CT-based radiomic signatures for prediction of pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy

The objective of this study was to build models to predict complete pathologic response (pCR) after neoadjuvant chemoradiotherapy (nCRT) in esophageal squamous cell carcinoma (ESCC) patients using radiomic features. A total of 55 consecutive patients pathologically diagnosed as having ESCC were incl...

Full description

Saved in:
Bibliographic Details
Published inJournal of radiation research Vol. 60; no. 4; pp. 538 - 545
Main Authors Yang, Zhining, He, Binghui, Zhuang, Xinyu, Gao, Xiaoying, Wang, Dandan, Li, Mei, Lin, Zhixiong, Luo, Ren
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of this study was to build models to predict complete pathologic response (pCR) after neoadjuvant chemoradiotherapy (nCRT) in esophageal squamous cell carcinoma (ESCC) patients using radiomic features. A total of 55 consecutive patients pathologically diagnosed as having ESCC were included in this study. Patients were divided into a training cohort (44 patients) and a testing cohort (11 patients). The logistic regression analysis using likelihood ratio forward selection was performed to select the predictive clinical parameters for pCR, and the least absolute shrinkage and selection operator (LASSO) with logistic regression to select radiomic predictors in the training cohort. Model performance in the training and testing groups was evaluated using the area under the receiver operating characteristic curves (AUC). The multivariate logistic regression analysis identified no clinical predictors for pCR. Thus, only radiomic features selected by LASSO were used to build prediction models. Three logistic regression models for pCR prediction were developed in the training cohort, and they were able to predict pCR well in both the training (AUC, 0.84–0.86) and the testing cohorts (AUC, 0.71–0.79). There were no differences between these AUCs. We developed three predictive models for pCR after nCRT using radiomic parameters and they demonstrated good model performance.
AbstractList The objective of this study was to build models to predict complete pathologic response (pCR) after neoadjuvant chemoradiotherapy (nCRT) in esophageal squamous cell carcinoma (ESCC) patients using radiomic features. A total of 55 consecutive patients pathologically diagnosed as having ESCC were included in this study. Patients were divided into a training cohort (44 patients) and a testing cohort (11 patients). The logistic regression analysis using likelihood ratio forward selection was performed to select the predictive clinical parameters for pCR, and the least absolute shrinkage and selection operator (LASSO) with logistic regression to select radiomic predictors in the training cohort. Model performance in the training and testing groups was evaluated using the area under the receiver operating characteristic curves (AUC). The multivariate logistic regression analysis identified no clinical predictors for pCR. Thus, only radiomic features selected by LASSO were used to build prediction models. Three logistic regression models for pCR prediction were developed in the training cohort, and they were able to predict pCR well in both the training (AUC, 0.84-0.86) and the testing cohorts (AUC, 0.71-0.79). There were no differences between these AUCs. We developed three predictive models for pCR after nCRT using radiomic parameters and they demonstrated good model performance.
The objective of this study was to build models to predict complete pathologic response (pCR) after neoadjuvant chemoradiotherapy (nCRT) in esophageal squamous cell carcinoma (ESCC) patients using radiomic features. A total of 55 consecutive patients pathologically diagnosed as having ESCC were included in this study. Patients were divided into a training cohort (44 patients) and a testing cohort (11 patients). The logistic regression analysis using likelihood ratio forward selection was performed to select the predictive clinical parameters for pCR, and the least absolute shrinkage and selection operator (LASSO) with logistic regression to select radiomic predictors in the training cohort. Model performance in the training and testing groups was evaluated using the area under the receiver operating characteristic curves (AUC). The multivariate logistic regression analysis identified no clinical predictors for pCR. Thus, only radiomic features selected by LASSO were used to build prediction models. Three logistic regression models for pCR prediction were developed in the training cohort, and they were able to predict pCR well in both the training (AUC, 0.84-0.86) and the testing cohorts (AUC, 0.71-0.79). There were no differences between these AUCs. We developed three predictive models for pCR after nCRT using radiomic parameters and they demonstrated good model performance.The objective of this study was to build models to predict complete pathologic response (pCR) after neoadjuvant chemoradiotherapy (nCRT) in esophageal squamous cell carcinoma (ESCC) patients using radiomic features. A total of 55 consecutive patients pathologically diagnosed as having ESCC were included in this study. Patients were divided into a training cohort (44 patients) and a testing cohort (11 patients). The logistic regression analysis using likelihood ratio forward selection was performed to select the predictive clinical parameters for pCR, and the least absolute shrinkage and selection operator (LASSO) with logistic regression to select radiomic predictors in the training cohort. Model performance in the training and testing groups was evaluated using the area under the receiver operating characteristic curves (AUC). The multivariate logistic regression analysis identified no clinical predictors for pCR. Thus, only radiomic features selected by LASSO were used to build prediction models. Three logistic regression models for pCR prediction were developed in the training cohort, and they were able to predict pCR well in both the training (AUC, 0.84-0.86) and the testing cohorts (AUC, 0.71-0.79). There were no differences between these AUCs. We developed three predictive models for pCR after nCRT using radiomic parameters and they demonstrated good model performance.
