsD8nQyNHR7Seazpr1et6u2y7C-EjlCdIGkFgeZjEq6TG3p_Q0FUEjhx1BdAt-kU9M5Cigy8mhv6TxEg9jdj6auUBZMwME4qJdKX9LiFZmdffo2mWZ9vwVwlKpWWTDCe2bKPBhvIbHxAM863shcWclUCEZCOHCsyS1ESc4DgLMQCtW4XBpnbM1fk91u3vlDQn3eBClN8KHiQpnK2LIxplDWOQOoI4wIHy6ztr0YOfbE-KkH1tkPnZyj0Tk6OWdEss2oRRLjeMS-HjyotxaVhnzxyMj3g8M1eAk3UUzn5-sbzQSvRCxP_ocNwFAlZcnEiLxJi2QzXx7ltziHuW0tn40B6n1vf9O136Pudy0BHar86L__1TF5hp8SG-ct2V0t1_4dYKpVcxJvmhPy5PTz1-nFb_IZJEk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxEB2VIlQuCMpX-DQS1yW7tndjH1FEFaDthUbqzfJ6bbEIbUKaHHrpb--MvRsIICpxi7JjxfHYMy_xmzcAb7munC-KJnPS55lslM9UQfJ43lkubeCyokLhk9NqNpefzsvzPZgOtTBEq-xjf4rpMVr374z71Rwv23b8hS71EE6UHF9wDMW34LbE40ttDN5d_eR5IH4o01WCzMh8qJ-LJK-6xlNLMqicdBb0pO8N85f89Cf-_J1G-UteOroP93pAyd6nOT-APd8dwp3UYvLyEA6mQ0e3h7CY1-2PTbtuu4wKLIkkxJbEamkwlTHFVqkvvb9giAoZfhjJS9Bf6cx2DUMYGYm0l2wRokFs78dSWyiHJuhhGtRrpa9Y8QjmRx_OprOsb7iAntLVOgtWes9tmQfrHWY2EfDHjrcq105xHYJVGA8aXucO11mIgOgshELXTa5sY91EPIb9btH5p8B8XgelbPChElLbyrqytrbQrmkswo4wAjEss3G9Gjk1xfhuBtrZN5OcY8g5JjlnBNl21DKpcdxgPxk8aHZ2lcGEccPIN4PDDXqJblFs5xebC8OlqGSsT_6HDeJQrVTJ5QiepE2yna-I-ltC4Nx2ts_WgAS_d5907dco_D1RCA91_uy_v9VrOJidnRyb44-nn5_DXXqSqDkvYH-92viXCLDW9at4gK4BYTEl1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ubiquitin-specific+peptidase+8+regulates+the+trafficking+and+stability+of+the+human+organic+anion+transporter+1&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Zhang%2C+Jinghui&rft.au=Liu%2C+Chenchang&rft.au=You%2C+Guofeng&rft.date=2020-12-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1864&rft.issue=12&rft.spage=129701&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129701&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |