Nanocellulose: From Fundamentals to Advanced Applications
Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect rat...
Saved in:
Published in | Frontiers in chemistry Vol. 8; p. 392 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media
06.05.2020
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 2296-2646 2296-2646 |
DOI | 10.3389/fchem.2020.00392 |
Cover
Loading…
Abstract | Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations
chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed. |
---|---|
AbstractList | Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations
chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed. Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed. Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed. Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed. |
Author | Trache, Djalal Hamidon, Tuan Sherwyn Brosse, Nicolas Tarchoun, Ahmed Fouzi Masruchin, Nanang Derradji, Mehdi Hussin, M. Hazwan |
AuthorAffiliation | 3 Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI) , Jakarta , Indonesia 1 UER Procédés Energétiques, Ecole Militaire Polytechnique , Bordj El-Bahri , Algeria 4 Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine , Vandœuvre-lès-Nancy , France 2 Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia , Penang , Malaysia |
AuthorAffiliation_xml | – name: 4 Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine , Vandœuvre-lès-Nancy , France – name: 1 UER Procédés Energétiques, Ecole Militaire Polytechnique , Bordj El-Bahri , Algeria – name: 3 Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI) , Jakarta , Indonesia – name: 2 Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia , Penang , Malaysia |
Author_xml | – sequence: 1 givenname: Djalal surname: Trache fullname: Trache, Djalal – sequence: 2 givenname: Ahmed Fouzi surname: Tarchoun fullname: Tarchoun, Ahmed Fouzi – sequence: 3 givenname: Mehdi surname: Derradji fullname: Derradji, Mehdi – sequence: 4 givenname: Tuan Sherwyn surname: Hamidon fullname: Hamidon, Tuan Sherwyn – sequence: 5 givenname: Nanang surname: Masruchin fullname: Masruchin, Nanang – sequence: 6 givenname: Nicolas surname: Brosse fullname: Brosse, Nicolas – sequence: 7 givenname: M. Hazwan surname: Hussin fullname: Hussin, M. Hazwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32435633$$D View this record in MEDLINE/PubMed https://hal.univ-lorraine.fr/hal-02649346$$DView record in HAL |
BookMark | eNp1ks9v0zAUxy00xMbYnRPKEQ4ttt-rY3NAqia6TargAmfr1XbWTIld4qTS_nuSdpu2SZxsvR-f9-v7np3EFANjHwWfA2jztXLb0M4ll3zOORj5hp1JadRMKlQnz_6n7CLnO865kAJQ8nfsFCTCQgGcMfOTYnKhaYYm5fCtWHWpLVZD9NSG2FOTiz4VS7-n6IIvlrtdUzvq6xTzB_a2Gv3h4uE9Z39WP35fXs_Wv65uLpfrmUOj-pnXJDaCBHgwpXSSgoGgCZ0IDqUWQAY9AngjsDSGNmBCpSEYrSr0JcE5uzlyfaI7u-vqlrp7m6i2B0Pqbi11fe2aYAUuvMeKaxwHFUZpcpovNHBC1FKJkfX9yNoNmzZ4N47YUfMC-tIT6629TXtbSqFFqUbAlyNg-yrterm2k42PGzeAaj8V-_xQrEt_h5B729Z5WjXFkIZsJfIFgEKcQj897-uJ_HinMUAdA1yXcu5CZV3dH-4wtlk3VnA7acIeNGEnTdiDJsZE_irxkf3flH-QILel |
CitedBy_id | crossref_primary_10_1093_plphys_kiac184 crossref_primary_10_1021_acsomega_3c03871 crossref_primary_10_1080_17480272_2023_2258119 crossref_primary_10_1016_j_nxmate_2025_100484 crossref_primary_10_1002_pen_26585 crossref_primary_10_1007_s10570_021_03965_w crossref_primary_10_3103_S1062873822100070 crossref_primary_10_1002_batt_202400302 crossref_primary_10_3389_fnano_2021_747329 crossref_primary_10_1016_j_renene_2023_119536 crossref_primary_10_3390_app13106159 crossref_primary_10_1016_j_carbpol_2022_119947 crossref_primary_10_1007_s13399_022_03171_z crossref_primary_10_1007_s10924_024_03316_3 crossref_primary_10_1186_s43094_021_00324_1 crossref_primary_10_1515_psr_2022_0032 crossref_primary_10_25159_NanoHorizons_49f1ef7cdb7 crossref_primary_10_1016_j_mtchem_2024_102226 crossref_primary_10_1021_acsomega_3c10053 crossref_primary_10_1016_j_matpr_2023_06_271 crossref_primary_10_1021_acsaenm_3c00574 crossref_primary_10_1016_j_fpsl_2024_101379 crossref_primary_10_1016_j_jorganchem_2024_123087 crossref_primary_10_1002_jbm_b_35513 crossref_primary_10_1002_pat_6187 crossref_primary_10_1016_j_coco_2025_102258 crossref_primary_10_3390_biomimetics9100624 crossref_primary_10_1016_j_mtsust_2022_100115 crossref_primary_10_1016_j_pmatsci_2025_101430 crossref_primary_10_1016_j_ijbiomac_2024_138584 crossref_primary_10_1088_1361_6463_ad2335 crossref_primary_10_1038_s41428_021_00599_4 crossref_primary_10_1039_D2GC01871C crossref_primary_10_1177_20412479241300225 crossref_primary_10_3390_pharmaceutics16010145 crossref_primary_10_3390_macromol3020024 crossref_primary_10_3390_polym16131936 crossref_primary_10_3390_nano12183188 crossref_primary_10_1016_j_cscee_2024_100863 crossref_primary_10_1007_s12649_022_01929_0 crossref_primary_10_1016_j_mtsust_2025_101074 crossref_primary_10_1016_j_ijbiomac_2024_131829 crossref_primary_10_3390_nano10091800 crossref_primary_10_3390_polym14010068 crossref_primary_10_1016_j_ijbiomac_2021_04_136 crossref_primary_10_1007_s10570_023_05546_5 crossref_primary_10_1016_j_carbpol_2023_121298 crossref_primary_10_18311_jmmf_2023_41768 crossref_primary_10_1016_j_carbpol_2023_121057 crossref_primary_10_1016_j_colsurfa_2025_136393 crossref_primary_10_1039_D2RA07940B crossref_primary_10_1016_j_nexres_2024_100053 crossref_primary_10_1002_pc_27034 crossref_primary_10_1016_j_jobe_2024_111571 crossref_primary_10_3390_coatings12020108 crossref_primary_10_1002_jctb_7006 crossref_primary_10_1080_07370652_2022_2032484 crossref_primary_10_3390_molecules25153373 crossref_primary_10_1016_j_cscee_2024_100993 crossref_primary_10_1016_j_indcrop_2022_115177 crossref_primary_10_1016_j_seppur_2024_126627 crossref_primary_10_1080_15583724_2021_1896545 crossref_primary_10_1016_j_molliq_2022_118577 crossref_primary_10_1016_j_chemosphere_2021_130738 crossref_primary_10_1016_j_biortech_2021_126491 crossref_primary_10_3390_polym15051196 crossref_primary_10_1021_acsanm_3c04272 crossref_primary_10_1021_acssuschemeng_1c08476 crossref_primary_10_3390_nano12071139 crossref_primary_10_3390_nano13182611 crossref_primary_10_3390_polym13132168 crossref_primary_10_1021_acs_langmuir_1c00014 crossref_primary_10_3390_pr9091594 crossref_primary_10_35812_CelluloseChemTechnol_2022_56_61 crossref_primary_10_1007_s40725_023_00195_0 crossref_primary_10_1039_D3NH00063J crossref_primary_10_1007_s10570_021_03943_2 crossref_primary_10_1007_s13204_024_03039_w crossref_primary_10_3390_polym15112562 crossref_primary_10_1021_acssuschemeng_2c01668 crossref_primary_10_35812_CelluloseChemTechnol_2022_56_47 crossref_primary_10_46481_jnsps_2021_202 crossref_primary_10_1016_j_molliq_2024_125973 crossref_primary_10_3390_jfb15100304 crossref_primary_10_1007_s10570_023_05339_w crossref_primary_10_1016_j_ijbiomac_2024_136130 crossref_primary_10_3390_gels10120766 crossref_primary_10_1007_s00289_024_05510_8 crossref_primary_10_1016_j_indcrop_2023_116888 crossref_primary_10_3390_polym15234489 crossref_primary_10_1016_j_mtcomm_2022_103362 crossref_primary_10_3390_polym14132648 crossref_primary_10_1016_j_cis_2024_103158 crossref_primary_10_1007_s11814_023_1543_7 crossref_primary_10_1515_ijmr_2023_0104 crossref_primary_10_1002_adfm_202412869 crossref_primary_10_3390_gels9080621 crossref_primary_10_1016_j_ccr_2021_214263 crossref_primary_10_1002_app_55231 crossref_primary_10_1038_s41428_022_00619_x crossref_primary_10_1007_s10570_022_04773_6 crossref_primary_10_1016_j_indcrop_2021_113917 crossref_primary_10_7584_JKTAPPI_2023_6_55_3_15 crossref_primary_10_1002_app_53298 crossref_primary_10_1520_MPC20230092 crossref_primary_10_54097_hset_v66i_11613 crossref_primary_10_1016_j_ijbiomac_2022_08_186 crossref_primary_10_1016_j_jclepro_2024_143461 crossref_primary_10_3390_membranes13080694 crossref_primary_10_1007_s10570_023_05537_6 crossref_primary_10_3390_su151410814 crossref_primary_10_1016_j_jmrt_2024_12_183 crossref_primary_10_1515_psr_2022_0007 crossref_primary_10_1016_j_indcrop_2023_117609 crossref_primary_10_3390_mi14071450 crossref_primary_10_3390_f14091715 crossref_primary_10_3390_jcs7040168 crossref_primary_10_1021_acs_langmuir_2c01713 crossref_primary_10_3390_molecules29184406 crossref_primary_10_32434_0321_4095_2023_151_6_5_12 crossref_primary_10_1080_10408398_2025_2476118 crossref_primary_10_3390_fire7010031 crossref_primary_10_1016_j_ijbiomac_2023_125810 crossref_primary_10_1186_s11671_020_03438_2 crossref_primary_10_1007_s10570_024_05913_w crossref_primary_10_3390_jfb15040093 crossref_primary_10_1016_j_toxrep_2021_12_006 crossref_primary_10_1021_acsanm_2c02968 crossref_primary_10_1039_D1TB02848K crossref_primary_10_1002_tcr_202100135 crossref_primary_10_1002_bio_4634 crossref_primary_10_1007_s11694_024_03034_3 crossref_primary_10_1016_j_eti_2020_101335 crossref_primary_10_3390_polym16010051 crossref_primary_10_3390_macromol3040044 crossref_primary_10_1007_s13399_024_05561_x crossref_primary_10_1007_s10570_023_05162_3 crossref_primary_10_1039_D4NR01794C crossref_primary_10_1039_D2SM01291J crossref_primary_10_1007_s10570_022_04871_5 crossref_primary_10_1021_acsomega_3c05748 crossref_primary_10_1515_psr_2022_0015 crossref_primary_10_1039_D2TA09456H crossref_primary_10_3390_polym14204270 crossref_primary_10_1515_psr_2022_0012 crossref_primary_10_1016_j_indcrop_2023_117632 crossref_primary_10_1093_fqsafe_fyae021 crossref_primary_10_4028_p_j7d3rH crossref_primary_10_3390_molecules27217170 crossref_primary_10_1021_acsami_4c22475 crossref_primary_10_1007_s41939_024_00369_8 crossref_primary_10_1155_2023_9645190 crossref_primary_10_3390_ma14123264 crossref_primary_10_3390_polym13193433 crossref_primary_10_1039_D2TA00457G crossref_primary_10_1021_acs_biomac_2c00987 crossref_primary_10_1021_acsbiomaterials_4c01518 crossref_primary_10_1039_D2RA06689K crossref_primary_10_1016_j_ijbiomac_2024_134165 crossref_primary_10_3390_foods12173221 crossref_primary_10_1007_s12649_021_01547_2 crossref_primary_10_1021_acsami_4c13523 crossref_primary_10_3390_ma15207313 crossref_primary_10_1080_15583724_2021_2007121 crossref_primary_10_1515_psr_2022_0021 crossref_primary_10_1021_acs_biomac_1c01056 crossref_primary_10_1016_j_bioactmat_2021_07_006 crossref_primary_10_1016_j_chphi_2022_100111 crossref_primary_10_1016_j_aiepr_2023_04_003 crossref_primary_10_1016_j_bcab_2024_103036 crossref_primary_10_1016_j_jece_2024_113262 crossref_primary_10_1088_1755_1315_572_1_012045 crossref_primary_10_1007_s13399_022_02977_1 crossref_primary_10_3390_ijms241713205 crossref_primary_10_1016_j_polymer_2022_125154 crossref_primary_10_1016_j_biteb_2021_100811 crossref_primary_10_3390_coatings12101376 crossref_primary_10_1021_acsapm_1c01430 crossref_primary_10_1007_s12649_021_01436_8 crossref_primary_10_3390_polym15102323 crossref_primary_10_1016_j_abst_2022_03_001 crossref_primary_10_1177_08927057231205451 crossref_primary_10_1007_s00289_024_05433_4 crossref_primary_10_3390_app122412846 crossref_primary_10_1002_jbm_b_35472 crossref_primary_10_1007_s40820_021_00627_1 crossref_primary_10_1002_admt_202400232 crossref_primary_10_1007_s10570_023_05637_3 crossref_primary_10_1039_D4TB00397G crossref_primary_10_1007_s10570_023_05386_3 crossref_primary_10_3390_gels9090734 crossref_primary_10_1002_elt2_42 crossref_primary_10_1016_j_bprint_2023_e00291 crossref_primary_10_1016_j_ijbiomac_2021_10_215 crossref_primary_10_1016_j_heliyon_2024_e41269 crossref_primary_10_3390_membranes12030320 crossref_primary_10_12688_f1000research_147446_1 crossref_primary_10_1021_acs_chemrev_2c00611 crossref_primary_10_3390_molecules26010149 crossref_primary_10_3390_pr10020187 crossref_primary_10_1007_s13399_024_05971_x crossref_primary_10_1016_j_biteb_2024_101764 crossref_primary_10_1007_s10570_023_05169_w crossref_primary_10_1515_npprj_2022_0052 crossref_primary_10_1021_acssuschemeng_2c03220 crossref_primary_10_1021_acssuschemeng_2c02255 crossref_primary_10_1016_j_carbpol_2023_121453 crossref_primary_10_1016_j_ijbiomac_2024_133396 crossref_primary_10_1093_micmic_ozad067_324 crossref_primary_10_2174_2452271605666220823102507 crossref_primary_10_1007_s11356_024_33105_3 crossref_primary_10_1016_j_jmrt_2024_06_134 crossref_primary_10_1108_PRT_02_2022_0018 crossref_primary_10_1016_j_ijbiomac_2025_142264 crossref_primary_10_1016_j_mtsust_2022_100191 crossref_primary_10_1007_s12649_024_02774_z crossref_primary_10_3390_nano14201645 crossref_primary_10_1016_j_ijbiomac_2025_141192 crossref_primary_10_1007_s10924_024_03227_3 crossref_primary_10_1016_j_fpc_2022_09_003 crossref_primary_10_1016_j_molliq_2024_125969 crossref_primary_10_1016_j_dt_2021_03_009 crossref_primary_10_3389_fsufs_2023_1190979 crossref_primary_10_1007_s10570_022_04918_7 crossref_primary_10_3390_polym14102015 crossref_primary_10_1016_j_carbpol_2024_122977 crossref_primary_10_1016_j_biortech_2022_126833 crossref_primary_10_3390_biomedicines11041124 crossref_primary_10_1016_j_ijbiomac_2024_135200 crossref_primary_10_3390_pr11010154 crossref_primary_10_1007_s10570_023_05591_0 crossref_primary_10_1007_s12247_022_09705_2 crossref_primary_10_3390_applbiosci2010009 crossref_primary_10_1016_j_ijbiomac_2025_140098 crossref_primary_10_3390_membranes12050537 crossref_primary_10_1002_smll_202207207 crossref_primary_10_1007_s10570_024_06070_w crossref_primary_10_1016_j_matpr_2022_07_043 crossref_primary_10_1016_j_ijbiomac_2024_135799 crossref_primary_10_3390_nano12111828 crossref_primary_10_1016_j_indcrop_2023_117219 crossref_primary_10_1039_D2EE04063H crossref_primary_10_1021_acs_langmuir_1c02780 