Author He, Binghui
Yang, Zhining
Lin, Zhixiong
Li, Mei
Luo, Ren
Wang, Dandan
Gao, Xiaoying
Zhuang, Xinyu
AuthorAffiliation 2 Department of Radiation Oncology, Donghua Hospital Affiliated to Zhongshan University,1 Dongcheng East Road, Dongguan, Guangdong, China
1 Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong, China
4 Department of Radiation Oncology, Medical Center—University of Freiburg, Robert-Koch-Str. 3, Freiburg, Germany
3 Eye Center, Medical Center—University of Freiburg, Killianstraße, Freiburg Germany
5 Faculty of Biology, University of Freiburg, Freiburg, Germany
AuthorAffiliation_xml – name: 2 Department of Radiation Oncology, Donghua Hospital Affiliated to Zhongshan University,1 Dongcheng East Road, Dongguan, Guangdong, China
– name: 4 Department of Radiation Oncology, Medical Center—University of Freiburg, Robert-Koch-Str. 3, Freiburg, Germany
– name: 1 Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong, China
– name: 5 Faculty of Biology, University of Freiburg, Freiburg, Germany
– name: 3 Eye Center, Medical Center—University of Freiburg, Killianstraße, Freiburg Germany
Author_xml – sequence: 1
  givenname: Zhining
  surname: Yang
  fullname: Yang, Zhining
  organization: Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong, China
– sequence: 2
  givenname: Binghui
  surname: He
  fullname: He, Binghui
  organization: Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong, China, Department of Radiation Oncology, Donghua Hospital Affiliated to Zhongshan University,1 Dongcheng East Road, Dongguan, Guangdong, China
– sequence: 3
  givenname: Xinyu
  surname: Zhuang
  fullname: Zhuang, Xinyu
  organization: Eye Center, Medical Center—University of Freiburg, Killianstraße, Freiburg Germany
– sequence: 4
  givenname: Xiaoying
  surname: Gao
  fullname: Gao, Xiaoying
  organization: Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong, China
– sequence: 5
  givenname: Dandan
  surname: Wang
  fullname: Wang, Dandan
  organization: Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong, China
– sequence: 6
  givenname: Mei
  surname: Li
  fullname: Li, Mei
  organization: Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong, China
– sequence: 7
  givenname: Zhixiong
  surname: Lin
  fullname: Lin, Zhixiong
  organization: Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong, China
– sequence: 8
  givenname: Ren
  orcidid: 0000-0001-9508-5497
  surname: Luo
  fullname: Luo, Ren
  organization: Department of Radiation Oncology, Medical Center—University of Freiburg, Robert-Koch-Str. 3, Freiburg, Germany, Faculty of Biology, University of Freiburg, Freiburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31111948$$D View this record in MEDLINE/PubMed
BookMark eNptktuKFDEQhoOsuAe98QEk4I0I41Y66UNuBBk8wYI363WoSVfPZOhOepP0wvoevq8ZZ1d0MTcJ5Ku__qL-c3bigyfGXgp4J0DLy32MlzH-gKp9ws6EVHqlRd2esDNQ5S2hgVN2ntIeCgE1PGOnUpSjVXfGfq6vVxtM1POIvQuTszy5rce8REp8CJHPkXpnswueh4HPmHdhDNvC2TDNI2XihZyDT8Sd55TCvMMt4cjTzYJTWBK3NI7cYrTOhwk5Dpki9xSw3y-36DO3O5rC7_55RxHnu-fs6YBjohf39wX7_unj9frL6urb56_rD1crq3STV4OSommtJGh0q0SnoNU19J1SgFYNVAvZNfVm0-pBtZWqJVQ1VqD0UHV1VZG8YO-PuvOymai35HPE0czRTRjvTEBn_v3xbme24dY0jQINbRF4cy8Qw81CKZvJpcO8WOZbkqkqWUHTSt0V9PUjdB-W6Mt4RooWGqmEFoV69bejP1YeNlYAOAI2hpQiDca6jIf1FINuNALMIRSmhMIcQ1FK3j4qeVD9D_wLH4i87A
CitedBy_id crossref_primary_10_1088_1361_6560_abac9c
crossref_primary_10_1245_s10434_022_12207_7
crossref_primary_10_3390_ijms20235825
crossref_primary_10_3390_biomedicines11113072
crossref_primary_10_1186_s40644_024_00659_x
crossref_primary_10_1186_s12967_024_05392_4
crossref_primary_10_1259_bjr_20210934
crossref_primary_10_1001_jamanetworkopen_2020_15927
crossref_primary_10_3389_fonc_2024_1347650
crossref_primary_10_3390_cancers13102469
crossref_primary_10_1007_s00330_023_10040_4
crossref_primary_10_3389_fonc_2024_1350914
crossref_primary_10_3389_fonc_2023_1089365
crossref_primary_10_1007_s00261_023_03938_6
crossref_primary_10_3389_fonc_2020_615167
crossref_primary_10_1016_j_tranon_2023_101804
crossref_primary_10_3748_wjg_v27_i36_6110
crossref_primary_10_1016_j_clbc_2020_12_004
crossref_primary_10_3748_wjg_v28_i42_6002
crossref_primary_10_1016_j_ctro_2022_01_003
crossref_primary_10_1186_s40364_023_00480_x
crossref_primary_10_3389_fonc_2023_1131883
crossref_primary_10_1007_s00330_020_07439_8
crossref_primary_10_1016_j_radonc_2022_06_010
crossref_primary_10_3390_diagnostics11061049
crossref_primary_10_1016_j_ejso_2024_108450
crossref_primary_10_1016_j_pharmthera_2024_108591
crossref_primary_10_1186_s12885_024_12239_0
crossref_primary_10_1002_acm2_13434
crossref_primary_10_1038_s41598_024_81237_w
crossref_primary_10_3390_diagnostics12051070
crossref_primary_10_3389_fonc_2023_1162238
crossref_primary_10_3389_fimmu_2024_1405146
crossref_primary_10_1186_s13244_024_01851_0
crossref_primary_10_1186_s13014_021_01925_z
crossref_primary_10_3389_fonc_2023_1082960
crossref_primary_10_3389_fonc_2020_01398
crossref_primary_10_3390_cancers13092145
crossref_primary_10_1038_s41598_024_52418_4
crossref_primary_10_1016_j_ejso_2024_108052
crossref_primary_10_4251_wjgo_v14_i3_703
crossref_primary_10_1007_s00423_023_02951_z
crossref_primary_10_1016_j_radmp_2023_10_009
crossref_primary_10_1007_s00330_022_08776_6
crossref_primary_10_1186_s13014_020_01692_3
crossref_primary_10_3390_cancers14123035
crossref_primary_10_1016_j_radonc_2020_09_014
crossref_primary_10_1097_JS9_0000000000000441
crossref_primary_10_1007_s00330_023_09884_7
crossref_primary_10_1016_j_ijrobp_2021_06_033
crossref_primary_10_3390_cells12010114
crossref_primary_10_1007_s00330_023_10020_8
crossref_primary_10_1038_s41598_021_92363_0
crossref_primary_10_3389_fonc_2021_739933
crossref_primary_10_1016_j_media_2022_102423
crossref_primary_10_1259_bjro_20190046
crossref_primary_10_1007_s00259_021_05658_9
Cites_doi 10.1016/j.crad.2011.08.012
10.3389/fonc.2016.00072
10.1016/j.radonc.2015.04.028
10.1148/radiol.13122869
10.1093/dote/dox103
10.1093/annonc/mds617
10.1007/s00259-013-2486-8
10.1038/ncomms5006
10.1148/radiol.09091324
10.18637/jss.v033.i01
10.1002/mp.13202
10.1200/JCO.2015.65.9128
10.1186/1477-7819-12-170
10.2307/2531595
10.18637/jss.v039.i05
10.3322/caac.21262
10.1002/1097-0142(19940601)73:11<2680::AID-CNCR2820731105>3.0.CO;2-C
10.1158/0008-5472.CAN-17-0339
10.1007/s12029-015-9699-y
10.1002/ijc.25516
10.1016/j.jcma.2017.08.007
10.21037/jtd.2017.06.123
10.1148/radiol.2018172229
10.1186/1471-2105-12-77
10.2967/jnumed.110.082404
10.1245/s10434-011-2078-4
10.1111/dote.12170
10.18632/oncotarget.22304
10.1016/j.radonc.2017.07.013
10.1056/NEJMoa1112088
10.1016/j.athoracsur.2008.11.001
10.1088/0031-9155/61/2/906
10.2967/jnumed.115.163766
10.2967/jnumed.113.129858
10.2967/jnumed.114.144055
10.1038/nature20805
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
The Author(s) 2019. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2019. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology. 2019
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8AO
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
HCIFZ
K9.
M0S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1093/jrr/rrz027
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1349-9157
EndPage 545
ExternalDocumentID PMC6640907
31111948
10_1093_jrr_rrz027
Genre Journal Article
GroupedDBID ---
-~X
.I3
0R~
29L
2WC
4.4
53G
5GY
5VS
7X7
8AO
8FI
8FJ
AAFWJ
AAMVS
AAOGV
AAPXW
AAVAP
AAWTL
AAYXX
ABAZT
ABEJV
ABGNP
ABPTD
ABQLI
ABUWG
ABVLG
ABWST
ABXVV
ACGFS
ADBBV
ADHZD
ADMLS
AENEX
AENZO
AFFNX
AFKRA
AFPKN
AGQXC
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
ARAPS
BAWUL
BAYMD
BCNDV
BEFXN
BENPR
BFFAM
BGLVJ
BGNUA
BKEBE
BPEOZ
CCPQU
CIDKT
CITATION
CS3
DIK
DU5
D~K
E3Z
EBS
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INH
ITC
JAVBF
JMI
JSF
JSH
KSI
M48
ML0
O9-
OAWHX
OCL
OJQWA
OK1
OVT
O~Y
P2P
PEELM
PHGZM
PHGZT
PIMPY
RNS
ROL
RPM
RXO
TOX
TR2
UKHRP
W2D
XSB
~D7
AAPPN
BTTYL
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
ROX
3V.
7XB
8FE
8FG
8FK
AZQEC
DWQXO
K9.
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c496t-f43167c3e0697418407950d8440ac4fe513865bb79f472453025a2049f28522e3
IEDL.DBID M48
ISSN 0449-3060
1349-9157
IngestDate Thu Aug 21 18:11:25 EDT 2025
Fri Jul 11 03:21:55 EDT 2025
Sat Aug 23 13:06:12 EDT 2025
Wed Feb 19 02:31:23 EST 2025
Tue Jul 01 03:33:52 EDT 2025
Thu Apr 24 22:53:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords complete pathologic response
esophageal squamous cell carcinoma
neoadjuvant chemoradiotherapy
radiomics
LASSO
Language English
License http://creativecommons.org/licenses/by/4.0
The Author(s) 2019. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-f43167c3e0697418407950d8440ac4fe513865bb79f472453025a2049f28522e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Zhining Yang, Binghui He and Xinyu Zhuang contributed equally to this work.
