Streamlined method for parallel identification of single domain antibodies to membrane receptors on whole cells
Owing to their minimal size, high production yield, versatility and robustness, the recombinant variable domains (nanobodies) of camelid single chain antibodies are valued affinity reagents for research, diagnostic, and therapeutic applications. While their preparation against purified antigens is s...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1850; no. 7; pp. 1397 - 1404 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Owing to their minimal size, high production yield, versatility and robustness, the recombinant variable domains (nanobodies) of camelid single chain antibodies are valued affinity reagents for research, diagnostic, and therapeutic applications. While their preparation against purified antigens is straightforward, the generation of nanobodies to difficult targets such as multi-pass or complex membrane cell receptors remains challenging. Here we devised a platform for high throughput identification of nanobodies to cell receptor based on the use of a biotin handle.
Using a biotin-acceptor peptide tag, the in vivo biotinylation of nanobodies in 96 well culture blocks was optimized allowing their parallel analysis by flow cytometry and ELISA, and their direct use for pull-down/MS target identification.
The potential of this strategy was demonstrated by the selection and characterization of panels of nanobodies to Mac-1 (CD11b/CD18), MHC II and the mouse Ly-5 leukocyte common antigen (CD45) receptors, from a VHH library obtained from a llama immunized with mouse bone marrow derived dendritic cells. By on and off switching of the addition of biotin, the method also allowed the epitope binning of the selected Nbs directly on cells.
This strategy streamlines the selection of potent nanobodies to complex antigens, and the selected nanobodies constitute ready-to-use biotinylated reagents.
This method will accelerate the discovery of nanobodies to cell membrane receptors which comprise the largest group of drug and analytical targets.
•Quantitative in vivo biotinylation of nanobodies in 96 culture blocks was optimized.•The biotin moiety allows high throughput FACS analysis of the VHH reactivity.•Pull-down experiments and MS identification are greatly facilitated.•On and off switching of the biotin addition allows binning of VHH epitopes on cells. |
---|---|
AbstractList | Owing to their minimal size, high production yield, versatility and robustness, the recombinant variable domains (nanobodies) of camelid single chain antibodies are valued affinity reagents for research, diagnostic, and therapeutic applications. While their preparation against purified antigens is straightforward, the generation of nanobodies to difficult targets such as multi-pass or complex membrane cell receptors remains challenging. Here we devised a platform for high throughput identification of nanobodies to cell receptor based on the use of a biotin handle.
Using a biotin-acceptor peptide tag, the in vivo biotinylation of nanobodies in 96 well culture blocks was optimized allowing their parallel analysis by flow cytometry and ELISA, and their direct use for pull-down/MS target identification.
The potential of this strategy was demonstrated by the selection and characterization of panels of nanobodies to Mac-1 (CD11b/CD18), MHC II and the mouse Ly-5 leukocyte common antigen (CD45) receptors, from a VHH library obtained from a llama immunized with mouse bone marrow derived dendritic cells. By on and off switching of the addition of biotin, the method also allowed the epitope binning of the selected Nbs directly on cells.
This strategy streamlines the selection of potent nanobodies to complex antigens, and the selected nanobodies constitute ready-to-use biotinylated reagents.
This method will accelerate the discovery of nanobodies to cell membrane receptors which comprise the largest group of drug and analytical targets.
•Quantitative in vivo biotinylation of nanobodies in 96 culture blocks was optimized.•The biotin moiety allows high throughput FACS analysis of the VHH reactivity.•Pull-down experiments and MS identification are greatly facilitated.•On and off switching of the biotin addition allows binning of VHH epitopes on cells. Owing to their minimal size, high production yield, versatility and robustness, the recombinant variable domains (nanobodies) of camelid single chain antibodies are valued affinity reagents for research, diagnostic, and therapeutic applications. While their preparation against purified antigens is straightforward, the generation of nanobodies to difficult targets such as multi-pass or complex membrane cell receptors remains challenging. Here we devised a platform for high throughput identification of nanobodies to cell receptor based on the use of a biotin handle.Using a biotin-acceptor peptide tag, the in vivo biotinylation of nanobodies in 96 well culture blocks was optimized