Errors and uncertainties in a gridded carbon dioxide emissions inventory
Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission...
Saved in:
Published in | Mitigation and adaptation strategies for global change Vol. 24; no. 6; pp. 1007 - 1050 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.08.2019
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission estimates regardless of differences in data availability. However, there are a variety of sources of error and uncertainty that originate beyond what the inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric modeling applications, are often developed for research purposes and there are no specific guidelines to achieve spatial emission estimates. The errors and uncertainties associated with the spatial estimates are unique to the approaches employed and are often difficult to assess. This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO
2
), gridded EI Open-source Data Inventory for Anthropogenic CO
2
(ODIAC) with the multi-resolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal approaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU) over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI offers, this study characterized the potential biases in spatial disaggregation by emission sector (point and non-point emissions) across different scales (national, subnational/regional, and urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns showed large differences (10~100% relative differences at 1 km) especially at the urban-rural transitioning areas (90–100%). We however found that the agreement of emissions over urban areas is surprisingly good compared with the estimates previously reported for US cities. This paper also discusses the use of spatially explicit EIs for climate mitigation applications beyond the common use in atmospheric modeling. We conclude with a discussion of current and future challenges of EIs in support of successful implementation of GHG emission monitoring and mitigation activity under the Paris Climate Agreement from the United Nations Framework Convention on Climate Change (UNFCCC) 21st Conference of the Parties (COP21). We highlight the importance of capacity building for EI development and coordinated research efforts of EI, atmospheric observations, and modeling to overcome the challenges. |
---|---|
AbstractList | Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission estimates regardless of differences in data availability. However, there are a variety of sources of error and uncertainty that originate beyond what the inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric modeling applications, are often developed for research purposes and there are no specific guidelines to achieve spatial emission estimates. The errors and uncertainties associated with the spatial estimates are unique to the approaches employed and are often difficult to assess. This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO 2), gridded EI Open-source Data Inventory for Anthropogenic CO 2 (ODIAC) with the multiresolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal approaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU) over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI offers, this study characterized the potential biases in spatial disaggregation by emission sector (point and non-point emissions) across different scales (national, subnational/regional, and urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns showed large differences (10~100% relative differences at 1 km) especially at the urbanrural transitioning areas (90-100%). We however found that the agreement of emissions over urban areas is surprisingly good compared with the estimates previously reported for US cities. This paper also discusses the use of spatially explicit EIs for climate mitigation applications beyond the common use in atmospheric modeling. We conclude with a discussion of current and future challenges of EIs in support of successful implementation of GHG emission Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission estimates regardless of differences in data availability. However, there are a variety of sources of error and uncertainty that originate beyond what the inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric modeling applications, are often developed for research purposes and there are no specific guidelines to achieve spatial emission estimates. The errors and uncertainties associated with the spatial estimates are unique to the approaches employed and are often difficult to assess. This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO 2 ), gridded EI Open-source Data Inventory for Anthropogenic CO 2 (ODIAC) with the multi-resolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal approaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU) over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI offers, this study characterized the potential biases in spatial disaggregation by emission sector (point and non-point emissions) across different scales (national, subnational/regional, and urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns showed large differences (10~100% relative differences at 1 km) especially at the urban-rural transitioning areas (90–100%). We however found that the agreement of emissions over urban areas is surprisingly good compared with the estimates previously reported for US cities. This paper also discusses the use of spatially explicit EIs for climate mitigation applications beyond the common use in atmospheric modeling. We conclude with a discussion of current and future challenges of EIs in support of successful implementation of GHG emission monitoring and mitigation activity under the Paris Climate Agreement from the United Nations Framework Convention on Climate Change (UNFCCC) 21st Conference of the Parties (COP21). We highlight the importance of capacity building for EI development and coordinated research efforts of EI, atmospheric observations, and modeling to overcome the challenges. Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission estimates regardless of differences in data availability. However, there are a variety of sources of error and uncertainty that originate beyond what the inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric modeling applications, are often developed for research purposes and there are no specific guidelines to achieve spatial emission estimates. The errors and uncertainties associated with the spatial estimates are unique to the approaches employed and are often difficult to assess. This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO2), gridded EI Open-source Data Inventory for Anthropogenic CO2 (ODIAC) with the multi-resolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal approaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU) over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI offers, this study characterized the potential biases in spatial disaggregation by emission sector (point and non-point emissions) across different scales (national, subnational/regional, and urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns showed large differences (10~100% relative differences at 1 km) especially at the urban-rural transitioning areas (90–100%). We however found that the agreement of emissions over urban areas is surprisingly good compared with the estimates previously reported for US cities. This paper also discusses the use of spatially explicit EIs for climate mitigation applications beyond the common use in atmospheric modeling. We conclude with a discussion of current and future challenges of EIs in support of successful implementation of GHG emission monitoring and mitigation activity under the Paris Climate Agreement from the United Nations Framework Convention on Climate Change (UNFCCC) 21st Conference of the Parties (COP21). We highlight the importance of capacity building for EI development and coordinated research efforts of EI, atmospheric observations, and modeling to overcome the challenges. Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission estimates regardless of differences in data availability. However, there are a variety of sources of error and uncertainty that originate beyond what the inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric modeling applications, are often developed for research purposes and there are no specific guidelines to achieve spatial emission estimates. The errors and uncertainties associated with the spatial estimates are unique to the approaches employed and are often difficult to assess. This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO₂), gridded EI Open-source Data Inventory for Anthropogenic CO₂ (ODIAC) with the multi-resolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal approaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU) over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI offers, this study characterized the potential biases in spatial disaggregation by emission sector (point and non-point emissions) across different scales (national, subnational/regional, and urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns showed large differences (10~100% relative differences at 1 km) especially at the urban-rural transitioning areas (90–100%). We however found that the agreement of emissions over urban areas is surprisingly good compared with the estimates previously reported for US cities. This paper also discusses the use of spatially explicit EIs for climate mitigation applications beyond the common use in atmospheric modeling. We conclude with a discussion of current and future challenges of EIs in support of successful implementation of GHG emission monitoring and mitigation activity under the Paris Climate Agreement from the United Nations Framework Convention on Climate Change (UNFCCC) 21st Conference of the Parties (COP21). We highlight the importance of capacity building for EI development and coordinated research efforts of EI, atmospheric observations, and modeling to overcome the challenges. |
Author | Maksyutov, Shamil Nahorski, Zbigniew Jonas, Matthias Marland, Gregg Halushchak, Mariia Oda, Tomohiro Bun, Rostyslav Lesiv, Myroslava Danylo, Olha Lauvaux, Thomas Kinakh, Vitaliy Horabik-Pyzel, Joanna Topylko, Petro |
Author_xml | – sequence: 1 givenname: Tomohiro surname: Oda fullname: Oda, Tomohiro organization: Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Goddard Earth Sciences Technology and Research, Universities Space Research Association – sequence: 2 givenname: Rostyslav surname: Bun fullname: Bun, Rostyslav organization: Lviv Polytechnic National University, WSB University – sequence: 3 givenname: Vitaliy surname: Kinakh fullname: Kinakh, Vitaliy organization: Lviv Polytechnic National University – sequence: 4 givenname: Petro surname: Topylko fullname: Topylko, Petro organization: Lviv Polytechnic National University – sequence: 5 givenname: Mariia surname: Halushchak fullname: Halushchak, Mariia organization: Lviv Polytechnic National University, International Institute for Applied Systems Analysis – sequence: 6 givenname: Gregg surname: Marland fullname: Marland, Gregg organization: Department of Geological and Environmental Sciences, Appalachian State University – sequence: 7 givenname: Thomas surname: Lauvaux fullname: Lauvaux, Thomas organization: Laboratoire des sciences du climat et de l’environnement – sequence: 8 givenname: Matthias surname: Jonas fullname: Jonas, Matthias organization: International Institute for Applied Systems Analysis – sequence: 9 givenname: Shamil surname: Maksyutov fullname: Maksyutov, Shamil organization: Center for Global Environmental Research, National Institute for Environmental Studies – sequence: 10 givenname: Zbigniew surname: Nahorski fullname: Nahorski, Zbigniew organization: Systems Research Institute of Polish Academy of Sciences, Warsaw School of Information Technology – sequence: 11 givenname: Myroslava surname: Lesiv fullname: Lesiv, Myroslava organization: International Institute for Applied Systems Analysis – sequence: 12 givenname: Olha surname: Danylo fullname: Danylo, Olha organization: Lviv Polytechnic National University, International Institute for Applied Systems Analysis – sequence: 13 givenname: Joanna orcidid: 0000-0003-0896-0180 surname: Horabik-Pyzel fullname: Horabik-Pyzel, Joanna email: Joanna.Horabik@ibspan.waw.pl organization: Systems Research Institute of Polish Academy of Sciences |
BackLink | https://hal.science/hal-04238492$$DView record in HAL |
BookMark | eNp9kU1LJDEQhoO44Nf-AU8NXtxDu6l85yiijjDgZT2HTJIeM7SJJj2y_nsz9sqCB08pwvNWvVXvEdpPOQWETgFfAMbydwXARPYYdI-1krIne-gQuKQ9cC32W00V9IQqcYCOat1gjClwOESL61JyqZ1NvtsmF8pkY5piqF1Mne3WJXoffOdsWeXU-Zj_Rh-68BRrjTntqNeQplzeTtCPwY41_Pz3HqOHm-s_V4t-eX97d3W57B3TYuq9GiQwJ5qrFaeeCq-HlQ6CY2JlUI4RT7igghPFvbQ4DJJ55TVxDjyDgR6jX3PfRzua5xKfbHkz2UazuFya3R9mbU2mySs09nxmn0t-2YY6mebbhXG0KeRtNaTdgGgQijT07Au6yduS2iaGEEE4kwxko9RMuZJrLWEwLk52apeYio2jAWx2cZg5DtPiMB9xmN0A8kX6af5bEZ1FtcFpHcp_V9-o3gFCUp10 |
CitedBy_id | crossref_primary_10_1038_s41597_020_00779_6 crossref_primary_10_1088_1748_9326_acb6a7 crossref_primary_10_1016_j_rse_2023_113900 crossref_primary_10_1029_2019JD030528 crossref_primary_10_1088_1748_9326_ac00e2 crossref_primary_10_5194_amt_17_5861_2024 crossref_primary_10_31857_S0002351523020050 crossref_primary_10_3390_rs15204904 crossref_primary_10_1038_s41467_022_35108_5 crossref_primary_10_1021_acs_est_0c01602 crossref_primary_10_5194_essd_13_5311_2021 crossref_primary_10_1016_j_heliyon_2024_e29086 crossref_primary_10_1029_2020JD033538 crossref_primary_10_1007_s11600_024_01387_3 crossref_primary_10_1088_2515_7620_ab3d91 crossref_primary_10_1016_j_envdev_2019_100461 crossref_primary_10_5194_essd_12_1437_2020 crossref_primary_10_1155_2021_5561162 crossref_primary_10_1016_j_ecolind_2023_110143 crossref_primary_10_1016_j_eiar_2024_107498 crossref_primary_10_1016_j_scitotenv_2024_172188 crossref_primary_10_1016_j_scitotenv_2024_175177 crossref_primary_10_1016_j_uclim_2021_100968 crossref_primary_10_1007_s11027_019_09867_4 crossref_primary_10_1088_1748_9326_ac7407 crossref_primary_10_1021_acs_est_0c00343 crossref_primary_10_5194_acp_20_1795_2020 crossref_primary_10_1021_acs_est_4c07289 crossref_primary_10_1029_2020EA001343 crossref_primary_10_3390_en13226009 crossref_primary_10_1016_j_apr_2025_102417 crossref_primary_10_5194_essd_15_963_2023 crossref_primary_10_1088_1748_9326_acb837 crossref_primary_10_3390_atmos13091474 crossref_primary_10_5194_acp_23_8899_2023 crossref_primary_10_1029_2023JD038512 crossref_primary_10_1088_1748_9326_ad0f74 crossref_primary_10_3390_rs17061087 crossref_primary_10_1088_1748_9326_ad059b crossref_primary_10_1016_j_rse_2021_112314 crossref_primary_10_1038_s41598_022_16850_8 crossref_primary_10_1016_j_scs_2023_104476 crossref_primary_10_4236_jep_2024_154023 crossref_primary_10_1002_bse_3635 crossref_primary_10_1007_s11027_020_09924_3 crossref_primary_10_1088_1748_9326_ac109d crossref_primary_10_23939_mmc2021_02_304 crossref_primary_10_3390_rs15245757 crossref_primary_10_1016_j_rse_2021_112473 crossref_primary_10_1038_s41467_023_37264_8 crossref_primary_10_3389_fdata_2020_00029 crossref_primary_10_1016_j_rse_2022_112966 crossref_primary_10_3390_su152014849 crossref_primary_10_1016_j_scitotenv_2024_169879 crossref_primary_10_3390_rs14195024 crossref_primary_10_5194_gmd_14_3633_2021 crossref_primary_10_1016_j_scs_2021_103195 crossref_primary_10_1016_j_techfore_2020_120124 crossref_primary_10_1016_j_atmosres_2023_107207 crossref_primary_10_1016_j_atmosenv_2023_120009 crossref_primary_10_1186_s13021_019_0128_6 crossref_primary_10_1088_1748_9326_ac998c crossref_primary_10_5194_amt_16_581_2023 crossref_primary_10_3390_rs16132354 crossref_primary_10_1186_s13021_020_00146_3 crossref_primary_10_1134_S0001433823020056 crossref_primary_10_5194_gmd_17_7263_2024 crossref_primary_10_1080_23737484_2020_1850372 crossref_primary_10_2166_aqua_2020_071 crossref_primary_10_1016_j_envpol_2022_119210 crossref_primary_10_1088_1748_9326_ac7c29 crossref_primary_10_1134_S0001433822030100 crossref_primary_10_1186_s13021_020_00163_2 |
