Lithium-ion battery explosion aerosols: Morphology and elemental composition

Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating thermal runaway in three commercial batteries: (1) lithium nickel manganese cobalt oxide (NMC), (2) lithium iron phosphate (LFP), and (3) lithium t...

Full description

Saved in:
Bibliographic Details
Published inAerosol science and technology Vol. 55; no. 10; pp. 1183 - 1201
Main Authors Barone, Teresa L., Dubaniewicz, Thomas H., Friend, Sherri A., Zlochower, Isaac A., Bugarski, Aleksandar D., Rayyan, Naseem S.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 03.10.2021
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating thermal runaway in three commercial batteries: (1) lithium nickel manganese cobalt oxide (NMC), (2) lithium iron phosphate (LFP), and (3) lithium titanate oxide (LTO). Post-explosion aerosols were collected on anodisc filters and analyzed by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The SEM and EDS analyses showed that aerosol morphologies and compositions were comparable to individual grains within the original battery materials for the NMC cell, which points to the fracture and ejection of the original battery components during the explosion. In contrast, the LFP cell emitted carbonaceous cenospheres, which suggests aerosol formation by the decomposition of organics within molten microspheres. LTO explosion aerosols showed characteristics of both types of emissions. The abundance of elements from the anode, cathode, and separator in respirable aerosols underscored the need for the selection of low-toxicity battery materials due to potential exposures in the event of battery thermal runaway.
AbstractList Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating thermal runaway in three commercial batteries: (1) lithium nickel manganese cobalt oxide (NMC), (2) lithiumiron phosphate (LFP), and (3) lithium titanate oxide (LTO). Post-explosion aerosols were collected on anodisc filters and analyzed by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The SEM and EDS analyses showed that aerosol morphologies and compositions were comparable to individual grains within the original battery materials for the NMC cell, which points to the fracture and ejection of the original battery components during the explosion. In contrast, the LFP cell emitted carbonaceous cenospheres, which suggests aerosol formation by the decomposition of organics within molten microspheres. LTO explosion aerosols showed characteristics of both types of emissions. The abundance of elements from the anode, cathode, and separator in respirable aerosols underscored the need for the selection of low-toxicity battery materials due to potential exposures in the event of battery thermal runaway.Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating thermal runaway in three commercial batteries: (1) lithium nickel manganese cobalt oxide (NMC), (2) lithiumiron phosphate (LFP), and (3) lithium titanate oxide (LTO). Post-explosion aerosols were collected on anodisc filters and analyzed by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The SEM and EDS analyses showed that aerosol morphologies and compositions were comparable to individual grains within the original battery materials for the NMC cell, which points to the fracture and ejection of the original battery components during the explosion. In contrast, the LFP cell emitted carbonaceous cenospheres, which suggests aerosol formation by the decomposition of organics within molten microspheres. LTO explosion aerosols showed characteristics of both types of emissions. The abundance of elements from the anode, cathode, and separator in respirable aerosols underscored the need for the selection of low-toxicity battery materials due to potential exposures in the event of battery thermal runaway.
Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating thermal runaway in three commercial batteries: (1) lithium nickel manganese cobalt oxide (NMC), (2) lithium iron phosphate (LFP), and (3) lithium titanate oxide (LTO). Post-explosion aerosols were collected on anodisc filters and analyzed by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The SEM and EDS analyses showed that aerosol morphologies and compositions were comparable to individual grains within the original battery materials for the NMC cell, which points to the fracture and ejection of the original battery components during the explosion. In contrast, the LFP cell emitted carbonaceous cenospheres, which suggests aerosol formation by the decomposition of organics within molten microspheres. LTO explosion aerosols showed characteristics of both types of emissions. The abundance of elements from the anode, cathode, and separator in respirable aerosols underscored the need for the selection of low-toxicity battery materials due to potential exposures in the event of battery thermal runaway.
Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating thermal runaway in three commercial batteries: (1) lithium nickel manganese cobalt oxide (NMC), (2) lithiumiron phosphate (LFP), and (3) lithium titanate oxide (LTO). Post-explosion aerosols were collected on anodisc filters and analyzed by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The SEM and EDS analyses showed that aerosol morphologies and compositions were comparable to individual grains within the original battery materials for the NMC cell, which points to the fracture and ejection of the original battery components during the explosion. In contrast, the LFP cell emitted carbonaceous cenospheres, which suggests aerosol formation by the decomposition of organics within molten microspheres. LTO explosion aerosols showed characteristics of both types of emissions. The abundance of elements from the anode, cathode, and separator in respirable aerosols underscored the need for the selection of low-toxicity battery materials due to potential exposures in the event of battery thermal runaway.