allowing their parallel analysis by flow cytometry and ELISA, and their direct use for pull-down/MS target identification.The potential of this strategy was demonstrated by the selection and characterization of panels of nanobodies to Mac-1 (CD11b/CD18), MHC II and the mouse Ly-5 leukocyte common antigen (CD45) receptors, from a VHH library obtained from a llama immunized with mouse bone marrow derived dendritic cells. By on and off switching of the addition of biotin, the method also allowed the epitope binning of the selected Nbs directly on cells.This strategy streamlines the selection of potent nanobodies to complex antigens, and the selected nanobodies constitute ready-to-use biotinylated reagents.This method will accelerate the discovery of nanobodies to cell membrane receptors which comprise the largest group of drug and analytical targets. Owing to their minimal size, high production yield, versatility and robustness, the recombinant variable domains (nanobodies) of camelid single chain antibodies are valued affinity reagents for research, diagnostic, and therapeutic applications. While their preparation against purified antigens is straightforward, the generation of nanobodies to difficult targets such as multi-pass or complex membrane cell receptors remains challenging. Here we devised a platform for high throughput identification of nanobodies to cell receptor based on the use of a biotin handle. Using a biotin-acceptor peptide tag, the in vivo biotinylation of nanobodies in 96 well culture blocks was optimized allowing their parallel analysis by flow cytometry and ELISA, and their direct use for pull-down/MS target identification. The potential of this strategy was demonstrated by the selection and characterization of panels of nanobodies to Mac-1 (CD11b/CD18), MHC II and the mouse Ly-5 leukocyte common antigen (CD45) receptors, from a VHH library obtained from a llama immunized with mouse bone marrow derived dendritic cells. By on and off switching of the addition of biotin, the method also allowed the epitope binning of the selected Nbs directly on cells. This strategy streamlines the selection of potent nanobodies to complex antigens, and the selected nanobodies constitute ready-to-use biotinylated reagents. This method will accelerate the discovery of nanobodies to cell membrane receptors which comprise the largest group of drug and analytical targets. Owing to their minimal size, high production yield, versatility and robustness, the recombinant variable domains (nanobodies) of camelid single chain antibodies are valued affinity reagents for research, diagnostic, and therapeutic applications. While their preparation against purified antigens is straightforward, the generation of nanobodies to difficult targets such as multi-pass or complex membrane cell receptors remains challenging. Here we devised a platform for high throughput identification of nanobodies to cell receptor based on the use of a biotin handle.BACKGROUNDOwing to their minimal size, high production yield, versatility and robustness, the recombinant variable domains (nanobodies) of camelid single chain antibodies are valued affinity reagents for research, diagnostic, and therapeutic applications. While their preparation against purified antigens is straightforward, the generation of nanobodies to difficult targets such as multi-pass or complex membrane cell receptors remains challenging. Here we devised a platform for high throughput identification of nanobodies to cell receptor based on the use of a biotin handle.Using a biotin-acceptor peptide tag, the in vivo biotinylation of nanobodies in 96 well culture blocks was optimized allowing their parallel analysis by flow cytometry and ELISA, and their direct use for pull-down/MS target identification.METHODSUsing a biotin-acceptor peptide tag, the in vivo biotinylation of nanobodies in 96 well culture blocks was optimized allowing their parallel analysis by flow cytometry and ELISA, and their direct use for pull-down/MS target identification.The potential of this strategy was demonstrated by the selection and characterization of panels of nanobodies to Mac-1 (CD11b/CD18), MHC II and the mouse Ly-5 leukocyte common antigen (CD45) receptors, from a VHH library obtained from a llama immunized with mouse bone marrow derived dendritic cells. By on and off switching of the addition of biotin, the method also allowed the epitope binning of the selected Nbs directly on cells.RESULTSThe potential of this strategy was demonstrated by the selection and characterization of panels of nanobodies to Mac-1 (CD11b/CD18), MHC II and the mouse Ly-5 leukocyte common antigen (CD45) receptors, from a VHH library obtained from a llama immunized with mouse bone marrow derived dendritic cells. By on and off switching of the addition of biotin, the method also allowed the epitope binning of the selected Nbs directly on cells.This strategy streamlines the selection of potent nanobodies to complex antigens, and the selected nanobodies constitute ready-to-use biotinylated reagents.CONCLUSIONSThis strategy streamlines the selection of potent nanobodies to complex antigens, and the selected nanobodies constitute ready-to-use biotinylated reagents.This method will accelerate the discovery of nanobodies to cell membrane receptors which comprise the largest group of drug and analytical targets.GENERAL SIGNIFICANCEThis method will accelerate the discovery of nanobodies to cell membrane receptors which comprise the largest group of drug and analytical targets. |