ORCID 0000-0001-9508-5497
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1093/jrr/rrz027
PMID 31111948
PQID 3170634191
PQPubID 1976363
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6640907
proquest_miscellaneous_2232067398
proquest_journals_3170634191
pubmed_primary_31111948
crossref_citationtrail_10_1093_jrr_rrz027
crossref_primary_10_1093_jrr_rrz027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Journal of radiation research
PublicationTitleAlternate J Radiat Res
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References van Hagen (2019071912395326000_rrz027C19) 2012; 366
Mandard (2019071912395326000_rrz027C10) 1994; 73
Dittrick (2019071912395326000_rrz027C5) 2012; 19
Hatt (2019071912395326000_rrz027C16) 2013; 40
van Griethuysen (2019071912395326000_rrz027C21) 2017; 77
van Rossum (2019071912395326000_rrz027C13) 2016; 57
Lin (2019071912395326000_rrz027C4) 2018; 81
Simon (2019071912395326000_rrz027C23) 2011; 39
Toxopeus (2019071912395326000_rrz027C20) 2015; 115
Ferlay (2019071912395326000_rrz027C2) 2010; 127
Zhai (2019071912395326000_rrz027C8) 2017; 124
Yip (2019071912395326000_rrz027C11) 2015; 28
Chao (2019071912395326000_rrz027C33) 2017; 30
Hou (2019071912395326000_rrz027C12) 2017; 8
Donahue (2019071912395326000_rrz027C3) 2009; 87
Huang (2019071912395326000_rrz027C9) 2016; 34
DeLong (2019071912395326000_rrz027C25) 1988; 44
Yip (2019071912395326000_rrz027C18) 2016; 6
Robin (2019071912395326000_rrz027C24) 2011; 12
Orlhac (2019071912395326000_rrz027C31) 2014; 55
Torre (2019071912395326000_rrz027C1) 2015; 65
Beukinga (2019071912395326000_rrz027C14) 2018; 287
Friedman (2019071912395326000_rrz027C22) 2010; 33
Huang (2019071912395326000_rrz027C32) 2014; 12
The Cancer Genome Atlas Research Network (2019071912395326000_rrz027C36) 2017; 541
Kwee (2019071912395326000_rrz027C26) 2010; 254
Hatt (2019071912395326000_rrz027C30) 2015; 56
Soufi (2019071912395326000_rrz027C35) 2018; 45
den Bakker (2019071912395326000_rrz027C7) 2017; 9
Boggs (2019071912395326000_rrz027C34) 2015; 46
Tixier (2019071912395326000_rrz027C15) 2011; 52
Aerts (2019071912395326000_rrz027C6) 2014; 5
Cheedella (2019071912395326000_rrz027C27) 2013; 24
Ganeshan (2019071912395326000_rrz027C28) 2012; 67
Yip (2019071912395326000_rrz027C17) 2016; 61
Yip (2019071912395326000_rrz027C29) 2014; 270
References_xml – volume: 67
  start-page: 157
  year: 2012
  ident: 2019071912395326000_rrz027C28
  article-title: Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2011.08.012
– volume: 6
  start-page: 72
  year: 2016
  ident: 2019071912395326000_rrz027C18
  article-title: Relationship between the temporal changes in positron-emission tomography—imaging-based textural features and pathologic response and survival in esophageal cancer patients
  publication-title: Front Oncol
  doi: 10.3389/fonc.2016.00072
– volume: 115
  start-page: 392
  year: 2015
  ident: 2019071912395326000_rrz027C20
  article-title: Nomogram for predicting pathologically complete response after neoadjuvant chemoradiotherapy for oesophageal cancer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2015.04.028
– volume: 270
  start-page: 141
  year: 2014
  ident: 2019071912395326000_rrz027C29
  article-title: Primary esophageal cancer: heterogeneity as potential prognostic biomarker in patients treated with definitive chemotherapy and radiation therapy
  publication-title: Radiology
  doi: 10.1148/radiol.13122869
– volume: 30
  start-page: 1
  year: 2017
  ident: 2019071912395326000_rrz027C33
  article-title: Development of a nomogram for the prediction of pathological complete response after neoadjuvant chemoradiotherapy in patients with esophageal squamous cell carcinoma
  publication-title: Dis Esophagus
  doi: 10.1093/dote/dox103
– volume: 24
  start-page: 1262
  year: 2013
  ident: 2019071912395326000_rrz027C27
