Errors and uncertainties in a gridded carbon dioxide emissions inventory

Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission...

Full description

Saved in:
Bibliographic Details
Published inMitigation and adaptation strategies for global change Vol. 24; no. 6; pp. 1007 - 1050
Main Authors Oda, Tomohiro, Bun, Rostyslav, Kinakh, Vitaliy, Topylko, Petro, Halushchak, Mariia, Marland, Gregg, Lauvaux, Thomas, Jonas, Matthias, Maksyutov, Shamil, Nahorski, Zbigniew, Lesiv, Myroslava, Danylo, Olha, Horabik-Pyzel, Joanna
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.08.2019
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission estimates regardless of differences in data availability. However, there are a variety of sources of error and uncertainty that originate beyond what the inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric modeling applications, are often developed for research purposes and there are no specific guidelines to achieve spatial emission estimates. The errors and uncertainties associated with the spatial estimates are unique to the approaches employed and are often difficult to assess. This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO 2 ), gridded EI Open-source Data Inventory for Anthropogenic CO 2 (ODIAC) with the multi-resolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal approaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU) over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI offers, this study characterized the potential biases in spatial disaggregation by emission sector (point and non-point emissions) across different scales (national, subnational/regional, and urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns showed large differences (10~100% relative differences at 1 km) especially at the urban-rural transitioning areas (90–100%). We however found that the agreement of emissions over urban areas is surprisingly good compared with the estimates previously reported for US cities. This paper also discusses the use of spatially explicit EIs for climate mitigation applications beyond the common use in atmospheric modeling. We conclude with a discussion of current and future challenges of EIs in support of successful implementation of GHG emission monitoring and mitigation activity under the Paris Climate Agreement from the United Nations Framework Convention on Climate Change (UNFCCC) 21st Conference of the Parties (COP21). We highlight the importance of capacity building for EI development and coordinated research efforts of EI, atmospheric observations, and modeling to overcome the challenges.
AbstractList Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission estimates regardless of differences in data availability. However, there are a variety of sources of error and uncertainty that originate beyond what the inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric modeling applications, are often developed for research purposes and there are no specific guidelines to achieve spatial emission estimates. The errors and uncertainties associated with the spatial estimates are unique to the approaches employed and are often difficult to assess. This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO 2), gridded EI Open-source Data Inventory for Anthropogenic CO 2 (ODIAC) with the multiresolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal approaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU) over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI offers, this study characterized the potential biases in spatial disaggregation by emission sector (point and non-point emissions) across different scales (national, subnational/regional, and urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns showed large differences (10~100% relative differences at 1 km) especially at the urbanrural transitioning areas (90-100%). We however found that the agreement of emissions over urban areas is surprisingly good compared with the estimates previously reported for US cities. This paper also discusses the use of spatially explicit EIs for climate mitigation applications beyond the common use in atmospheric modeling. We conclude with a discussion of current and future challenges of EIs in support of successful implementation of GHG emission
Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission estimates regardless of differences in data availability. However, there are a variety of sources of error and uncertainty that originate beyond what the inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric modeling applications, are often developed for research purposes and there are no specific guidelines to achieve spatial emission estimates. The errors and uncertainties associated with the spatial estimates are unique to the approaches employed and are often difficult to assess. This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO 2 ), gridded EI Open-source Data Inventory for Anthropogenic CO 2 (ODIAC) with the multi-resolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal approaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU) over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI offers, this study characterized the potential biases in spatial disaggregation by emission sector (point and non-point emissions) across different scales (national, subnational/regional, and urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns showed large differences (10~100% relative differences at 1 km) especially at the urban-rural transitioning areas (90–100%). We however found that the agreement of emissions over urban areas is surprisingly good compared with the estimates previously reported for US cities. This paper also discusses the use of spatially explicit EIs for climate mitigation applications beyond the common use in atmospheric modeling. We conclude with a discussion of current and future challenges of EIs in support of successful implementation of GHG emission monitoring and mitigation activity under the Paris Climate Agreement from the United Nations Framework Convention on Climate Change (UNFCCC) 21st Conference of the Parties (COP21). We highlight the importance of capacity building for EI development and coordinated research efforts of EI, atmospheric observations, and modeling to overcome the challenges.
Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission estimates regardless of differences in data availability. However, there are a variety of sources of error and uncertainty that originate beyond what the inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric modeling applications, are often developed for research purposes and there are no specific guidelines to achieve spatial emission estimates. The errors and uncertainties associated with the spatial estimates are unique to the approaches employed and are often difficult to assess. This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO2), gridded EI Open-source Data Inventory for Anthropogenic CO2 (ODIAC) with the multi-resolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal approaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU) over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI offers, this study characterized the potential biases in spatial disaggregation by emission sector (point and non-point emissions) across different scales (national, subnational/regional, and urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns showed large differences (10~100% relative differences at 1 km) especially at the urban-rural transitioning areas (90–100%). We however found that the agreement of emissions over urban areas is surprisingly good compared with the estimates previously reported for US cities. This paper also discusses the use of spatially explicit EIs for climate mitigation applications beyond the common use in atmospheric modeling. We conclude with a discussion of current and future challenges of EIs in support of successful implementation of GHG emission monitoring and mitigation activity under the Paris Climate Agreement from the United Nations Framework Convention on Climate Change (UNFCCC) 21st Conference of the Parties (COP21). We highlight the importance of capacity building for EI development and coordinated research efforts of EI, atmospheric observations, and modeling to overcome the challenges.
Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission estimates regardless of differences in data availability. However, there are a variety of sources of error and uncertainty that originate beyond what the inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric modeling applications, are often developed for research purposes and there are no specific guidelines to achieve spatial emission estimates. The errors and uncertainties associated with the spatial estimates are unique to the approaches employed and are often difficult to assess. This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO₂), gridded EI Open-source Data Inventory for Anthropogenic CO₂ (ODIAC) with the multi-resolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal approaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU) over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI offers, this study characterized the potential biases in spatial disaggregation by emission sector (point and non-point emissions) across different scales (national, subnational/regional, and urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns showed large differences (10~100% relative differences at 1 km) especially at the urban-rural transitioning areas (90–100%). We however found that the agreement of emissions over urban areas is surprisingly good compared with the estimates previously reported for US cities. This paper also discusses the use of spatially explicit EIs for climate mitigation applications beyond the common use in atmospheric modeling. We conclude with a discussion of current and future challenges of EIs in support of successful implementation of GHG emission monitoring and mitigation activity under the Paris Climate Agreement from the United Nations Framework Convention on Climate Change (UNFCCC) 21st Conference of the Parties (COP21). We highlight the importance of capacity building for EI development and coordinated research efforts of EI, atmospheric observations, and modeling to overcome the challenges.
Author Maksyutov, Shamil
Nahorski, Zbigniew
Jonas, Matthias
Marland, Gregg
Halushchak, Mariia
Oda, Tomohiro
Bun, Rostyslav
Lesiv, Myroslava
Danylo, Olha
Lauvaux, Thomas
Kinakh, Vitaliy
Horabik-Pyzel, Joanna
Topylko, Petro
Author_xml – sequence: 1
  givenname: Tomohiro
  surname: Oda
  fullname: Oda, Tomohiro
  organization: Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Goddard Earth Sciences Technology and Research, Universities Space Research Association
– sequence: 2
  givenname: Rostyslav
  surname: Bun
  fullname: Bun, Rostyslav
  organization: Lviv Polytechnic National University, WSB University
– sequence: 3
  givenname: Vitaliy
  surname: Kinakh
  fullname: Kinakh, Vitaliy
  organization: Lviv Polytechnic National University
– sequence: 4
  givenname: Petro
  surname: Topylko
  fullname: Topylko, Petro
  organization: Lviv Polytechnic National University
– sequence: 5
  givenname: Mariia
  surname: Halushchak
  fullname: Halushchak, Mariia
  organization: Lviv Polytechnic National University, International Institute for Applied Systems Analysis
– sequence: 6
  givenname: Gregg
  surname: Marland
  fullname: Marland, Gregg
  organization: Department of Geological and Environmental Sciences, Appalachian State University
– sequence: 7
  givenname: Thomas
  surname: Lauvaux
  fullname: Lauvaux, Thomas
  organization: Laboratoire des sciences du climat et de l’environnement
– sequence: 8
  givenname: Matthias
  surname: Jonas
  fullname: Jonas, Matthias
  organization: International Institute for Applied Systems Analysis
– sequence: 9
  givenname: Shamil
  surname: Maksyutov
  fullname: Maksyutov, Shamil
  organization: Center for Global Environmental Research, National Institute for Environmental Studies
– sequence: 10
  givenname: Zbigniew
  surname: Nahorski
  fullname: Nahorski, Zbigniew
  organization: Systems Research Institute of Polish Academy of Sciences, Warsaw School of Information Technology
– sequence: 11
  givenname: Myroslava
  surname: Lesiv
  fullname: Lesiv, Myroslava
  organization: International Institute for Applied Systems Analysis
– sequence: 12
  givenname: Olha
  surname: Danylo
  fullname: Danylo, Olha
  organization: Lviv Polytechnic National University, International Institute for Applied Systems Analysis
– sequence: 13
  givenname: Joanna
  orcidid: 0000-0003-0896-0180
  surname: Horabik-Pyzel
  fullname: Horabik-Pyzel, Joanna
  email: Joanna.Horabik@ibspan.waw.pl
  organization: Systems Research Institute of Polish Academy of Sciences
BackLink https://hal.science/hal-04238492$$DView record in HAL
BookMark eNp9kU1LJDEQhoO44Nf-AU8NXtxDu6l85yiijjDgZT2HTJIeM7SJJj2y_nsz9sqCB08pwvNWvVXvEdpPOQWETgFfAMbydwXARPYYdI-1krIne-gQuKQ9cC32W00V9IQqcYCOat1gjClwOESL61JyqZ1NvtsmF8pkY5piqF1Mne3WJXoffOdsWeXU-Zj_Rh-68BRrjTntqNeQplzeTtCPwY41_Pz3HqOHm-s_V4t-eX97d3W57B3TYuq9GiQwJ5qrFaeeCq-HlQ6CY2JlUI4RT7igghPFvbQ4DJJ55TVxDjyDgR6jX3PfRzua5xKfbHkz2UazuFya3R9mbU2mySs09nxmn0t-2YY6mebbhXG0KeRtNaTdgGgQijT07Au6yduS2iaGEEE4kwxko9RMuZJrLWEwLk52apeYio2jAWx2cZg5DtPiMB9xmN0A8kX6af5bEZ1FtcFpHcp_V9-o3gFCUp10
CitedBy_id crossref_primary_10_1038_s41597_020_00779_6
crossref_primary_10_1088_1748_9326_acb6a7
crossref_primary_10_1016_j_rse_2023_113900
crossref_primary_10_1029_2019JD030528
crossref_primary_10_1088_1748_9326_ac00e2
crossref_primary_10_5194_amt_17_5861_2024
crossref_primary_10_31857_S0002351523020050
crossref_primary_10_3390_rs15204904
crossref_primary_10_1038_s41467_022_35108_5
crossref_primary_10_1021_acs_est_0c01602
crossref_primary_10_5194_essd_13_5311_2021
crossref_primary_10_1016_j_heliyon_2024_e29086
crossref_primary_10_1029_2020JD033538
crossref_primary_10_1007_s11600_024_01387_3
crossref_primary_10_1088_2515_7620_ab3d91
crossref_primary_10_1016_j_envdev_2019_100461
crossref_primary_10_5194_essd_12_1437_2020
crossref_primary_10_1155_2021_5561162
crossref_primary_10_1016_j_ecolind_2023_110143
crossref_primary_10_1016_j_eiar_2024_107498
crossref_primary_10_1016_j_scitotenv_2024_172188
crossref_primary_10_1016_j_scitotenv_2024_175177
crossref_primary_10_1016_j_uclim_2021_100968
crossref_primary_10_1007_s11027_019_09867_4
crossref_primary_10_1088_1748_9326_ac7407
crossref_primary_10_1021_acs_est_0c00343
crossref_primary_10_5194_acp_20_1795_2020
crossref_primary_10_1021_acs_est_4c07289
crossref_primary_10_1029_2020EA001343
crossref_primary_10_3390_en13226009
crossref_primary_10_1016_j_apr_2025_102417
crossref_primary_10_5194_essd_15_963_2023
crossref_primary_10_1088_1748_9326_acb837
crossref_primary_10_3390_atmos13091474
crossref_primary_10_5194_acp_23_8899_2023
crossref_primary_10_1029_2023JD038512
crossref_primary_10_1088_1748_9326_ad0f74
crossref_primary_10_3390_rs17061087
crossref_primary_10_1088_1748_9326_ad059b
crossref_primary_10_1016_j_rse_2021_112314
crossref_primary_10_1038_s41598_022_16850_8
crossref_primary_10_1016_j_scs_2023_104476
crossref_primary_10_4236_jep_2024_154023
crossref_primary_10_1002_bse_3635
crossref_primary_10_1007_s11027_020_09924_3
crossref_primary_10_1088_1748_9326_ac109d
crossref_primary_10_23939_mmc2021_02_304
crossref_primary_10_3390_rs15245757
crossref_primary_10_1016_j_rse_2021_112473
crossref_primary_10_1038_s41467_023_37264_8
crossref_primary_10_3389_fdata_2020_00029
crossref_primary_10_1016_j_rse_2022_112966
crossref_primary_10_3390_su152014849
crossref_primary_10_1016_j_scitotenv_2024_169879
crossref_primary_10_3390_rs14195024
crossref_primary_10_5194_gmd_14_3633_2021
crossref_primary_10_1016_j_scs_2021_103195
crossref_primary_10_1016_j_techfore_2020_120124
crossref_primary_10_1016_j_atmosres_2023_107207
crossref_primary_10_1016_j_atmosenv_2023_120009
crossref_primary_10_1186_s13021_019_0128_6
crossref_primary_10_1088_1748_9326_ac998c
crossref_primary_10_5194_amt_16_581_2023
crossref_primary_10_3390_rs16132354
crossref_primary_10_1186_s13021_020_00146_3
crossref_primary_10_1134_S0001433823020056
crossref_primary_10_5194_gmd_17_7263_2024
crossref_primary_10_1080_23737484_2020_1850372
crossref_primary_10_2166_aqua_2020_071
crossref_primary_10_1016_j_envpol_2022_119210
crossref_primary_10_1088_1748_9326_ac7c29
crossref_primary_10_1134_S0001433822030100
crossref_primary_10_1186_s13021_020_00163_2
Cites_doi 10.5194/bg-9-1845-2012
10.1007/s10584-010-9909-3
10.1080/16000889.2017.1291158
10.1007/s10584-010-9922-6
10.1002/2013JD021296
10.1029/1999JD900342
10.1002/2017GL074702
10.1038/nclimate1560
10.1029/96GB01523
10.1029/2010JD013887
10.1111/j.1600-0889.2011.00530.x
10.1038/nclimate1629
10.1002/2016JD025617
10.5194/acp-12-6741-2012
10.1016/j.rse.2018.03.017
10.5194/acp-11-543-2011
10.1029/2012GM001263
10.7125/APAN.30.18
10.1029/2018JD028859
10.1126/science.247.4949.1431
10.1029/2012GL052738
10.1080/20430779.2014.1000793
10.1016/S0034-4257(98)00098-4
10.5194/acp-16-1289-2016
10.5194/acp-16-5665-2016
10.1007/s11267-006-9116-4
10.1038/415626a
10.1002/2014EF000285
10.5194/gmd-11-4843-2018
10.5194/acp-13-9351-2013
10.1029/2004JD005373
10.5194/acp-16-9019-2016
10.2151/sola.2009-041
10.1007/978-3-319-70581-1_15
10.1038/nature14677
10.3402/tellusb.v66.23616
10.1002/2016GL070885
10.1073/pnas.0708986104
10.1007/s10584-014-1106-6
10.1007/s10584-010-9907-5
10.1002/2015EF000343
10.5194/acp-13-3661-2013
10.5194/acp-13-11019-2013
10.1029/2012JD018196
10.5194/essd-10-87-2018
10.5194/amt-3-781-2010
10.1073/pnas.0700609104
10.1002/2016GL067843
10.1007/s11027-018-9821-0
10.1126/science.1189936
10.1525/elementa.146
10.5194/acp-16-14703-2016
10.5194/amt-10-59-2017
10.1126/science.aam5782
10.5194/acp-9-2619-2009
10.7125/APAN.30.24
10.2151/sola.2011-041
10.5194/gmd-5-231-2012
10.1007/s10584-013-1040-9
10.1080/10962247.2013.833146
10.1038/ncomms10724
10.1007/s11027-016-9709-9
10.1021/es3011282
10.5194/acp-18-4229-2018
10.1016/j.enpol.2009.08.021
10.1002/2014JD022962
10.1029/2009JD013439
10.5194/acp-16-13121-2016
10.5194/acp-17-8313-2017
10.1111/j.1600-0889.2006.00218.x
10.3402/tellusb.v65i0.18681
10.1002/jgrd.50127
10.7125/apan.35.7
10.1038/nature11299
10.1016/j.atmosenv.2018.11.013
10.3402/tellusb.v36i4.14907
10.1002/2015JD024473
10.1016/j.atmosenv.2017.12.006
10.5194/essd-2017-124
10.1007/978-94-007-1670-4
10.17595/20170411.001
10.1002/2017JD027359
10.2788/14102
10.1007/s11027-017-9779-3
10.2760/08644
10.5194/acp-2017-1022
10.5194/bg-10-6699-2013
10.1007/978-1-4020-5930-8
10.3334/CDIAC/00001_V2016
10.1007/s11027-018-9836-6
10.1007/s11027-018-9791-2
10.5194/acp-2016-258
10.1007/978-94-007-1670-4_20
10.1007/s11027-017-9770-z
10.5194/essd-2017-79
10.2139/ssrn.1138690
10.2139/ssrn.2226505
10.1007/978-3-319-15901-0
10.1007/s11027-019-9846-z
10.17226/12883
10.5194/acp-2018-517
ContentType Journal Article
Copyright The Author(s) 2019
Mitigation and Adaptation Strategies for Global Change is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2019
– notice: Mitigation and Adaptation Strategies for Global Change is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
3V.
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
L.-
L.G
M0C
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7S9
L.6
1XC
VOOES
DOI 10.1007/s11027-019-09877-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ABI/INFORM Global
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Business (Alumni)
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

ABI/INFORM Global (Corporate)
AGRICOLA
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Environmental Sciences
EISSN 1573-1596
EndPage 1050
ExternalDocumentID oai_HAL_hal_04238492v1
10_1007_s11027_019_09877_2
GeographicLocations Poland
United States
GeographicLocations_xml – name: Poland
– name: United States
GrantInformation_xml – fundername: Systems Research Institute PAS
GroupedDBID -5A
-5G
-5~
-BR
-EM
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67M
67Z
6NX
7WY
7XC
88I
8FE
8FH
8FL
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
C6C
CCPQU
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EIS
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
K60
K6~
KDC
KOV
L8X
LAK
LLZTM
M0C
M2P
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z5O
Z7V
Z7Y
Z7Z
Z81
Z86
Z8P
Z8S
Z8T
Z8U
ZMTXR
~A9
~EX
~KM
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
OVD
PHGZM
PHGZT
R4E
RIG
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCK
SCLPG
T16
TEORI
UZXMN
VFIZW
WK6
3V.
7ST
7UA
7XB
8FK
ABRTQ
C1K
F1W
H97
L.-
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c496t-d8f714c6596b53d36d9fb9e6502a7e8c42d256365285d7a0ef74d8d92cc1d41f3
IEDL.DBID BENPR
ISSN 1381-2386
IngestDate Fri May 09 12:20:33 EDT 2025
Fri Jul 11 11:15:47 EDT 2025
Fri Jul 25 22:26:01 EDT 2025
Tue Jul 01 04:12:55 EDT 2025
Thu Apr 24 23:10:54 EDT 2025
Fri Feb 21 02:33:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Emission inventory
Carbon cycle
Climate mitigation
Greenhouse gas emission
Paris Agreement
Reporting and verification
Carbon dioxide
Uncertainty analysis
Remote sensing
Monitoring
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-d8f714c6596b53d36d9fb9e6502a7e8c42d256365285d7a0ef74d8d92cc1d41f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0896-0180
0000-0002-7697-742X
OpenAccessLink https://link.springer.com/10.1007/s11027-019-09877-2
PQID 2262547417
PQPubID 54623
PageCount 44
ParticipantIDs hal_primary_oai_HAL_hal_04238492v1
proquest_miscellaneous_2315291682
proquest_journals_2262547417
crossref_citationtrail_10_1007_s11027_019_09877_2
crossref_primary_10_1007_s11027_019_09877_2
springer_journals_10_1007_s11027_019_09877_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal Devoted to Scientific, Engineering, Socio-Economic and Policy Responses to Environmental Change
PublicationTitle Mitigation and adaptation strategies for global change
PublicationTitleAbbrev Mitig Adapt Strateg Glob Change
PublicationYear 2019
Publisher Springer Netherlands
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer Verlag
References Bun, Gusti, Kujii, Tokar, Tsybrivskyy, Bun (CR15) 2007; 7
Hogue, Marland, Andres, Marland, Woodard (CR42) 2016; 4
Wong, Pongetti, Oda, Rao, Gurney, Newman, Duren, Miller, Yung, Sander (CR101) 2016; 16
Liu, Guan, Wei, Davis, Ciais, Bai, Peng, Zhang, Hubacek, Marland, Andres, Crawford-Brown, Lin, Zhao, Hong, Boden, Feng, Peters, Xi, Liu, Li, Zhao, Zeng, He (CR59) 2015; 524
Takagi, Saeki, Oda, Saito, Valsala, Belikov, Saito, Yoshida, Morino, Uchino, Andres, Yokota, Maksyutov (CR91) 2011; 7
Oda, Lauvaux, Lu, Rao, Miles, Richardson, Gurney (CR74) 2017; 5
Oda, Ganshin, Saito, Andres, Zhuravlev, Sawa, Fisher, Rigby, Lowry, Tsuboi, Matsueda, Nisbet, Toumi, Lukyanov, Maksyutov (CR68) 2012; 200
Oda, Maksyutov, Elvidge (CR72) 2010; 30
Woodard, Branham, Buckingham, Hogue, Hutchins, Gosky, Marland, Marland (CR102) 2014; 4
CR34
Shirai, Ishizawa, Zhuravlev, Ganshin, Belikov, Saito, Oda, Valsala, Gomez-Pelaez, Langenfelds, Maksyutov (CR89) 2017; 69
Ganshin, Oda, Saito, Maksyutov, Valsala, Andres, Fisher, Lowry, Lukyanov, Matsueda, Nisbet, Rigby, Sawa, Toumi, Tsuboi, Varlagin, Zhuravlev (CR33) 2012; 5
Houweling, Baker, Basu, Boesch, Butz, Chevallier, Deng, Dlugokencky, Feng, Ganshin, Hasekamp, Jones, Maksyutov, Marshall, Oda, O’Dell, Oshchepkov, Palmer, Peylin, Poussi, Reum, Takagi, Yoshida, Zhuravlev (CR44) 2015; 120
Crisp, Pollock, Rosenberg, Chapsky, Lee, Oyafuso, Frankenberg, O’Dell, Bruegge, Doran, Eldering, Fisher, Fu, Gunson, Mandrake, Osterman, Schwandner, Sun, Taylor, Wennberg, Wunch (CR23) 2017; 10
Raupach, Rayner, Paget (CR83) 2010; 38
CR49
CR48
CR46
Gurney, Liang, O’Keeffe, Patarasuk, Hutchins, Huang, Rao, Song (CR39) 2019; 124
CR43
Oda, Maksyutov, Andres (CR71) 2018; 10
CR41
Marland, Rotty (CR61) 1984; 36B
Messerschmidt, Chen, Deutscher, Gerbig, Grupe, Katrynski, Koch, Lavrič, Notholt, Rödenbeck, Ruhe, Warneke, Weinzierl (CR63) 2012; 12
Gurney, Law, Denning, Rayner, Baker, Bousquet, Bruhwiler, Chen, Ciais, Fan, Fung, Gloor, Heimann, Higuchi, John, Maki, Maksyutov, Masarie, Peylin, Prather, Pak, Randerson, Sarmiento, Taguchi, Takahashi, Yuen (CR36) 2002; 415
Janardanan, Maksyutov, Oda, Saito, Kaiser, Ganshin, Stohl, Matsunaga, Yoshida, Yokota (CR47) 2016; 43
Oda, Maksyutov (CR69) 2011; 11
Gurney, Razlivanov, Song, Zhou, Benes, Abdul-Massih (CR38) 2012; 46
Yokota, Yoshida, Eguchi, Ota, Tanaka, Watanabe, Maksyutov (CR105) 2009; 5
Vogel, Tiruchittampalam, Theloke, Kretschmer, Gerbig, Hammer, Levin (CR97) 2013; 65
Andres, Boden, Higdon (CR4) 2014; 66
Raupach, Marland, Ciais, Le Quéré, Canadell, Klepper, Field (CR82) 2007; 104
Ciais, Rayner, Chevallier, Bousquet, Logan, Peylin, Ramonet (CR21) 2010; 103
CR58
Basu, Miller, Lehman (CR9) 2016; 16
Ziskin, Baugh, Hsu, Ghosh, Elvidege (CR107) 2010
CR52
Verhulst, Karion, Kim, Salameh, Keeling, Newman, Miller, Sloop, Pongetti, Rao, Wong, Hopkins, Yadav, Weiss, Duren, Miller (CR96) 2017; 17
Asefi-Najafabady, Rayner, Gurney, McRobert, Song, Coltin, Huang, Elvidge, Baugh (CR6) 2014; 119
Brioude, Angevine, Ahmadov, Kim, Evan, McKeen, Hsie, Frost, Neuman, Pollack, Peischl, Ryerson, Holloway, Brown, Nowak, Roberts, Wofsy, Santoni, Oda, Trainer (CR14) 2013; 13
Staufer, Broquet, Bréon, Puygrenier, Chevallier, Xueref-Rémy, Dieudonné, Lopez, Schmidt, Ramonet, Perrussel, Lac, Wu, Ciais (CR90) 2016; 16
Bousquet, Ciais, Peylin, Ramonet, Monfray (CR11) 1999; 104
Leip, Skiba, Vermeulen, Thompson (CR57) 2018; 174
Quick (CR81) 2014; 64
Tans, Fung, Takahashi (CR92) 1990; 247
Chevallier, Ciais, Conway, Aalto, Anderson, Bousquet, Brunke, Ciattaglia, Esaki, Fröhlich, Gomez, Gomez-Pelaez, Haszpra, Krummel, Langenfelds, Leuenberger, Machida, Maignan, Matsueda, Morguí, Mukai, Nakazawa, Peylin, Ramonet, Rivier, Sawa, Schmidt, Steele, Vay, Vermeulen, Wofsy, Worthy (CR20) 2010; 115
Guan, Liu, Geng, Lindner, Hubacek (CR35) 2012; 2
Andres, Marland, Fung, Matthews (CR1) 1996; 10
Román, Wang, Sun, Kalb, Miller, Molthan, Schultz, Bell, Stokes, Pandey, Seto, Hall, Oda, Wolfe, Lin, Golpayegani, Devadiga, Davidson, Sarkar, Praderas, Schaltz, Boller, Stevens, González, Padilla, Alonso, Detrés, Armstrong, Miranda, Conte, Marrero, MacManus, Esch, Masuoka (CR86) 2018; 210
Schwandner, Gunson, Miller, Carn, Eldering, Kring, Verhulst, Schimel, Nguyen, Crisp, O’Dell, Osterman, Iraci, Podolske (CR88) 2017; 358
CR64
Bun, Hamal, Gusti, Bun (CR16) 2010; 103
Kort, Frankenberg, Miller, Oda (CR54) 2012; 39
Duren, Miller (CR26) 2012; 2
Jonas, Marland, Krey, Wagner, Nahorski (CR50) 2014; 124
Wang, Broquet, Ciais, Chevallier, Vogel, Wu, Yin, Wang, Tao (CR98) 2018; 18
Ballantyne, Alden, Miller, Tans, White (CR7) 2012; 488
Bovensmann, Buchwitz, Burrows, Reuter, Krings, Gerilowski, Schneising, Heymann, Tretner, Erzinger (CR12) 2010; 3
Nassar, Napier-Linton, Gurney, Andres, Oda, Vogel, Deng (CR65) 2013; 118
Zimnoch, Necki, Chmura, Jasek, Jelen, Galkowski, Kuc, Gorczyca, Bartyzel, Rozanski (CR106) 2018
CR79
CR77
CR76
CR75
CR73
Martin, Zeng, Karion, Mueller, Ghosh, Lopez-Coto, Gurney, Oda, Prasad, Liu, Dickerson, Whetstone (CR62) 2018; 199
Feng, Lauvaux, Newman, Rao, Ahmadov, Deng, Díaz-Isaac, Duren, Fischer, Gerbig, Gurney, Huang, Jeong, Li, Miller, O’Keeffe, Patarasuk, Sander, Song, Wong, Yung (CR31) 2016; 16
Hutchins, Colby, Marland, Marland (CR45) 2016; 22
Andres, Gregg, Losey, Marland, Boden (CR2) 2011; 63
Elvidge, Baugh, Dietz, Bland, Sutton, Kroehl (CR27) 1999; 68
Oda, Ganshin, Saito, Andres, Zhuravlev, Sawa, Fisher, Rigby, Lowry, Tsuboi, Matsueda, Nisbet, Toumi, Lukyanov, Maksyutov, Lin, Brunner, Gerbig, Stohl, Luhar, Webley (CR70) 2013
Lauvaux, Miles, Deng, Richardson, Cambaliza, Davis, Gaudet, Gurney, Huang, O’Keefe, Song, Karion, Oda, Patarasuk, Razlivanov, Sarmiento, Shepson, Sweeney, Turnbull, Wu (CR56) 2016; 121
CR5
Elvidge, Baugh, Zhizhin, Hsu (CR28) 2013; 35
Baker, Doney, Schimel (CR8) 2006; 58
CR80
Saeki, Maksyutov, Sasakawa, Machida, Arshinov, Tans, Conway, Saito, Valsala, Oda, Andres, Belikov (CR87) 2013; 118
Peters, Jacobson, Sweeney, Andrews, Conway, Masrie, Miller, Bruhwiler, Petron, Hirsch, Worthy, van der Werf, Randerson, Wennberg, Krol, Tans (CR78) 2007; 104
Kurokawa, Ohara, Morikawa, Hanayama, Janssens-Maenhout, Fukui, Kawashima, Akimoto (CR55) 2013; 13
Thompson, Patra, Chevallier, Maksyutov, Law, Ziehn, Laan-Luijkx, Peters, Ganshin, Zhuravlev, Maki, Nakamura, Shirai, Ishizawa, Saeki, Machida, Poulter, Canadell, Ciais (CR94) 2016; 7
Gurney, Chen, Maki, Kawa, Andrews, Zhu (CR37) 2005; 110
Jonas, Marland, Winiwarter, White, Nahorski, Bun, Nilsson (CR51) 2010; 103
Andres, Boden, Bréon, Ciais, Davis, Erickson, Gregg, Jacobson, Marland, Miller, Oda, Olivier, Raupach, Rayner, Treanton (CR3) 2012; 9