Author | Alfaya, Lucía Rossotti, Martín Tabares, Sofía González-Sapienza, Gualberto Leizagoyen, Carmen Moron, Gabriel |
AuthorAffiliation | 2 Parque Lecoq, IMM, Montevideo Uruguay 1 Cátedra de Inmunología, DEPBIO, Facultad de Química, Instituto de Higiene, UDELAR, Montevideo, Uruguay 3 Centro de Investigación en Bioquímica Clínica e Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina |
AuthorAffiliation_xml | – name: 2 Parque Lecoq, IMM, Montevideo Uruguay – name: 3 Centro de Investigación en Bioquímica Clínica e Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina – name: 1 Cátedra de Inmunología, DEPBIO, Facultad de Química, Instituto de Higiene, UDELAR, Montevideo, Uruguay |
Author_xml | – sequence: 1 givenname: Martín surname: Rossotti fullname: Rossotti, Martín organization: Cátedra de Inmunología, DEPBIO, Facultad de Química, Instituto de Higiene, UDELAR, Montevideo, Uruguay – sequence: 2 givenname: Sofía surname: Tabares fullname: Tabares, Sofía organization: Cátedra de Inmunología, DEPBIO, Facultad de Química, Instituto de Higiene, UDELAR, Montevideo, Uruguay – sequence: 3 givenname: Lucía surname: Alfaya fullname: Alfaya, Lucía organization: Cátedra de Inmunología, DEPBIO, Facultad de Química, Instituto de Higiene, UDELAR, Montevideo, Uruguay – sequence: 4 givenname: Carmen surname: Leizagoyen fullname: Leizagoyen, Carmen organization: Parque Lecoq, IMM, Montevideo, Uruguay – sequence: 5 givenname: Gabriel surname: Moron fullname: Moron, Gabriel organization: Centro de Investigación en Bioquímica Clínica e Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina – sequence: 6 givenname: Gualberto surname: González-Sapienza fullname: González-Sapienza, Gualberto email: ggonzal@fq.edu.uy organization: Cátedra de Inmunología, DEPBIO, Facultad de Química, Instituto de Higiene, UDELAR, Montevideo, Uruguay |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25819371$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEUhS1URNPCP0DISzYz-DkPFkioAlqpEgtgbXns68TRjB1spxX_HoeEClhQb7y45xzdc78LdBZiAIReUtJSQrs323aa9BpCywiVLeEtIeMTtKJDz5qBkO4MrQgnohG0k-foIuctqU-O8hk6Z3KgI-_pCsUvJYFeZh_A4gXKJlrsYsI7nfQ8w4y9hVC880YXHwOODmcf1jNgGxftA9Z1OkXrIeMSa8IyJR0AJzCwKzFlXE33m1gNBuY5P0dPnZ4zvDj9l-jbxw9fr66b28-fbq7e3zZGjF1p7KTNNAgzuR56JuloqGHESdFp4IJZJkUPbhLGGG5459xgqGRGs653bBg4v0Tvjrm7_bSANbVELaR2yS86_VBRe_X3JPiNWsc7JQQfRzbUgNengBS_7yEXtfh8qFDbxX1WrB6TEUHF41LaDZTJsaOiSl_9udbDPr-BVIE4CkyKOSdwDxJK1IG72qojd3XgrghXlXu1vf3HZnz5RayW8_Nj5tOtoAK585BUNh6CAesrxqJs9P8P-AkMAM4o |
CitedBy_id | crossref_primary_10_1016_j_omton_2024_200775 crossref_primary_10_1016_j_snb_2025_137604 crossref_primary_10_1021_acs_analchem_9b01596 crossref_primary_10_1016_j_smim_2020_101425 crossref_primary_10_1038_s41586_024_08441_6 crossref_primary_10_3389_fcimb_2024_1362765 crossref_primary_10_1080_19420862_2015_1068491 crossref_primary_10_1021_acs_analchem_7b01221 crossref_primary_10_1002_jmr_2755 crossref_primary_10_3389_fimmu_2018_00273 crossref_primary_10_1007_s00216_019_02246_7 crossref_primary_10_1038_s41598_018_21329_6 crossref_primary_10_1039_C7AN02024D crossref_primary_10_1186_s12967_023_04524_6 crossref_primary_10_1038_s42003_022_03866_z crossref_primary_10_1016_j_molimm_2018_02_012 crossref_primary_10_1021_acschembio_9b00493 crossref_primary_10_5812_tms_114888 crossref_primary_10_1021_acs_analchem_1c04603 crossref_primary_10_2217_nnm_15_175 crossref_primary_10_3389_fimmu_2017_00977 crossref_primary_10_1016_j_foodcont_2023_109910 crossref_primary_10_1016_j_aca_2022_339705 crossref_primary_10_1016_j_nbt_2021_05_002 crossref_primary_10_1038_s41591_024_03138_9 crossref_primary_10_3389_fimmu_2023_1220477 crossref_primary_10_1016_j_freeradbiomed_2022_02_031 crossref_primary_10_1016_j_pep_2019_105505 crossref_primary_10_3390_biom10121652 crossref_primary_10_1021_acs_analchem_5b03561 crossref_primary_10_1021_acssynbio_2c00337 crossref_primary_10_1038_s41586_020_2851_2 |
Cites_doi | 10.1517/14712598.5.1.111 10.1016/j.nano.2011.07.007 10.1021/la702322n 10.1016/j.jmb.2005.03.072 10.1110/ps.8.4.921 10.1016/j.imlet.2004.05.011 10.1007/978-1-62703-721-1_14 10.1128/AAC.45.10.2807-2812.2001 10.1016/S0161-5890(97)00146-6 10.1016/S0092-8674(01)00186-6 10.1084/jem.176.6.1693 10.1074/jbc.M406968200 10.1016/S0021-9258(18)32463-3 10.1038/363446a0 10.1021/ac201824z 10.1038/374168a0 10.1002/(SICI)1097-0134(19980901)32:4<515::AID-PROT9>3.0.CO;2-E 10.1042/bj3020881 10.1016/S0167-4838(99)00030-8 10.1038/nprot.2014.039 10.1016/S0092-8674(02)00971-6 10.1007/978-1-61779-931-0_2 10.1093/clinchem/37.5.625 10.1039/c005279e 10.1007/s00253-013-5232-z 10.1016/S0014-5793(03)01107-4 10.1073/pnas.1305121110 10.1146/annurev-biochem-063011-092449 10.1021/ac051092j |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. Copyright © 2015 Elsevier B.V. All rights reserved. 2015 Published by Elsevier B.V. 2015 |
Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Copyright © 2015 Elsevier B.V. All rights reserved. – notice: 2015 Published by Elsevier B.V. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.bbagen.2015.03.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 1404 |
ExternalDocumentID | PMC4439928 25819371 10_1016_j_bbagen_2015_03_009 S0304416515000896 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: FIC NIH HHS grantid: D43 TW005718 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c496t-dbacb84cbf7e72519c1c20f546ae342d2547efb4ccc3c36ff8c152ca267f28833 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Thu Aug 21 17:42:52 EDT 2025 Fri Jul 11 00:41:28 EDT 2025 Fri Jul 11 05:44:06 EDT 2025 Thu Apr 03 07:04:48 EDT 2025 Thu Apr 24 22:54:42 EDT 2025 Tue Jul 01 00:22:05 EDT 2025 Fri Feb 23 02:34:16 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Flow cytometry Nanobody In vivo biotinylation Phage display Immunoprecipitation Cell receptor |
Language | English |
License | Copyright © 2015 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-dbacb84cbf7e72519c1c20f546ae342d2547efb4ccc3c36ff8c152ca267f28833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.bbagen.2015.03.009 |
PMID | 25819371 |
PQID | 1681259614 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4439928 proquest_miscellaneous_2000204148 proquest_miscellaneous_1681259614 pubmed_primary_25819371 crossref_primary_10_1016_j_bbagen_2015_03_009 crossref_citationtrail_10_1016_j_bbagen_2015_03_009 elsevier_sciencedirect_doi_10_1016_j_bbagen_2015_03_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dalal, Hanson (bb0145) 2001; 104 Pardon, Laeremans, Triest, Rasmussen, Wohlkonig, Ruf, Muyldermans, Hol, Kobilka, Steyaert (bb0060) 2014; 9 Even-Desrumeaux, Baty, Chames (bb0075) 2010; 6 Inaba, Inaba, Romani, Aya, Deguchi, Ikehara, Muramatsu, Steinman (bb0115) 1992; 176 Conrath, Lauwereys, Galleni, Matagne, Frere, Kinne, Wyns, Muyldermans (bb0055) 2001; 45 Anamelechi, Clermont, Brown, Truskey, Reichert (bb0080) 2007; 23 DuMont, Yoong, Day, Alonzo, McDonald, Jennings, Torres (bb0125) 2013; 110 van der Linden, Frenken, de Geus, Harmsen, Ruuls, Stok, de Ron, Wilson, Davis, Verrips (bb0040) 1999; 1431 Muyldermans (bb0035) 2013; 82 Beckett, Kovaleva, Schatz (bb0095) 1999; 8 Brunger, DeLaBarre (bb0150) 2003; 555 Solovjov, Pluskota, Plow (bb0135) 2005; 280 Hust, Frenzel, Schirrmann, Dubel (bb0010) 2014; 1101 Diamandis, Christopoulos (bb0085) 1991; 37 Zarebski, Urrutia, Goldbaum (bb0120) 2005; 349 Saerens, Frederix, Reekmans, Conrath, Jans, Brys, Huang, Bosmans, Maes, Borghs, Muyldermans (bb0065) 2005; 77 Hamers-Casterman, Atarhouch, Muyldermans, Robinson, Hamers, Songa, Bendahman, Hamers (bb0015) 1993; 363 Greenberg, Avila, Hughes, Hughes, McKinney, Flajnik (bb0020) 1995; 374 Vu, Ghahroudi, Wyns, Muyldermans (bb0025) 1997; 34 Huntington, Tarlinton (bb0140) 2004; 94 Sukhanova, Even-Desrumeaux, Kisserli, Tabary, Reveil, Millot, Chames, Baty, Artemyev, Oleinikov, Pluot, Cohen, Nabiev (bb0070) 2012; 8 Hynes (bb0130) 2002; 110 Tabares-da Rosa, Rossotti, Carleiza, Carrion, Pritsch, Ahn, Last, Hammock, Gonzalez-Sapienza (bb0045) 2011; 83 Revets, De Baetselier, Muyldermans (bb0030) 2005; 5 Geyer, McCafferty, Dubel, Bradbury, Sidhu (bb0005) 2012; 901 Dundas, Demonte, Park (bb0090) 2013; 97 Robinson, Oei, Saunders, Gravel (bb0100) 1983; 258 Barbas, Burdon, Scott, Silverman (bb0105) 2001 Chapman-Smith, Turner, Cronan, Morris, Wallace (bb0110) 1994; 302 Transue, De Genst, Ghahroudi, Wyns, Muyldermans (bb0050) 1998; 32 Hamers-Casterman (10.1016/j.bbagen.2015.03.009_bb0015) 1993; 363 Anamelechi (10.1016/j.bbagen.2015.03.009_bb0080) 2007; 23 Sukhanova (10.1016/j.bbagen.2015.03.009_bb0070) 2012; 8 Inaba (10.1016/j.bbagen.2015.03.009_bb0115) 1992; 176 Huntington (10.1016/j.bbagen.2015.03.009_bb0140) 2004; 94 Geyer (10.1016/j.bbagen.2015.03.009_bb0005) 2012; 901 Hynes (10.1016/j.bbagen.2015.03.009_bb0130) 2002; 110 Chapman-Smith (10.1016/j.bbagen.2015.03.009_bb0110) 1994; 302 Vu (10.1016/j.bbagen.2015.03.009_bb0025) 1997; 34 Conrath (10.1016/j.bbagen.2015.03.009_bb0055) 2001; 45 Muyldermans (10.1016/j.bbagen.2015.03.009_bb0035) 2013; 82 Zarebski (10.1016/j.bbagen.2015.03.009_bb0120) 2005; 349 Greenberg (10.1016/j.bbagen.2015.03.009_bb0020) 1995; 374 Saerens (10.1016/j.bbagen.2015.03.009_bb0065) 2005; 77 Beckett (10.1016/j.bbagen.2015.03.009_bb0095) 1999; 8 Tabares-da Rosa (10.1016/j.bbagen.2015.03.009_bb0045) 2011; 83 Revets (10.1016/j.bbagen.2015.03.009_bb0030) 2005; 5 Dalal (10.1016/j.bbagen.2015.03.009_bb0145) 2001; 104 Brunger (10.1016/j.bbagen.2015.03.009_bb0150) 2003; 555 Even-Desrumeaux (10.1016/j.bbagen.2015.03.009_bb0075) 2010; 6 Dundas (10.1016/j.bbagen.2015.03.009_bb0090) 2013; 97 DuMont (10.1016/j.bbagen.2015.03.009_bb0125) 2013; 110 Diamandis (10.1016/j.bbagen.2015.03.009_bb0085) 1991; 37 van der Linden (10.1016/j.bbagen.2015.03.009_bb0040) 1999; 1431 Transue (10.1016/j.bbagen.2015.03.009_bb0050) 1998; 32 Robinson (10.1016/j.bbagen.2015.03.009_bb0100) 1983; 258 Barbas (10.1016/j.bbagen.2015.03.009_bb0105) 2001 Solovjov (10.1016/j.bbagen.2015.03.009_bb0135) 2005; 280 Hust (10.1016/j.bbagen.2015.03.009_bb0010) 2014; 1101 Pardon (10.1016/j.bbagen.2015.03.009_bb0060) 2014; 9 24057405 - Appl Microbiol Biotechnol. 