Author Zlochower, Isaac A.
Friend, Sherri A.
Bugarski, Aleksandar D.
Rayyan, Naseem S.
Barone, Teresa L.
Dubaniewicz, Thomas H.
AuthorAffiliation c Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
a Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, USA
b Mining Systems Safety Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, USA
AuthorAffiliation_xml – name: a Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, USA
– name: c Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
– name: b Mining Systems Safety Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, USA
Author_xml – sequence: 1
  givenname: Teresa L.
  surname: Barone
  fullname: Barone, Teresa L.
  organization: Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention
– sequence: 2
  givenname: Thomas H.
  surname: Dubaniewicz
  fullname: Dubaniewicz, Thomas H.
  organization: Mining Systems Safety Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention
– sequence: 3
  givenname: Sherri A.
  surname: Friend
  fullname: Friend, Sherri A.
  organization: Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention
– sequence: 4
  givenname: Isaac A.
  surname: Zlochower
  fullname: Zlochower, Isaac A.
  organization: Mining Systems Safety Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention
– sequence: 5
  givenname: Aleksandar D.
  surname: Bugarski
  fullname: Bugarski, Aleksandar D.
  organization: Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention
– sequence: 6
  givenname: Naseem S.
  surname: Rayyan
  fullname: Rayyan, Naseem S.
  organization: Mining Systems Safety Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35923215$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFnwCKxIVLFo-d2A5IFVUFtNIiLnC2HMfpunLsYCfQ_fc42m1Fe6AnS-PvPb2Zd4KOfPAGodeA14AFfo8JF0wQtiaYwBoaKhrGnqEV1ARKToU4QquFKRfoGJ2kdIMxBk7gBTqmdUMogXqFNhs7be08lDb4olXTZOKuMLejC2mZKBNDCi59KL6FOG6DC9e7QvmuMM4Mxk_KFToMY4anjL9Ez3vlknl1eE_Rzy-ff1xclpvvX68uzjelrho2lSZnpW2jK9FBDVVFDe-p5kq0ArfQQN1zYJ1oK6I6qBjuQORpr2jHWqNpRU_R2d53nNvBdDoHicrJMdpBxZ0MysqHP95u5XX4LRta1TWvs8G7g0EMv2aTJjnYpI1zypswJ0lYIxilWNCMvn2E3oQ5-ryeJBwAMOV8od78m-g-yt2hM1DvAZ0PmqLp7xHAcilU3hUql0LlodCs-_hIp-2klmPnxax7Uv1pr7a-D3FQf0J0nZzUzoXYR-W1TZL-3-IvjXm5oA
CitedBy_id crossref_primary_10_1149_1945_7111_ac4fef
crossref_primary_10_1039_D2YA00279E
crossref_primary_10_1016_j_est_2025_115944
crossref_primary_10_1016_j_jpowsour_2023_233357
crossref_primary_10_1080_02786826_2021_2018399
crossref_primary_10_3390_wevj16040189
crossref_primary_10_1016_j_est_2023_109980
crossref_primary_10_1016_j_etran_2024_100354
crossref_primary_10_1016_j_est_2024_115035
crossref_primary_10_1016_j_jhazmat_2023_131646
crossref_primary_10_1016_j_est_2023_107069
crossref_primary_10_1016_j_sna_2025_116445
crossref_primary_10_1115_1_4065938
crossref_primary_10_1016_j_firesaf_2022_103648
crossref_primary_10_3390_batteries10090301
crossref_primary_10_3390_en17174402
Cites_doi 10.1016/j.seta.2019.07.006
10.1016/j.nanoen.2016.06.031
10.3390/batteries4010003
10.1006/taap.2000.8957
10.1038/s41598-017-09784-z
10.1093/nsr/nww093
10.1016/j.est.2020.101863
10.1016/j.electacta.2008.12.030
10.1016/j.jpowsour.2009.04.030
10.1016/j.jpowsour.2013.04.135
10.1016/j.mattod.2014.10.040
10.1038/33647
10.1016/j.jhazmat.2019.120916
10.1039/c3ta10883j
10.1016/S1352-2310(99)00435-5
10.1016/j.jpowsour.2012.02.038
10.1149/1.1738551
10.1289/ehp.97105s51285
10.1016/j.psep.2020.07.028
10.1021/acsami.9b02921
10.1016/j.jpowsour.2019.227257
10.1007/s41918-019-00060-4
10.1016/j.jlp.2019.103992
10.1006/taap.2002.9501
10.1016/B978-0-323-42977-1.00008-X
10.1149/2.1031507jes
10.24084/repqj12.240
10.1016/j.fuel.2017.06.059
10.1016/j.applthermaleng.2019.114147
10.1039/C5RA22745C
10.1016/j.jpowsour.2005.12.002
10.1007/978-1-4615-1087-1_36
10.1109/TIA.2013.2263274
10.1016/j.jpowsour.2019.226879
10.1016/j.jhazmat.2020.123169
10.1007/s42461-020-00349-9
10.1016/j.applthermaleng.2020.115429
10.1016/j.ceramint.2014.10.142
ContentType Journal Article
Copyright This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law.