Feng, Palmer, Parker, Deutscher, Feist, Kivi, Morino, Sussmann (CR30) 2016; 16
CR19
Feng, Palmer, Bösch, Dance (CR29) 2009; 9
Maksyutov, Takagi, Valsala, Saito, Oda, Saeki, Belikov, Saito, Ito, Yoshida, Morino, Uchino, Andres, Yokota (CR60) 2013; 13
CR18
CR17
CR99
CR10
CR95
CR93
Nisbet, Weiss (CR67) 2010; 328
Rayner, Raupach, Paget, Peylin, Koffi (CR84) 2010; 115
CR25
CR24
Wu, Lin, Fasoli, Oda, Ye, Lauvaux, Yang, Kort (CR103) 2018; 11
CR22
CR104
Nassar, Hill, McLinden, Wunch, Jones, Crisp (CR66) 2017; 44
Fischer, Parazoo, Brophy, Cui, Jeong, Liu, Keeling, Taylor, Gurney, Oda, Graven (CR32) 2017; 122
CR100
Hakkarainen, Ialongo, Tamminen (CR40) 2016; 43
Kinakh, Bun, Danylo (CR53) 2018; 689
Boychuk, Bun (CR13) 2014; 124
Román, Stokes (CR85) 2015; 3
R Nassar (9877_CR66) 2017; 44
CD Elvidge (9877_CR27) 1999; 68
J Kurokawa (9877_CR55) 2013; 13
9877_CR43
R Janardanan (9877_CR47) 2016; 43
9877_CR41
KR Verhulst (9877_CR96) 2017; 17
S Asefi-Najafabady (9877_CR6) 2014; 119
MG Hutchins (9877_CR45) 2016; 22
J Staufer (9877_CR90) 2016; 16
PP Tans (9877_CR92) 1990; 247
A Ganshin (9877_CR33) 2012; 5
9877_CR48
9877_CR46
M Jonas (9877_CR51) 2010; 103
9877_CR49
R Bun (9877_CR15) 2007; 7
P Ciais (9877_CR21) 2010; 103
J Messerschmidt (9877_CR63) 2012; 12
S Maksyutov (9877_CR60) 2013; 13
9877_CR5
R Nassar (9877_CR65) 2013; 118
R Bun (9877_CR16) 2010; 103
MO Román (9877_CR86) 2018; 210
KR Gurney (9877_CR37) 2005; 110
FM Schwandner (9877_CR88) 2017; 358
T Lauvaux (9877_CR56) 2016; 121
S Feng (9877_CR31) 2016; 16
9877_CR34
9877_CR104
K Boychuk (9877_CR13) 2014; 124
T Oda (9877_CR71) 2018; 10
MO Román (9877_CR85) 2015; 3
9877_CR100
D Guan (9877_CR35) 2012; 2
MR Raupach (9877_CR82) 2007; 104
9877_CR64
E Nisbet (9877_CR67) 2010; 328
F Chevallier (9877_CR20) 2010; 115
EA Kort (9877_CR54) 2012; 39
K Gurney (9877_CR38) 2012; 46
J Hakkarainen (9877_CR40) 2016; 43
D Crisp (9877_CR23) 2017; 10
A Leip (9877_CR57) 2018; 174
S Hogue (9877_CR42) 2016; 4
G Marland (9877_CR61) 1984; 36B
M Jonas (9877_CR50) 2014; 124
9877_CR52
T Oda (9877_CR69) 2011; 11
T Oda (9877_CR70) 2013
KR Gurney (9877_CR36) 2002; 415
PJ Rayner (9877_CR84) 2010; 115
RM Duren (9877_CR26) 2012; 2
9877_CR58
Y Wang (9877_CR98) 2018; 18
H Takagi (9877_CR91) 2011; 7
T Oda (9877_CR72) 2010; 30
W Peters (9877_CR78) 2007; 104
9877_CR80
Z Liu (9877_CR59) 2015; 524
M Zimnoch (9877_CR106) 2018
AP Ballantyne (9877_CR7) 2012; 488
DF Baker (9877_CR8) 2006; 58
RJ Andres (9877_CR1) 1996; 10
9877_CR73
RJ Andres (9877_CR4) 2014; 66
H Bovensmann (9877_CR12) 2010; 3
9877_CR76
9877_CR77
9877_CR75
CR Martin (9877_CR62) 2018; 199
T Oda (9877_CR74) 2017; 5
F Vogel (9877_CR97) 2013; 65
T Yokota (9877_CR105) 2009; 5
MR Raupach (9877_CR83) 2010; 38
L Feng (9877_CR29) 2009; 9
ML Fischer (9877_CR32) 2017; 122
D Woodard (9877_CR102) 2014; 4
D Ziskin (9877_CR107) 2010
9877_CR79
S Basu (9877_CR9) 2016; 16
9877_CR22
JC Quick (9877_CR81) 2014; 64
T Oda (9877_CR68) 2012; 200
T Shirai (9877_CR89) 2017; 69
S Houweling (9877_CR44) 2015; 120
J Brioude (9877_CR14) 2013; 13
RJ Andres (9877_CR2) 2011; 63
9877_CR25
CK Wong (9877_CR101) 2016; 16
9877_CR24
L Feng (9877_CR30) 2016; 16
D Wu (9877_CR103) 2018; 11
9877_CR95
V Kinakh (9877_CR53) 2018; 689
9877_CR93
9877_CR10
9877_CR99
P Bousquet (9877_CR11) 1999; 104
RL Thompson (9877_CR94) 2016; 7
RJ Andres (9877_CR3) 2012; 9
9877_CR18
CD Elvidge (9877_CR28) 2013; 35
9877_CR19
KR Gurney (9877_CR39) 2019; 124
9877_CR17
T Saeki (9877_CR87) 2013; 118
References_xml – volume: 9
  start-page: 1845
  year: 2012
  end-page: 1871
  ident: CR3
  article-title: A synthesis of carbon dioxide emissions from fossil-fuel combustion
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-1845-2012
– volume: 103
  start-page: 69
  issue: 1–2
  year: 2010
  end-page: 92
  ident: CR21
  article-title: Atmospheric inversions for estimating CO fluxes: methods and perspectives
  publication-title: Clim Chang
  doi: 10.1007/s10584-010-9909-3
– ident: CR22
– volume: 69
  start-page: 1291158
  issue: 1
  year: 2017
  ident: CR89
  article-title: A decadal inversion of CO using the global Eulerian-Lagrangian coupled atmospheric model (GELCA): sensitivity to the ground-based observation network
  publication-title: Tellus B: Chemical and Physical Meteorology
  doi: 10.1080/16000889.2017.1291158
– volume: 103
  start-page: 3
  issue: 1–2
  year: 2010
  end-page: 18
  ident: CR51
  article-title: Benefits of dealing with uncertainty in greenhouse gas inventories: introduction
  publication-title: Clim Chang
  doi: 10.1007/s10584-010-9922-6
– volume: 119
  start-page: 10,213
  issue: 17
  year: 2014
  end-page: 10,231
  ident: CR6
  article-title: A multiyear, global gridded fossil fuel CO emission data product: evaluation and analysis of results
  publication-title: J Geophys Res Atmos
  doi: 10.1002/2013JD021296
– volume: 104
  start-page: 26161
  issue: D21
  year: 1999
  end-page: 26178
  ident: CR11
  article-title: Inverse modeling of annual atmospheric CO sources and sinks: 1. Method and control inversion
  publication-title: J Geophys Res
  doi: 10.1029/1999JD900342
– volume: 44
  start-page: 10,045
  year: 2017
  end-page: 10,053
  ident: CR66
  article-title: Quantifying CO2 emissions from individual power plants from space
  publication-title: Geophys Res Lett
  doi: 10.1002/2017GL074702
– volume: 2
  start-page: 672
  year: 2012
  end-page: 675
  ident: CR35
  article-title: The gigatonne gap in China’s carbon dioxide inventories
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate1560
– volume: 10
  start-page: 419
  issue: 3
  year: 1996
  end-page: 429
  ident: CR1
  article-title: A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990
  publication-title: Global Biogeochem Cy
  doi: 10.1029/96GB01523
– volume: 115
  start-page: 307
  issue: D21
  year: 2010
  ident: CR20
  article-title: CO surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements
  publication-title: J Geophys Res
  doi: 10.1029/2010JD013887
– volume: 63
  start-page: 309
  issue: 3
  year: 2011
  end-page: 327
  ident: CR2
  article-title: Monthly, global emissions of carbon dioxide from fossil fuel consumption
  publication-title: Tellus B
  doi: 10.1111/j.1600-0889.2011.00530.x
– ident: CR80
– ident: CR77
– ident: CR25
– volume: 2
  start-page: 560
  issue: 8
  year: 2012
  end-page: 562
  ident: CR26
  article-title: Measuring the carbon emissions of megacities
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate1629
– volume: 122
  start-page: 3653
  year: 2017
  end-page: 3671
  ident: CR32
  article-title: Simulating estimation of California fossil fuel and biosphere carbon dioxide exchanges combining in situ tower and satellite column observations
  publication-title: J Geophys Res Atmos
  doi: 10.1002/2016JD025617
– ident: CR19
– volume: 12
  start-page: 6741
  issue: 15
  year: 2012
  end-page: 6755
  ident: CR63
  article-title: Automated ground-based remote sensing measurements of greenhouse gases at the Białystok site in comparison with collocated in situ measurements and model data
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-12-6741-2012
– volume: 210
  start-page: 113
  year: 2018
  end-page: 143
  ident: CR86
  article-title: NASA’s black marble nighttime lights product suite
  publication-title: Remote Sens Envir
  doi: 10.1016/j.rse.2018.03.017
– volume: 11
  start-page: 543
  year: 2011
  end-page: 556
  ident: CR69
  article-title: A very high-resolution (1 km×1 km) global fossil fuel CO emission inventory derived using a point source database and satellite observations of nighttime lights
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-11-543-2011
– volume: 200
  start-page: 173
  year: 2012
  end-page: 184
  ident: CR68
  article-title: The use of a high-resolution emission dataset in a global Eulerian-Lagrangian coupled model. "Lagrangian modeling of the atmosphere"
  publication-title: AGU Geophysical monograph series
  doi: 10.1029/2012GM001263
– start-page: 131
  year: 2010
  end-page: 142
  ident: CR107
  article-title: Methods used for the 2006 radiance lights
  publication-title: Proc. of the 30th Asia-Pacific advanced network meeting
  doi: 10.7125/APAN.30.18
– volume: 124
  start-page: 2823
  year: 2019
  end-page: 2840
  ident: CR39