2013 Nov;97(21):9343-53 20859568 - Mol Biosyst. 2010 Nov;6(11):2241-8 14630332 - FEBS Lett. 2003 Nov 27;555(1):126-33 6406485 - J Biol Chem. 1983 May 25;258(10):6660-4 24577359 - Nat Protoc. 2014 Mar;9(3):674-93 11163235 - Cell. 2001 Jan 12;104(1):5-8 8502296 - Nature. 1993 Jun 3;363(6428):446-8 7945216 - Biochem J. 1994 Sep 15;302 ( Pt 3):881-7 9726420 - Proteins. 1998 Sep 1;32(4):515-22 21839049 - Nanomedicine. 2012 May;8(4):516-25 16316161 - Anal Chem. 2005 Dec 1;77(23):7547-55 10211839 - Protein Sci. 1999 Apr;8(4):921-9 15709914 - Expert Opin Biol Ther. 2005 Jan;5(1):111-24 15485828 - J Biol Chem. 2005 Jan 14;280(2):1336-45 12297042 - Cell. 2002 Sep 20;110(6):673-87 17985940 - Langmuir. 2007 Dec 4;23(25):12583-8 11557473 - Antimicrob Agents Chemother. 2001 Oct;45(10):2807-12 10209277 - Biochim Biophys Acta. 1999 Apr 12;1431(1):37-46 1460426 - J Exp Med. 1992 Dec 1;176(6):1693-702 22723092 - Methods Mol Biol. 2012;901:11-32 21827167 - Anal Chem. 2011 Sep 15;83(18):7213-20 23754403 - Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10794-9 9566760 - Mol Immunol. 1997 Nov-Dec;34(16-17):1121-31 15890359 - J Mol Biol. 2005 Jun 17;349(4):814-24 23495938 - Annu Rev Biochem. 2013;82:775-97 2032315 - Clin Chem. 1991 May;37(5):625-36 15275963 - Immunol Lett. 2004 Jul 15;94(3):167-74 7877689 - Nature. 1995 Mar 9;374(6518):168-73 24233787 - Methods Mol Biol. 2014;1101:305-20 |
References_xml | – volume: 374 start-page: 168 year: 1995 end-page: 173 ident: bb0020 article-title: A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks publication-title: Nature – volume: 8 start-page: 921 year: 1999 end-page: 929 ident: bb0095 article-title: A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation publication-title: Protein Sci. – volume: 34 start-page: 1121 year: 1997 end-page: 1131 ident: bb0025 article-title: Comparison of llama VH sequences from conventional and heavy chain antibodies publication-title: Mol. Immunol. – volume: 5 start-page: 111 year: 2005 end-page: 124 ident: bb0030 article-title: Nanobodies as novel agents for cancer therapy publication-title: Expert. Opin. Biol. Ther. – volume: 110 start-page: 673 year: 2002 end-page: 687 ident: bb0130 article-title: Integrins: bidirectional, allosteric signaling machines publication-title: Cell – volume: 104 start-page: 5 year: 2001 end-page: 8 ident: bb0145 article-title: Membrane traffic: what drives the AAA motor? publication-title: Cell – volume: 110 start-page: 10794 year: 2013 end-page: 10799 ident: bb0125 article-title: LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 1101 start-page: 305 year: 2014 end-page: 320 ident: bb0010 article-title: Selection of recombinant antibodies from antibody gene libraries publication-title: Methods Mol. Biol. – volume: 45 start-page: 2807 year: 2001 end-page: 2812 ident: bb0055 article-title: Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae publication-title: Antimicrob. Agents Chemother. – start-page: 2.1 year: 2001 end-page: 2.19 ident: bb0105 article-title: Phage Display: A Laboratory Manual – volume: 176 start-page: 1693 year: 1992 end-page: 1702 ident: bb0115 article-title: Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor publication-title: J. Exp. Med. – volume: 32 start-page: 515 year: 1998 end-page: 522 ident: bb0050 article-title: Camel single-domain antibody inhibits enzyme by mimicking carbohydrate substrate publication-title: Proteins – volume: 901 start-page: 11 year: 2012 end-page: 32 ident: bb0005 article-title: Recombinant antibodies and in vitro selection technologies publication-title: Methods Mol. Biol. – volume: 1431 start-page: 37 year: 1999 end-page: 46 ident: bb0040 article-title: Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies publication-title: Biochim. Biophys. Acta – volume: 8 start-page: 516 year: 2012 end-page: 525 ident: bb0070 article-title: Oriented conjugates of single-domain antibodies and quantum dots: toward a new generation of ultrasmall diagnostic nanoprobes publication-title: Nanomedicine – volume: 83 start-page: 7213 year: 2011 end-page: 7220 ident: bb0045 article-title: Competitive selection from single domain antibody libraries allows isolation of high-affinity antihapten antibodies that are not favored in the llama immune response publication-title: Anal. Chem. – volume: 23 start-page: 12583 year: 2007 end-page: 