  article-title: Association between clinical complete response and pathological complete response after preoperative chemoradiation in patients with gastroesophageal cancer: analysis in a large cohort
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mds617
– volume: 40
  start-page: 1662
  year: 2013
  ident: 2019071912395326000_rrz027C16
  article-title: Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-013-2486-8
– volume: 5
  start-page: 4006
  year: 2014
  ident: 2019071912395326000_rrz027C6
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
– volume: 254
  start-page: 707
  year: 2010
  ident: 2019071912395326000_rrz027C26
  article-title: Prediction of tumor response to neoadjuvant therapy in patients with esophageal cancer with use of 18F FDG PET: a systematic review
  publication-title: Radiology
  doi: 10.1148/radiol.09091324
– volume: 33
  start-page: 1
  year: 2010
  ident: 2019071912395326000_rrz027C22
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J Stat Softw
  doi: 10.18637/jss.v033.i01
– volume: 45
  start-page: 5116
  year: 2018
  ident: 2019071912395326000_rrz027C35
  article-title: Identification of optimal mother wavelets in survival prediction of lung cancer patients using wavelet decomposition-based radiomic features
  publication-title: Med Phys
  doi: 10.1002/mp.13202
– volume: 34
  start-page: 2157
  year: 2016
  ident: 2019071912395326000_rrz027C9
  article-title: Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2015.65.9128
– volume: 12
  start-page: 170
  year: 2014
  ident: 2019071912395326000_rrz027C32
  article-title: Predictors of pathological complete response to neoadjuvant chemoradiotherapy for esophageal squamous cell carcinoma
  publication-title: World J Surg Oncol
  doi: 10.1186/1477-7819-12-170
– volume: 44
  start-page: 837
  year: 1988
  ident: 2019071912395326000_rrz027C25
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 39
  start-page: 1
  year: 2011
  ident: 2019071912395326000_rrz027C23
  article-title: Regularization paths for Cox’s proportional hazards model via coordinate descent
  publication-title: J Stat Softw
  doi: 10.18637/jss.v039.i05
– volume: 65
  start-page: 87
  year: 2015
  ident: 2019071912395326000_rrz027C1
  article-title: Global cancer statistics, 2012
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21262
– volume: 73
  start-page: 2680
  year: 1994
  ident: 2019071912395326000_rrz027C10
  article-title: Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations
  publication-title: Cancer
  doi: 10.1002/1097-0142(19940601)73:11<2680::AID-CNCR2820731105>3.0.CO;2-C
– volume: 77
  start-page: e104
  year: 2017
  ident: 2019071912395326000_rrz027C21
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0339
– volume: 46
  start-page: 131
  year: 2015
  ident: 2019071912395326000_rrz027C34
  article-title: Primary gross tumor volume is an important prognostic factor in locally advanced esophageal cancer patients treated with trimodality therapy
  publication-title: J Gastrointest Cancer
  doi: 10.1007/s12029-015-9699-y
– volume: 127
  start-page: 2893
  year: 2010
  ident: 2019071912395326000_rrz027C2
  article-title: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008
  publication-title: Int J Cancer
  doi: 10.1002/ijc.25516
– volume: 81
  start-page: 18
  year: 2018
  ident: 2019071912395326000_rrz027C4
  article-title: The impact of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced squamous cell carcinoma of esophagus
  publication-title: J Chin Med Assoc
  doi: 10.1016/j.jcma.2017.08.007
– volume: 9
  start-page: S843
  year: 2017
  ident: 2019071912395326000_rrz027C7
  article-title: Non responders to neoadjuvant chemoradiation for esophageal cancer: why better prediction is necessary
  publication-title: J Thorac Dis
  doi: 10.21037/jtd.2017.06.123
– volume: 287
  start-page: 983
  year: 2018
  ident: 2019071912395326000_rrz027C14
  article-title: Prediction of response to neoadjuvant chemotherapy and radiation therapy with baseline and restaging 18F-FDG PET imaging biomarkers in patients with esophageal cancer
  publication-title: Radiology
  doi: 10.1148/radiol.2018172229
– volume: 12
  start-page: 77
  year: 2011
  ident: 2019071912395326000_rrz027C24
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-77
– volume: 52
  start-page: 369
  year: 2011
  ident: 2019071912395326000_rrz027C15
  article-title: Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.110.082404
– volume: 19
  start-page: 1678
  year: 2012
  ident: 2019071912395326000_rrz027C5
  article-title: Pathologic nonresponders after neoadjuvant chemoradiation for esophageal cancer demonstrate no survival benefit compared with patients treated with primary esophagectomy
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-011-2078-4
– volume: 28
  start-page: 172
  year: 2015
  ident: 2019071912395326000_rrz027C11
  article-title: Assessment of changes in tumor heterogeneity following neoadjuvant chemotherapy in primary esophageal cancer
  publication-title: Dis Esophagus
  doi: 10.1111/dote.12170
– volume: 8
  start-page: 104444
  year: 2017
  ident: 2019071912395326000_rrz027C12
  article-title: Radiomic analysis in contrast-enhanced CT: predict treatment response to chemoradiotherapy in esophageal carcinoma
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.22304
– volume: 124
  start-page: 256
  year: 2017
  ident: 2019071912395326000_rrz027C8
  article-title: Improving the prediction of overall survival for head and neck cancer patients using image biomarkers in combination with clinical parameters
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2017.07.013
– volume: 366
  start-page: 2074
  year: 2012
  ident: 2019071912395326000_rrz027C19
  article-title: Preoperative chemoradiotherapy for esophageal or junctional cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1112088
– volume: 87
  start-page: 392
  year: 2009
  ident: 2019071912395326000_rrz027C3
  article-title: Complete pathologic response after neoadjuvant chemoradiotherapy for esophageal cancer is associated with enhanced survival
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2008.11.001
– volume: 61
  start-page: 906
  year: 2016
  ident: 2019071912395326000_rrz027C17
  article-title: Use of registration-based contour propagation in texture analysis for esophageal cancer pathologic response prediction
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/2/906
– volume: 57
  start-page: 691
  year: 2016
  ident: 2019071912395326000_rrz027C13
  article-title: The incremental value of subjective and quantitative assessment of 18F-FDG PET for the prediction of pathologic complete response to preoperative chemoradiotherapy in esophageal cancer
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.115.163766
– volume: 55
  start-page: 414
  year: 2014
  ident: 2019071912395326000_rrz027C31
  article-title: Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.113.129858
– volume: 56
  start-page: 38
  year: 2015
  ident: 2019071912395326000_rrz027C30
  article-title: 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.114.144055
– volume: 541
  start-page: 169
  year: 2017
  ident: 2019071912395326000_rrz027C36
  article-title: Integrated genomic characterization of oesophageal carcinoma
  publication-title: Nature
  doi: 10.1038/nature20805
SSID ssj0027050
Score 2.4687395
Snippet The objective of this study was to build models to predict complete pathologic response (pCR) after neoadjuvant chemoradiotherapy (nCRT) in esophageal squamous...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 538
SubjectTerms Adult
Aged
Chemoradiotherapy, Adjuvant
Chemotherapy
Esophageal cancer
Esophageal Neoplasms - diagnostic imaging
Esophageal Neoplasms - drug therapy
Esophageal Neoplasms - radiotherapy
Esophageal Squamous Cell Carcinoma - diagnostic imaging
Esophageal Squamous Cell Carcinoma - drug therapy
Esophageal Squamous Cell Carcinoma - radiotherapy
Female
Humans
Likelihood ratio
Logistic Models
Male
Middle Aged
Parameters
Prediction models
Radiation therapy
Radiomics
Regression Analysis
Regression models
Regular Paper
Retrospective Studies
ROC Curve
Squamous cell carcinoma
Tomography, X-Ray Computed
Treatment Outcome
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgCMQFQflaKGgQXDhYm40dZ31CqGKpkODUSr1F_hRb0WSb7B7K_-D_MmNnty0gzrbkKDP2vBmP32PsnZ_FStQmclVFw6UWjhuMDFxKabzQxgafGmS_qaMT-eW0Oh0LbsPYVrk9E9NB7TtHNfKpIJ4XIh-bfVhdcFKNotvVUULjNrszw0hDLV3zxeerhKtICq2FlHS_r4otPakW07O-n_b9z4LUZK4HpL9Q5p_Nkteiz-IhezDCRviY7fyI3QrtPrubhSQv99m9r-MV-WP26_CYU2jy0Bu_pDfHQD0aib9zAISosOppMhkEuggkSZwPQEjt5Qiioc-NswGWLQTSOcBDB1cfLjaGKgVA1X5wpELUducGks44tKEz_myDyHwN6AnnXVo_v--6fMJOFp-OD4_4qL3AndRqzWN6Iu9EKJQmghvM-3RV-LmUhXEyhmpGYqHW1jrKupSkPVSZEtONWM4R0gXxlO21XRueM4hGWlVabyuHHlA7SyqAXsRYSmeVdxP2fmuAxo3E5KSP8aPJF-SiQWM12VgT9nY3d5XpOP4562Brx2bckkNz5UAT9mY3jJuJ_pnBf7QZGsRKRGcv9HzCnmWz75YRFFy0xJH6hkPsJhBR982Rdvk9EXYrhVl0Ub_4_2e9ZPcRjencC3zA9tb9JrxCxLO2r5Nb_wZBQAau
  priority: 102
  providerName: ProQuest
Title CT-based radiomic signatures for prediction of pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy
URI https://www.ncbi.nlm.nih.gov/pubmed/31111948
https://www.proquest.com/docview/3170634191
https://www.proquest.com/docview/2232067398
https://pubmed.ncbi.nlm.nih.gov/PMC6640907
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwEB71IapeKiivlLIygguH0GzsvA4IQdWlQmqFUFfaW-T4IbZqkza7K7H8D_4vM3aydKFccskoljxjzzfO-PsA3uihTXgmbZgmVoai4CqUmBlCIYTUvJCV0a5B9jw9HYsvk2SyAb1-ZzeBs3tLO9KTGrdX737cLj_ggn_fkSEdXbbtUdv-xAJrE7YxI2WkZHAm8j-FV5REPTXpmv0u7HDaMwqS_7mbl_4Bm3_3TN5JQqOHsNehR_bRu_sRbJh6Hx54PcnlPuycdX_KH8Ov44uQMpRmrdRTunrMqFXD0XjOGCJVdtOSMfmFNZaRMrHfB5nrMkcszVrfP2vYtGaG5A5w78HRZ7cLSQcGjA79mSIxorq5lszJjbPaNFJfLhCgzxkGxHXjxvfXvJZPYDw6uTg-DTsJhlCJIp2H1t2UV9xEaUE8N1j-FUmkcyEiqYQ1yZA0Q6sqK6zIYkESRImMseqwcY7IzvCnsFU3tXkOzEpRpXGlq0RhIGSqIjFAza2NhapSrQJ42zugVB0_OclkXJX-Pzkv0W-l91sAr1e2N56V416rw96PZR9YJSe-ICKxGwbwavUa1xTNmcQ5WsxKhEzEas-LPIBn3u2rYfp4CSBbC4iVAfF1r7-pp98db3eaYjEdZQf__eYL2EU8Vvhu4EPYmrcL8xIxz7wawGY2yfCZjz4PYPvTyfnXbwN3fjBwof4bED4L2g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VIqAXBIXSQIFFwIGDFce7trMHhFAhpPTjlEq9mfV-iFTUTu1EKPwP_ga_kRmvnbaAuPW8q2zkGc-88c68B_DKDFzMU-WCJHYqEJLrQGFmCIQQynCpcmuaBtmjZHwsPp_EJ2vwq5uFobbKLiY2gdqUmr6R9znxvBD52ODd7Dwg1Si6Xe0kNLxb7NvldyzZ6rd7H9C-r6No9HGyOw5aVYFAC5nMA9cMf2tuw0QSdQtWNDIOzVCIUGnhbDwgGcw8T6UTaSRIVSdWEQJpFw0RrFiOv3sDbgqOmZwm00efLgq8sFGEDYWgfoIk7OhQJe-fVlW_qn6EpF5zOQH-hWr_bM68lO1G9-BuC1PZe-9X92HNFptwywtXLjfh9mF7Jf8Afu5OAkqFhlXKTGnGmVFPSMMXWjOExGxW0WZyAFY6RhLIPuCypp0dQTurfKOuZdOCWdJVwCCHp9fnC0VfJhjdLjBNqkdFeaZYo2vOClsqc7rASmDO0PPOyuZ8P0-2fAjH12KVLVgvysJuA3NK5EmUmzzW6HGpzkl10HDnIqHzxOgevOkMkOmWCJ30OL5l_kKeZ2iszBurBy9Xe2ee_uOfu3Y6O2ZtCKizC4ftwYvVMr689MwUPqNFnSE2I_p8Loc9eOTNvjqGUzKTAlfSKw6x2kDE4FdXiunXhiA8SbBqD9PH__9bz-HOeHJ4kB3sHe0_gQ1EgtL3Ie_A-rxa2KeItub5s8bFGXy57nfqNzL0P7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CT-based+radiomic+signatures+for+prediction+of+pathologic+complete+response+in+esophageal+squamous+cell+carcinoma+after+neoadjuvant+chemoradiotherapy&rft.jtitle=Journal+of+radiation+research&rft.au=Yang%2C+Zhining&rft.au=He%2C+Binghui&rft.au=Zhuang%2C+Xinyu&rft.au=Gao%2C+Xiaoying&rft.date=2019-07-01&rft.eissn=1349-9157&rft.volume=60&rft.issue=4&rft.spage=538&rft_id=info:doi/10.1093%2Fjrr%2Frrz027&rft_id=info%3Apmid%2F31111948&rft.externalDocID=31111948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0449-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0449-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0449-3060&client=summon