This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law..
Copyright_xml – notice: This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law.
– notice: This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law..
DBID AAYXX
CITATION
NPM
7TB
7TG
8FD
FR3
KL.
7X8
5PM
DOI 10.1080/02786826.2021.1938966
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Meteorological & Geoastrophysical Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Meteorological & Geoastrophysical Abstracts
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1521-7388
EndPage 1201
ExternalDocumentID PMC9345575
35923215
10_1080_02786826_2021_1938966
1938966
Genre Research Article
Journal Article
GrantInformation_xml – fundername: Intramural CDC HHS
  grantid: CC999999
GroupedDBID ---
.7F
.QJ
0BK
0R~
23M
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACBEA
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADDVE
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
E3Z
EBS
E~A
E~B
F5P
FIJ
FRP
GEVLZ
GTTXZ
H13
HF~
HH5
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
OK1
P2P
PQQKQ
RIG
RNANH
RNS
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TCY
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
NPM
TASJS
7TB
7TG
8FD
FR3
KL.
7X8
5PM
ID FETCH-LOGICAL-c496t-e3893b9c48d151443e7f3c7a8b80b1915f716d8b42ad1460d18191fa3d6bec343
ISSN 0278-6826
IngestDate Thu Aug 21 13:48:57 EDT 2025
Fri Jul 11 01:40:37 EDT 2025
Wed Aug 13 04:44:10 EDT 2025
Mon Jul 21 06:03:54 EDT 2025
Tue Jul 01 02:27:09 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Wed Dec 25 09:06:07 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c496t-e3893b9c48d151443e7f3c7a8b80b1915f716d8b42ad1460d18191fa3d6bec343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9345575
PMID 35923215
PQID 2711103773
PQPubID 45505
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9345575
crossref_citationtrail_10_1080_02786826_2021_1938966
proquest_journals_2711103773
pubmed_primary_35923215
informaworld_taylorfrancis_310_1080_02786826_2021_1938966
proquest_miscellaneous_2698633083
crossref_primary_10_1080_02786826_2021_1938966
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-03
PublicationDateYYYYMMDD 2021-10-03
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Aerosol science and technology
PublicationTitleAlternate Aerosol Sci Technol
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0031
CIT0034
CIT0033
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
Nestler T. (CIT0032) 2014; 1597
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0011
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0031
  doi: 10.1016/j.seta.2019.07.006
– ident: CIT0045
  doi: 10.1016/j.nanoen.2016.06.031
– ident: CIT0044
– ident: CIT0027
  doi: 10.3390/batteries4010003
– ident: CIT0006
– ident: CIT0002
– ident: CIT0023
  doi: 10.1006/taap.2000.8957
– ident: CIT0025
  doi: 10.1038/s41598-017-09784-z
– ident: CIT0035
– ident: CIT0030
  doi: 10.1093/nsr/nww093
– ident: CIT0051
  doi: 10.1016/j.est.2020.101863