12588 ident: bb0080 article-title: Streptavidin binding and endothelial cell adhesion to biotinylated fibronectin publication-title: Langmuir – volume: 94 start-page: 167 year: 2004 end-page: 174 ident: bb0140 article-title: CD45: direct and indirect government of immune regulation publication-title: Immunol. Lett. – volume: 363 start-page: 446 year: 1993 end-page: 448 ident: bb0015 article-title: Naturally occurring antibodies devoid of light chains publication-title: Nature – volume: 37 start-page: 625 year: 1991 end-page: 636 ident: bb0085 article-title: The biotin–(strept)avidin system: principles and applications in biotechnology publication-title: Clin. Chem. – volume: 258 start-page: 6660 year: 1983 end-page: 6664 ident: bb0100 article-title: [3H]biotin-labeled proteins in cultured human skin fibroblasts from patients with pyruvate carboxylase deficiency publication-title: J. Biol. Chem. – volume: 555 start-page: 126 year: 2003 end-page: 133 ident: bb0150 article-title: NSF and p97/VCP: similar at first, different at last publication-title: FEBS Lett. – volume: 82 start-page: 775 year: 2013 end-page: 797 ident: bb0035 article-title: Nanobodies: natural single-domain antibodies publication-title: Annu. Rev. Biochem. – volume: 9 start-page: 674 year: 2014 end-page: 693 ident: bb0060 article-title: A general protocol for the generation of nanobodies for structural biology publication-title: Nat. Protoc. – volume: 97 start-page: 9343 year: 2013 end-page: 9353 ident: bb0090 article-title: Streptavidin–biotin technology: improvements and innovations in chemical and biological applications publication-title: Appl. Microbiol. Biotechnol. – volume: 6 start-page: 2241 year: 2010 end-page: 2248 ident: bb0075 article-title: Strong and oriented immobilization of single domain antibodies from crude bacterial lysates for high-throughput compatible cost-effective antibody array generation publication-title: Mol. BioSyst. – volume: 280 start-page: 1336 year: 2005 end-page: 1345 ident: bb0135 article-title: Distinct roles for the alpha and beta subunits in the functions of integrin alphaMbeta2 publication-title: J. Biol. Chem. – volume: 77 start-page: 7547 year: 2005 end-page: 7555 ident: bb0065 article-title: Engineering camel single-domain antibodies and immobilization chemistry for human prostate-specific antigen sensing publication-title: Anal. Chem. – volume: 302 start-page: 881 year: 1994 end-page: 887 ident: bb0110 article-title: Expression, biotinylation and purification of a biotin-domain peptide from the biotin carboxy carrier protein of publication-title: Biochem. J. – volume: 349 start-page: 814 year: 2005 end-page: 824 ident: bb0120 article-title: Llama single domain antibodies as a tool for molecular mimicry publication-title: J. Mol. Biol. – volume: 5 start-page: 111 year: 2005 ident: 10.1016/j.bbagen.2015.03.009_bb0030 article-title: Nanobodies as novel agents for cancer therapy publication-title: Expert. Opin. Biol. Ther. doi: 10.1517/14712598.5.1.111 – volume: 8 start-page: 516 year: 2012 ident: 10.1016/j.bbagen.2015.03.009_bb0070 article-title: Oriented conjugates of single-domain antibodies and quantum dots: toward a new generation of ultrasmall diagnostic nanoprobes publication-title: Nanomedicine doi: 10.1016/j.nano.2011.07.007 – volume: 23 start-page: 12583 year: 2007 ident: 10.1016/j.bbagen.2015.03.009_bb0080 article-title: Streptavidin binding and endothelial cell adhesion to biotinylated fibronectin publication-title: Langmuir doi: 10.1021/la702322n – volume: 349 start-page: 814 year: 2005 ident: 10.1016/j.bbagen.2015.03.009_bb0120 article-title: Llama single domain antibodies as a tool for molecular mimicry publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.03.072 – volume: 8 start-page: 921 year: 1999 ident: 10.1016/j.bbagen.2015.03.009_bb0095 article-title: A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation publication-title: Protein Sci. doi: 10.1110/ps.8.4.921 – volume: 94 start-page: 167 year: 2004 ident: 10.1016/j.bbagen.2015.03.009_bb0140 article-title: CD45: direct and indirect government of immune regulation publication-title: Immunol. Lett. doi: 10.1016/j.imlet.2004.05.011 – volume: 1101 start-page: 305 year: 2014 ident: 10.1016/j.bbagen.2015.03.009_bb0010 article-title: Selection of recombinant antibodies from antibody gene libraries publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-721-1_14 – volume: 45 start-page: 2807 year: 2001 ident: 10.1016/j.bbagen.2015.03.009_bb0055 article-title: Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.45.10.2807-2812.2001 – volume: 34 start-page: 1121 year: 1997 ident: 10.1016/j.bbagen.2015.03.009_bb0025 article-title: Comparison of llama VH sequences from conventional and heavy chain antibodies publication-title: Mol. Immunol. doi: 10.1016/S0161-5890(97)00146-6 – volume: 104 start-page: 5 year: 2001 ident: 10.1016/j.bbagen.2015.03.009_bb0145 article-title: Membrane traffic: what drives the AAA motor? publication-title: Cell doi: 10.1016/S0092-8674(01)00186-6 – volume: 176 start-page: 1693 year: 1992 ident: 10.1016/j.bbagen.2015.03.009_bb0115 article-title: Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor publication-title: J. Exp. Med. doi: 10.1084/jem.176.6.1693 – volume: 280 start-page: 1336 year: 2005 ident: 10.1016/j.bbagen.2015.03.009_bb0135 article-title: Distinct roles for the alpha and beta subunits in the functions of integrin alphaMbeta2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M406968200 – volume: 258 start-page: 6660 year: 1983 ident: 10.1016/j.bbagen.2015.03.009_bb0100 article-title: [3H]biotin-labeled proteins in cultured human skin fibroblasts from patients with pyruvate carboxylase deficiency publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)32463-3 – volume: 363 start-page: 446 year: 1993 ident: 10.1016/j.bbagen.2015.03.009_bb0015 article-title: Naturally occurring antibodies devoid of light chains publication-title: Nature doi: 10.1038/363446a0 – volume: 83 start-page: 7213 year: 2011 ident: 10.1016/j.bbagen.2015.03.009_bb0045 article-title: Competitive selection from single domain antibody libraries allows isolation of high-affinity antihapten antibodies that are not favored in the llama immune response publication-title: Anal. Chem. doi: 10.1021/ac201824z – volume: 374 start-page: 168 year: 1995 ident: 10.1016/j.bbagen.2015.03.009_bb0020 article-title: A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks publication-title: Nature doi: 10.1038/374168a0 – volume: 32 start-page: 515 year: 1998 ident: 10.1016/j.bbagen.2015.03.009_bb0050 article-title: Camel single-domain antibody inhibits enzyme by mimicking carbohydrate substrate publication-title: Proteins doi: 10.1002/(SICI)1097-0134(19980901)32:4<515::AID-PROT9>3.0.CO;2-E – volume: 302 start-page: 881 issue: Pt 3 year: 1994 ident: 10.1016/j.bbagen.2015.03.009_bb0110 article-title: Expression, biotinylation and purification of a biotin-domain peptide from the biotin carboxy carrier protein of Escherichia coli acetyl-CoA carboxylase publication-title: Biochem. J. doi: 10.1042/bj3020881 – volume: 1431 start-page: 37 year: 1999 ident: 10.1016/j.bbagen.2015.03.009_bb0040 article-title: Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4838(99)00030-8 – start-page: 2.1 year: 2001 ident: 10.1016/j.bbagen.2015.03.009_bb0105 article-title: Phage Display: A Laboratory Manual – volume: 9 start-page: 674 year: 2014 ident: 10.1016/j.bbagen.2015.03.009_bb0060 article-title: A general protocol for the generation of nanobodies for structural biology publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.039 – volume: 110 start-page: 673 year: 2002 ident: 10.1016/j.bbagen.2015.03.009_bb0130 article-title: Integrins: bidirectional, allosteric signaling machines publication-title: Cell doi: 10.1016/S0092-8674(02)00971-6 – volume: 901 start-page: 11 year: 2012 ident: 10.1016/j.bbagen.2015.03.009_bb0005 article-title: Recombinant antibodies and in vitro selection technologies publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-931-0_2 – volume: 37 start-page: 625 year: 1991 ident: 10.1016/j.bbagen.2015.03.009_bb0085 article-title: The biotin–(strept)avidin system: principles and applications in biotechnology publication-title: Clin. Chem. doi: 10.1093/clinchem/37.5.625 – volume: 6 start-page: 2241 year: 2010 ident: 10.1016/j.bbagen.2015.03.009_bb0075 article-title: Strong and oriented immobilization of single domain antibodies from crude bacterial lysates for high-throughput compatible cost-effective antibody array generation publication-title: Mol. BioSyst. doi: 10.1039/c005279e – volume: 97 start-page: 9343 year: 2013 ident: 10.1016/j.bbagen.2015.03.009_bb0090 article-title: Streptavidin–biotin technology: improvements and innovations in chemical and biological applications publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-5232-z – volume: 555 start-page: 126 year: 2003 ident: 10.1016/j.bbagen.2015.03.009_bb0150 article-title: NSF and p97/VCP: similar at first, different at last publication-title: FEBS Lett. doi: 10.1016/S0014-5793(03)01107-4 – volume: 110 start-page: 10794 year: 2013 ident: 10.1016/j.bbagen.2015.03.009_bb0125 article-title: Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1305121110 – volume: 82 start-page: 775 year: 2013 ident: 10.1016/j.bbagen.2015.03.009_bb0035 article-title: Nanobodies: natural single-domain antibodies publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-063011-092449 – volume: 77 start-page: 7547 year: 2005 ident: 10.1016/j.bbagen.2015.03.009_bb0065 article-title: Engineering camel single-domain antibodies and immobilization chemistry for human prostate-specific antigen sensing publication-title: Anal. Chem. doi: 10.1021/ac051092j – reference: 11163235 - Cell. 2001 Jan 12;104(1):5-8 – reference: 16316161 - Anal Chem. 2005 Dec 1;77(23):7547-55 – reference: 20859568 - Mol Biosyst. 