Cites_doi | 10.5194/bg-9-1845-2012 10.1007/s10584-010-9909-3 10.1080/16000889.2017.1291158 10.1007/s10584-010-9922-6 10.1002/2013JD021296 10.1029/1999JD900342 10.1002/2017GL074702 10.1038/nclimate1560 10.1029/96GB01523 10.1029/2010JD013887 10.1111/j.1600-0889.2011.00530.x 10.1038/nclimate1629 10.1002/2016JD025617 10.5194/acp-12-6741-2012 10.1016/j.rse.2018.03.017 10.5194/acp-11-543-2011 10.1029/2012GM001263 10.7125/APAN.30.18 10.1029/2018JD028859 10.1126/science.247.4949.1431 10.1029/2012GL052738 10.1080/20430779.2014.1000793 10.1016/S0034-4257(98)00098-4 10.5194/acp-16-1289-2016 10.5194/acp-16-5665-2016 10.1007/s11267-006-9116-4 10.1038/415626a 10.1002/2014EF000285 10.5194/gmd-11-4843-2018 10.5194/acp-13-9351-2013 10.1029/2004JD005373 10.5194/acp-16-9019-2016 10.2151/sola.2009-041 10.1007/978-3-319-70581-1_15 10.1038/nature14677 10.3402/tellusb.v66.23616 10.1002/2016GL070885 10.1073/pnas.0708986104 10.1007/s10584-014-1106-6 10.1007/s10584-010-9907-5 10.1002/2015EF000343 10.5194/acp-13-3661-2013 10.5194/acp-13-11019-2013 10.1029/2012JD018196 10.5194/essd-10-87-2018 10.5194/amt-3-781-2010 10.1073/pnas.0700609104 10.1002/2016GL067843 10.1007/s11027-018-9821-0 10.1126/science.1189936 10.1525/elementa.146 10.5194/acp-16-14703-2016 10.5194/amt-10-59-2017 10.1126/science.aam5782 10.5194/acp-9-2619-2009 10.7125/APAN.30.24 10.2151/sola.2011-041 10.5194/gmd-5-231-2012 10.1007/s10584-013-1040-9 10.1080/10962247.2013.833146 10.1038/ncomms10724 10.1007/s11027-016-9709-9 10.1021/es3011282 10.5194/acp-18-4229-2018 10.1016/j.enpol.2009.08.021 10.1002/2014JD022962 10.1029/2009JD013439 10.5194/acp-16-13121-2016 10.5194/acp-17-8313-2017 10.1111/j.1600-0889.2006.00218.x 10.3402/tellusb.v65i0.18681 10.1002/jgrd.50127 10.7125/apan.35.7 10.1038/nature11299 10.1016/j.atmosenv.2018.11.013 10.3402/tellusb.v36i4.14907 10.1002/2015JD024473 10.1016/j.atmosenv.2017.12.006 10.5194/essd-2017-124 10.1007/978-94-007-1670-4 10.17595/20170411.001 10.1002/2017JD027359 10.2788/14102 10.1007/s11027-017-9779-3 10.2760/08644 10.5194/acp-2017-1022 10.5194/bg-10-6699-2013 10.1007/978-1-4020-5930-8 10.3334/CDIAC/00001_V2016 10.1007/s11027-018-9836-6 10.1007/s11027-018-9791-2 10.5194/acp-2016-258 10.1007/978-94-007-1670-4_20 10.1007/s11027-017-9770-z 10.5194/essd-2017-79 10.2139/ssrn.1138690 10.2139/ssrn.2226505 10.1007/978-3-319-15901-0 10.1007/s11027-019-9846-z 10.17226/12883 10.5194/acp-2018-517 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Mitigation and Adaptation Strategies for Global Change is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2019 – notice: Mitigation and Adaptation Strategies for Global Change is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C AAYXX CITATION 3V. 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI BKSAR C1K CCPQU DWQXO F1W FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ L.- L.G M0C M2P PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U SOI 7S9 L.6 1XC VOOES |
DOI | 10.1007/s11027-019-09877-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ABI/INFORM Global Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Business (Alumni) Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ABI/INFORM Global (Corporate) AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Environmental Sciences |
EISSN | 1573-1596 |
EndPage | 1050 |
ExternalDocumentID | oai_HAL_hal_04238492v1 10_1007_s11027_019_09877_2 |
GeographicLocations | Poland United States |
GeographicLocations_xml | – name: Poland – name: United States |
GrantInformation_xml | – fundername: Systems Research Institute PAS |
GroupedDBID | -5A -5G -5~ -BR -EM -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67M 67Z 6NX 7WY 7XC 88I 8FE 8FH 8FL 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGNMA BHPHI BKSAR BPHCQ BSONS C6C CCPQU CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EIS EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- K60 K6~ KDC KOV L8X LAK LLZTM M0C M2P M4Y MA- NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z5O Z7V Z7Y Z7Z Z81 Z86 Z8P Z8S Z8T Z8U ZMTXR ~A9 ~EX ~KM -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH OVD PHGZM PHGZT R4E RIG RNI RZC RZE RZK S1Z S26 S28 SCK SCLPG T16 TEORI UZXMN VFIZW WK6 3V. 7ST 7UA 7XB 8FK ABRTQ C1K F1W H97 L.- L.G PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c496t-d8f714c6596b53d36d9fb9e6502a7e8c42d256365285d7a0ef74d8d92cc1d41f3 |
IEDL.DBID | BENPR |
ISSN | 1381-2386 |
IngestDate | Fri May 09 12:20:33 EDT 2025 Fri Jul 11 11:15:47 EDT 2025 Fri Jul 25 22:26:01 EDT 2025 Tue Jul 01 04:12:55 EDT 2025 Thu Apr 24 23:10:54 EDT 2025 Fri Feb 21 02:33:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Emission inventory Carbon cycle Climate mitigation Greenhouse gas emission Paris Agreement Reporting and verification Carbon dioxide Uncertainty analysis Remote sensing Monitoring |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-d8f714c6596b53d36d9fb9e6502a7e8c42d256365285d7a0ef74d8d92cc1d41f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0896-0180 0000-0002-7697-742X |
OpenAccessLink | https://link.springer.com/10.1007/s11027-019-09877-2 |
PQID | 2262547417 |
PQPubID | 54623 |
PageCount | 44 |
ParticipantIDs | hal_primary_oai_HAL_hal_04238492v1 proquest_miscellaneous_2315291682 proquest_journals_2262547417 crossref_citationtrail_10_1007_s11027_019_09877_2 crossref_primary_10_1007_s11027_019_09877_2 springer_journals_10_1007_s11027_019_09877_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to Scientific, Engineering, Socio-Economic and Policy Responses to Environmental Change |
PublicationTitle | Mitigation and adaptation strategies for global change |
PublicationTitleAbbrev | Mitig Adapt Strateg Glob Change |
PublicationYear | 2019 |
Publisher | Springer Netherlands Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer Verlag |
References | Bun, Gusti, Kujii, Tokar, Tsybrivskyy, Bun (CR15) 2007; 7 Hogue, Marland, Andres, Marland, Woodard (CR42) 2016; 4 Wong, Pongetti, Oda, Rao, Gurney, Newman, Duren, Miller, Yung, Sander (CR101) 2016; 16 Liu, Guan, Wei, Davis, Ciais, Bai, Peng, Zhang, Hubacek, Marland, Andres, Crawford-Brown, Lin, Zhao, Hong, Boden, Feng, Peters, Xi, Liu, Li, Zhao, Zeng, He (CR59) 2015; 524 Takagi, Saeki, Oda, Saito, Valsala, Belikov, Saito, Yoshida, Morino, Uchino, Andres, Yokota, Maksyutov (CR91) 2011; 7 Oda, Lauvaux, Lu, Rao, Miles, Richardson, Gurney (CR74) 2017; 5 Oda, Ganshin, Saito, Andres, Zhuravlev, Sawa, Fisher, Rigby, Lowry, Tsuboi, Matsueda, Nisbet, Toumi, Lukyanov, Maksyutov (CR68) 2012; 200 Oda, Maksyutov, Elvidge (CR72) 2010; 30 Woodard, Branham, Buckingham, Hogue, Hutchins, Gosky, Marland, Marland (CR102) 2014; 4 CR34 Shirai, Ishizawa, Zhuravlev, Ganshin, Belikov, Saito, Oda, Valsala, Gomez-Pelaez, Langenfelds, Maksyutov (CR89) 2017; 69 Ganshin, Oda, Saito, Maksyutov, Valsala, Andres, Fisher, Lowry, Lukyanov, Matsueda, Nisbet, Rigby, Sawa, Toumi, Tsuboi, Varlagin, Zhuravlev (CR33) 2012; 5 Houweling, Baker, Basu, Boesch, Butz, Chevallier, Deng, Dlugokencky, Feng, Ganshin, Hasekamp, Jones, Maksyutov, Marshall, Oda, O’Dell, Oshchepkov, Palmer, Peylin, Poussi, Reum, Takagi, Yoshida, Zhuravlev (CR44) 2015; 120 Crisp, Pollock, Rosenberg, Chapsky, Lee, Oyafuso, Frankenberg, O’Dell, Bruegge, Doran, Eldering, Fisher, Fu, Gunson, Mandrake, Osterman, Schwandner, Sun, Taylor, Wennberg, Wunch (CR23) 2017; 10 Raupach, Rayner, Paget (CR83) 2010; 38 CR49 CR48 CR46 Gurney, Liang, O’Keeffe, Patarasuk, Hutchins, Huang, Rao, Song (CR39) 2019; 124 CR43 Oda, Maksyutov, Andres (CR71) 2018; 10 CR41 Marland, Rotty (CR61) 1984; 36B Messerschmidt, Chen, Deutscher, Gerbig, Grupe, Katrynski, Koch, Lavrič, Notholt, Rödenbeck, Ruhe, Warneke, Weinzierl (CR63) 2012; 12 Gurney, Law, Denning, Rayner, Baker, Bousquet, Bruhwiler, Chen, Ciais, Fan, Fung, Gloor, Heimann, Higuchi, John, Maki, Maksyutov, Masarie, Peylin, Prather, Pak, Randerson, Sarmiento, Taguchi, Takahashi, Yuen (CR36) 2002; 415 Janardanan, Maksyutov, Oda, Saito, Kaiser, Ganshin, Stohl, Matsunaga, Yoshida, Yokota (CR47) 2016; 43 Oda, Maksyutov (CR69) 2011; 11 Gurney, Razlivanov, Song, Zhou, Benes, Abdul-Massih (CR38) 2012; 46 Yokota, Yoshida, Eguchi, Ota, Tanaka, Watanabe, Maksyutov (CR105) 2009; 5 Vogel, Tiruchittampalam, Theloke, Kretschmer, Gerbig, Hammer, Levin (CR97) 2013; 65 Andres, Boden, Higdon (CR4) 2014; 66 Raupach, Marland, Ciais, Le Quéré, Canadell, Klepper, Field (CR82) 2007; 104 Ciais, Rayner, Chevallier, Bousquet, Logan, Peylin, Ramonet (CR21) 2010; 103 CR58 Basu, Miller, Lehman (CR9) 2016; 16 Ziskin, Baugh, Hsu, Ghosh, Elvidege (CR107) 2010 CR52 Verhulst, Karion, Kim, Salameh, Keeling, Newman, Miller, Sloop, Pongetti, Rao, Wong, Hopkins, Yadav, Weiss, Duren, Miller (CR96) 2017; 17 Asefi-Najafabady, Rayner, Gurney, McRobert, Song, Coltin, Huang, Elvidge, Baugh (CR6) 2014; 119 Brioude, Angevine, Ahmadov, Kim, Evan, McKeen, Hsie, Frost, Neuman, Pollack, Peischl, Ryerson, Holloway, Brown, Nowak, Roberts, Wofsy, Santoni, Oda, Trainer (CR14) 2013; 13 Staufer, Broquet, Bréon, Puygrenier, Chevallier, Xueref-Rémy, Dieudonné, Lopez, Schmidt, Ramonet, Perrussel, Lac, Wu, Ciais (CR90) 2016; 16 Bousquet, Ciais, Peylin, Ramonet, Monfray (CR11) 1999; 104 Leip, Skiba, Vermeulen, Thompson (CR57) 2018; 174 Quick (CR81) 2014; 64 Tans, Fung, Takahashi (CR92) 1990; 247 Chevallier, Ciais, Conway, Aalto, Anderson, Bousquet, Brunke, Ciattaglia, Esaki, Fröhlich, Gomez, Gomez-Pelaez, Haszpra, Krummel, Langenfelds, Leuenberger, Machida, Maignan, Matsueda, Morguí, Mukai, Nakazawa, Peylin, Ramonet, Rivier, Sawa, Schmidt, Steele, Vay, Vermeulen, Wofsy, Worthy (CR20) 2010; 115 Guan, Liu, Geng, Lindner, Hubacek (CR35) 2012; 2 Andres, Marland, Fung, Matthews (CR1) 1996; 10 Román, Wang, Sun, Kalb, Miller, Molthan, Schultz, Bell, Stokes, Pandey, Seto, Hall, Oda, Wolfe, Lin, Golpayegani, Devadiga, Davidson, Sarkar, Praderas, Schaltz, Boller, Stevens, González, Padilla, Alonso, Detrés, Armstrong, Miranda, Conte, Marrero, MacManus, Esch, Masuoka (CR86) 2018; 210 Schwandner, Gunson, Miller, Carn, Eldering, Kring, Verhulst, Schimel, Nguyen, Crisp, O’Dell, Osterman, Iraci, Podolske (CR88) 2017; 358 CR64 Bun, Hamal, Gusti, Bun (CR16) 2010; 103 Kort, Frankenberg, Miller, Oda (CR54) 2012; 39 Duren, Miller (CR26) 2012; 2 Jonas, Marland, Krey, Wagner, Nahorski (CR50) 2014; 124 Wang, Broquet, Ciais, Chevallier, Vogel, Wu, Yin, Wang, Tao (CR98) 2018; 18 Ballantyne, Alden, Miller, Tans, White (CR7) 2012; 488 Bovensmann, Buchwitz, Burrows, Reuter, Krings, Gerilowski, Schneising, Heymann, Tretner, Erzinger (CR12) 2010; 3 Nassar, Napier-Linton, Gurney, Andres, Oda, Vogel, Deng (CR65) 2013; 118 Zimnoch, Necki, Chmura, Jasek, Jelen, Galkowski, Kuc, Gorczyca, Bartyzel, Rozanski (CR106) 2018 CR79 CR77 CR76 CR75 CR73 Martin, Zeng, Karion, Mueller, Ghosh, Lopez-Coto, Gurney, Oda, Prasad, Liu, Dickerson, Whetstone (CR62) 2018; 199 Feng, Lauvaux, Newman, Rao, Ahmadov, Deng, Díaz-Isaac, Duren, Fischer, Gerbig, Gurney, Huang, Jeong, Li, Miller, O’Keeffe, Patarasuk, Sander, Song, Wong, Yung (CR31) 2016; 16 Hutchins, Colby, Marland, Marland (CR45) 2016; 22 Andres, Gregg, Losey, Marland, Boden (CR2) 2011; 63 Elvidge, Baugh, Dietz, Bland, Sutton, Kroehl (CR27) 1999; 68 Oda, Ganshin, Saito, Andres, Zhuravlev, Sawa, Fisher, Rigby, Lowry, Tsuboi, Matsueda, Nisbet, Toumi, Lukyanov, Maksyutov, Lin, Brunner, Gerbig, Stohl, Luhar, Webley (CR70) 2013 Lauvaux, Miles, Deng, Richardson, Cambaliza, Davis, Gaudet, Gurney, Huang, O’Keefe, Song, Karion, Oda, Patarasuk, Razlivanov, Sarmiento, Shepson, Sweeney, Turnbull, Wu (CR56) 2016; 121 CR5 Elvidge, Baugh, Zhizhin, Hsu (CR28) 2013; 35 Baker, Doney, Schimel (CR8) 2006; 58 CR80 Saeki, Maksyutov, Sasakawa, Machida, Arshinov, Tans, Conway, Saito, Valsala, Oda, Andres, Belikov (CR87) 2013; 118 Peters, Jacobson, Sweeney, Andrews, Conway, Masrie, Miller, Bruhwiler, Petron, Hirsch, Worthy, van der Werf, Randerson, Wennberg, Krol, Tans (CR78) 2007; 104 Kurokawa, Ohara, Morikawa, Hanayama, Janssens-Maenhout, Fukui, Kawashima, Akimoto (CR55) 2013; 13 Thompson, Patra, Chevallier, Maksyutov, Law, Ziehn, Laan-Luijkx, Peters, Ganshin, Zhuravlev, Maki, Nakamura, Shirai, Ishizawa, Saeki, Machida, Poulter, Canadell, Ciais (CR94) 2016; 7 Gurney, Chen, Maki, Kawa, Andrews, Zhu (CR37) 2005; 110 Jonas, Marland, Winiwarter, White, Nahorski, Bun, Nilsson (CR51) 2010; 103 Andres, Boden, Bréon, Ciais, Davis, Erickson, Gregg, Jacobson, Marland, Miller, Oda, Olivier, Raupach, Rayner, Treanton (CR3) 2012; 9 Feng, Palmer, Parker, Deutscher, Feist, Kivi, Morino, Sussmann (CR30) 2016; 16 CR19 Feng, Palmer, Bösch, Dance (CR29) 2009; 9 Maksyutov, Takagi, Valsala, Saito, Oda, Saeki, Belikov, Saito, Ito, Yoshida, Morino, Uchino, Andres, Yokota (CR60) 2013; 13 CR18 CR17 CR99 CR10 CR95 CR93 Nisbet, Weiss (CR67) 2010; 328 Rayner, Raupach, Paget, Peylin, Koffi (CR84) 2010; 115 CR25 CR24 Wu, Lin, Fasoli, Oda, Ye, Lauvaux, Yang, Kort (CR103) 2018; 11 CR22 CR104 Nassar, Hill, McLinden, Wunch, Jones, Crisp (CR66) 2017; 44 Fischer, Parazoo, Brophy, Cui, Jeong, Liu, Keeling, Taylor, Gurney, Oda, Graven (CR32) 2017; 122 CR100 Hakkarainen, Ialongo, Tamminen (CR40) 2016; 43 Kinakh, Bun, Danylo (CR53) 2018; 689 Boychuk, Bun (CR13) 2014; 124 Román, Stokes (CR85) 2015; 3 R Nassar (9877_CR66) 2017; 44 CD Elvidge (9877_CR27) 1999; 68 J Kurokawa (9877_CR55) 2013; 13 9877_CR43 R Janardanan (9877_CR47) 2016; 43 9877_CR41 KR Verhulst (9877_CR96) 2017; 17 S Asefi-Najafabady (9877_CR6) 2014; 119 MG Hutchins (9877_CR45) 2016; 22 J Staufer (9877_CR90) 2016; 16 PP Tans (9877_CR92) 1990; 247 A Ganshin (9877_CR33) 2012; 5 9877_CR48 9877_CR46 M Jonas (9877_CR51) 2010; 103 9877_CR49 R Bun (9877_CR15) 2007; 7 P Ciais (9877_CR21) 2010; 103 J Messerschmidt (9877_CR63) 2012; 12 S Maksyutov (9877_CR60) 2013; 13 9877_CR5 R Nassar (9877_CR65) 2013; 118 R Bun (9877_CR16) 2010; 103 MO Román (9877_CR86) 2018; 210 KR Gurney (9877_CR37) 2005; 110 FM Schwandner (9877_CR88) 2017; 358 T Lauvaux (9877_CR56) 2016; 121 S Feng (9877_CR31) 2016; 16 9877_CR34 9877_CR104 K Boychuk (9877_CR13) 2014; 124 T Oda (9877_CR71) 2018; 10 MO Román (9877_CR85) 2015; 3 9877_CR100 D Guan (9877_CR35) 2012; 2 MR Raupach (9877_CR82) 2007; 104 9877_CR64 E Nisbet (9877_CR67) 2010; 328 F Chevallier (9877_CR20) 2010; 115 EA Kort (9877_CR54) 2012; 39 K Gurney (9877_CR38) 2012; 46 J Hakkarainen (9877_CR40) 2016; 43 D Crisp (9877_CR23) 2017; 10 A Leip (9877_CR57) 2018; 174 S Hogue (9877_CR42) 2016; 4 G Marland (9877_CR61) 1984; 36B M Jonas (9877_CR50) 2014; 124 9877_CR52 T Oda (9877_CR69) 2011; 11 T Oda (9877_CR70) 2013 KR Gurney (9877_CR36) 2002; 415 PJ Rayner (9877_CR84) 2010; 115 RM Duren (9877_CR26) 2012; 2 9877_CR58 Y Wang (9877_CR98) 2018; 18 H Takagi (9877_CR91) 2011; 7 T Oda (9877_CR72) 2010; 30 W Peters (9877_CR78) 2007; 104 9877_CR80 Z Liu (9877_CR59) 2015; 524 M Zimnoch (9877_CR106) 2018 AP Ballantyne (9877_CR7) 2012; 488 DF Baker (9877_CR8) 2006; 58 RJ Andres (9877_CR1) 1996; 10 9877_CR73 RJ Andres (9877_CR4) 2014; 66 H Bovensmann (9877_CR12) 2010; 3 9877_CR76 9877_CR77 9877_CR75 CR Martin (9877_CR62) 2018; 199 T Oda (9877_CR74) 2017; 5 F Vogel (9877_CR97) 2013; 65 T Yokota (9877_CR105) 2009; 5 MR Raupach (9877_CR83) 2010; 38 L Feng (9877_CR29) 2009; 9 ML Fischer (9877_CR32) 2017; 122 D Woodard (9877_CR102) 2014; 4 D Ziskin (9877_CR107) 2010 9877_CR79 S Basu (9877_CR9) 2016; 16 9877_CR22 JC Quick (9877_CR81) 2014; 64 T Oda (9877_CR68) 2012; 200 T Shirai (9877_CR89) 2017; 69 S Houweling (9877_CR44) 2015; 120 J Brioude (9877_CR14) 2013; 13 RJ Andres (9877_CR2) 2011; 63 9877_CR25 CK Wong (9877_CR101) 2016; 16 9877_CR24 L Feng (9877_CR30) 2016; 16 D Wu (9877_CR103) 2018; 11 9877_CR95 V Kinakh (9877_CR53) 2018; 689 9877_CR93 9877_CR10 9877_CR99 P Bousquet (9877_CR11) 1999; 104 RL Thompson (9877_CR94) 2016; 7 RJ Andres (9877_CR3) 2012; 9 9877_CR18 CD Elvidge (9877_CR28) 2013; 35 9877_CR19 KR Gurney (9877_CR39) 2019; 124 9877_CR17 T Saeki (9877_CR87) 2013; 118 |
References_xml | – volume: 9 start-page: 1845 year: 2012 end-page: 1871 ident: CR3 article-title: A synthesis of carbon dioxide emissions from fossil-fuel combustion publication-title: Biogeosciences doi: 10.5194/bg-9-1845-2012 – volume: 103 start-page: 69 issue: 1–2 year: 2010 end-page: 92 ident: CR21 article-title: Atmospheric inversions for estimating CO fluxes: methods and perspectives publication-title: Clim Chang doi: 10.1007/s10584-010-9909-3 – ident: CR22 – volume: 69 start-page: 1291158 issue: 1 year: 2017 ident: CR89 article-title: A decadal inversion of CO using the global Eulerian-Lagrangian coupled atmospheric model (GELCA): sensitivity to the ground-based observation network publication-title: Tellus B: Chemical and Physical Meteorology doi: 10.1080/16000889.2017.1291158 – volume: 103 start-page: 3 issue: 1–2 year: 2010 end-page: 18 ident: CR51 article-title: Benefits of dealing with uncertainty in greenhouse gas inventories: introduction publication-title: Clim Chang doi: 10.1007/s10584-010-9922-6 – volume: 119 start-page: 10,213 issue: 17 year: 2014 end-page: 10,231 ident: CR6 article-title: A multiyear, global gridded fossil fuel CO emission data product: evaluation and analysis of results publication-title: J Geophys Res Atmos doi: 10.1002/2013JD021296 – volume: 104 start-page: 26161 issue: D21 year: 1999 end-page: 26178 ident: CR11 article-title: Inverse modeling of annual atmospheric CO sources and sinks: 1. Method and control inversion publication-title: J Geophys Res doi: 10.1029/1999JD900342 – volume: 44 start-page: 10,045 year: 2017 end-page: 10,053 ident: CR66 article-title: Quantifying CO2 emissions from individual power plants from space publication-title: Geophys Res Lett doi: 10.1002/2017GL074702 – volume: 2 start-page: 672 year: 2012 end-page: 675 ident: CR35 article-title: The gigatonne gap in China’s carbon dioxide inventories publication-title: Nat Clim Chang doi: 10.1038/nclimate1560 – volume: 10 start-page: 419 issue: 3 year: 1996 end-page: 429 ident: CR1 article-title: A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990 publication-title: Global Biogeochem Cy doi: 10.1029/96GB01523 – volume: 115 start-page: 307 issue: D21 year: 2010 ident: CR20 article-title: CO surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements publication-title: J Geophys Res doi: 10.1029/2010JD013887 – volume: 63 start-page: 309 issue: 3 year: 2011 end-page: 327 ident: CR2 article-title: Monthly, global emissions of carbon dioxide from fossil fuel consumption publication-title: Tellus B doi: 10.1111/j.1600-0889.2011.00530.x – ident: CR80 – ident: CR77 – ident: CR25 – volume: 2 start-page: 560 issue: 8 year: 2012 end-page: 562 ident: CR26 article-title: Measuring the carbon emissions of megacities publication-title: Nat Clim Chang doi: 10.1038/nclimate1629 – volume: 122 start-page: 3653 year: 2017 end-page: 3671 ident: CR32 article-title: Simulating estimation of California fossil fuel and biosphere carbon dioxide exchanges combining in situ tower and satellite column observations publication-title: J Geophys Res Atmos doi: 10.1002/2016JD025617 – ident: CR19 – volume: 12 start-page: 6741 issue: 15 year: 2012 end-page: 6755 ident: CR63 article-title: Automated ground-based remote sensing measurements of greenhouse gases at the Białystok site in comparison with collocated in situ measurements and model data publication-title: Atmos Chem Phys doi: 10.5194/acp-12-6741-2012 – volume: 210 start-page: 113 year: 2018 end-page: 143 ident: CR86 article-title: NASA’s black marble nighttime lights product suite publication-title: Remote Sens Envir doi: 10.1016/j.rse.2018.03.017 – volume: 11 start-page: 543 year: 2011 end-page: 556 ident: CR69 article-title: A very high-resolution (1 km×1 km) global fossil fuel CO emission inventory derived using a point source database and satellite observations of nighttime lights publication-title: Atmos Chem Phys doi: 10.5194/acp-11-543-2011 – volume: 200 start-page: 173 year: 2012 end-page: 184 ident: CR68 article-title: The use of a high-resolution emission dataset in a global Eulerian-Lagrangian coupled model. "Lagrangian modeling of the atmosphere" publication-title: AGU Geophysical monograph series doi: 10.1029/2012GM001263 – start-page: 131 year: 2010 end-page: 142 ident: CR107 article-title: Methods used for the 2006 radiance lights publication-title: Proc. of the 30th Asia-Pacific advanced network meeting doi: 10.7125/APAN.30.18 – volume: 124 start-page: 2823 year: 2019 end-page: 2840 ident: CR39 article-title: Comparison of global downscaled versus bottom-up fossil fuel CO emissions at the urban scale in four US urban areas publication-title: J Geophys Res Atmos doi: 10.1029/2018JD028859 – volume: 247 start-page: 1431 issue: 4949 year: 1990 end-page: 1438 ident: CR92 article-title: Observational constraints on the global atmospheric CO budget publication-title: Science doi: 10.1126/science.247.4949.1431 – volume: 39 start-page: L17806 issue: 17 year: 2012 ident: CR54 article-title: Space-based observations of megacity carbon dioxide publication-title: Geophys Res Lett doi: 10.1029/2012GL052738 – ident: CR5 – ident: CR100 – ident: CR18 – volume: 4 start-page: 139 issue: 2–4 year: 2014 end-page: 160 ident: CR102 article-title: A spatial uncertainty metric for anthropogenic CO emissions publication-title: Greenhouse Gas Meas Manage doi: 10.1080/20430779.2014.1000793 – volume: 68 start-page: 77 issue: 1 year: 1999 end-page: 88 ident: CR27 article-title: Radiance calibration of DMSP-OLS lowlight imaging data of human settlements – a new device for portraying the Earth’s surface entire publication-title: Remote Sens Environ doi: 10.1016/S0034-4257(98)00098-4 – volume: 16 start-page: 1289 issue: 3 year: 2016 end-page: 1302 ident: CR30 article-title: Estimates of European uptake of CO inferred from GOSAT X retrievals: sensitivity to measurement bias inside and outside Europe publication-title: Atmos Chem Phys doi: 10.5194/acp-16-1289-2016 – volume: 16 start-page: 5665 year: 2016 end-page: 5683 ident: CR9 article-title: Separation of biospheric and fossil fuel fluxes of CO by atmospheric inversion of CO and CO measurements: observation system simulations publication-title: Atmos Chem Phys doi: 10.5194/acp-16-5665-2016 – volume: 7 start-page: 483 issue: 4–5 year: 2007 end-page: 494 ident: CR15 article-title: Spatial GHG inventory: analysis of uncertainty sources. A case study for Ukraine publication-title: Water Air Soil Poll doi: 10.1007/s11267-006-9116-4 – ident: CR10 – volume: 415 start-page: 626 year: 2002 end-page: 630 ident: CR36 article-title: Towards robust regional estimates of CO sources and sinks using atmospheric transport models publication-title: Nature doi: 10.1038/415626a – volume: 3 start-page: 182 issue: 6 year: 2015 end-page: 205 ident: CR85 article-title: Holidays in lights: tracking cultural patterns in demand for energy services publication-title: Earth’s Future doi: 10.1002/2014EF000285 – volume: 11 start-page: 4843 year: 2018 end-page: 4871 ident: CR103 article-title: A Lagrangian approach towards extracting signals of urban CO emissions from satellite observations of atmospheric column CO (XCO ): X-Stochastic Time-Inverted Lagrangian Transport model (“X-STILT v1”) publication-title: Geosci Model Dev doi: 10.5194/gmd-11-4843-2018 – volume: 13 start-page: 9351 issue: 18 year: 2013 end-page: 9373 ident: CR60 article-title: Regional CO flux estimates for 2009–2010 based on GOSAT and ground-based CO observations publication-title: Atmos Chem Phys doi: 10.5194/acp-13-9351-2013 – volume: 110 start-page: D10308 year: 2005 ident: CR37 article-title: Sensitivity of atmospheric CO inversions to seasonal and interannual variations in fossil fuel emissions publication-title: J Geophys Res doi: 10.1029/2004JD005373 – volume: 16 start-page: 9019 issue: 14 year: 2016 end-page: 9045 ident: CR31 article-title: Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO emissions publication-title: Atmos Chem Phys doi: 10.5194/acp-16-9019-2016 – volume: 5 start-page: 160 year: 2009 end-page: 163 ident: CR105 article-title: Global concentrations of CO and CH retrieved from GOSAT: first preliminary results publication-title: SOLA doi: 10.2151/sola.2009-041 – volume: 689 start-page: 217 year: 2018 end-page: 229 ident: CR53 article-title: Geoinformation technology for analysis and visualisation of high spatial resolution greenhouse gas emissions data using a cloud platform publication-title: Advances in Intelligent Systems and Computing II doi: 10.1007/978-3-319-70581-1_15 – volume: 524 start-page: 335 year: 2015 end-page: 338 ident: CR59 article-title: Reduced carbon emission estimates from fossil fuel combustion and cement production in China publication-title: Nature doi: 10.1038/nature14677 – volume: 66 start-page: 23616 year: 2014 ident: CR4 article-title: A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission publication-title: Tellus B Chem Phys Meterol doi: 10.3402/tellusb.v66.23616 – volume: 43 start-page: 11,400 issue: 21 year: 2016 end-page: 11,406 ident: CR40 article-title: Direct space-based observations of anthropogenic CO emission areas from OCO-2 publication-title: Geophys Res Lett doi: 10.1002/2016GL070885 – volume: 104 start-page: 18925 issue: 48 year: 2007 end-page: 18930 ident: CR78 article-title: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker publication-title: PNAS doi: 10.1073/pnas.0708986104 – ident: CR52 – volume: 124 start-page: 459 issue: 3 year: 2014 end-page: 476 ident: CR50 article-title: Uncertainty in an emissions-constrained world publication-title: Clim Chang doi: 10.1007/s10584-014-1106-6 – volume: 103 start-page: 227 issue: 1 year: 2010 end-page: 244 ident: CR16 article-title: Spatial GHG inventory on regional level: accounting for uncertainty publication-title: Clim Chang doi: 10.1007/s10584-010-9907-5 – volume: 4 start-page: 225 issue: 5 year: 2016 end-page: 239 ident: CR42 article-title: Uncertainty in gridded CO emissions estimates publication-title: Earth’s Future doi: 10.1002/2015EF000343 – ident: CR41 – ident: CR24 – volume: 13 start-page: 3661 year: 2013 end-page: 3677 ident: CR14 article-title: Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NO and CO and their impacts publication-title: Atmos Chem Phys doi: 10.5194/acp-13-3661-2013 – volume: 13 start-page: 11019 year: 2013 end-page: 11058 ident: CR55 article-title: Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2 publication-title: Atmos Chem Phys doi: 10.5194/acp-13-11019-2013 – ident: CR49 – ident: CR93 – volume: 118 start-page: 917 issue: 2 year: 2013 end-page: 933 ident: CR65 article-title: Improving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission data sets publication-title: J Geophys Res-Atmos doi: 10.1029/2012JD018196 – ident: CR58 – volume: 10 start-page: 87 year: 2018 end-page: 107 ident: CR71 article-title: The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions publication-title: Earth Syst Sci Data doi: 10.5194/essd-10-87-2018 – ident: CR46 – volume: 3 start-page: 781 year: 2010 end-page: 811 ident: CR12 article-title: A remote sensing technique for global monitoring of power plant CO emissions from space and related applications publication-title: Atmos Meas Tech doi: 10.5194/amt-3-781-2010 – volume: 104 start-page: 10288 issue: 24 year: 2007 end-page: 10293 ident: CR82 article-title: Global and regional drivers of accelerating CO emissions publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0700609104 – ident: CR75 – volume: 43 start-page: 3486 issue: 7 year: 2016 end-page: 3493 ident: CR47 article-title: Comparing GOSAT observations of localized CO enhancements by large emitters with inventory-based estimates publication-title: Geophys Res Lett doi: 10.1002/2016GL067843 – year: 2018 ident: CR106 article-title: Quantification of carbon dioxide and methane emissions in urban areas: source apportionment based on atmospheric observations publication-title: Top-down assessment of CO and CH emissions and carbon dioxide source apportionment in urban areas based on atmospheric observations doi: 10.1007/s11027-018-9821-0 – volume: 328 start-page: 1241 year: 2010 end-page: 1243 ident: CR67 article-title: Top-down versus bottom-up publication-title: Science doi: 10.1126/science.1189936 – volume: 5 start-page: 28 year: 2017 ident: CR74 article-title: On the impact of granularity of space-based urban CO emissions in urban atmospheric inversions: a case study for Indianapolis publication-title: Elem Sci Anth doi: 10.1525/elementa.146 – volume: 16 start-page: 14703 year: 2016 end-page: 14726 ident: CR90 article-title: The first 1-year-long estimate of the Paris region fossil fuel CO emissions based on atmospheric inversion publication-title: Atmos Chem Phys doi: 10.5194/acp-16-14703-2016 – volume: 10 start-page: 59 year: 2017 end-page: 81 ident: CR23 article-title: The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products publication-title: Atmos Meas Tech doi: 10.5194/amt-10-59-2017 – volume: 358 start-page: eaam5782 issue: 6360 year: 2017 ident: CR88 article-title: Spaceborne detection of localized carbon dioxide sources publication-title: Science doi: 10.1126/science.aam5782 – ident: CR64 – ident: CR99 – volume: 9 start-page: 2619 year: 2009 end-page: 2633 ident: CR29 article-title: Estimating surface CO fluxes from space-borne CO dry air mole fraction observations using an ensemble Kalman filter publication-title: Atmos Chem Phys doi: 10.5194/acp-9-2619-2009 – volume: 30 start-page: 220 year: 2010 end-page: 229 ident: CR72 article-title: Disaggregation of national fossil fuel CO emissions using a global power plant database and DMSP nightlight data publication-title: Proc of the Asia Pacific Advanced Network doi: 10.7125/APAN.30.24 – volume: 7 start-page: 161 year: 2011 end-page: 164 ident: CR91 article-title: On the benefit of GOSAT observations to the estimation of regional CO fluxes publication-title: SOLA doi: 10.2151/sola.2011-041 – ident: CR95 – year: 2013 ident: CR70 article-title: The use of a high-resolution emission data set in a global Eulerian-Lagrangian coupled model publication-title: Lagrangian modeling of the atmosphere doi: 10.1029/2012GM001263 – volume: 5 start-page: 231 issue: 1 year: 2012 end-page: 243 ident: CR33 article-title: A global coupled Eulerian-Lagrangian model and 1 × 1 km CO surface flux dataset for high-resolution atmospheric CO transport simulations publication-title: Geosci Model Dev doi: 10.5194/gmd-5-231-2012 – ident: CR43 – volume: 124 start-page: 561 issue: 3 year: 2014 end-page: 574 ident: CR13 article-title: Regional spatial inventories (cadastres) of GHG emissions in the energy sector: accounting for uncertainty publication-title: Clim Chang doi: 10.1007/s10584-013-1040-9 – volume: 64 start-page: 73 issue: 1 year: 2014 end-page: 79 ident: CR81 article-title: Carbon dioxide emission tallies for 210 U.S. coal-fired power plants: a comparison of two accounting methods publication-title: J Air Waste Manag Assoc doi: 10.1080/10962247.2013.833146 – volume: 7 start-page: 10724 year: 2016 ident: CR94 article-title: Top-down assessment of the Asian carbon budget since the mid 1990s publication-title: Nat Commun doi: 10.1038/ncomms10724 – ident: CR79 – volume: 22 start-page: 947 issue: 6 year: 2016 end-page: 972 ident: CR45 article-title: A comparison of five high-resolution spatially-explicit, fossil-fuel, carbon dioxide emission inventories for the United States publication-title: Mitig Adapt Strat Gl doi: 10.1007/s11027-016-9709-9 – volume: 46 start-page: 12194 issue: 21 year: 2012 end-page: 12202 ident: CR38 article-title: Quantification of fossil fuel CO emission on the building/street scale for a large US city publication-title: Environ Sci Technol doi: 10.1021/es3011282 – volume: 18 start-page: 4229 year: 2018 end-page: 4250 ident: CR98 article-title: Potential of European CO2 observation network to estimate the fossil fuel CO emissions via atmospheric inversions publication-title: Atmos Chem Phys doi: 10.5194/acp-18-4229-2018 – volume: 38 start-page: 4756 issue: 7 year: 2010 end-page: 4764 ident: CR83 article-title: Regional variations in spatial structure of nightlights, population density and fossil fuel CO emissions publication-title: Energy Policy doi: 10.1016/j.enpol.2009.08.021 – volume: 120 start-page: 5253 issue: 10 year: 2015 end-page: 5266 ident: CR44 article-title: An intercomparison of inverse models for estimating sources and sinks of CO using GOSAT measurements publication-title: J Geophys Res Atmos doi: 10.1002/2014JD022962 – volume: 115 start-page: D19306 year: 2010 ident: CR84 article-title: A new global gridded data set of CO emissions from fossil fuel combustion: methodology and evaluation publication-title: J Geophys Res doi: 10.1029/2009JD013439 – ident: CR104 – volume: 16 start-page: 13121 year: 2016 end-page: 13130 ident: CR101 article-title: Monthly trends of methane emissions in Los Angeles from 2011 to 2015 inferred by CLARS-FTS observations publication-title: Atmos Chem Phys doi: 10.5194/acp-16-13121-2016 – volume: 17 start-page: 8313 year: 2017 end-page: 8341 ident: CR96 article-title: Carbon dioxide and methane measurements from the Los Angeles megacity carbon project – part 1: calibration, urban enhancements, and uncertainty estimates publication-title: Atmos Chem Phys doi: 10.5194/acp-17-8313-2017 – ident: CR48 – ident: CR73 – volume: 58 start-page: 359 issue: 5 year: 2006 end-page: 365 ident: CR8 article-title: Variational data assimilation for atmospheric CO publication-title: Tellus B doi: 10.1111/j.1600-0889.2006.00218.x – volume: 65 start-page: 18681 issue: 1 year: 2013 ident: CR97 article-title: Can we evaluate a fine-grained emission model using high-resolution atmospheric transport modelling and regional fossil fuel CO observations? publication-title: Tellus B doi: 10.3402/tellusb.v65i0.18681 – ident: CR17 – volume: 118 start-page: 1100 issue: 2 year: 2013 end-page: 1122 ident: CR87 article-title: Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO measurements publication-title: J Geophys Res Atmos doi: 10.1002/jgrd.50127 – volume: 35 start-page: 62 year: 2013 end-page: 69 ident: CR28 article-title: Why VIIRS data are superior to DMSP for mapping nighttime lights publication-title: Proceedings of the Asia-Pacific Advanced Network doi: 10.7125/apan.35.7 – volume: 488 start-page: 70 issue: 7409 year: 2012 end-page: 72 ident: CR7 article-title: Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years publication-title: Nature doi: 10.1038/nature11299 – ident: CR34 – volume: 199 start-page: 55 year: 2018 end-page: 69 ident: CR62 article-title: Investigating sources of variability and error in simulations of carbon dioxide in an urban region publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2018.11.013 – volume: 36B start-page: 232 issue: 4 year: 1984 end-page: 261 ident: CR61 article-title: Carbon dioxide emissions from fossil fuels: a procedure for estimation and results for 1950–1982 publication-title: Tellus B doi: 10.3402/tellusb.v36i4.14907 – ident: CR76 – volume: 121 start-page: 5213 issue: 10 year: 2016 end-page: 5236 ident: CR56 article-title: High-resolution atmospheric inversion of urban CO emissions during the dormant season of the Indianapolis flux experiment (INFLUX) publication-title: J Geophys Res-Atmos doi: 10.1002/2015JD024473 – volume: 174 start-page: 237 year: 2018 end-page: 240 ident: CR57 article-title: A complete rethink is needed on how greenhouse gas emissions are quantified for national reporting publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2017.12.006 – volume: 210 start-page: 113 year: 2018 ident: 9877_CR86 publication-title: Remote Sens Envir doi: 10.1016/j.rse.2018.03.017 – volume: 30 start-page: 220 year: 2010 ident: 9877_CR72 publication-title: Proc of the Asia Pacific Advanced Network doi: 10.7125/APAN.30.24 – ident: 9877_CR24 doi: 10.5194/essd-2017-124 – volume: 7 start-page: 10724 year: 2016 ident: 9877_CR94 publication-title: Nat Commun doi: 10.1038/ncomms10724 – volume: 13 start-page: 3661 year: 2013 ident: 9877_CR14 publication-title: Atmos Chem Phys doi: 10.5194/acp-13-3661-2013 – volume: 46 start-page: 12194 issue: 21 year: 2012 ident: 9877_CR38 publication-title: Environ Sci Technol doi: 10.1021/es3011282 – volume: 247 start-page: 1431 issue: 4949 year: 1990 ident: 9877_CR92 publication-title: Science doi: 10.1126/science.247.4949.1431 – volume: 66 start-page: 23616 year: 2014 ident: 9877_CR4 publication-title: Tellus B Chem Phys Meterol doi: 10.3402/tellusb.v66.23616 – ident: 9877_CR22 – volume: 13 start-page: 9351 issue: 18 year: 2013 ident: 9877_CR60 publication-title: Atmos Chem Phys doi: 10.5194/acp-13-9351-2013 – volume: 328 start-page: 1241 year: 2010 ident: 9877_CR67 publication-title: Science doi: 10.1126/science.1189936 – volume: 4 start-page: 225 issue: 5 year: 2016 ident: 9877_CR42 publication-title: Earth’s Future doi: 10.1002/2015EF000343 – ident: 9877_CR100 doi: 10.1007/978-94-007-1670-4 – ident: 9877_CR73 doi: 10.17595/20170411.001 – volume: 124 start-page: 561 issue: 3 year: 2014 ident: 9877_CR13 publication-title: Clim Chang doi: 10.1007/s10584-013-1040-9 – volume: 5 start-page: 160 year: 2009 ident: 9877_CR105 publication-title: SOLA doi: 10.2151/sola.2009-041 – volume: 488 start-page: 70 issue: 7409 year: 2012 ident: 9877_CR7 publication-title: Nature doi: 10.1038/nature11299 – volume: 104 start-page: 10288 issue: 24 year: 2007 ident: 9877_CR82 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0700609104 – volume: 64 start-page: 73 issue: 1 year: 2014 ident: 9877_CR81 publication-title: J Air Waste Manag Assoc doi: 10.1080/10962247.2013.833146 – volume: 120 start-page: 5253 issue: 10 year: 2015 ident: 9877_CR44 publication-title: J Geophys Res Atmos doi: 10.1002/2014JD022962 – volume: 524 start-page: 335 year: 2015 ident: 9877_CR59 publication-title: Nature doi: 10.1038/nature14677 – volume: 104 start-page: 18925 issue: 48 year: 2007 ident: 9877_CR78 publication-title: PNAS doi: 10.1073/pnas.0708986104 – volume: 16 start-page: 1289 issue: 3 year: 2016 ident: 9877_CR30 publication-title: Atmos Chem Phys doi: 10.5194/acp-16-1289-2016 – volume: 103 start-page: 69 issue: 1–2 year: 2010 ident: 9877_CR21 publication-title: Clim Chang doi: 10.1007/s10584-010-9909-3 – volume: 65 start-page: 18681 issue: 1 year: 2013 ident: 9877_CR97 publication-title: Tellus B doi: 10.3402/tellusb.v65i0.18681 – volume: 10 start-page: 87 year: 2018 ident: 9877_CR71 publication-title: Earth Syst Sci Data doi: 10.5194/essd-10-87-2018 – ident: 9877_CR34 doi: 10.1002/2017JD027359 – volume: 110 start-page: D10308 year: 2005 ident: 9877_CR37 publication-title: J Geophys Res doi: 10.1029/2004JD005373 – ident: 9877_CR48 doi: 10.2788/14102 – volume: 36B start-page: 232 issue: 4 year: 1984 ident: 9877_CR61 publication-title: Tellus B doi: 10.3402/tellusb.v36i4.14907 – volume: 58 start-page: 359 issue: 5 year: 2006 ident: 9877_CR8 publication-title: Tellus B doi: 10.1111/j.1600-0889.2006.00218.x – ident: 9877_CR19 doi: 10.1007/s11027-017-9779-3 – volume: 118 start-page: 917 issue: 2 year: 2013 ident: 9877_CR65 publication-title: J Geophys Res-Atmos doi: 10.1029/2012JD018196 – volume: 13 start-page: 11019 year: 2013 ident: 9877_CR55 publication-title: Atmos Chem Phys doi: 10.5194/acp-13-11019-2013 – volume: 3 start-page: 182 issue: 6 year: 2015 ident: 9877_CR85 publication-title: Earth’s Future doi: 10.1002/2014EF000285 – volume: 115 start-page: 307 issue: D21 year: 2010 ident: 9877_CR20 publication-title: J Geophys Res doi: 10.1029/2010JD013887 – ident: 9877_CR80 doi: 10.2760/08644 – volume: 115 start-page: D19306 year: 2010 ident: 9877_CR84 publication-title: J Geophys Res doi: 10.1029/2009JD013439 – volume: 38 start-page: 4756 issue: 7 year: 2010 ident: 9877_CR83 publication-title: Energy Policy doi: 10.1016/j.enpol.2009.08.021 – ident: 9877_CR104 doi: 10.5194/acp-2017-1022 – volume: 124 start-page: 2823 year: 2019 ident: 9877_CR39 publication-title: J Geophys Res Atmos doi: 10.1029/2018JD028859 – volume: 16 start-page: 14703 year: 2016 ident: 9877_CR90 publication-title: Atmos Chem Phys doi: 10.5194/acp-16-14703-2016 – volume: 39 start-page: L17806 issue: 17 year: 2012 ident: 9877_CR54 publication-title: Geophys Res Lett doi: 10.1029/2012GL052738 – volume: 118 start-page: 1100 issue: 2 year: 2013 ident: 9877_CR87 publication-title: J Geophys Res Atmos doi: 10.1002/jgrd.50127 – volume: 689 start-page: 217 year: 2018 ident: 9877_CR53 publication-title: Advances in Intelligent Systems and Computing II doi: 10.1007/978-3-319-70581-1_15 – volume: 17 start-page: 8313 year: 2017 ident: 9877_CR96 publication-title: Atmos Chem Phys doi: 10.5194/acp-17-8313-2017 – ident: 9877_CR79 doi: 10.5194/bg-10-6699-2013 – volume: 5 start-page: 28 year: 2017 ident: 9877_CR74 publication-title: Elem Sci Anth doi: 10.1525/elementa.146 – volume: 121 start-page: 5213 issue: 10 year: 2016 ident: 9877_CR56 publication-title: J Geophys Res-Atmos doi: 10.1002/2015JD024473 – ident: 9877_CR58 doi: 10.1007/978-1-4020-5930-8 – volume: 69 start-page: 1291158 issue: 1 year: 2017 ident: 9877_CR89 publication-title: Tellus B: Chemical and Physical Meteorology doi: 10.1080/16000889.2017.1291158 – ident: 9877_CR93 – volume: 43 start-page: 11,400 issue: 21 year: 2016 ident: 9877_CR40 publication-title: Geophys Res Lett doi: 10.1002/2016GL070885 – ident: 9877_CR10 doi: 10.3334/CDIAC/00001_V2016 – ident: 9877_CR18 doi: 10.1007/s11027-018-9836-6 – volume: 43 start-page: 3486 issue: 7 year: 2016 ident: 9877_CR47 publication-title: Geophys Res Lett doi: 10.1002/2016GL067843 – volume: 104 start-page: 26161 issue: D21 year: 1999 ident: 9877_CR11 publication-title: J Geophys Res doi: 10.1029/1999JD900342 – ident: 9877_CR17 doi: 10.1007/s11027-018-9791-2 – ident: 9877_CR64 – volume: 44 start-page: 10,045 year: 2017 ident: 9877_CR66 publication-title: Geophys Res Lett doi: 10.1002/2017GL074702 – volume: 10 start-page: 419 issue: 3 year: 1996 ident: 9877_CR1 publication-title: Global Biogeochem Cy doi: 10.1029/96GB01523 – volume: 7 start-page: 483 issue: 4–5 year: 2007 ident: 9877_CR15 publication-title: Water Air Soil Poll doi: 10.1007/s11267-006-9116-4 – volume: 9 start-page: 2619 year: 2009 ident: 9877_CR29 publication-title: Atmos Chem Phys doi: 10.5194/acp-9-2619-2009 – volume: 358 start-page: eaam5782 issue: 6360 year: 2017 ident: 9877_CR88 publication-title: Science doi: 10.1126/science.aam5782 – volume: 11 start-page: 4843 year: 2018 ident: 9877_CR103 publication-title: Geosci Model Dev doi: 10.5194/gmd-11-4843-2018 – ident: 9877_CR5 doi: 10.5194/acp-2016-258 – ident: 9877_CR52 doi: 10.1007/978-94-007-1670-4_20 – ident: 9877_CR43 doi: 10.1007/s11027-017-9770-z – volume: 12 start-page: 6741 issue: 15 year: 2012 ident: 9877_CR63 publication-title: Atmos Chem Phys doi: 10.5194/acp-12-6741-2012 – volume: 2 start-page: 672 year: 2012 ident: 9877_CR35 publication-title: Nat Clim Chang doi: 10.1038/nclimate1560 – volume: 10 start-page: 59 year: 2017 ident: 9877_CR23 publication-title: Atmos Meas Tech doi: 10.5194/amt-10-59-2017 – ident: 9877_CR49 doi: 10.5194/essd-2017-79 – volume: 122 start-page: 3653 year: 2017 ident: 9877_CR32 publication-title: J Geophys Res Atmos doi: 10.1002/2016JD025617 – ident: 9877_CR99 doi: 10.2139/ssrn.1138690 – ident: 9877_CR75 – ident: 9877_CR95 doi: 10.2139/ssrn.2226505 – volume: 16 start-page: 9019 issue: 14 year: 2016 ident: 9877_CR31 publication-title: Atmos Chem Phys doi: 10.5194/acp-16-9019-2016 – volume: 18 start-page: 4229 year: 2018 ident: 9877_CR98 publication-title: Atmos Chem Phys doi: 10.5194/acp-18-4229-2018 – volume: 5 start-page: 231 issue: 1 year: 2012 ident: 9877_CR33 publication-title: Geosci Model Dev doi: 10.5194/gmd-5-231-2012 – volume: 124 start-page: 459 issue: 3 year: 2014 ident: 9877_CR50 publication-title: Clim Chang doi: 10.1007/s10584-014-1106-6 – volume: 11 start-page: 543 year: 2011 ident: 9877_CR69 publication-title: Atmos Chem Phys doi: 10.5194/acp-11-543-2011 – volume: 174 start-page: 237 year: 2018 ident: 9877_CR57 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2017.12.006 – volume: 7 start-page: 161 year: 2011 ident: 9877_CR91 publication-title: SOLA doi: 10.2151/sola.2011-041 – volume-title: Lagrangian modeling of the atmosphere year: 2013 ident: 9877_CR70 doi: 10.1029/2012GM001263 – volume: 3 start-page: 781 year: 2010 ident: 9877_CR12 publication-title: Atmos Meas Tech doi: 10.5194/amt-3-781-2010 – volume: 2 start-page: 560 issue: 8 year: 2012 ident: 9877_CR26 publication-title: Nat Clim Chang doi: 10.1038/nclimate1629 – volume: 22 start-page: 947 issue: 6 year: 2016 ident: 9877_CR45 publication-title: Mitig Adapt Strat Gl doi: 10.1007/s11027-016-9709-9 – ident: 9877_CR76 doi: 10.1007/978-3-319-15901-0 – volume: 199 start-page: 55 year: 2018 ident: 9877_CR62 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2018.11.013 – volume-title: Top-down assessment of CO2 and CH4 emissions and carbon dioxide source apportionment in urban areas based on atmospheric observations year: 2018 ident: 9877_CR106 doi: 10.1007/s11027-018-9821-0 – volume: 9 start-page: 1845 year: 2012 ident: 9877_CR3 publication-title: Biogeosciences doi: 10.5194/bg-9-1845-2012 – volume: 103 start-page: 3 issue: 1–2 year: 2010 ident: 9877_CR51 publication-title: Clim Chang doi: 10.1007/s10584-010-9922-6 – ident: 9877_CR25 doi: 10.1007/s11027-019-9846-z – volume: 200 start-page: 173 year: 2012 ident: 9877_CR68 publication-title: AGU Geophysical monograph series doi: 10.1029/2012GM001263 – volume: 68 start-page: 77 issue: 1 year: 1999 ident: 9877_CR27 publication-title: Remote Sens Environ doi: 10.1016/S0034-4257(98)00098-4 – volume: 16 start-page: 13121 year: 2016 ident: 9877_CR101 publication-title: Atmos Chem Phys doi: 10.5194/acp-16-13121-2016 – volume: 35 start-page: 62 year: 2013 ident: 9877_CR28 publication-title: Proceedings of the Asia-Pacific Advanced Network doi: 10.7125/apan.35.7 – start-page: 131 volume-title: Proc. of the 30th Asia-Pacific advanced network meeting year: 2010 ident: 9877_CR107 doi: 10.7125/APAN.30.18 – volume: 4 start-page: 139 issue: 2–4 year: 2014 ident: 9877_CR102 publication-title: Greenhouse Gas Meas Manage doi: 10.1080/20430779.2014.1000793 – volume: 103 start-page: 227 issue: 1 year: 2010 ident: 9877_CR16 publication-title: Clim Chang doi: 10.1007/s10584-010-9907-5 – volume: 16 start-page: 5665 year: 2016 ident: 9877_CR9 publication-title: Atmos Chem Phys doi: 10.5194/acp-16-5665-2016 – ident: 9877_CR46 – volume: 63 start-page: 309 issue: 3 year: 2011 ident: 9877_CR2 publication-title: Tellus B doi: 10.1111/j.1600-0889.2011.00530.x – ident: 9877_CR77 doi: 10.17226/12883 – volume: 415 start-page: 626 year: 2002 ident: 9877_CR36 publication-title: Nature doi: 10.1038/415626a – ident: 9877_CR41 doi: 10.5194/acp-2018-517 – volume: 119 start-page: 10,213 issue: 17 year: 2014 ident: 9877_CR6 publication-title: J Geophys Res Atmos doi: 10.1002/2013JD021296 |
SSID | ssj0003151 |
Score | 2.5100396 |
Snippet | Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1007 |
SubjectTerms | Anthropogenic factors Atmospheric models Atmospheric Sciences Best practices Capacity development Carbon dioxide Carbon dioxide emissions Carbon footprint cities climate Climate change Climate Change Management and Policy Climate change mitigation Climate models compliance Continental interfaces, environment Disaggregation Earth and Environmental Science Earth Sciences Emission analysis Emission inventories Emissions Emissions control Environmental Management Errors Estimates Fossil fuels Greenhouse effect greenhouse gas emissions Greenhouse gases Guidelines International organizations inventories Mitigation Modelling monitoring Ocean, Atmosphere Original Article Paris Agreement Poland Pollution monitoring Resolution Rural areas Sciences of the Universe spatial data Uncertainty United Nations Framework Convention on Climate Change United States Urban areas Urban policy |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LoKIr8X1RRRvWtikaZoeF1lZRD25sLeSNIkuSCvdVfTfO9PHrooKXptpWmYmmW8yjxByJlRoDNfgnRjXC1ApAq2ECwTTMVj8zPSq7vy3d3I4EtfjaNwUhU3bbPc2JFnt1ItiN7CFmCaJKT4qjgPYeFcj9N1Bi0e8P99_QxbVbpZiARgk2ZTK_DzHF3O0_IjJkJ-Q5rfgaGVzrjbJRgMWab-W7hZZcvk26QwWtWkw2CzO6TZZr4_gaF1ZtEOGg7IsyinVuaVgverYP_ZPpZOcavpQYvcQSzNdmiKndlK8TayjeP8bnqAhFeZCFuX7LhldDe4vh0FzcUKQiUTOAqt8zEQmo0SaKLShtIk3iQMwxnXsVCa4BaQTyoiryMa653wsrLIJzzJmBfNhh6zkRe72CGWh89J5Y7GNjZc9w0WkwcXziQfPJPRdwlr-pVnTVRwvt3hKF_2Qkecp8DyteJ7yLjmfv_Nc99T4k_oUxDInxHbYw_5Nis8wp0eJhL-yLjlspZY2i3CaArIE9xcgU9wlJ_Nh4CLGRHTuihegAW3hAJEVfOeilfZiit9_a_9_5AdkjVdqh6mDh2RlVr64I4AzM3Ncae8H-JDosw priority: 102 providerName: Springer Nature |
Title | Errors and uncertainties in a gridded carbon dioxide emissions inventory |
URI | https://link.springer.com/article/10.1007/s11027-019-09877-2 https://www.proquest.com/docview/2262547417 https://www.proquest.com/docview/2315291682 https://hal.science/hal-04238492 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1di9NAcLDXF0FETw-rZ1nFNw02m81m8yRtSS1-FBEL51PYze5qQZIz7Yn-e2eSbauC95JAdpINM7M7HzsfAM-ESozhGq0T4yYRMUWklXCRiHWGEr8yk646__uVXK7Fm4v0IjjctiGscr8ndhu1bSrykb9ENQFtGZR_2avL7xF1jaLT1dBCYwBD3IIVGl_DWbH68PGwFydx2ptcKo5QOMmQNtMnz6FspbBLChlSWRbxv0TT4CsFRv6hdf5zUNrJn8UduB0URzbtKX0Xbrj6FM6KY54aDoaFuj2FW707jvVZRvdgWbRt026Zri1DSdbHAVAtVbapmWZfWqokYlmlW9PUzG6anxvrGPWCI28aQVFcZNP-ug_rRfFpvoxCE4WoErncRVb5LBaVTHNp0sQm0ube5A4VM64zpyrBLWo9iUy5Sm2mJ85nwiqb86qKrYh9cgYndVO7B8DixHnpvLFU0sbLieEi1Wju-dyjlZL4EcR7_JVVqDBOjS6-lcfayITzEnFedjgv-QieH9657OtrXAv9FMlyAKTS2Mvpu5KeUXyPEjn_EY_gfE-1MizIbXlknxE8OQwjFul8RNeuuUIY5BaO6rLCeV7sqX38xP9_6-H1Mz6Cm7xjMwobPIeTXXvlHqMqszNjGE4Xs9mK7q8_vy3GgX_HMJjLOV7XfPob3OLx7g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB612wNICEGhYqGAQXCCiI3tJM4BoQJbpXS7QqiVekvt2KYrVUnJboH-KX4jM3nsAhK99Ro7djQzmYf9zQzAC6mEMVxjdGLcKCChCLSSLpChTtDiF2bUVOc_mMbZkfx0HB2vwa8-F4Zglb1ObBS1rQo6I3-DbgLGMmj_knfn3wLqGkW3q30LjVYs9t3lDwzZ5m_3PiJ_X3K-Oz78kAVdV4GgkGm8CKzySSiLOEpjEwkrYpt6kzr0VLhOnCokt-gGiDjiKrKJHjmfSKtsyositDL0Atddhw0pMJQZwMb78fTzl6XuF2HUhngqDNAYxl2aTpush7acYJ4EUVJJEvC_TOH6KQEx__By_7mYbezd7h243TmqbKeVrLuw5spN2Bqv8uJwsFMM80241R7_sTar6R5k47qu6jnTpWVoOVvcAdVuZbOSafa1psollhW6NlXJ7Kz6ObOOUe85Or2jWYTDrOrL-3B0LeTdgkFZle4BsFA4HztvLJXQ8fHIcBlpDC996jEqEn4IYU-_vOgqmlNjjbN8VYuZaJ4jzfOG5jkfwqvlO-dtPY8rZz9HtiwnUinubGeS0zPCEymZ8u_hELZ7ruWdApjnK3EdwrPlMFKR7mN06aoLnIPSwtE9V7jP657bqyX-_1kPr97xKdzIDg8m-WRvuv8IbvJG5AiyuA2DRX3hHqMbtTBPOtllcHLdv8tvxgcpsA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnYSQEILBRGGAQfAE0WLHSZwHhAZr1bFRTYhJewt2bLNKUzLSDti_xl_HXT5aQGJve40dJ7o734f9uzuAF1JFxgiN0YlxYUBCEWglXSC5TtHiFyZsqvN_nCaTY_nhJD5Zg199LgzBKnud2ChqWxV0Rr6DbgLGMmj_0h3fwSKO9sZvz78F1EGKblr7dhqtiBy4yx8Yvs3f7O8hr18KMR59fj8Jug4DQSGzZBFY5VMuiyTOEhNHNkps5k3m0GsROnWqkMKiSxAlsVCxTXXofCqtspkoCm4l9xGuuw4bKUZF4QA23o2mR5-WdiDicRvuKR6gYUy6lJ02cQ_tOkE-Ca6k0jQQf5nF9VMCZf7h8f5zSdvYvvEduN05rWy3lbK7sObKTdgarXLkcLBTEvNNuNUeBbI2w-keTEZ1XdVzpkvL0Iq2GASq48pmJdPsa01VTCwrdG2qktlZ9XNmHaM-dHSSR7MIk1nVl_fh-FrIuwWDsirdA2A8cj5x3lgqp-OT0AgZaww1feYxQor8EHhPv7zoqptTk42zfFWXmWieI83zhua5GMKr5TvnbW2PK2c_R7YsJ1JZ7snuYU7PCFukZCa-8yFs91zLO2Uwz1eiO4Rny2GkIt3N6NJVFzgHpUWgq67wO697bq-W-P9vPbz6i0_hBm6T_HB_evAIbopG4gi9uA2DRX3hHqNHtTBPOtFl8OW6d8tvz6kt5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Errors+and+uncertainties+in+a+gridded+carbon+dioxide+emissions+inventory&rft.jtitle=Mitigation+and+adaptation+strategies+for+global+change&rft.au=Oda%2C+Tomohiro&rft.au=Bun%2C+Rostyslav&rft.au=Kinakh%2C+Vitaliy&rft.au=Petro+Topylko&rft.date=2019-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1381-2386&rft.eissn=1573-1596&rft.volume=24&rft.issue=6&rft.spage=1007&rft.epage=1050&rft_id=info:doi/10.1007%2Fs11027-019-09877-2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-2386&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-2386&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-2386&client=summon |