  article-title: Comparison of global downscaled versus bottom-up fossil fuel CO emissions at the urban scale in four US urban areas
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2018JD028859
– volume: 247
  start-page: 1431
  issue: 4949
  year: 1990
  end-page: 1438
  ident: CR92
  article-title: Observational constraints on the global atmospheric CO budget
  publication-title: Science
  doi: 10.1126/science.247.4949.1431
– volume: 39
  start-page: L17806
  issue: 17
  year: 2012
  ident: CR54
  article-title: Space-based observations of megacity carbon dioxide
  publication-title: Geophys Res Lett
  doi: 10.1029/2012GL052738
– ident: CR5
– ident: CR100
– ident: CR18
– volume: 4
  start-page: 139
  issue: 2–4
  year: 2014
  end-page: 160
  ident: CR102
  article-title: A spatial uncertainty metric for anthropogenic CO emissions
  publication-title: Greenhouse Gas Meas Manage
  doi: 10.1080/20430779.2014.1000793
– volume: 68
  start-page: 77
  issue: 1
  year: 1999
  end-page: 88
  ident: CR27
  article-title: Radiance calibration of DMSP-OLS lowlight imaging data of human settlements – a new device for portraying the Earth’s surface entire
  publication-title: Remote Sens Environ
  doi: 10.1016/S0034-4257(98)00098-4
– volume: 16
  start-page: 1289
  issue: 3
  year: 2016
  end-page: 1302
  ident: CR30
  article-title: Estimates of European uptake of CO inferred from GOSAT X retrievals: sensitivity to measurement bias inside and outside Europe
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-16-1289-2016
– volume: 16
  start-page: 5665
  year: 2016
  end-page: 5683
  ident: CR9
  article-title: Separation of biospheric and fossil fuel fluxes of CO by atmospheric inversion of CO and CO measurements: observation system simulations
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-16-5665-2016
– volume: 7
  start-page: 483
  issue: 4–5
  year: 2007
  end-page: 494
  ident: CR15
  article-title: Spatial GHG inventory: analysis of uncertainty sources. A case study for Ukraine
  publication-title: Water Air Soil Poll
  doi: 10.1007/s11267-006-9116-4
– ident: CR10
– volume: 415
  start-page: 626
  year: 2002
  end-page: 630
  ident: CR36
  article-title: Towards robust regional estimates of CO sources and sinks using atmospheric transport models
  publication-title: Nature
  doi: 10.1038/415626a
– volume: 3
  start-page: 182
  issue: 6
  year: 2015
  end-page: 205
  ident: CR85
  article-title: Holidays in lights: tracking cultural patterns in demand for energy services
  publication-title: Earth’s Future
  doi: 10.1002/2014EF000285
– volume: 11
  start-page: 4843
  year: 2018
  end-page: 4871
  ident: CR103
  article-title: A Lagrangian approach towards extracting signals of urban CO emissions from satellite observations of atmospheric column CO (XCO ): X-Stochastic Time-Inverted Lagrangian Transport model (“X-STILT v1”)
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-11-4843-2018
– volume: 13
  start-page: 9351
  issue: 18
  year: 2013
  end-page: 9373
  ident: CR60
  article-title: Regional CO flux estimates for 2009–2010 based on GOSAT and ground-based CO observations
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-13-9351-2013
– volume: 110
  start-page: D10308
  year: 2005
  ident: CR37
  article-title: Sensitivity of atmospheric CO inversions to seasonal and interannual variations in fossil fuel emissions
  publication-title: J Geophys Res
  doi: 10.1029/2004JD005373
– volume: 16
  start-page: 9019
  issue: 14
  year: 2016
  end-page: 9045
  ident: CR31
  article-title: Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO emissions
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-16-9019-2016
– volume: 5
  start-page: 160
  year: 2009
  end-page: 163
  ident: CR105
  article-title: Global concentrations of CO and CH retrieved from GOSAT: first preliminary results
  publication-title: SOLA
  doi: 10.2151/sola.2009-041
– volume: 689
  start-page: 217
  year: 2018
  end-page: 229
  ident: CR53
  article-title: Geoinformation technology for analysis and visualisation of high spatial resolution greenhouse gas emissions data using a cloud platform
  publication-title: Advances in Intelligent Systems and Computing II
  doi: 10.1007/978-3-319-70581-1_15
– volume: 524
  start-page: 335
  year: 2015
  end-page: 338
  ident: CR59
  article-title: Reduced carbon emission estimates from fossil fuel combustion and cement production in China
  publication-title: Nature
  doi: 10.1038/nature14677
– volume: 66
  start-page: 23616
  year: 2014
  ident: CR4
  article-title: A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission
  publication-title: Tellus B Chem Phys Meterol
  doi: 10.3402/tellusb.v66.23616
– volume: 43
  start-page: 11,400
  issue: 21
  year: 2016
  end-page: 11,406
  ident: CR40
  article-title: Direct space-based observations of anthropogenic CO emission areas from OCO-2
  publication-title: Geophys Res Lett
  doi: 10.1002/2016GL070885
– volume: 104
  start-page: 18925
  issue: 48
  year: 2007
  end-page: 18930
  ident: CR78
  article-title: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker
  publication-title: PNAS
  doi: 10.1073/pnas.0708986104
– ident: CR52
– volume: 124
  start-page: 459
  issue: 3
  year: 2014
  end-page: 476
  ident: CR50
  article-title: Uncertainty in an emissions-constrained world
  publication-title: Clim Chang
  doi: 10.1007/s10584-014-1106-6
– volume: 103
  start-page: 227
  issue: 1
  year: 2010
  end-page: 244
  ident: CR16
  article-title: Spatial GHG inventory on regional level: accounting for uncertainty
  publication-title: Clim Chang
  doi: 10.1007/s10584-010-9907-5
– volume: 4
  start-page: 225
  issue: 5
  year: 2016
  end-page: 239
  ident: CR42
  article-title: Uncertainty in gridded CO emissions estimates
  publication-title: Earth’s Future
  doi: 10.1002/2015EF000343
– ident: CR41
– ident: CR24
– volume: 13
  start-page: 3661
  year: 2013
  end-page: 3677
  ident: CR14
  article-title: Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NO and CO and their impacts
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-13-3661-2013
– volume: 13
  start-page: 11019
  year: 2013
  end-page: 11058
  ident: CR55
  article-title: Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-13-11019-2013
– ident: CR49
– ident: CR93
– volume: 118
  start-page: 917
  issue: 2
  year: 2013
  end-page: 933
  ident: CR65
  article-title: Improving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission data sets
  publication-title: J Geophys Res-Atmos
  doi: 10.1029/2012JD018196
– ident: CR58
– volume: 10
  start-page: 87
  year: 2018
  end-page: 107
  ident: CR71
  article-title: The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-10-87-2018
– ident: CR46
– volume: 3
  start-page: 781
  year: 2010
  end-page: 811
  ident: CR12
  article-title: A remote sensing technique for global monitoring of power plant CO emissions from space and related applications
  publication-title: Atmos Meas Tech
  doi: 10.5194/amt-3-781-2010
– volume: 104
  start-page: 10288
  issue: 24
  year: 2007
  end-page: 10293
  ident: CR82
  article-title: Global and regional drivers of accelerating CO emissions
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0700609104
– ident: CR75
– volume: 43
  start-page: 3486
  issue: 7
  year: 2016
  end-page: 3493
  ident: CR47
  article-title: Comparing GOSAT observations of localized CO enhancements by large emitters with inventory-based estimates
  publication-title: Geophys Res Lett
  doi: 10.1002/2016GL067843
– year: 2018
  ident: CR106
  article-title: Quantification of carbon dioxide and methane emissions in urban areas: source apportionment based on atmospheric observations
  publication-title: Top-down assessment of CO and CH emissions and carbon dioxide source apportionment in urban areas based on atmospheric observations
  doi: 10.1007/s11027-018-9821-0
– volume: 328
  start-page: 1241
  year: 2010
  end-page: 1243
  ident: CR67
  article-title: Top-down versus bottom-up
  publication-title: Science
  doi: 10.1126/science.1189936
– volume: 5
  start-page: 28
  year: 2017
  ident: CR74
  article-title: On the impact of granularity of space-based urban CO emissions in urban atmospheric inversions: a case study for Indianapolis
  publication-title: Elem Sci Anth
  doi: 10.1525/elementa.146
– volume: 16
  start-page: 14703
  year: 2016
  end-page: 14726
  ident: CR90
  article-title: The first 1-year-long estimate of the Paris region fossil fuel CO emissions based on atmospheric inversion
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-16-14703-2016
– volume: 10
  start-page: 59
  year: 2017
  end-page: 81
  ident: CR23
  article-title: The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products
  publication-title: Atmos Meas Tech
  doi: 10.5194/amt-10-59-2017
– volume: 358
  start-page: eaam5782
  issue: 6360
  year: 2017
  ident: CR88
  article-title: Spaceborne detection of localized carbon dioxide sources
  publication-title: Science
  doi: 10.1126/science.aam5782
– ident: CR64
– ident: CR99
– volume: 9
  start-page: 2619
  year: 2009
  end-page: 2633
  ident: CR29
  article-title: Estimating surface CO fluxes from space-borne CO dry air mole fraction observations using an ensemble Kalman filter
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-9-2619-2009
– volume: 30
  start-page: 220
  year: 2010
  end-page: 229
  ident: CR72
  article-title: Disaggregation of national fossil fuel CO emissions using a global power plant database and DMSP nightlight data
  publication-title: Proc of the Asia Pacific Advanced Network
  doi: 10.7125/APAN.30.24
– volume: 7
  start-page: 161
  year: 2011
  end-page: 164
  ident: CR91
  article-title: On the benefit of GOSAT observations to the estimation of regional CO fluxes
  publication-title: SOLA
  doi: 10.2151/sola.2011-041
– ident: CR95
– year: 2013
  ident: CR70
  article-title: The use of a high-resolution emission data set in a global Eulerian-Lagrangian coupled model
  publication-title: Lagrangian modeling of the atmosphere
  doi: 10.1029/2012GM001263
– volume: 5
  start-page: 231
  issue: 1
  year: 2012
  end-page: 243
  ident: CR33
  article-title: A global coupled Eulerian-Lagrangian model and 1 × 1 km CO surface flux dataset for high-resolution atmospheric CO transport simulations
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-5-231-2012
– ident: CR43
– volume: 124
  start-page: 561
  issue: 3
  year: 2014
  end-page: 574
  ident: CR13
  article-title: Regional spatial inventories (cadastres) of GHG emissions in the energy sector: accounting for uncertainty
  publication-title: Clim Chang
  doi: 10.1007/s10584-013-1040-9
– volume: 64
  start-page: 73
  issue: 1
  year: 2014
  end-page: 79
  ident: CR81
  article-title: Carbon dioxide emission tallies for 210 U.S. coal-fired power plants: a comparison of two accounting methods
  publication-title: J Air Waste Manag Assoc
  doi: 10.1080/10962247.2013.833146
– volume: 7
  start-page: 10724
  year: 2016
  ident: CR94
  article-title: Top-down assessment of the Asian carbon budget since the mid 1990s
  publication-title: Nat Commun
  doi: 10.1038/ncomms10724
– ident: CR79
– volume: 22
  start-page: 947
  issue: 6
  year: 2016
  end-page: 972
  ident: CR45
  article-title: A comparison of five high-resolution spatially-explicit, fossil-fuel, carbon dioxide emission inventories for the United States
  publication-title: Mitig Adapt Strat Gl
  doi: 10.1007/s11027-016-9709-9
– volume: 46
  start-page: 12194
  issue: 21
  year: 2012
  end-page: 12202
  ident: CR38
  article-title: Quantification of fossil fuel CO emission on the building/street scale for a large US city
  publication-title: Environ Sci Technol
  doi: 10.1021/es3011282
– volume: 18
  start-page: 4229
  year: 2018
  end-page: 4250
  ident: CR98
  article-title: Potential of European CO2 observation network to estimate the fossil fuel CO emissions via atmospheric inversions
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-18-4229-2018
– volume: 38
  start-page: 4756
  issue: 7
  year: 2010
  end-page: 4764
  ident: CR83
  article-title: Regional variations in spatial structure of nightlights, population density and fossil fuel CO emissions
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.08.021
– volume: 120
  start-page: 5253
  issue: 10
  year: 2015
  end-page: 5266
  ident: CR44
  article-title: An intercomparison of inverse models for estimating sources and sinks of CO using GOSAT measurements
  publication-title: J Geophys Res Atmos
  doi: 10.1002/2014JD022962
– volume: 115
  start-page: D19306
  year: 2010
  ident: CR84
  article-title: A new global gridded data set of CO emissions from fossil fuel combustion: methodology and evaluation
  publication-title: J Geophys Res
  doi: 10.1029/2009JD013439
– ident: CR104
– volume: 16
  start-page: 13121
  year: 2016
  end-page: 13130
  ident: CR101
  article-title: Monthly trends of methane emissions in Los Angeles from 2011 to 2015 inferred by CLARS-FTS observations
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-16-13121-2016
– volume: 17
  start-page: 8313
  year: 2017
  end-page: 8341
  ident: CR96
  article-title: Carbon dioxide and methane measurements from the Los Angeles megacity carbon project – part 1: calibration, urban enhancements, and uncertainty estimates
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-17-8313-2017
– ident: CR48
– ident: CR73
– volume: 58
  start-page: 359
  issue: 5
  year: 2006
  end-page: 365
  ident: CR8
  article-title: Variational data assimilation for atmospheric CO
  publication-title: Tellus B
  doi: 10.1111/j.1600-0889.2006.00218.x
– volume: 65
  start-page: 18681
  issue: 1
  year: 2013
  ident: CR97
  article-title: Can we evaluate a fine-grained emission model using high-resolution atmospheric transport modelling and regional fossil fuel CO observations?
  publication-title: Tellus B
  doi: 10.3402/tellusb.v65i0.18681
– ident: CR17
– volume: 118
  start-page: 1100
  issue: 2
  year: 2013
  end-page: 1122
  ident: CR87
  article-title: Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO measurements
  publication-title: J Geophys Res Atmos
  doi: 10.1002/jgrd.50127
– volume: 35
  start-page: 62
  year: 2013
  end-page: 69
  ident: CR28
  article-title: Why VIIRS data are superior to DMSP for mapping nighttime lights
  publication-title: Proceedings of the Asia-Pacific Advanced Network
  doi: 10.7125/apan.35.7
– volume: 488
  start-page: 70
  issue: 7409
  year: 2012
  end-page: 72
  ident: CR7
  article-title: Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years
  publication-title: Nature
  doi: 10.1038/nature11299
– ident: CR34
– volume: 199
  start-page: 55
  year: 2018
  end-page: 69
  ident: CR62
  article-title: Investigating sources of variability and error in simulations of carbon dioxide in an urban region
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2018.11.013
– volume: 36B
  start-page: 232
  issue: 4
  year: 1984
  end-page: 261
  ident: CR61
  article-title: Carbon dioxide emissions from fossil fuels: a procedure for estimation and results for 1950–1982
  publication-title: Tellus B
  doi: 10.3402/tellusb.v36i4.14907
– ident: CR76
– volume: 121
  start-page: 5213
  issue: 10
  year: 2016
  end-page: 5236
  ident: CR56
  article-title: High-resolution atmospheric inversion of urban CO emissions during the dormant season of the Indianapolis flux experiment (INFLUX)
  publication-title: J Geophys Res-Atmos
  doi: 10.1002/2015JD024473
– volume: 174
  start-page: 237
  year: 2018
  end-page: 240
  ident: CR57
  article-title: A complete rethink is needed on how greenhouse gas emissions are quantified for national reporting
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2017.12.006
– volume: 210
  start-page: 113
  year: 2018
  ident: 9877_CR86
  publication-title: Remote Sens Envir
  doi: 10.1016/j.rse.2018.03.017
– volume: 30
  start-page: 220
  year: 2010
  ident: 9877_CR72
  publication-title: Proc of the Asia Pacific Advanced Network
  doi: 10.7125/APAN.30.24
– ident: 9877_CR24
  doi: 10.5194/essd-2017-124
– volume: 7
  start-page: 10724
  year: 2016
  ident: 9877_CR94
  publication-title: Nat Commun
  doi: 10.1038/ncomms10724
– volume: 13
  start-page: 3661
  year: 2013
  ident: 9877_CR14
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-13-3661-2013
– volume: 46
  start-page: 12194
  issue: 21
  year: 2012
  ident: 9877_CR38
  publication-title: Environ Sci Technol
  doi: 10.1021/es3011282
– volume: 247
  start-page: 1431
  issue: 4949
  year: 1990
  ident: 9877_CR92
  publication-title: Science
  doi: 10.1126/science.247.4949.1431
– volume: 66
  start-page: 23616
  year: 2014
  ident: 9877_CR4
  publication-title: Tellus B Chem Phys Meterol
  doi: 10.3402/tellusb.v66.23616
– ident: 9877_CR22
– volume: 13
  start-page: 9351
  issue: 18
  year: 2013
  ident: 9877_CR60
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-13-9351-2013
– volume: 328
  start-page: 1241
  year: 2010
  ident: 9877_CR67
  publication-title: Science
  doi: 10.1126/science.1189936
– volume: 4
  start-page: 225
  issue: 5
  year: 2016
  ident: 9877_CR42
  publication-title: Earth’s Future
  doi: 10.1002/2015EF000343
– ident: 9877_CR100
  doi: 10.1007/978-94-007-1670-4
– ident: 9877_CR73
  doi: 10.17595/20170411.001
– volume: 124
  start-page: 561
  issue: 3
  year: 2014
  ident: 9877_CR13
  publication-title: Clim Chang
  doi: 10.1007/s10584-013-1040-9
– volume: 5
  start-page: 160
  year: 2009
  ident: 9877_CR105
  publication-title: SOLA
  doi: 10.2151/sola.2009-041
– volume: 488
  start-page: 70
  issue: 7409
  year: 2012
  ident: 9877_CR7
  publication-title: Nature
  doi: 10.1038/nature11299
– volume: 104
  start-page: 10288
  issue: 24
  year: 2007
  ident: 9877_CR82
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0700609104
– volume: 64
  start-page: 73
  issue: 1
  year: 2014
  ident: 9877_CR81
  publication-title: J Air Waste Manag Assoc
  doi: 10.1080/10962247.2013.833146
– volume: 120
  start-page: 5253
  issue: 10
  year: 2015
  ident: 9877_CR44
  publication-title: J Geophys Res Atmos
  doi: 10.1002/2014JD022962
– volume: 524
  start-page: 335
  year: 2015
  ident: 9877_CR59
  publication-title: Nature
  doi: 10.1038/nature14677
– volume: 104
  start-page: 18925
  issue: 48
  year: 2007
  ident: 9877_CR78
  publication-title: PNAS
  doi: 10.1073/pnas.0708986104
– volume: 16
  start-page: 1289
  issue: 3
  year: 2016
  ident: 9877_CR30
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-16-1289-2016
– volume: 103
  start-page: 69
  issue: 1–2
  year: 2010
  ident: 9877_CR21
  publication-title: Clim Chang
  doi: 10.1007/s10584-010-9909-3
– volume: 65
  start-page: 18681
  issue: 1
  year: 2013
  ident: 9877_CR97
  publication-title: Tellus B
  doi: 10.3402/tellusb.v65i0.18681
– volume: 10
  start-page: 87
  year: 2018
  ident: 9877_CR71
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-10-87-2018
– ident: 9877_CR34
  doi: 10.1002/2017JD027359
– volume: 110
  start-page: D10308
  year: 2005
  ident: 9877_CR37
  publication-title: J Geophys Res
  doi: 10.1029/2004JD005373
– ident: 9877_CR48
  doi: 10.2788/14102
– volume: 36B
  start-page: 232
  issue: 4
  year: 1984
  ident: 9877_CR61
  publication-title: Tellus B
  doi: 10.3402/tellusb.v36i4.14907
– volume: 58
  start-page: 359
  issue: 5
  year: 2006
  ident: 9877_CR8
  publication-title: Tellus B
  doi: 10.1111/j.1600-0889.2006.00218.x
– ident: 9877_CR19
  doi: 10.1007/s11027-017-9779-3
– volume: 118
  start-page: 917
  issue: 2
  year: 2013
  ident: 9877_CR65
  publication-title: J Geophys Res-Atmos
  doi: 10.1029/2012JD018196
– volume: 13
  start-page: 11019
  year: 2013
  ident: 9877_CR55
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-13-11019-2013
– volume: 3
  start-page: 182
  issue: 6
  year: 2015
  ident: 9877_CR85
  publication-title: Earth’s Future
  doi: 10.1002/2014EF000285
– volume: 115
  start-page: 307
  issue: D21
  year: 2010
  ident: 9877_CR20
  publication-title: J Geophys Res
  doi: 10.1029/2010JD013887
– ident: 9877_CR80
  doi: 10.2760/08644
– volume: 115
  start-page: D19306
  year: 2010
  ident: 9877_CR84
  publication-title: J Geophys Res
  doi: 10.1029/2009JD013439
– volume: 38
  start-page: 4756
  issue: 7
  year: 2010
  ident: 9877_CR83
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.08.021
– ident: 9877_CR104
  doi: 10.5194/acp-2017-1022
– volume: 124
  start-page: 2823
  year: 2019
  ident: 9877_CR39
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2018JD028859
– volume: 16
  start-page: 14703
  year: 2016
  ident: 9877_CR90
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-16-14703-2016
– volume: 39
  start-page: L17806
  issue: 17
  year: 2012
  ident: 9877_CR54
  publication-title: Geophys Res Lett
  doi: 10.1029/2012GL052738
– volume: 118
  start-page: 1100
  issue: 2
  year: 2013
  ident: 9877_CR87
  publication-title: J Geophys Res Atmos
  doi: 10.1002/jgrd.50127
– volume: 689
  start-page: 217
  year: 2018
  ident: 9877_CR53
  publication-title: Advances in Intelligent Systems and Computing II
  doi: 10.1007/978-3-319-70581-1_15
– volume: 17
  start-page: 8313
  year: 2017
  ident: 9877_CR96
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-17-8313-2017
– ident: 9877_CR79
  doi: 10.5194/bg-10-6699-2013
– volume: 5
  start-page: 28
  year: 2017
  ident: 9877_CR74
  publication-title: Elem Sci Anth
  doi: 10.1525/elementa.146
– volume: 121
  start-page: 5213
  issue: 10
  year: 2016
  ident: 9877_CR56
  publication-title: J Geophys Res-Atmos
  doi: 10.1002/2015JD024473
– ident: 9877_CR58
  doi: 10.1007/978-1-4020-5930-8
– volume: 69
  start-page: 1291158
  issue: 1
  year: 2017
  ident: 9877_CR89
  publication-title: Tellus B: Chemical and Physical Meteorology
  doi: 10.1080/16000889.2017.1291158
– ident: 9877_CR93
– volume: 43
  start-page: 11,400
  issue: 21
  year: 2016
  ident: 9877_CR40
  publication-title: Geophys Res Lett
  doi: 10.1002/2016GL070885
– ident: 9877_CR10
  doi: 10.3334/CDIAC/00001_V2016
– ident: 9877_CR18
  doi: 10.1007/s11027-018-9836-6
– volume: 43
  start-page: 3486
  issue: 7
  year: 2016
  ident: 9877_CR47
  publication-title: Geophys Res Lett
  doi: 10.1002/2016GL067843
– volume: 104
  start-page: 26161
  issue: D21
  year: 1999
  ident: 9877_CR11
  publication-title: J Geophys Res
  doi: 10.1029/1999JD900342
– ident: 9877_CR17
  doi: 10.1007/s11027-018-9791-2
– ident: 9877_CR64
– volume: 44
  start-page: 10,045
  year: 2017
  ident: 9877_CR66
  publication-title: Geophys Res Lett
  doi: 10.1002/2017GL074702
– volume: 10
  start-page: 419
  issue: 3
  year: 1996
  ident: 9877_CR1
  publication-title: Global Biogeochem Cy
  doi: 10.1029/96GB01523
– volume: 7
  start-page: 483
  issue: 4–5
  year: 2007
  ident: 9877_CR15
  publication-title: Water Air Soil Poll
  doi: 10.1007/s11267-006-9116-4
– volume: 9
  start-page: 2619
  year: 2009
  ident: 9877_CR29
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-9-2619-2009
– volume: 358
  start-page: eaam5782
  issue: 6360
  year: 2017
  ident: 9877_CR88
  publication-title: Science
  doi: 10.1126/science.aam5782
– volume: 11
  start-page: 4843
  year: 2018
  ident: 9877_CR103
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-11-4843-2018
– ident: 9877_CR5
  doi: 10.5194/acp-2016-258
– ident: 9877_CR52
  doi: 10.1007/978-94-007-1670-4_20
– ident: 9877_CR43
  doi: 10.1007/s11027-017-9770-z
– volume: 12
  start-page: 6741
  issue: 15
  year: 2012
  ident: 9877_CR63
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-12-6741-2012
– volume: 2
  start-page: 672
  year: 2012
  ident: 9877_CR35
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate1560
– volume: 10
  start-page: 59
  year: 2017
  ident: 9877_CR23
  publication-title: Atmos Meas Tech
  doi: 10.5194/amt-10-59-2017
– ident: 9877_CR49
  doi: 10.5194/essd-2017-79
– volume: 122
  start-page: 3653
  year: 2017
  ident: 9877_CR32
  publication-title: J Geophys Res Atmos
  doi: 10.1002/2016JD025617
– ident: 9877_CR99
  doi: 10.2139/ssrn.1138690
– ident: 9877_CR75
– ident: 9877_CR95
  doi: 10.2139/ssrn.2226505
– volume: 16
  start-page: 9019
  issue: 14
  year: 2016
  ident: 9877_CR31
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-16-9019-2016
– volume: 18
  start-page: 4229
  year: 2018
  ident: 9877_CR98
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-18-4229-2018
– volume: 5
  start-page: 231
  issue: 1
  year: 2012
  ident: 9877_CR33
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-5-231-2012
– volume: 124
  start-page: 459
  issue: 3
  year: 2014
  ident: 9877_CR50
  publication-title: Clim Chang
  doi: 10.1007/s10584-014-1106-6
– volume: 11
  start-page: 543
  year: 2011
  ident: 9877_CR69
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-11-543-2011
– volume: 174
  start-page: 237
  year: 2018
  ident: 9877_CR57
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2017.12.006
– volume: 7
  start-page: 161
  year: 2011
  ident: 9877_CR91
  publication-title: SOLA
  doi: 10.2151/sola.2011-041
– volume-title: Lagrangian modeling of the atmosphere
  year: 2013
  ident: 9877_CR70
  doi: 10.1029/2012GM001263
– volume: 3
  start-page: 781
  year: 2010
  ident: 9877_CR12
  publication-title: Atmos Meas Tech
  doi: 10.5194/amt-3-781-2010
– volume: 2
  start-page: 560
  issue: 8
  year: 2012
  ident: 9877_CR26
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate1629
– volume: 22
  start-page: 947
  issue: 6
  year: 2016
  ident: 9877_CR45
  publication-title: Mitig Adapt Strat Gl
  doi: 10.1007/s11027-016-9709-9
– ident: 9877_CR76
  doi: 10.1007/978-3-319-15901-0
– volume: 199
  start-page: 55
  year: 2018
  ident: 9877_CR62
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2018.11.013
– volume-title: Top-down assessment of CO2 and CH4 emissions and carbon dioxide source apportionment in urban areas based on atmospheric observations
  year: 2018
  ident: 9877_CR106
  doi: 10.1007/s11027-018-9821-0
– volume: 9
  start-page: 1845
  year: 2012
  ident: 9877_CR3
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-1845-2012
– volume: 103
  start-page: 3
  issue: 1–2
  year: 2010
  ident: 9877_CR51
  publication-title: Clim Chang
  doi: 10.1007/s10584-010-9922-6
– ident: 9877_CR25
  doi: 10.1007/s11027-019-9846-z
– volume: 200
  start-page: 173
  year: 2012
  ident: 9877_CR68
  publication-title: AGU Geophysical monograph series
  doi: 10.1029/2012GM001263
– volume: 68
  start-page: 77
  issue: 1
  year: 1999
  ident: 9877_CR27
  publication-title: Remote Sens Environ
  doi: 10.1016/S0034-4257(98)00098-4
– volume: 16
  start-page: 13121
  year: 2016
  ident: 9877_CR101
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-16-13121-2016
– volume: 35
  start-page: 62
  year: 2013
  ident: 9877_CR28
  publication-title: Proceedings of the Asia-Pacific Advanced Network
  doi: 10.7125/apan.35.7
– start-page: 131
  volume-title: Proc. of the 30th Asia-Pacific advanced network meeting
  year: 2010
  ident: 9877_CR107
  doi: 10.7125/APAN.30.18
– volume: 4
  start-page: 139
  issue: 2–4
  year: 2014
  ident: 9877_CR102
  publication-title: Greenhouse Gas Meas Manage
  doi: 10.1080/20430779.2014.1000793
– volume: 103
  start-page: 227
  issue: 1
  year: 2010
  ident: 9877_CR16
  publication-title: Clim Chang
  doi: 10.1007/s10584-010-9907-5
– volume: 16
  start-page: 5665
  year: 2016
  ident: 9877_CR9
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-16-5665-2016
– ident: 9877_CR46
– volume: 63
  start-page: 309
  issue: 3
  year: 2011
  ident: 9877_CR2
  publication-title: Tellus B
  doi: 10.1111/j.1600-0889.2011.00530.x
– ident: 9877_CR77
  doi: 10.17226/12883
– volume: 415
  start-page: 626
  year: 2002
  ident: 9877_CR36
  publication-title: Nature
  doi: 10.1038/415626a
– ident: 9877_CR41
  doi: 10.5194/acp-2018-517
– volume: 119
  start-page: 10,213
  issue: 17
  year: 2014
  ident: 9877_CR6
  publication-title: J Geophys Res Atmos
  doi: 10.1002/2013JD021296
SSID ssj0003151
Score 2.5100396
Snippet Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1007
SubjectTerms Anthropogenic factors
Atmospheric models
Atmospheric Sciences
Best practices
Capacity development
Carbon dioxide
Carbon dioxide emissions
Carbon footprint
cities
climate
Climate change
Climate Change Management and Policy
Climate change mitigation
Climate models
compliance
Continental interfaces, environment
Disaggregation
Earth and Environmental Science
Earth Sciences
Emission analysis
Emission inventories
Emissions
Emissions control
Environmental Management
Errors
Estimates
Fossil fuels
Greenhouse effect
greenhouse gas emissions
Greenhouse gases
Guidelines
International organizations
inventories
Mitigation
Modelling
monitoring
Ocean, Atmosphere
Original Article
Paris Agreement
Poland
Pollution monitoring
Resolution
Rural areas
Sciences of the Universe
spatial data
Uncertainty
United Nations Framework Convention on Climate Change
United States
Urban areas
Urban policy
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LoKIr8X1RRRvWtikaZoeF1lZRD25sLeSNIkuSCvdVfTfO9PHrooKXptpWmYmmW8yjxByJlRoDNfgnRjXC1ApAq2ECwTTMVj8zPSq7vy3d3I4EtfjaNwUhU3bbPc2JFnt1ItiN7CFmCaJKT4qjgPYeFcj9N1Bi0e8P99_QxbVbpZiARgk2ZTK_DzHF3O0_IjJkJ-Q5rfgaGVzrjbJRgMWab-W7hZZcvk26QwWtWkw2CzO6TZZr4_gaF1ZtEOGg7IsyinVuaVgverYP_ZPpZOcavpQYvcQSzNdmiKndlK8TayjeP8bnqAhFeZCFuX7LhldDe4vh0FzcUKQiUTOAqt8zEQmo0SaKLShtIk3iQMwxnXsVCa4BaQTyoiryMa653wsrLIJzzJmBfNhh6zkRe72CGWh89J5Y7GNjZc9w0WkwcXziQfPJPRdwlr-pVnTVRwvt3hKF_2Qkecp8DyteJ7yLjmfv_Nc99T4k_oUxDInxHbYw_5Nis8wp0eJhL-yLjlspZY2i3CaArIE9xcgU9wlJ_Nh4CLGRHTuihegAW3hAJEVfOeilfZiit9_a_9_5AdkjVdqh6mDh2RlVr64I4AzM3Ncae8H-JDosw
  priority: 102
  providerName: Springer Nature
Title Errors and uncertainties in a gridded carbon dioxide emissions inventory
URI https://link.springer.com/article/10.1007/s11027-019-09877-2
https://www.proquest.com/docview/2262547417
https://www.proquest.com/docview/2315291682
https://hal.science/hal-04238492
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1di9NAcLDXF0FETw-rZ1nFNw02m81m8yRtSS1-FBEL51PYze5qQZIz7Yn-e2eSbauC95JAdpINM7M7HzsfAM-ESozhGq0T4yYRMUWklXCRiHWGEr8yk646__uVXK7Fm4v0IjjctiGscr8ndhu1bSrykb9ENQFtGZR_2avL7xF1jaLT1dBCYwBD3IIVGl_DWbH68PGwFydx2ptcKo5QOMmQNtMnz6FspbBLChlSWRbxv0TT4CsFRv6hdf5zUNrJn8UduB0URzbtKX0Xbrj6FM6KY54aDoaFuj2FW707jvVZRvdgWbRt026Zri1DSdbHAVAtVbapmWZfWqokYlmlW9PUzG6anxvrGPWCI28aQVFcZNP-ug_rRfFpvoxCE4WoErncRVb5LBaVTHNp0sQm0ube5A4VM64zpyrBLWo9iUy5Sm2mJ85nwiqb86qKrYh9cgYndVO7B8DixHnpvLFU0sbLieEi1Wju-dyjlZL4EcR7_JVVqDBOjS6-lcfayITzEnFedjgv-QieH9657OtrXAv9FMlyAKTS2Mvpu5KeUXyPEjn_EY_gfE-1MizIbXlknxE8OQwjFul8RNeuuUIY5BaO6rLCeV7sqX38xP9_6-H1Mz6Cm7xjMwobPIeTXXvlHqMqszNjGE4Xs9mK7q8_vy3GgX_HMJjLOV7XfPob3OLx7g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB612wNICEGhYqGAQXCCiI3tJM4BoQJbpXS7QqiVekvt2KYrVUnJboH-KX4jM3nsAhK99Ro7djQzmYf9zQzAC6mEMVxjdGLcKCChCLSSLpChTtDiF2bUVOc_mMbZkfx0HB2vwa8-F4Zglb1ObBS1rQo6I3-DbgLGMmj_knfn3wLqGkW3q30LjVYs9t3lDwzZ5m_3PiJ_X3K-Oz78kAVdV4GgkGm8CKzySSiLOEpjEwkrYpt6kzr0VLhOnCokt-gGiDjiKrKJHjmfSKtsyositDL0Atddhw0pMJQZwMb78fTzl6XuF2HUhngqDNAYxl2aTpush7acYJ4EUVJJEvC_TOH6KQEx__By_7mYbezd7h243TmqbKeVrLuw5spN2Bqv8uJwsFMM80241R7_sTar6R5k47qu6jnTpWVoOVvcAdVuZbOSafa1psollhW6NlXJ7Kz6ObOOUe85Or2jWYTDrOrL-3B0LeTdgkFZle4BsFA4HztvLJXQ8fHIcBlpDC996jEqEn4IYU-_vOgqmlNjjbN8VYuZaJ4jzfOG5jkfwqvlO-dtPY8rZz9HtiwnUinubGeS0zPCEymZ8u_hELZ7ruWdApjnK3EdwrPlMFKR7mN06aoLnIPSwtE9V7jP657bqyX-_1kPr97xKdzIDg8m-WRvuv8IbvJG5AiyuA2DRX3hHqMbtTBPOtllcHLdv8tvxgcpsA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnYSQEILBRGGAQfAE0WLHSZwHhAZr1bFRTYhJewt2bLNKUzLSDti_xl_HXT5aQGJve40dJ7o734f9uzuAF1JFxgiN0YlxYUBCEWglXSC5TtHiFyZsqvN_nCaTY_nhJD5Zg199LgzBKnud2ChqWxV0Rr6DbgLGMmj_0h3fwSKO9sZvz78F1EGKblr7dhqtiBy4yx8Yvs3f7O8hr18KMR59fj8Jug4DQSGzZBFY5VMuiyTOEhNHNkps5k3m0GsROnWqkMKiSxAlsVCxTXXofCqtspkoCm4l9xGuuw4bKUZF4QA23o2mR5-WdiDicRvuKR6gYUy6lJ02cQ_tOkE-Ca6k0jQQf5nF9VMCZf7h8f5zSdvYvvEduN05rWy3lbK7sObKTdgarXLkcLBTEvNNuNUeBbI2w-keTEZ1XdVzpkvL0Iq2GASq48pmJdPsa01VTCwrdG2qktlZ9XNmHaM-dHSSR7MIk1nVl_fh-FrIuwWDsirdA2A8cj5x3lgqp-OT0AgZaww1feYxQor8EHhPv7zoqptTk42zfFWXmWieI83zhua5GMKr5TvnbW2PK2c_R7YsJ1JZ7snuYU7PCFukZCa-8yFs91zLO2Uwz1eiO4Rny2GkIt3N6NJVFzgHpUWgq67wO697bq-W-P9vPbz6i0_hBm6T_HB_evAIbopG4gi9uA2DRX3hHqNHtTBPOtFl8OW6d8tvz6kt5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Errors+and+uncertainties+in+a+gridded+carbon+dioxide+emissions+inventory&rft.jtitle=Mitigation+and+adaptation+strategies+for+global+change&rft.au=Oda%2C+Tomohiro&rft.au=Bun%2C+Rostyslav&rft.au=Kinakh%2C+Vitaliy&rft.au=Petro+Topylko&rft.date=2019-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1381-2386&rft.eissn=1573-1596&rft.volume=24&rft.issue=6&rft.spage=1007&rft.epage=1050&rft_id=info:doi/10.1007%2Fs11027-019-09877-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-2386&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-2386&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-2386&client=summon