2010 Nov;6(11):2241-8 – reference: 22723092 - Methods Mol Biol. 2012;901:11-32 – reference: 24233787 - Methods Mol Biol. 2014;1101:305-20 – reference: 23754403 - Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10794-9 – reference: 24577359 - Nat Protoc. 2014 Mar;9(3):674-93 – reference: 2032315 - Clin Chem. 1991 May;37(5):625-36 – reference: 14630332 - FEBS Lett. 2003 Nov 27;555(1):126-33 – reference: 12297042 - Cell. 2002 Sep 20;110(6):673-87 – reference: 17985940 - Langmuir. 2007 Dec 4;23(25):12583-8 – reference: 24057405 - Appl Microbiol Biotechnol. 2013 Nov;97(21):9343-53 – reference: 11557473 - Antimicrob Agents Chemother. 2001 Oct;45(10):2807-12 – reference: 7945216 - Biochem J. 1994 Sep 15;302 ( Pt 3):881-7 – reference: 21839049 - Nanomedicine. 2012 May;8(4):516-25 – reference: 8502296 - Nature. 1993 Jun 3;363(6428):446-8 – reference: 9566760 - Mol Immunol. 1997 Nov-Dec;34(16-17):1121-31 – reference: 10211839 - Protein Sci. 1999 Apr;8(4):921-9 – reference: 6406485 - J Biol Chem. 1983 May 25;258(10):6660-4 – reference: 1460426 - J Exp Med. 1992 Dec 1;176(6):1693-702 – reference: 15275963 - Immunol Lett. 2004 Jul 15;94(3):167-74 – reference: 10209277 - Biochim Biophys Acta. 1999 Apr 12;1431(1):37-46 – reference: 15890359 - J Mol Biol. 2005 Jun 17;349(4):814-24 – reference: 9726420 - Proteins. 1998 Sep 1;32(4):515-22 – reference: 7877689 - Nature. 1995 Mar 9;374(6518):168-73 – reference: 21827167 - Anal Chem. 2011 Sep 15;83(18):7213-20 – reference: 23495938 - Annu Rev Biochem. 2013;82:775-97 – reference: 15709914 - Expert Opin Biol Ther. 2005 Jan;5(1):111-24 – reference: 15485828 - J Biol Chem. 2005 Jan 14;280(2):1336-45 |
SSID | ssj0000595 ssj0025309 |
Score | 2.3077495 |
Snippet | Owing to their minimal size, high production yield, versatility and robustness, the recombinant variable domains (nanobodies) of camelid single chain... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1397 |
SubjectTerms | Animals antibodies biotin Biotin - immunology biotinylation bone marrow Camelidae Camelids, New World CD11b Antigen - immunology CD18 Antigens - immunology Cell Line cell membranes Cell receptor Cell Surface Display Techniques - methods Cells, Cultured dendritic cells Dendritic Cells - immunology Dendritic Cells - metabolism drugs Enzyme-Linked Immunosorbent Assay epitopes Flow Cytometry Immunization - methods Immunoprecipitation In vivo biotinylation Leukocyte Common Antigens - immunology leukocytes llamas mice Mice, Inbred BALB C Nanobody Peptides - immunology Phage display receptors Receptors, Cell Surface - immunology Reproducibility of Results Single-Chain Antibodies - immunology Single-Domain Antibodies - immunology Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization |
Title | Streamlined method for parallel identification of single domain antibodies to membrane receptors on whole cells |
URI | https://dx.doi.org/10.1016/j.bbagen.2015.03.009 https://www.ncbi.nlm.nih.gov/pubmed/25819371 https://www.proquest.com/docview/1681259614 https://www.proquest.com/docview/2000204148 https://pubmed.ncbi.nlm.nih.gov/PMC4439928 |
Volume | 1850 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamIQQXBOPHOtjkSVxNm9iOneNUMZVV7DCY2M2KHVtkSpNq64R24W_nvTgpK2iatFPU1I7c9xy_z33P30fIRy0811kmmM5tYMJKwfJgJQse0HoSuAydisLX02x2Lk4u5MUWmQ5nYbCssl_745rerdb9nXFvzfGyqsbfMKkHcAICMgayHGm3hVA4yz_9_lvmAfBBxkyCYNh6OD7X1XhZCy8tsqAmMlKd5veFp__h579VlHfC0vFL8qLHk_QoDvkV2fLNDnkaFSZvd8iz6SDo9pq0mIEuFogrSxqVoylAVors33Xta1qVfelQ5y3aBop_JNSelu2iqBoKTqhsi2WHdNXCExaw0248Bfv5JYr2UOj0C_V2KaYDrt-Q8-PP36cz1ustMCfybMVKWzirhbNBeYUnWl3i0kmQIis8F2kJe0nlgxXOOe54FoJ2EP1dkWYqdKLFb8l20zZ-l1Ct4Ukqt55PSgh_zk60T2F10YnK8lLpEeGDmY3rychRE6M2Q9XZpYnOMegcM-EGnDMibN1rGck4HmivBg-ajUllIF480PNwcLgBL6HVwKDtzbVJkLBN5oBq7m-TdgleATvNEXkXJ8l6vKkEDMZVAmPbmD7rBsj3vflNU_3seL8F7h1TvffoX_WePMdPsdr4A9leXd34fcBUK3vQvTQH5MnRl_nsFK_zsx_zP-rtJSI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKESoXBOW1PI3E1ewmfuaIVlQLtL3QSr1ZsWOLVNlkRbeqeuG3MxMnCwuqKnGN7ciZsWc-Z8bzEfLeiMCNUoKZwkUmnBSsiE6yGACtZ5HL2LMoHB2rxan4cibPdsh8vAuDaZWD7U82vbfWw5PpIM3pqq6n3zCoB3ACHDI6skLdIXcFbF-kMfjw83eeB-AHmUIJgmH38f5cn-TlHOxaLIOayVTrtLjJP_2LP_9Oo_zDLx08JA8GQEk_pjk_Ijuh3Sf3EsXk9T7Zm4-Mbo9JhyHoconAsqKJOpoCZqVY_rtpQkPrasgd6tVFu0jxT0ITaNUty7qloIXadZh3SNcdvGEJR-02UBBgWCFrD4VBV0i4SzEecPGEnB58Opkv2EC4wLwo1JpVrvTOCO-iDhqvtPrM57MohSoDF3kFh0kdohPee-65itF4cP--zJWOPWvxU7Lbdm14Tqgx8CZduMBnFfg_72Ym5GBeTKZVUWkzIXwUs_VDNXIkxWjsmHZ2bpNyLCrHzrgF5UwI24xapWoct_TXowbt1qqy4DBuGfluVLgFLaHUQKDd5YXNsGKbLADW3Nwn7yO8Ao6aE_IsLZLNfHMJIIzrDOa2tXw2HbDg93ZLW3_vC38LPDzm5sV_f9Vbsrc4OTq0h5-Pv74k97ElpR6_IrvrH5fhNQCstXvTb6BfNLglDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Streamlined+method+for+parallel+identification+of+single+domain+antibodies+to+membrane+receptors+on+whole+cells&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Rossotti%2C+Mart%C3%ADn&rft.au=Tabares%2C+Sof%C3%ADa&rft.au=Alfaya%2C+Luc%C3%ADa&rft.au=Leizagoyen%2C+Carmen&rft.date=2015-07-01&rft.issn=0006-3002&rft.volume=1850&rft.issue=7&rft.spage=1397&rft_id=info:doi/10.1016%2Fj.bbagen.2015.03.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |