Lithium-ion battery explosion aerosols: Morphology and elemental composition
Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating thermal runaway in three commercial batteries: (1) lithium nickel manganese cobalt oxide (NMC), (2) lithium iron phosphate (LFP), and (3) lithium t...
Saved in:
Published in | Aerosol science and technology Vol. 55; no. 10; pp. 1183 - 1201 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
03.10.2021
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating thermal runaway in three commercial batteries: (1) lithium nickel manganese cobalt oxide (NMC), (2) lithium iron phosphate (LFP), and (3) lithium titanate oxide (LTO). Post-explosion aerosols were collected on anodisc filters and analyzed by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The SEM and EDS analyses showed that aerosol morphologies and compositions were comparable to individual grains within the original battery materials for the NMC cell, which points to the fracture and ejection of the original battery components during the explosion. In contrast, the LFP cell emitted carbonaceous cenospheres, which suggests aerosol formation by the decomposition of organics within molten microspheres. LTO explosion aerosols showed characteristics of both types of emissions. The abundance of elements from the anode, cathode, and separator in respirable aerosols underscored the need for the selection of low-toxicity battery materials due to potential exposures in the event of battery thermal runaway. |
---|---|
AbstractList | Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating thermal runaway in three commercial batteries: (1) lithium nickel manganese cobalt oxide (NMC), (2) lithiumiron phosphate (LFP), and (3) lithium titanate oxide (LTO). Post-explosion aerosols were collected on anodisc filters and analyzed by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The SEM and EDS analyses showed that aerosol morphologies and compositions were comparable to individual grains within the original battery materials for the NMC cell, which points to the fracture and ejection of the original battery components during the explosion. In contrast, the LFP cell emitted carbonaceous cenospheres, which suggests aerosol formation by the decomposition of organics within molten microspheres. LTO explosion aerosols showed characteristics of both types of emissions. The abundance of elements from the anode, cathode, and separator in respirable aerosols underscored the need for the selection of low-toxicity battery materials due to potential exposures in the event of battery thermal runaway.Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating thermal runaway in three commercial batteries: (1) lithium nickel manganese cobalt oxide (NMC), (2) lithiumiron phosphate (LFP), and (3) lithium titanate oxide (LTO). Post-explosion aerosols were collected on anodisc filters and analyzed by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The SEM and EDS analyses showed that aerosol morphologies and compositions were comparable to individual grains within the original battery materials for the NMC cell, which points to the fracture and ejection of the original battery components during the explosion. In contrast, the LFP cell emitted carbonaceous cenospheres, which suggests aerosol formation by the decomposition of organics within molten microspheres. LTO explosion aerosols showed characteristics of both types of emissions. The abundance of elements from the anode, cathode, and separator in respirable aerosols underscored the need for the selection of low-toxicity battery materials due to potential exposures in the event of battery thermal runaway. Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating thermal runaway in three commercial batteries: (1) lithium nickel manganese cobalt oxide (NMC), (2) lithium iron phosphate (LFP), and (3) lithium titanate oxide (LTO). Post-explosion aerosols were collected on anodisc filters and analyzed by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The SEM and EDS analyses showed that aerosol morphologies and compositions were comparable to individual grains within the original battery materials for the NMC cell, which points to the fracture and ejection of the original battery components during the explosion. In contrast, the LFP cell emitted carbonaceous cenospheres, which suggests aerosol formation by the decomposition of organics within molten microspheres. LTO explosion aerosols showed characteristics of both types of emissions. The abundance of elements from the anode, cathode, and separator in respirable aerosols underscored the need for the selection of low-toxicity battery materials due to potential exposures in the event of battery thermal runaway. Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating thermal runaway in three commercial batteries: (1) lithium nickel manganese cobalt oxide (NMC), (2) lithiumiron phosphate (LFP), and (3) lithium titanate oxide (LTO). Post-explosion aerosols were collected on anodisc filters and analyzed by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The SEM and EDS analyses showed that aerosol morphologies and compositions were comparable to individual grains within the original battery materials for the NMC cell, which points to the fracture and ejection of the original battery components during the explosion. In contrast, the LFP cell emitted carbonaceous cenospheres, which suggests aerosol formation by the decomposition of organics within molten microspheres. LTO explosion aerosols showed characteristics of both types of emissions. The abundance of elements from the anode, cathode, and separator in respirable aerosols underscored the need for the selection of low-toxicity battery materials due to potential exposures in the event of battery thermal runaway. |
Author | Zlochower, Isaac A. Friend, Sherri A. Bugarski, Aleksandar D. Rayyan, Naseem S. Barone, Teresa L. Dubaniewicz, Thomas H. |
AuthorAffiliation | c Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA a Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, USA b Mining Systems Safety Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, USA |
AuthorAffiliation_xml | – name: a Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, USA – name: c Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA – name: b Mining Systems Safety Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, USA |
Author_xml | – sequence: 1 givenname: Teresa L. surname: Barone fullname: Barone, Teresa L. organization: Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention – sequence: 2 givenname: Thomas H. surname: Dubaniewicz fullname: Dubaniewicz, Thomas H. organization: Mining Systems Safety Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention – sequence: 3 givenname: Sherri A. surname: Friend fullname: Friend, Sherri A. organization: Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention – sequence: 4 givenname: Isaac A. surname: Zlochower fullname: Zlochower, Isaac A. organization: Mining Systems Safety Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention – sequence: 5 givenname: Aleksandar D. surname: Bugarski fullname: Bugarski, Aleksandar D. organization: Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention – sequence: 6 givenname: Naseem S. surname: Rayyan fullname: Rayyan, Naseem S. organization: Mining Systems Safety Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35923215$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS1URLeFnwCKxIVLFo-d2A5IFVUFtNIiLnC2HMfpunLsYCfQ_fc42m1Fe6AnS-PvPb2Zd4KOfPAGodeA14AFfo8JF0wQtiaYwBoaKhrGnqEV1ARKToU4QquFKRfoGJ2kdIMxBk7gBTqmdUMogXqFNhs7be08lDb4olXTZOKuMLejC2mZKBNDCi59KL6FOG6DC9e7QvmuMM4Mxk_KFToMY4anjL9Ez3vlknl1eE_Rzy-ff1xclpvvX68uzjelrho2lSZnpW2jK9FBDVVFDe-p5kq0ArfQQN1zYJ1oK6I6qBjuQORpr2jHWqNpRU_R2d53nNvBdDoHicrJMdpBxZ0MysqHP95u5XX4LRta1TWvs8G7g0EMv2aTJjnYpI1zypswJ0lYIxilWNCMvn2E3oQ5-ryeJBwAMOV8od78m-g-yt2hM1DvAZ0PmqLp7xHAcilU3hUql0LlodCs-_hIp-2klmPnxax7Uv1pr7a-D3FQf0J0nZzUzoXYR-W1TZL-3-IvjXm5oA |
CitedBy_id | crossref_primary_10_1149_1945_7111_ac4fef crossref_primary_10_1039_D2YA00279E crossref_primary_10_1016_j_est_2025_115944 crossref_primary_10_1016_j_jpowsour_2023_233357 crossref_primary_10_1080_02786826_2021_2018399 crossref_primary_10_3390_wevj16040189 crossref_primary_10_1016_j_est_2023_109980 crossref_primary_10_1016_j_etran_2024_100354 crossref_primary_10_1016_j_est_2024_115035 crossref_primary_10_1016_j_jhazmat_2023_131646 crossref_primary_10_1016_j_est_2023_107069 crossref_primary_10_1016_j_sna_2025_116445 crossref_primary_10_1115_1_4065938 crossref_primary_10_1016_j_firesaf_2022_103648 crossref_primary_10_3390_batteries10090301 crossref_primary_10_3390_en17174402 |
Cites_doi | 10.1016/j.seta.2019.07.006 10.1016/j.nanoen.2016.06.031 10.3390/batteries4010003 10.1006/taap.2000.8957 10.1038/s41598-017-09784-z 10.1093/nsr/nww093 10.1016/j.est.2020.101863 10.1016/j.electacta.2008.12.030 10.1016/j.jpowsour.2009.04.030 10.1016/j.jpowsour.2013.04.135 10.1016/j.mattod.2014.10.040 10.1038/33647 10.1016/j.jhazmat.2019.120916 10.1039/c3ta10883j 10.1016/S1352-2310(99)00435-5 10.1016/j.jpowsour.2012.02.038 10.1149/1.1738551 10.1289/ehp.97105s51285 10.1016/j.psep.2020.07.028 10.1021/acsami.9b02921 10.1016/j.jpowsour.2019.227257 10.1007/s41918-019-00060-4 10.1016/j.jlp.2019.103992 10.1006/taap.2002.9501 10.1016/B978-0-323-42977-1.00008-X 10.1149/2.1031507jes 10.24084/repqj12.240 10.1016/j.fuel.2017.06.059 10.1016/j.applthermaleng.2019.114147 10.1039/C5RA22745C 10.1016/j.jpowsour.2005.12.002 10.1007/978-1-4615-1087-1_36 10.1109/TIA.2013.2263274 10.1016/j.jpowsour.2019.226879 10.1016/j.jhazmat.2020.123169 10.1007/s42461-020-00349-9 10.1016/j.applthermaleng.2020.115429 10.1016/j.ceramint.2014.10.142 |
ContentType | Journal Article |
Copyright | This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law. This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law.. |
Copyright_xml | – notice: This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law. – notice: This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law.. |
DBID | AAYXX CITATION NPM 7TB 7TG 8FD FR3 KL. 7X8 5PM |
DOI | 10.1080/02786826.2021.1938966 |
DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Engineering Research Database Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Meteorological & Geoastrophysical Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Meteorological & Geoastrophysical Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1521-7388 |
EndPage | 1201 |
ExternalDocumentID | PMC9345575 35923215 10_1080_02786826_2021_1938966 1938966 |
Genre | Research Article Journal Article |
GrantInformation_xml | – fundername: Intramural CDC HHS grantid: CC999999 |
GroupedDBID | --- .7F .QJ 0BK 0R~ 23M 2DF 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACBEA ACGEJ ACGFO ACGFS ACGOD ACIWK ACTIO ADCVX ADDVE ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO E3Z EBS E~A E~B F5P FIJ FRP GEVLZ GTTXZ H13 HF~ HH5 H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ OK1 P2P PQQKQ RIG RNANH RNS ROSJB RTWRZ S-T SNACF TBQAZ TCY TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION NPM TASJS 7TB 7TG 8FD FR3 KL. 7X8 5PM |
ID | FETCH-LOGICAL-c496t-e3893b9c48d151443e7f3c7a8b80b1915f716d8b42ad1460d18191fa3d6bec343 |
ISSN | 0278-6826 |
IngestDate | Thu Aug 21 13:48:57 EDT 2025 Fri Jul 11 01:40:37 EDT 2025 Wed Aug 13 04:44:10 EDT 2025 Mon Jul 21 06:03:54 EDT 2025 Tue Jul 01 02:27:09 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Wed Dec 25 09:06:07 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c496t-e3893b9c48d151443e7f3c7a8b80b1915f716d8b42ad1460d18191fa3d6bec343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9345575 |
PMID | 35923215 |
PQID | 2711103773 |
PQPubID | 45505 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9345575 crossref_citationtrail_10_1080_02786826_2021_1938966 proquest_journals_2711103773 pubmed_primary_35923215 informaworld_taylorfrancis_310_1080_02786826_2021_1938966 proquest_miscellaneous_2698633083 crossref_primary_10_1080_02786826_2021_1938966 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-03 |
PublicationDateYYYYMMDD | 2021-10-03 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Aerosol science and technology |
PublicationTitleAlternate | Aerosol Sci Technol |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0031 CIT0034 CIT0033 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 Nestler T. (CIT0032) 2014; 1597 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0011 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0031 doi: 10.1016/j.seta.2019.07.006 – ident: CIT0045 doi: 10.1016/j.nanoen.2016.06.031 – ident: CIT0044 – ident: CIT0027 doi: 10.3390/batteries4010003 – ident: CIT0006 – ident: CIT0002 – ident: CIT0023 doi: 10.1006/taap.2000.8957 – ident: CIT0025 doi: 10.1038/s41598-017-09784-z – ident: CIT0035 – ident: CIT0030 doi: 10.1093/nsr/nww093 – ident: CIT0051 doi: 10.1016/j.est.2020.101863 – ident: CIT0037 doi: 10.1016/j.electacta.2008.12.030 – ident: CIT0021 doi: 10.1016/j.jpowsour.2009.04.030 – ident: CIT0043 – ident: CIT0049 doi: 10.1016/j.jpowsour.2013.04.135 – ident: CIT0012 – ident: CIT0047 – ident: CIT0034 doi: 10.1016/j.mattod.2014.10.040 – ident: CIT0001 – ident: CIT0011 doi: 10.1038/33647 – ident: CIT0038 doi: 10.1016/j.jhazmat.2019.120916 – ident: CIT0005 – ident: CIT0022 – ident: CIT0052 doi: 10.1039/c3ta10883j – ident: CIT0046 doi: 10.1016/S1352-2310(99)00435-5 – ident: CIT0048 doi: 10.1016/j.jpowsour.2012.02.038 – ident: CIT0010 doi: 10.1149/1.1738551 – ident: CIT0016 doi: 10.1289/ehp.97105s51285 – ident: CIT0042 – ident: CIT0053 doi: 10.1016/j.psep.2020.07.028 – ident: CIT0003 doi: 10.1021/acsami.9b02921 – ident: CIT0008 doi: 10.1016/j.jpowsour.2019.227257 – ident: CIT0017 doi: 10.1007/s41918-019-00060-4 – ident: CIT0014 doi: 10.1016/j.jlp.2019.103992 – ident: CIT0050 doi: 10.1006/taap.2002.9501 – ident: CIT0039 doi: 10.1016/B978-0-323-42977-1.00008-X – ident: CIT0054 doi: 10.1149/2.1031507jes – ident: CIT0036 doi: 10.24084/repqj12.240 – ident: CIT0041 doi: 10.1016/j.fuel.2017.06.059 – ident: CIT0004 – ident: CIT0033 – ident: CIT0028 doi: 10.1016/j.applthermaleng.2019.114147 – ident: CIT0029 doi: 10.1039/C5RA22745C – ident: CIT0009 doi: 10.1016/j.jpowsour.2005.12.002 – ident: CIT0020 – ident: CIT0024 doi: 10.1007/978-1-4615-1087-1_36 – ident: CIT0018 doi: 10.1109/TIA.2013.2263274 – volume: 1597 start-page: 155 issue: 1 year: 2014 ident: CIT0032 publication-title: American Institute of Physics Conference Proceedings – ident: CIT0026 doi: 10.1016/j.jpowsour.2019.226879 – ident: CIT0013 doi: 10.1016/j.jhazmat.2020.123169 – ident: CIT0019 doi: 10.1007/s42461-020-00349-9 – ident: CIT0007 – ident: CIT0015 doi: 10.1016/j.applthermaleng.2020.115429 – ident: CIT0040 doi: 10.1016/j.ceramint.2014.10.142 |
SSID | ssj0001721 |
Score | 2.4511638 |
Snippet | Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1183 |
SubjectTerms | Aerosol formation Aerosols Cenospheres Chemical composition Cobalt Cobalt oxides Composition Electron microscopy Explosions Iron phosphates Lithium Lithium-ion batteries Manganese Mark Swihart Microspheres Morphology Nickel Rechargeable batteries Scanning electron microscopy Separators Thermal runaway Toxicity X-ray spectroscopy |
Title | Lithium-ion battery explosion aerosols: Morphology and elemental composition |
URI | https://www.tandfonline.com/doi/abs/10.1080/02786826.2021.1938966 https://www.ncbi.nlm.nih.gov/pubmed/35923215 https://www.proquest.com/docview/2711103773 https://www.proquest.com/docview/2698633083 https://pubmed.ncbi.nlm.nih.gov/PMC9345575 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKkGAcEIxfgYGCxK1KlcRJHHMrFVOFOsShkyYukRM7aqWumdZUiN35v3n-lbhbpcEuURXHTprvy8t7L8-fEfoUC07AS04Cwpn8zBjWAUsrGlS4AksYhbSuVJXv92x6lnw7T88Hgz9O1dK2LUfV9d55JfdBFfYBrnKW7H8g2w0KO-A34AtbQBi2_4TxbNkultuLQEJYKqHM31Kyf9VsVJGxgDdgs1I1b6cN3M9ebkmYovGVKik3dVuunzrWfYd21o-qs7yVhf_CrhqdEZ0LCNvZcDbqHeNSTl7_tayu-zqk4bRrP5H6yjonrcQhh-Ou6Se8Xxdy8TZlvzaMVbbRZCdiXR6HHSMWQ5Sa5XpWvLW4WpjXMit07CeEO9h5F0exznTcsvOmMBIGl2OP5JlH4IrmVC_h4mB_eaHAxyl4srGeOXpDYPvH6YTiJAW_9QF6GEO0oepDp30UJaNklaozf8VOBJMS7fuu4BA9sqfb8XZ2tHD3RTQ3C3MdT2f-DD01IYo_1nx7jgZifYQeT-zKgEfoiSNi-QLNHBb6hoV-x0LfsvCz33PQBzr5HQd9h4Mv0dnJ1_lkGpg1OoIqoVkbCOnwlrRKcg6-Y5JgQWp4zFle5mEZ0SitISDneZnEjMNLOeSRzBDUDPMMrAdO8Ct0sAaqvkE-FmnNUlqLXNRyHPCMOSGc8xLDWCT3UGLvZVEZAXu5jsqqiKzOrUGjkGgUBg0Pjbpul1rB5a4O1AWqaFXqrNbr3BT4jr7HFtXCGIpNERNwKEJMCPbQx64ZMJPf5thaNFs4JqN5hjEERB56rUnQXa0lk4fIDj26A6RE_G7LerlQUvGG2G_v3fMdOuwf62N00F5txXtww9vyg3pI_gKCMtjF |
linkProvider | ABC ChemistRy |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1RONAeCqWlTaGtK_WabXbtxDE3hIqWdtkTSNysxB9ixZKtSvZQfj0zzod2USsOnB1bsWcyfjN-eQb4NnJWIkoWsbQFHTMmPi5So2LDDUbCYaK8CSzfaTa-FD-v0quVf2GIVkk5tG-EIkKspo-bitEdJe47nZZliIsxvRsNBwhBcgTtL2ArVZkkX-fJtI_GlOKEOgtmS9Sn-4vnf8Os7U9r6qX_wqCPqZQre9PpDphuVg0l5WawrMuBuX8k-Pi8ae_C6xa6suPG197Ahqv2YPukuzFuD16tiBu-hclkVl_PlrcxWp6VQcbzL3NE-aMCHSsczn8xvzti5wu0dajuM3w35lpC-5wR3b3llL2Dy9MfFyfjuL27ITZCZXXsCAiVyojcIqYQgjvp0fxFXuZJiTli6jFRs3kpRoXFYJ3YIWWOvuA2Q6_igu_DZrWo3Adg3KW-SJV3ufM0DiImK6W1tuQ4lswjEJ3FtGmFzel-jbkedvqn7cJpWjjdLlwEg77b70bZ46kOatUddB1KKr65_0TzJ_oedr6j2yBxp0cSN5qES8kj-No3o83ozKao3GKJz2QqzzhHoBzB-8bV-rflKaJzhGwRyDUn7B8g6fD1lmp2HSTEFRcpAvWPz5jSF9geX5xP9ORs-usAXlJTIDnyQ9is_yzdJwRrdfk5fI0P6iwxPQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Bb9MwFH6CIcE4sDEGBDYwEtd0ae3ECTc0Vm2sVByYxM2KY1urVtJpTQ_w63nPcaJ2Au2ws2Mr9nt-_p79-TPAx5E1ElGyiKUp6ZgxcXGZVkVc8Qoj4TApXOVZvtPs9EJ8_Zl2bMJloFVSDu1aoQgfq2lyXxvXMeKO6LAsQ1iM2d1oOEAEkiNmfwiPMrpoSbc4kmkfjCnD8dssmCxRne4Sz_-a2VieNsRL_wVBbzMp15am8Q7orlMtI-VqsGr0oPpzS-_xXr3ehWcBuLLPrac9hwe23oMnx917cXvwdE3a8AVMJrPmcrb6FaPdmfYinr-ZJcIfbc-x0mL3F_PlJ_ZtgZb2e_sMf43ZQGefMyK7B0bZPlyMT34cn8bh5Ya4EkXWxJZgkC4qkRtEFEJwKx0av8x1nmjMEFOHaZrJtRiVBkN1YoaUN7qSmwx9igv-ErbqRW1fA-M2dWVaOJtbR-0gXjJSGmM0x7ZkHoHoDKaqIGtOr2vM1bBTPw0Dp2jgVBi4CAZ9tetW1-OuCsW6N6jGb6i49vUTxe-oe9C5jgohYqlGEpeZhEvJI_jQF6PN6MSmrO1ihd9kRZ5xjjA5gletp_V_y1PE5gjYIpAbPth_QMLhmyX17NILiBdcpAjT39yjS-_h8fcvYzU5m56_hW0q8QxHfgBbzc3KHiJSa_Q7Pxf_AvsuL-E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium-ion+battery+explosion+aerosols%3A+Morphology+and+elemental+composition&rft.jtitle=Aerosol+science+and+technology&rft.au=Barone%2C+Teresa+L.&rft.au=Dubaniewicz%2C+Thomas+H.&rft.au=Friend%2C+Sherri+A.&rft.au=Zlochower%2C+Isaac+A.&rft.date=2021-10-03&rft.issn=0278-6826&rft.volume=55&rft.issue=10&rft.spage=1183&rft.epage=1201&rft_id=info:doi/10.1080%2F02786826.2021.1938966&rft_id=info%3Apmid%2F35923215&rft.externalDocID=PMC9345575 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6826&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6826&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6826&client=summon |