– ident: CIT0037
  doi: 10.1016/j.electacta.2008.12.030
– ident: CIT0021
  doi: 10.1016/j.jpowsour.2009.04.030
– ident: CIT0043
– ident: CIT0049
  doi: 10.1016/j.jpowsour.2013.04.135
– ident: CIT0012
– ident: CIT0047
– ident: CIT0034
  doi: 10.1016/j.mattod.2014.10.040
– ident: CIT0001
– ident: CIT0011
  doi: 10.1038/33647
– ident: CIT0038
  doi: 10.1016/j.jhazmat.2019.120916
– ident: CIT0005
– ident: CIT0022
– ident: CIT0052
  doi: 10.1039/c3ta10883j
– ident: CIT0046
  doi: 10.1016/S1352-2310(99)00435-5
– ident: CIT0048
  doi: 10.1016/j.jpowsour.2012.02.038
– ident: CIT0010
  doi: 10.1149/1.1738551
– ident: CIT0016
  doi: 10.1289/ehp.97105s51285
– ident: CIT0042
– ident: CIT0053
  doi: 10.1016/j.psep.2020.07.028
– ident: CIT0003
  doi: 10.1021/acsami.9b02921
– ident: CIT0008
  doi: 10.1016/j.jpowsour.2019.227257
– ident: CIT0017
  doi: 10.1007/s41918-019-00060-4
– ident: CIT0014
  doi: 10.1016/j.jlp.2019.103992
– ident: CIT0050
  doi: 10.1006/taap.2002.9501
– ident: CIT0039
  doi: 10.1016/B978-0-323-42977-1.00008-X
– ident: CIT0054
  doi: 10.1149/2.1031507jes
– ident: CIT0036
  doi: 10.24084/repqj12.240
– ident: CIT0041
  doi: 10.1016/j.fuel.2017.06.059
– ident: CIT0004
– ident: CIT0033
– ident: CIT0028
  doi: 10.1016/j.applthermaleng.2019.114147
– ident: CIT0029
  doi: 10.1039/C5RA22745C
– ident: CIT0009
  doi: 10.1016/j.jpowsour.2005.12.002
– ident: CIT0020
– ident: CIT0024
  doi: 10.1007/978-1-4615-1087-1_36
– ident: CIT0018
  doi: 10.1109/TIA.2013.2263274
– volume: 1597
  start-page: 155
  issue: 1
  year: 2014
  ident: CIT0032
  publication-title: American Institute of Physics Conference Proceedings
– ident: CIT0026
  doi: 10.1016/j.jpowsour.2019.226879
– ident: CIT0013
  doi: 10.1016/j.jhazmat.2020.123169
– ident: CIT0019
  doi: 10.1007/s42461-020-00349-9
– ident: CIT0007
– ident: CIT0015
  doi: 10.1016/j.applthermaleng.2020.115429
– ident: CIT0040
  doi: 10.1016/j.ceramint.2014.10.142
SSID ssj0001721
Score 2.4511638
Snippet Aerosols emitted by the explosion of lithium-ion batteries were characterized to assess potential exposures. The explosions were initiated by activating...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1183
SubjectTerms Aerosol formation
Aerosols
Cenospheres
Chemical composition
Cobalt
Cobalt oxides
Composition
Electron microscopy
Explosions
Iron phosphates
Lithium
Lithium-ion batteries
Manganese
Mark Swihart
Microspheres
Morphology
Nickel
Rechargeable batteries
Scanning electron microscopy
Separators
Thermal runaway
Toxicity
X-ray spectroscopy
Title Lithium-ion battery explosion aerosols: Morphology and elemental composition
URI https://www.tandfonline.com/doi/abs/10.1080/02786826.2021.1938966
https://www.ncbi.nlm.nih.gov/pubmed/35923215
https://www.proquest.com/docview/2711103773
https://www.proquest.com/docview/2698633083
https://pubmed.ncbi.nlm.nih.gov/PMC9345575
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKkGAcEIxfgYGCxK1KlcRJHHMrFVOFOsShkyYukRM7aqWumdZUiN35v3n-lbhbpcEuURXHTprvy8t7L8-fEfoUC07AS04Cwpn8zBjWAUsrGlS4AksYhbSuVJXv92x6lnw7T88Hgz9O1dK2LUfV9d55JfdBFfYBrnKW7H8g2w0KO-A34AtbQBi2_4TxbNkultuLQEJYKqHM31Kyf9VsVJGxgDdgs1I1b6cN3M9ebkmYovGVKik3dVuunzrWfYd21o-qs7yVhf_CrhqdEZ0LCNvZcDbqHeNSTl7_tayu-zqk4bRrP5H6yjonrcQhh-Ou6Se8Xxdy8TZlvzaMVbbRZCdiXR6HHSMWQ5Sa5XpWvLW4WpjXMit07CeEO9h5F0exznTcsvOmMBIGl2OP5JlH4IrmVC_h4mB_eaHAxyl4srGeOXpDYPvH6YTiJAW_9QF6GEO0oepDp30UJaNklaozf8VOBJMS7fuu4BA9sqfb8XZ2tHD3RTQ3C3MdT2f-DD01IYo_1nx7jgZifYQeT-zKgEfoiSNi-QLNHBb6hoV-x0LfsvCz33PQBzr5HQd9h4Mv0dnJ1_lkGpg1OoIqoVkbCOnwlrRKcg6-Y5JgQWp4zFle5mEZ0SitISDneZnEjMNLOeSRzBDUDPMMrAdO8Ct0sAaqvkE-FmnNUlqLXNRyHPCMOSGc8xLDWCT3UGLvZVEZAXu5jsqqiKzOrUGjkGgUBg0Pjbpul1rB5a4O1AWqaFXqrNbr3BT4jr7HFtXCGIpNERNwKEJMCPbQx64ZMJPf5thaNFs4JqN5hjEERB56rUnQXa0lk4fIDj26A6RE_G7LerlQUvGG2G_v3fMdOuwf62N00F5txXtww9vyg3pI_gKCMtjF
linkProvider ABC ChemistRy
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1RONAeCqWlTaGtK_WabXbtxDE3hIqWdtkTSNysxB9ixZKtSvZQfj0zzod2USsOnB1bsWcyfjN-eQb4NnJWIkoWsbQFHTMmPi5So2LDDUbCYaK8CSzfaTa-FD-v0quVf2GIVkk5tG-EIkKspo-bitEdJe47nZZliIsxvRsNBwhBcgTtL2ArVZkkX-fJtI_GlOKEOgtmS9Sn-4vnf8Os7U9r6qX_wqCPqZQre9PpDphuVg0l5WawrMuBuX8k-Pi8ae_C6xa6suPG197Ahqv2YPukuzFuD16tiBu-hclkVl_PlrcxWp6VQcbzL3NE-aMCHSsczn8xvzti5wu0dajuM3w35lpC-5wR3b3llL2Dy9MfFyfjuL27ITZCZXXsCAiVyojcIqYQgjvp0fxFXuZJiTli6jFRs3kpRoXFYJ3YIWWOvuA2Q6_igu_DZrWo3Adg3KW-SJV3ufM0DiImK6W1tuQ4lswjEJ3FtGmFzel-jbkedvqn7cJpWjjdLlwEg77b70bZ46kOatUddB1KKr65_0TzJ_oedr6j2yBxp0cSN5qES8kj-No3o83ozKao3GKJz2QqzzhHoBzB-8bV-rflKaJzhGwRyDUn7B8g6fD1lmp2HSTEFRcpAvWPz5jSF9geX5xP9ORs-usAXlJTIDnyQ9is_yzdJwRrdfk5fI0P6iwxPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Bb9MwFH6CIcE4sDEGBDYwEtd0ae3ECTc0Vm2sVByYxM2KY1urVtJpTQ_w63nPcaJ2Au2ws2Mr9nt-_p79-TPAx5E1ElGyiKUp6ZgxcXGZVkVc8Qoj4TApXOVZvtPs9EJ8_Zl2bMJloFVSDu1aoQgfq2lyXxvXMeKO6LAsQ1iM2d1oOEAEkiNmfwiPMrpoSbc4kmkfjCnD8dssmCxRne4Sz_-a2VieNsRL_wVBbzMp15am8Q7orlMtI-VqsGr0oPpzS-_xXr3ehWcBuLLPrac9hwe23oMnx917cXvwdE3a8AVMJrPmcrb6FaPdmfYinr-ZJcIfbc-x0mL3F_PlJ_ZtgZb2e_sMf43ZQGefMyK7B0bZPlyMT34cn8bh5Ya4EkXWxJZgkC4qkRtEFEJwKx0av8x1nmjMEFOHaZrJtRiVBkN1YoaUN7qSmwx9igv-ErbqRW1fA-M2dWVaOJtbR-0gXjJSGmM0x7ZkHoHoDKaqIGtOr2vM1bBTPw0Dp2jgVBi4CAZ9tetW1-OuCsW6N6jGb6i49vUTxe-oe9C5jgohYqlGEpeZhEvJI_jQF6PN6MSmrO1ihd9kRZ5xjjA5gletp_V_y1PE5gjYIpAbPth_QMLhmyX17NILiBdcpAjT39yjS-_h8fcvYzU5m56_hW0q8QxHfgBbzc3KHiJSa_Q7Pxf_AvsuL-E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium-ion+battery+explosion+aerosols%3A+Morphology+and+elemental+composition&rft.jtitle=Aerosol+science+and+technology&rft.au=Barone%2C+Teresa+L.&rft.au=Dubaniewicz%2C+Thomas+H.&rft.au=Friend%2C+Sherri+A.&rft.au=Zlochower%2C+Isaac+A.&rft.date=2021-10-03&rft.issn=0278-6826&rft.volume=55&rft.issue=10&rft.spage=1183&rft.epage=1201&rft_id=info:doi/10.1080%2F02786826.2021.1938966&rft_id=info%3Apmid%2F35923215&rft.externalDocID=PMC9345575
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6826&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6826&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6826&client=summon