crossref_primary_10_3390_polym13162648 crossref_primary_10_1007_s10924_022_02573_4 crossref_primary_10_1515_hf_2022_0191 crossref_primary_10_1515_zpch_2023_0308 crossref_primary_10_1016_j_psep_2024_08_035 crossref_primary_10_1038_s41598_020_76144_9 crossref_primary_10_25159_NanoHorizons_49f1ef7cdb71 crossref_primary_10_3390_polysaccharides4040024 crossref_primary_10_1021_acsami_0c14485 crossref_primary_10_1016_j_carpta_2025_100769 crossref_primary_10_1061_JMCEE7_MTENG_15117 crossref_primary_10_1016_j_conbuildmat_2022_128683 crossref_primary_10_3390_coatings11080990 crossref_primary_10_1155_2022_7502796 crossref_primary_10_1002_adsu_202100354 crossref_primary_10_1016_j_bej_2021_108199 crossref_primary_10_1021_acs_jafc_4c03997 crossref_primary_10_1007_s42114_024_00970_y crossref_primary_10_1016_j_seppur_2022_122917 crossref_primary_10_1016_j_ijbiomac_2025_142498 crossref_primary_10_24011_barofd_1358005 crossref_primary_10_1021_acsapm_1c00489 crossref_primary_10_1007_s13726_025_01462_6 crossref_primary_10_1016_j_bamboo_2025_100134 crossref_primary_10_1002_pc_26427 crossref_primary_10_1038_s41598_023_50298_8 crossref_primary_10_1016_j_indcrop_2023_116383 crossref_primary_10_1016_j_indcrop_2023_117590 crossref_primary_10_5254_rct_22_77013 crossref_primary_10_2903_sp_efsa_2023_EN_8258 crossref_primary_10_1016_j_chempr_2024_09_007 crossref_primary_10_1016_j_ijbiomac_2024_132385 crossref_primary_10_1016_j_scp_2022_100950 crossref_primary_10_1021_acs_biomac_4c00575 crossref_primary_10_1021_acsomega_4c07196 crossref_primary_10_3390_catal10091006 crossref_primary_10_5937_savteh2102073K crossref_primary_10_1016_j_envres_2023_115429 crossref_primary_10_3390_pr11082312 crossref_primary_10_1007_s10570_023_05616_8 crossref_primary_10_1016_j_polymdegradstab_2022_110153 crossref_primary_10_1016_j_biteb_2024_101799 crossref_primary_10_1080_15440478_2021_1932673 crossref_primary_10_3390_polym14020286 crossref_primary_10_1016_j_foodres_2024_114741 crossref_primary_10_1021_acs_biomac_3c01424 crossref_primary_10_1016_j_seppur_2024_126893 crossref_primary_10_35812_CelluloseChemTechnol_2023_57_65 crossref_primary_10_1016_j_ijbiomac_2022_11_241 crossref_primary_10_1016_j_mtcomm_2022_103630 crossref_primary_10_1007_s13399_023_05228_z crossref_primary_10_1016_j_carbpol_2021_118507 crossref_primary_10_1007_s10570_021_04088_y crossref_primary_10_3390_su16229609 crossref_primary_10_1021_acssuschemeng_3c02679 crossref_primary_10_2174_0113852728268779240102101311 crossref_primary_10_1007_s11483_024_09875_1 crossref_primary_10_1007_s13205_021_02920_7 crossref_primary_10_1016_j_biteb_2022_101222 crossref_primary_10_1016_j_foodhyd_2022_107689 crossref_primary_10_1016_j_aiepr_2024_12_003 crossref_primary_10_1016_j_ijbiomac_2022_12_073 crossref_primary_10_1007_s13399_022_02660_5 crossref_primary_10_1016_j_ijbiomac_2023_126405 crossref_primary_10_3390_polym14091887 crossref_primary_10_3390_polym17060735 crossref_primary_10_1002_adma_202002404 crossref_primary_10_1016_j_enmm_2024_100942 crossref_primary_10_7717_peerj_matsci_20 crossref_primary_10_1016_j_ultsonch_2022_106176 crossref_primary_10_3390_polym14214468 crossref_primary_10_1016_j_greeac_2022_100009 crossref_primary_10_1016_j_foodhyd_2023_108700 crossref_primary_10_1021_acsabm_1c00712 crossref_primary_10_1515_ntrev_2024_0119 crossref_primary_10_3390_nano13172399 crossref_primary_10_1016_j_apsusc_2024_159419 crossref_primary_10_3390_pr13030790 crossref_primary_10_1680_jinam_23_00053 crossref_primary_10_3390_polym14204305 crossref_primary_10_1016_j_foodchem_2024_141905 crossref_primary_10_1016_j_ijbiomac_2023_126534 crossref_primary_10_4028_p_7369dc crossref_primary_10_1007_s10570_024_06229_5 crossref_primary_10_1021_acs_macromol_4c00205 crossref_primary_10_1038_s41598_022_26600_5 crossref_primary_10_1007_s13399_024_06411_6 crossref_primary_10_1016_j_molliq_2022_121183 crossref_primary_10_1007_s11356_024_35449_2 crossref_primary_10_1021_acsmacrolett_3c00536 crossref_primary_10_1177_00219983231155595 crossref_primary_10_1080_00986445_2025_2469588 crossref_primary_10_1002_cbdv_202402249 crossref_primary_10_1016_j_ultsonch_2023_106581 crossref_primary_10_1177_15589250241265709 crossref_primary_10_3390_molecules28104216 crossref_primary_10_3390_polym14214578 crossref_primary_10_1016_j_mtchem_2022_101247 crossref_primary_10_1016_j_ijbiomac_2025_140279 crossref_primary_10_1002_cben_202300069 crossref_primary_10_1007_s13233_023_00197_8 crossref_primary_10_1021_acssuschemeng_3c00599 crossref_primary_10_1002_adma_202415725 crossref_primary_10_3389_fchem_2023_1233889 crossref_primary_10_1016_j_eurpolymj_2023_112446 crossref_primary_10_1021_acs_langmuir_1c01906 crossref_primary_10_1016_j_carbpol_2022_119251 crossref_primary_10_1016_j_scp_2023_101280 crossref_primary_10_1021_acssuschemeng_1c06607 crossref_primary_10_1039_D1MA00049G crossref_primary_10_1016_j_ijbiomac_2023_126427 crossref_primary_10_3390_ijms252413333 crossref_primary_10_1016_j_ijbiomac_2023_126309 crossref_primary_10_3390_nano10081523 crossref_primary_10_1007_s40883_024_00348_y crossref_primary_10_56083_RCV4N5_115 crossref_primary_10_1080_15583724_2022_2106491 crossref_primary_10_3390_membranes15010012 crossref_primary_10_1007_s10924_023_02899_7 crossref_primary_10_1039_D2SU00014H crossref_primary_10_1002_pts_2617 crossref_primary_10_1016_j_carbpol_2022_119123 crossref_primary_10_1002_adfm_202005646 crossref_primary_10_1016_j_xphs_2025_02_004 crossref_primary_10_3390_polym14112215 crossref_primary_10_24857_rgsa_v16n3_012 crossref_primary_10_1016_j_biombioe_2024_107331 crossref_primary_10_1016_j_ijbiomac_2023_125228 crossref_primary_10_1007_s13399_024_05820_x crossref_primary_10_1016_j_ijbiomac_2024_134512 crossref_primary_10_1039_D2GC01141G crossref_primary_10_1080_10942912_2023_2286897 crossref_primary_10_3390_polym14235248 crossref_primary_10_1016_j_psep_2024_01_085 crossref_primary_10_1007_s10570_021_03760_7 crossref_primary_10_1016_j_rechem_2024_101506 crossref_primary_10_1016_j_carbpol_2022_120117 crossref_primary_10_1021_acs_biomac_2c01363 crossref_primary_10_1002_adfm_202302785 crossref_primary_10_1016_j_spc_2023_12_026 crossref_primary_10_1515_ntrev_2024_0005 crossref_primary_10_1007_s10924_022_02507_0 crossref_primary_10_3390_polym15040984 crossref_primary_10_1051_e3sconf_202342009003 crossref_primary_10_1371_journal_pone_0299312 crossref_primary_10_1007_s00289_023_05084_x crossref_primary_10_1039_D0RA08987G crossref_primary_10_3390_polym15061542 crossref_primary_10_1016_j_ccr_2022_214496 crossref_primary_10_3390_nano12193483 crossref_primary_10_1021_acsomega_4c00497 crossref_primary_10_1007_s10965_021_02702_y crossref_primary_10_1016_j_carbpol_2023_121313 crossref_primary_10_1016_j_porgcoat_2023_107546 crossref_primary_10_1016_j_matpr_2023_01_386 crossref_primary_10_1016_j_tca_2021_178882 crossref_primary_10_1016_j_carbpol_2023_121558 crossref_primary_10_1021_acsanm_1c03508 crossref_primary_10_3390_jcs7060210 crossref_primary_10_1007_s10570_022_04977_w crossref_primary_10_3390_polysaccharides3010010 crossref_primary_10_1007_s10570_022_04592_9 crossref_primary_10_1016_j_crgsc_2024_100412 crossref_primary_10_1016_j_ijbiomac_2024_133891 crossref_primary_10_1007_s42247_021_00300_8 crossref_primary_10_1016_j_ijbiomac_2024_134990 crossref_primary_10_1016_j_carbpol_2024_122807 crossref_primary_10_1515_arh_2024_0026 crossref_primary_10_1016_j_apmt_2021_101078 crossref_primary_10_1088_1755_1315_1388_1_012028 crossref_primary_10_1080_15440478_2021_1904484 crossref_primary_10_1021_acsaenm_4c00592 crossref_primary_10_1016_j_jddst_2022_103665 crossref_primary_10_3390_nanoenergyadv4030013 crossref_primary_10_3390_polysaccharides6010010 crossref_primary_10_3390_pr9040611 crossref_primary_10_1016_j_jenvman_2023_119928 crossref_primary_10_1016_j_cej_2020_125960 crossref_primary_10_1016_j_ijbiomac_2023_125486 crossref_primary_10_1007_s10570_022_04964_1 crossref_primary_10_1007_s13399_023_05027_6 crossref_primary_10_3390_nano12193375 crossref_primary_10_35812_CelluloseChemTechnol_2024_58_82 crossref_primary_10_35118_apjmbb_2024_032_2_01 crossref_primary_10_1016_j_scp_2021_100584 crossref_primary_10_1021_acs_iecr_2c01402 crossref_primary_10_1016_j_carbpol_2023_121325 crossref_primary_10_1007_s10570_024_06204_0 crossref_primary_10_4236_ojpchem_2022_121002 crossref_primary_10_1016_j_matpr_2021_12_218 crossref_primary_10_1002_fob2_12011 crossref_primary_10_1080_00207233_2025_2480472 crossref_primary_10_1016_j_jcis_2023_12_164 crossref_primary_10_1016_j_susmat_2024_e01077 crossref_primary_10_1016_j_ijbiomac_2025_141448 crossref_primary_10_1016_j_jcis_2023_12_041 crossref_primary_10_1016_j_jece_2022_108145 crossref_primary_10_3390_foods11040589 crossref_primary_10_1002_asia_202301068 crossref_primary_10_1016_j_ijbiomac_2023_123431 crossref_primary_10_1016_j_jobe_2021_103747 crossref_primary_10_1007_s00204_024_03911_2 crossref_primary_10_1016_j_heliyon_2023_e23846 crossref_primary_10_1088_1757_899X_1258_1_012017 crossref_primary_10_1016_j_carpta_2024_100651 crossref_primary_10_1016_j_indcrop_2024_119771 crossref_primary_10_1016_j_biteb_2022_101242 crossref_primary_10_1088_1757_899X_1258_1_012014 crossref_primary_10_1177_08927057241249731 crossref_primary_10_1016_j_ijbiomac_2024_132302 crossref_primary_10_1007_s10570_023_05587_w crossref_primary_10_3390_polym13142337 crossref_primary_10_3389_fbioe_2022_1059097 crossref_primary_10_1016_j_envres_2023_116110 crossref_primary_10_1016_j_mtcomm_2024_109926 crossref_primary_10_3390_ma16124447 crossref_primary_10_1063_5_0085660 crossref_primary_10_1016_j_carbpol_2023_121418 crossref_primary_10_1016_j_cej_2025_161257 crossref_primary_10_1007_s12649_020_01198_9 crossref_primary_10_1016_j_toxrep_2023_11_009 crossref_primary_10_1016_j_ijbiomac_2023_123785 crossref_primary_10_1007_s10311_022_01401_4 crossref_primary_10_1557_s43580_022_00434_9 crossref_primary_10_1016_j_ijbiomac_2025_141770 crossref_primary_10_1016_j_scp_2023_101373 crossref_primary_10_1016_j_enmm_2023_100791 crossref_primary_10_3390_polym15040937 crossref_primary_10_3390_polym14091819 crossref_primary_10_3390_ma13235347 crossref_primary_10_1016_j_ijbiomac_2024_130239 crossref_primary_10_1016_j_trac_2020_116109 crossref_primary_10_1007_s13399_022_02442_z crossref_primary_10_3390_polym15204159 crossref_primary_10_1021_acssuschemeng_2c04224 crossref_primary_10_3390_ma14185137 crossref_primary_10_1007_s40820_024_01348_x crossref_primary_10_1016_j_carpta_2024_100529 crossref_primary_10_1016_j_carpta_2025_100707 crossref_primary_10_1016_j_matpr_2023_01_031 crossref_primary_10_7584_JKTAPPI_2022_04_54_2_51 crossref_primary_10_1089_3dp_2021_0294 crossref_primary_10_1007_s10570_023_05222_8 crossref_primary_10_3390_molecules26175282 crossref_primary_10_1080_09205063_2023_2177474 crossref_primary_10_1016_j_indcrop_2021_114318 crossref_primary_10_1016_j_cej_2024_155409 crossref_primary_10_1016_j_rineng_2024_103012 crossref_primary_10_1016_j_jobab_2023_04_002 crossref_primary_10_1016_j_ijbiomac_2025_140570 crossref_primary_10_1016_j_carpta_2023_100350 crossref_primary_10_1016_j_ijbiomac_2023_126007 crossref_primary_10_7584_JKTAPPI_2023_10_55_5_96 crossref_primary_10_1007_s10570_022_04725_0 crossref_primary_10_1007_s13204_021_01749_z crossref_primary_10_1016_j_compositesb_2022_110221 crossref_primary_10_1016_j_sajce_2024_12_007 crossref_primary_10_3390_coatings13071177 crossref_primary_10_3390_polym14101930 crossref_primary_10_3390_ma16103856 crossref_primary_10_3390_polym14091925 crossref_primary_10_3390_app14177964 crossref_primary_10_1021_acs_iecr_0c05448 crossref_primary_10_1360_SSC_2024_0212 crossref_primary_10_31875_2410_4701_2022_09_06 crossref_primary_10_1007_s10570_023_05676_w crossref_primary_10_1007_s13399_022_03159_9 crossref_primary_10_20473_j_djmkg_v56_i1_p30_35 crossref_primary_10_1002_app_55273 crossref_primary_10_1016_j_bcdf_2020_100251 crossref_primary_10_4028_p_p321wu crossref_primary_10_1016_j_coco_2021_100914 crossref_primary_10_1007_s10924_022_02428_y crossref_primary_10_1016_j_molstruc_2021_130108 crossref_primary_10_1088_1755_1315_1282_1_012036 crossref_primary_10_3390_app142210670 crossref_primary_10_3390_gels9070574 crossref_primary_10_1515_npprj_2024_0056 crossref_primary_10_3390_membranes12111089 crossref_primary_10_1007_s13399_024_05812_x crossref_primary_10_1021_acs_biomac_4c01279 crossref_primary_10_3389_fnano_2021_729743 crossref_primary_10_1016_j_chemosphere_2023_140833 crossref_primary_10_1039_D4MA00716F crossref_primary_10_1007_s10965_023_03637_2 crossref_primary_10_3390_nano13101585 crossref_primary_10_1016_j_carpta_2020_100032 crossref_primary_10_1016_j_mtcomm_2022_105193 crossref_primary_10_1016_j_ijbiomac_2025_140794 crossref_primary_10_1016_j_ijbiomac_2023_123511 crossref_primary_10_3390_polym16101312 crossref_primary_10_1016_j_carpta_2020_100031 crossref_primary_10_1016_j_scitotenv_2022_156903 crossref_primary_10_1080_25740881_2022_2086813 crossref_primary_10_1186_s42252_023_00048_w crossref_primary_10_1016_j_ijbiomac_2022_09_279 crossref_primary_10_1016_j_fbio_2024_105656 crossref_primary_10_1016_j_chnaes_2023_02_002 crossref_primary_10_3390_polym16121629 crossref_primary_10_1039_D2MA00249C crossref_primary_10_1002_pc_28091 crossref_primary_10_1021_acsomega_2c05547 crossref_primary_10_1177_87560879231226442 crossref_primary_10_1002_pls2_10168 crossref_primary_10_1016_j_ijbiomac_2022_01_007 crossref_primary_10_1016_j_carpta_2023_100327 crossref_primary_10_1039_D1TA05420A crossref_primary_10_1080_17518253_2022_2121183 crossref_primary_10_3390_nano12020273 crossref_primary_10_5937_jaes0_29059 crossref_primary_10_1016_j_cej_2023_147142 crossref_primary_10_1021_acs_bioconjchem_3c00304 crossref_primary_10_1016_j_indcrop_2023_116501 crossref_primary_10_1007_s13196_023_00325_y crossref_primary_10_3390_fermentation11030120 crossref_primary_10_3390_polym15051115 crossref_primary_10_1016_j_chemosphere_2025_144064 crossref_primary_10_1016_j_jece_2024_113835 crossref_primary_10_3390_plants11223175 crossref_primary_10_1002_adhm_202304287 crossref_primary_10_1016_j_ijbiomac_2024_130674 crossref_primary_10_5604_01_3001_0015_6636 crossref_primary_10_7584_JKTAPPI_2021_12_53_6_12 crossref_primary_10_1002_jemt_23736 crossref_primary_10_2174_1389557522666220829085805 crossref_primary_10_3390_polym15122622 crossref_primary_10_1016_j_ijbiomac_2023_125195 crossref_primary_10_32604_jrm_2022_020478 crossref_primary_10_1007_s10570_024_05816_w crossref_primary_10_1007_s00107_025_02213_3 crossref_primary_10_1016_j_ijbiomac_2023_126287 crossref_primary_10_1038_s41428_021_00611_x crossref_primary_10_3390_polym15122628 crossref_primary_10_1016_j_ijbiomac_2024_131759 crossref_primary_10_1021_acsabm_4c01169 crossref_primary_10_1039_D3GC05027K crossref_primary_10_1016_j_indcrop_2024_119112 crossref_primary_10_3390_catal12101215 crossref_primary_10_1016_j_ijbiomac_2024_131633 crossref_primary_10_3390_ma17112739 crossref_primary_10_1039_D2SE00442A crossref_primary_10_3389_fenrg_2020_596164 crossref_primary_10_1080_25740881_2023_2237101 crossref_primary_10_1016_j_ijbiomac_2020_06_168 crossref_primary_10_15243_jdmlm_2024_113_5793 crossref_primary_10_1002_prep_202100293 crossref_primary_10_15625_2525_2518_18831 crossref_primary_10_1016_j_jclepro_2021_129453 crossref_primary_10_3390_jcs8100413 crossref_primary_10_3390_polym14235074 crossref_primary_10_1039_D4NR04673K crossref_primary_10_1016_j_mtcomm_2022_105028 crossref_primary_10_1016_j_foodchem_2021_131912 crossref_primary_10_1007_s12649_022_02014_2 crossref_primary_10_1016_j_envres_2022_114998 crossref_primary_10_1016_j_ceja_2022_100252 crossref_primary_10_3390_bioengineering10080986 crossref_primary_10_1016_j_carpta_2021_100065 crossref_primary_10_3390_ijms25020685 crossref_primary_10_1038_s41598_022_24735_z crossref_primary_10_1039_D1GC02841C crossref_primary_10_3390_app14052184 crossref_primary_10_1016_j_jddst_2022_104121 crossref_primary_10_1080_00914037_2024_2376247 crossref_primary_10_1016_j_molliq_2024_124256 crossref_primary_10_1016_j_ijbiomac_2024_130892 crossref_primary_10_1371_journal_pone_0281142 crossref_primary_10_1002_admt_202301874 crossref_primary_10_3390_polym13040550 crossref_primary_10_1007_s10570_021_04379_4 crossref_primary_10_1016_j_ijbiomac_2020_08_179 crossref_primary_10_3390_ma13183951 crossref_primary_10_26599_PBM_2023_9260012 crossref_primary_10_1007_s10570_024_06250_8 crossref_primary_10_1016_j_giant_2024_100299 crossref_primary_10_1088_2631_6331_abcfaf crossref_primary_10_3390_su141811386 crossref_primary_10_1007_s43630_023_00526_x crossref_primary_10_3390_polym14204461 crossref_primary_10_2174_1570178620666221227164410 crossref_primary_10_1111_1750_3841_15854 crossref_primary_10_1016_j_carpta_2021_100172 crossref_primary_10_1016_j_matdes_2023_112472 crossref_primary_10_1007_s11157_020_09551_z crossref_primary_10_1007_s11274_023_03605_4 crossref_primary_10_1590_jped6384 crossref_primary_10_1016_j_sciaf_2021_e01078 crossref_primary_10_1007_s10570_024_06153_8 crossref_primary_10_1080_15440478_2024_2418357 crossref_primary_10_7584_JKTAPPI_2025_2_57_1_78 crossref_primary_10_1039_D3NA00401E crossref_primary_10_1590_01047760202330013354 crossref_primary_10_1016_j_mser_2024_100852 crossref_primary_10_3390_foods11101394 crossref_primary_10_1002_adfm_202302351 crossref_primary_10_1007_s10570_021_03842_6 crossref_primary_10_1007_s10570_024_06055_9 crossref_primary_10_1016_j_carbpol_2023_120603 crossref_primary_10_1016_j_mtchem_2022_100869 crossref_primary_10_1016_j_cej_2024_157318 crossref_primary_10_1116_6_0003441 crossref_primary_10_1021_acsanm_1c02008 crossref_primary_10_3390_pr11041006 crossref_primary_10_1002_macp_202100501 crossref_primary_10_1016_j_carbpol_2022_119563 crossref_primary_10_3390_polym15224371 crossref_primary_10_1002_gch2_202200235 crossref_primary_10_1016_j_ijbiomac_2022_01_163 crossref_primary_10_3390_nano11020356 crossref_primary_10_1557_s43578_022_00797_7 crossref_primary_10_1039_D3TB00478C crossref_primary_10_1016_j_ijbiomac_2021_09_063 crossref_primary_10_1007_s00604_021_04960_5 crossref_primary_10_1016_j_carbpol_2023_120850 crossref_primary_10_1007_s13399_024_06410_7 crossref_primary_10_1016_j_cej_2022_137233 crossref_primary_10_1016_j_indcrop_2024_120015 crossref_primary_10_1080_02678292_2024_2381550 crossref_primary_10_1155_2022_5242808 crossref_primary_10_1016_j_foodchem_2024_141241 crossref_primary_10_3390_pharmaceutics15071918 crossref_primary_10_1007_s10570_022_04959_y crossref_primary_10_1039_D0NJ05484D crossref_primary_10_3390_polym16040530 crossref_primary_10_1016_j_carpta_2022_100212 crossref_primary_10_3390_coatings14081036 crossref_primary_10_3390_nano11113008 crossref_primary_10_7584_JKTAPPI_2023_12_55_6_109 crossref_primary_10_3390_f15071174 crossref_primary_10_3390_nano14221837 crossref_primary_10_3390_polym16213001 crossref_primary_10_1016_j_carbpol_2020_116820 crossref_primary_10_3390_gels9120958 |
Cites_doi | 10.1016/j.compositesa.2015.10.041 10.1007/s10570-015-0575-5 10.1016/j.carbpol.2017.11.100 10.1007/978-3-642-45232-1_57 10.1021/acs.chemmater.7b01170 10.1021/acs.langmuir.8b04013 10.1016/j.carbpol.2016.07.073 10.1021/acs.macromol.8b00733 10.1016/j.carbpol.2018.01.015 10.1002/app.48407 10.1021/acssuschemeng.9b02744 10.1016/j.ijbiomac.2017.01.029 10.1002/adhm.201800334 10.1080/17425247.2016.1182491 10.1016/j.indcrop.2015.03.075 10.1021/acs.biomac.8b00839 10.1002/adma.201804826 10.1007/s10570-016-0963-5 10.1007/s10570-018-1910-4 10.1039/C2SM26472B 10.1021/acs.jpclett.8b03874 10.1002/masy.200651213 10.1016/j.biotechadv.2011.05.005 10.1007/s10570-018-1871-7 10.1016/j.msec.2019.109963 10.1016/S0143-7496(97)00054-7 10.1142/9789814566469_0031 10.1016/j.biortech.2015.11.022 10.1080/02773813.2017.1316741 10.1007/s10570-019-02655-y 10.1016/j.seppur.2004.08.002 10.1016/S1001-0742(12)60145-4 10.1021/acs.chemrev.7b00627 10.1016/j.jcis.2014.10.034 10.1016/j.wasman.2019.10.041 10.1002/anie.201606626 10.1021/acssuschemeng.5b00194 10.1021/acssuschemeng.7b03437 10.1007/s10570-011-9576-1 10.1007/s10570-019-02507-9 10.1016/j.carbpol.2018.05.072 10.1039/C4NR03584D 10.1021/acssuschemeng.6b02768 10.4236/ojpchem.2019.94008 10.1016/j.carbpol.2019.04.033 10.1021/acs.biomac.8b01224 10.1016/j.copbio.2016.01.002 10.1177/0021998318789732 10.1039/C8GC00205C 10.1007/s10570-019-02648-x 10.1007/s41783-018-0036-3 10.1039/C7PY01203A 10.1016/j.carbpol.2019.115149 10.1016/j.carbpol.2019.115620 10.1016/j.cossms.2019.06.005 10.1080/14686996.2017.1401423 10.1016/j.indcrop.2014.11.027 10.3390/polym11061009 10.1002/anie.201404616 10.1016/j.memsci.2013.06.020 10.1002/adfm.201902990 10.1080/00222348.2019.1710364 10.1016/j.rser.2014.01.051 10.1016/j.carbpol.2019.115454 10.1007/s10973-016-5293-1 10.1007/s10924-017-1167-2 10.1016/j.progpolymsci.2018.07.008 10.1021/acsmacrolett.9b00692 10.1016/j.biortech.2019.122446 10.1021/acssuschemeng.9b05231 10.1016/j.eurpolymj.2012.08.008 10.1080/20550324.2016.1199410 10.1002/aenm.201700130 10.1007/s10570-019-02889-w 10.1021/acsami.5b05841 10.4322/polimeros.2010.01.001 10.1016/j.carbpol.2016.06.025 10.1007/s10570-017-1283-0 10.1021/acs.biomac.8b01482 10.1016/j.carbpol.2019.115424 10.1021/acs.biomac.6b01548 10.3390/molecules25030526 10.1039/C8NR05860A 10.1016/j.jcis.2019.10.084 10.1088/1748-605X/ab026c 10.1039/C8PY01022F 10.1039/C7TA02807E 10.3390/nano10020186 10.1016/j.cej.2018.04.026 10.1016/j.ijbiomac.2019.05.210 10.1016/j.carbpol.2019.115323 10.1016/j.conbuildmat.2019.117497 10.1016/j.apsusc.2019.143802 10.1016/j.culher.2018.07.001 10.1016/j.energy.2020.117457 10.1016/j.cis.2019.102076 10.1016/j.cis.2019.102089 10.1016/j.indcrop.2017.08.032 10.1016/j.ijbiomac.2018.11.064 10.1080/10408398.2016.1270254 10.1002/polb.23490 10.3934/matersci.2018.2.201 10.1016/j.indcrop.2019.111642 10.1002/9783527689972 10.1039/C9SC06312A 10.1007/s10570-020-03011-1 10.3183/npprj-2014-29-01-p105-118 10.1016/j.carbpol.2017.04.008 10.1186/s11671-017-2001-4 10.1016/j.ijbiomac.2018.10.081 10.1080/01694243.2016.1175246 10.1016/j.eurpolymj.2012.10.029 10.1021/acssuschemeng.8b06073 10.1007/s40725-019-00088-1 10.1016/j.ijadhadh.2013.03.013 10.1016/j.ijbiomac.2020.02.221 10.1016/j.biortech.2019.121548 10.1016/j.jcis.2019.09.002 10.1016/j.mattod.2018.02.001 10.1155/2012/158503 10.1002/cben.201600001 10.1002/biot.201900059 10.1021/cr900339w 10.1016/j.progpolymsci.2015.07.003 10.1016/j.carbpol.2019.115144 10.1016/j.ultsonch.2016.06.040 10.1039/C6NR09494E 10.1007/978-981-15-0913-1 10.1002/macp.201900358 10.1098/rsta.2017.0040 10.1007/s10570-017-1194-0 10.1002/smll.201906567 10.1080/07388551.2016.1189871 10.1016/j.molcatb.2013.12.008 10.1016/j.ijbiomac.2017.10.028 10.1021/bm400219u 10.1007/s42242-019-00049-4 10.1021/acs.jpcb.5b00715 10.1016/j.carbpol.2016.11.078 10.1016/j.indcrop.2016.01.012 10.1016/j.ijbiomac.2015.09.070 10.1007/s10570-015-0798-5 10.1016/j.carbpol.2014.06.048 10.1021/mz500787p 10.1016/j.foodhyd.2019.105411 10.1016/j.foodhyd.2019.04.039 10.1007/s10570-019-02789-z 10.1021/acs.langmuir.9b03583 10.3144/expresspolymlett.2019.75 10.1016/j.carbpol.2019.115701 10.1021/acssuschemeng.7b02363 10.1016/j.jfda.2018.12.002 10.1007/978-3-030-05399-4_23 10.1080/03602559.2016.1233277 10.1021/acsami.7b02794 10.1080/01694243.2012.727173 10.1016/j.matlet.2016.01.052 10.1038/s41598-018-34667-2 10.1007/s10570-018-1723-5 10.1016/j.carbpol.2019.01.020 10.2174/187221013804484854 10.3390/ma10010080 10.3390/nano9020164 10.1016/j.ijadhadh.2016.10.004 10.1038/srep20420 10.1007/978-3-030-05399-4_35 10.1007/s10570-015-0802-0 10.1007/s10570-019-02828-9 10.1016/j.carbpol.2019.115401 10.1016/j.rser.2014.04.047 10.1016/j.eurpolymj.2014.07.025 10.1016/j.jclepro.2018.06.128 10.1016/j.ijadhadh.2015.04.002 10.1016/j.carbpol.2018.03.023 10.1039/C7CS00790F 10.3390/app10010065 10.1016/j.indcrop.2015.12.070 10.1002/adma.201703655 10.1002/9783527689972.ch3 10.1016/j.carbpol.2018.12.004 10.1016/j.ijbiomac.2017.05.181 10.1016/j.bmcl.2015.12.060 10.1021/ie201349h 10.1007/s10853-019-03322-0 10.1016/j.foodhyd.2018.03.047 10.1007/s12649-020-00955-0. 10.1016/j.polymer.2017.02.016 10.1002/app.41719 10.1002/slct.201902533 10.1016/j.carbpol.2016.03.009 10.1016/j.matpr.2019.06.265 10.1002/9783527807437.ch7 10.1021/acssuschemeng.7b00375 10.1016/j.carbpol.2018.06.114 10.1039/C9GC00473D 10.1002/9781118872246 10.1002/9781119441632.ch3 10.1016/j.apsusc.2017.12.137 10.1016/j.ijbiomac.2019.04.117 10.1007/s10570-018-1904-2 10.1007/s10570-015-0747-3 10.1039/c2nr30260h 10.1016/j.carbpol.2018.06.045 10.1021/acs.biomac.8b00233 10.3390/nano8100859 10.1007/s10570-016-1057-0 10.1016/j.biotechadv.2018.08.009 10.1002/pen.25052 10.1016/j.polymer.2017.11.051 10.1007/s11837-016-2018-7 10.1021/acssuschemeng.5b00762 10.2147/NSA.S64386 10.15376/biores.14.1.1867-1889 10.1080/10934520600754284 10.1016/j.ijbiomac.2019.07.176 10.3390/nano9020253 10.1016/j.cej.2017.08.128 10.1021/acs.biomac.9b01037 10.1016/j.carbpol.2020.116039 10.32964/TJ13.5.35 10.3109/07388551.2016.1163322 10.1016/j.crcon.2018.05.004 10.1080/01694243.2019.1596650 10.1016/B978-0-12-816913-1.00005-2 10.3390/molecules24203724 10.1080/10408398.2018.1536966 10.1002/cssc.201901676 10.1007/s10570-018-2070-2 10.1016/j.enmm.2017.07.002 10.1021/acs.biomac.9b01721. 10.1039/C8PY01575A 10.32964/TJ13.6.47 10.1016/j.energy.2017.01.005 10.1016/j.mtchem.2019.04.012 10.1021/acssuschemeng.9b00764 10.1002/adsu.201900114 10.1515/epoly-2019-0013 10.1016/j.ijbiomac.2019.07.189 10.1016/j.carbpol.2013.06.072 10.1016/j.conbuildmat.2017.05.074 10.1007/978-981-15-0913-1_5 10.1039/D0NH00016G 10.2174/1573411013666171003155624 10.1016/j.rser.2016.02.022 10.1016/j.jhazmat.2017.06.005 10.1016/j.rser.2014.08.050 10.1002/smll.201702240 10.1016/j.actbio.2019.01.049 10.1016/j.fuproc.2016.12.007 10.1201/b16496 10.1007/s10570-019-02392-2 10.1021/acssuschemeng.8b05526 10.1016/j.nanoen.2017.04.001 10.1016/j.eurpolymj.2014.04.014 10.1016/j.jhazmat.2015.02.051 10.1016/j.biortech.2018.04.099 10.1007/s10570-019-02733-1 10.1002/app.48959 10.1007/s11157-017-9423-4 10.1080/09205063.2018.1558933 10.1016/j.colsurfb.2019.110634 10.1039/C0NR00583E 10.1007/s10570-019-02672-x 10.1021/la036129e 10.1021/acs.biomac.6b00910 10.1201/9781351262927-9 10.1007/s10570-019-02533-7 10.1039/C6CS00895J 10.1002/app.48544 10.1016/j.biortech.2015.08.029 10.1016/j.carbpol.2018.06.112 10.1016/j.foodhyd.2016.01.023 10.1016/j.cocis.2017.01.005 10.1021/acs.langmuir.7b04127 10.1016/j.indcrop.2016.02.016 10.3923/jest.2014.44.55 10.1021/acs.langmuir.9b01977 10.1007/978-3-642-45232-1 10.1016/j.conbuildmat.2020.118061 10.1007/s13204-019-01242-8 10.1021/acs.biomac.6b00144 10.1016/j.carbpol.2013.01.033 10.1002/9781118773949 10.1016/j.carbpol.2019.115114 10.1016/j.carbpol.2017.12.014 10.3390/nano10020196 10.1007/s10570-015-0551-0 10.1007/s10570-016-1109-5 10.1007/s10098-016-1191-2 10.1155/2018/7923068 10.1021/acssuschemeng.8b03331 10.1016/j.cocis.2017.01.004 10.1002/cben.201700002 10.1007/s10570-014-0348-6 10.3390/ma11081272 10.1007/s10924-018-1189-4 10.1016/j.ijpharm.2013.12.015 10.1142/8975 10.1007/s10570-012-9741-1 10.1021/es202223p 10.1016/j.ijbiomac.2016.09.056 10.1002/app.47251 10.1007/978-981-15-0913-1_6 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse and Hussin. Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2020 Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse and Hussin. 2020 Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse and Hussin |
Copyright_xml | – notice: Copyright © 2020 Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse and Hussin. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2020 Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse and Hussin. 2020 Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse and Hussin |
DBID | AAYXX CITATION NPM 7X8 1XC VOOES 5PM DOA |
DOI | 10.3389/fchem.2020.00392 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2296-2646 |
ExternalDocumentID | oai_doaj_org_article_145dd4f0841341968ac805830a448261 PMC7218176 oai_HAL_hal_02649346v1 32435633 10_3389_fchem_2020_00392 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Universiti Sains Malaysia |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION GROUPED_DOAJ HYE KQ8 M48 M~E OK1 PGMZT RPM ABDBF ADMLS IAO IEA IPNFZ ISR NPM RIG 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c496t-d8a1b1a13d3972c2ae93e8a4c1ec42813a94d433d914799ab39ef83e986f4d7a3 |
IEDL.DBID | M48 |
ISSN | 2296-2646 |
IngestDate | Wed Aug 27 01:31:17 EDT 2025 Thu Aug 21 18:11:13 EDT 2025 Fri May 09 12:26:58 EDT 2025 Fri Jul 11 10:00:22 EDT 2025 Wed Feb 19 02:08:57 EST 2025 Thu Apr 24 22:56:41 EDT 2025 Tue Jul 01 03:18:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | functionalization nanocellulose application production cellulose nanocrystals |
Language | English |
License | Copyright © 2020 Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse and Hussin. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-d8a1b1a13d3972c2ae93e8a4c1ec42813a94d433d914799ab39ef83e986f4d7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Clemens Kilian Weiss, Fachhochschule Bingen, Germany Reviewed by: Akira Isogai, The University of Tokyo, Japan; Rocktotpal Konwarh, Addis Ababa Science and Technology University, Ethiopia ORCID: Djalal Trache orcid.org/0000-0002-3004-9855; M. Hazwan Hussin orcid.org/0000-0001-8204-3685 This article was submitted to Polymer Chemistry, a section of the journal Frontiers in Chemistry |
ORCID | 0000-0001-8505-8401 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fchem.2020.00392 |
PMID | 32435633 |
PQID | 2405336441 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_145dd4f0841341968ac805830a448261 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7218176 hal_primary_oai_HAL_hal_02649346v1 proquest_miscellaneous_2405336441 pubmed_primary_32435633 crossref_citationtrail_10_3389_fchem_2020_00392 crossref_primary_10_3389_fchem_2020_00392 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-06 |
PublicationDateYYYYMMDD | 2020-05-06 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in chemistry |
PublicationTitleAlternate | Front Chem |
PublicationYear | 2020 |
Publisher | Frontiers Media Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media – name: Frontiers Media S.A |
References | Kumar (B129) 2020; 102 Bertsch (B24) 2019; 35 Jonoobi (B104) 2015; 22 Mahfoudhi (B158) 2017; 24 Sharma (B235) 2019; 104 Lin (B143) 2019; 24 de Almeida Mesquita (B47) 2018; 26 Klemm (B123) 2018; 21 Tarchoun (B255); 26 Coelho (B44) 2018; 192 Wohlhauser (B294) 2018; 51 Sehaqui (B229) 2017; 18 Gu (B81) 2020; 560 Kalashnikova (B109) 2013; 9 Dufresne (B59) 2013; 23 Wang (B284) 2017; 13 Lin (B145) 2012; 4 Osorio (B193) 2019; 87 Rezania (B214) 2020; 199 Satlewal (B227) 2018; 36 Cao (B31) 2018; 6 Luo (B156) 2019; 224 Chávez-Guerrero (B37) 2018; 181 Langari (B131) 2019; 4 Vineeth (B278) 2019; 9 Montes (B173) 2020; 235 Charreau (B36) 2013; 7 Ng (B184) 2017; 56 Capron (B33) 2018 Grumezescu (B80) 2016 Mohammed (B171) 2015; 22 Kim (B119) 2019 Köse (B125) 2020; 27 Huang (B93) 2017; 10 Tarchoun (B253); 138 Cao (B32) 2016; 6 Pang (B197) 2018; 25 Yu (B308) 2013; 25 Moon (B175) 2016; 68 Jorfi (B106) 2015; 132 Brinchi (B28) 2013; 94 Lazko (B134) 2016; 2 Habibi (B82) 2010; 110 Li (B141) 2015; 289 Abdul Khalil (B1) 2019; 136 Akhlaghi (B8) 2020; 241 Golmohammadi (B77) 2017; 29 Behera (B23) 2014; 36 Dufresne (B57) 2018; 376 Malucelli (B159) 2017; 16 Ram (B210) 2018; 331 Gitari (B74) 2019; 14 Stoeckel (B243) 2013; 45 Fodil Cherif (B64) 2020 Abitbol (B2) 2018; 34 Almeida (B10) 2018; 30 Tang (B248) 2019; 26 Cheng (B42) 2020; 231 Huan (B91) 2019; 29 Kaboorani (B108) 2012; 48 Hussin (B95) 2019 Wang (B280) 2019; 27 Liu (B147) 2016; 151 B103 Tan (B247) 2019 Wang (B285) 2017; 7 Phanthong (B202) 2018; 1 Lengowski (B136) 2019 Camarero Espinosa (B29) 2013; 14 Wei (B289) 2018; 198 Li (B138) 2018; 7 Ntoutoume (B188) 2016; 26 Liu (B151); 21 Errokh (B61) 2018; 25 Nechyporchuk (B179) 2016; 93 Chen (B40) 2019 Jeddi (B102) 2019; 135 Yang (B303) 2017; 109 Arof (B12) 2019; 17 B65 Xu (B299) 2017; 339 Mogoşanu (B167) 2014; 463 Moberg (B166) 2017; 24 Mohamed (B170); 157 Zhao (B315) 2020; 298 Thomas (B261) 2018; 118 Xiang (B296) 2019; 20 Smith (B241) 2019; 10 Rajinipriya (B209) 2018; 6 Hassan (B85) 2018; 262 Rohaizu (B220) 2017; 34 Veigel (B273) 2011; 18 Sethi (B231) 2018; 197 Zhang (B314) 2017; 9 Jawaid (B101) 2017 Naz (B178) 2019; 2 Du (B51) 2016; 23 Karim (B115) 2017; 37 Seabra (B228) 2018; 181 Glasing (B75) 2019; 36 Tong (B262) 2020; 137 Li (B137) 2020; 59 Karimi (B117) 2016; 200 Ferreira (B62) 2018; 436 Ramasamy (B211) 2020 Yahya (B301) 2018; 26 Jamshaid (B100) 2017; 4 Richter (B215) 2009 Tao (B252) 2020; 5 Hamed (B83) 2019; 35 Oun (B194) 2016; 168 Tayeb (B257) 2019; 224 Sharma (B236) 2020 Goi (B76) 2019; 35 Trache (B263) 2017 Neto (B182) 2016; 153 Singh (B238) 2014; 56 Yan (B302) 2019; 497 Sathishkumar (B226) 2014; 100 Dominic (B50) 2020; 230 d'Halluin (B49) 2017; 5 Huan (B90) 2018; 20 Dunky (B60) 1998; 18 George (B72) 2015; 8 Kargarzadeh (B113); 87 Surov (B246) 2018; 25 Gao (B70) 2020; 227 Charreau (B35) 2020; 237 Hamedi (B84) 2018; 199 Yanto (B304) 2014; 7 Park (B198) 2013; 49 Gopi (B78) 2019; 13 Kalhori (B110) 2017; 148 Liu (B150) 2019; 139 Lin (B146) 2019 Sharma (B234) 2019 Trache (B267); 124 He (B86) 2019; 27 B97 Kim (B121) 2019; 31 Li (B140) 2020; 229 Nigmatullin (B185) 2020 Putro (B206) 2017; 8 Reiniati (B213) 2017; 37 Liu (B152); 35 Afrin (B5) 2017; 4 Kumar (B127) 2020; 11 Mao (B160) 2017 Novo (B187) 2016; 93 B268 Beyene (B25) 2018; 11 Sampaio (B225) 2016; 145 Fiss (B63) 2019; 7 Kontturi (B124) 2016; 55 Sun (B244) 2015; 22 Neves (B183) 2019; 26 Balea (B20) 2020; 25 Agate (B6) 2018; 198 Clarke (B43) 2019; 59 Miao (B163) 2019; 23 Meng (B162) 2019; 26 Velásquez-Cock (B275) 2016; 83 Du (B52) 2019; 209 Fujisawa (B67) 2017; 18 Rigotti (B216) 2019; 13 Oksman (B191) 2014 Nascimento (B177) 2018; 20 Dai (B45) 2020; 16 Du (B53) 2017; 5 Karimian (B118) 2019; 133 Pindáková (B203) 2019; 557 Grishkewich (B79) 2017; 29 Lin (B144) 2014; 59 Tang (B249) 2016; 17 Rosilo (B221) 2014; 6 Kargarzadeh (B112) 2017 Zhang (B313) 2018; 8 Barbash (B22) 2020 Mohamed (B169); 103 Kang (B111) 2018; 6 Jordan (B105) 2019; 26 Pires (B204) 2019; 140 Singh (B239) 2014; 32 Daud (B46) 2017 Hong (B87) 2020; 228 Rabemanolontsoa (B208) 2016; 199 Saelices (B223) 2019; 10 Salimi (B224) 2019; 7 Bacakova (B16) 2019; 9 Kaboorani (B107) 2015; 65 Nuryawan (B189) 2017; 72 Trache (B265); 93 Alavi (B9) 2019; 19 Moohan (B174) 2020; 10 Lasrado (B132) 2020 Wang (B281) 2013; 446 Nandi (B176) 2018; 2 Bai (B19) 2018; 19 Hu (B88); 439 Thakur (B259) Ayrilmis (B15) 2019; 53 Yue (B309) 2019; 7 Veigel (B274) 2012; 2012 Isogai (B98) 2011; 3 Mohaiyiddin (B168) 2016; 18 Robles (B217) 2018; 183 Ayrilmis (B14) 2016; 30 Pandey (B196) 2015 Zhang (B311) 2013; 27 Dufresne (B58) 2019; 5 Agbor (B7) 2011; 29 Tshikovhi (B269) 2020; 152 Tang (B251) 2018; 25 Yu (B307) 2019; 7 Xu (B300) 2019; 275 Cheng (B41) 2019; 33 Dehkordi (B48) 2019; 14 Li (B139) 2005; 42 Campano (B30) 2016; 23 Gebald (B71) 2011; 45 Kim (B120) 2006; 41 Pennells (B201) 2020; 27 Werner (B291); 20 Reid (B212) 2019; 8 Plackett (B205) 2014; 29 Zhao (B316) 2014; 21 Karim (B116) 2014; 112 Werner (B290) 2017; 8 Ummartyotin (B270) 2015; 41 Chen (B38) 2017; 160 Liang (B142) 2020; 13 Wang (B282) 2016; 53 Yue (B310) 2018; 134 Kargarzadeh (B114); 25 Nepomuceno (B181) 2017; 24 Kumar (B128) 2012; 51 Chen (B39) 2018; 47 Gao (B69) 2019; 26 Robles (B218) 2015; 71 Awan (B13) 2016; 23 Bacakova (B17) 2020; 10 Carvalho (B34) 2019; 14 Shaheen (B233) 2019; 121 Mishra (B164) 2019; 207 Wardhono (B286) 2018; 8 Bai (B18) 2019; 96 Foster (B66) 2018; 47 Kramer (B126) 2006; 244 Dufresne (B55) 2013 Song (B242) 2018; 196 Nemoto (B180) 2015; 7 Oksman (B190) 2016; 83 Serpa (B230) 2016; 57 Thakur (B258) Xu (B298) 2019; 9 Sunasee (B245) 2016; 13 Wan (B279) 2019; 7 Wu (B295) 2019; 288 Shaheen (B232) 2018; 107 Werner (B292); 9 Barbash (B21) 2017; 12 Dufresne (B56) 2017; 29 Du (B54) 2017; 35 Hu (B89); 3 Tarchoun (B254); 220 Liu (B148) 2012; 19 Park (B199) 2019; 223 Ilyas (B96) 2018; 14 Trache (B266) 2017; 9 Oun (B195) 2020; 60 Zhang (B312) 2020; 229 Lavoine (B133) 2017; 5 Wang (B283) 2020; 100 Wei (B288) 2017; 169 Gan (B68) 2020; 137 Iwamoto (B99) 2015; 4 Kiziltas (B122) 2013 Lu (B153) 2019; 11 Osong (B192) 2016; 23 Le Bras (B135) 2015; 119 Uth (B271) 2014; 53 Huang (B92) 2020 Miyashiro (B165) 2020; 10 Tang (B250) 2019 Trache (B264) 2018; 5 Yin (B305) 2019; 30 Vazquez (B272) 2015 Bielejewska (B27) 2020; 187 Qu (B207) 2019; 26 Gindl-Altmutter (B73) 2014 Shojaeiarani (B237) 2019; 216 Xie (B297) 2018; 2018 Novo (B186) 2015; 3 Saba (B222) 2017; 97 Rodriguez (B219) 2017; 68 Lu (B154) 2014; 13 Anderson (B11) 2014; 13 Bhutto (B26) 2017; 122 Tarimala (B256) 2004; 20 Vilarinho (B277) 2018; 58 Abitbol (B3) 2016; 39 Lubis (B155) 2018; 38 Thakur (B260) 2013; 98 Mackie (B157) 2019; 11 Wertz (B293) 2010 Sirviö (B240) 2016; 17 Mariano (B161) 2014; 52 Wei (B287) 2019; 54 Younas (B306) 2019; 124 Kwon (B130) 2015; 60 Liu (B149) 2018; 82 Mokhena (B172) 2020; 27 Huang (B94) 2018; 346 Vijayalakshmi (B276) 2016; 82 Peng (B200) 2017; 112 Abouzeid (B4) 2018; 20 |
References_xml | – volume: 83 start-page: 2 year: 2016 ident: B190 article-title: Review of the recent developments in cellulose nanocomposite processing publication-title: Compos. Part. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2015.10.041 – volume: 22 start-page: 1135 year: 2015 ident: B244 article-title: Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive publication-title: Cellulose doi: 10.1007/s10570-015-0575-5 – volume: 181 start-page: 642 year: 2018 ident: B37 article-title: Eco-friendly isolation of cellulose nanoplatelets through oxidation under mild conditions publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2017.11.100 – start-page: 81 volume-title: Handbook of Polymer Nanocomposites. Processing, Performance and Application year: 2015 ident: B272 article-title: Extraction and production of cellulose nanofibers doi: 10.1007/978-3-642-45232-1_57 – volume: 29 start-page: 5426 year: 2017 ident: B77 article-title: Nanocellulose in sensing and biosensing publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b01170 – volume: 35 start-page: 3600 ident: B152 article-title: Assembly, gelation, and helicoidal consolidation of nanocellulose dispersions publication-title: Langmuir doi: 10.1021/acs.langmuir.8b04013 – volume: 153 start-page: 143 year: 2016 ident: B182 article-title: Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2016.07.073 – volume: 51 start-page: 6157 year: 2018 ident: B294 article-title: Grafting polymers from cellulose nanocrystals: synthesis, properties, and applications publication-title: Macromolecules doi: 10.1021/acs.macromol.8b00733 – volume: 183 start-page: 294 year: 2018 ident: B217 article-title: Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2018.01.015 – volume: 137 start-page: 48407 year: 2020 ident: B262 article-title: Preparation and mechanism analysis of morphology-controlled cellulose nanocrystals via compound enzymatic hydrolysis of eucalyptus pulp publication-title: J. Appl. Polym. Sci doi: 10.1002/app.48407 – volume: 7 start-page: 15800 year: 2019 ident: B224 article-title: Production of nanocellulose and its applications in drug delivery: a critical review publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02744 – volume: 97 start-page: 190 year: 2017 ident: B222 article-title: Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.01.029 – volume: 7 start-page: 1800334 year: 2018 ident: B138 article-title: Nanocellulose-Based Antibacterial Materials publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201800334 – volume: 13 start-page: 1243 year: 2016 ident: B245 article-title: Cellulose nanocrystals: a versatile nanoplatform for emerging biomedical applications publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2016.1182491 – volume: 71 start-page: 44 year: 2015 ident: B218 article-title: Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites publication-title: Ind. Crop Prod. doi: 10.1016/j.indcrop.2015.03.075 – volume: 20 start-page: 573 year: 2018 ident: B4 article-title: Current state and new trends in the use of cellulose nanomaterials for wastewater treatment publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b00839 – volume: 31 start-page: 1804826 year: 2019 ident: B121 article-title: Nanocellulose for energy storage systems: beyond the limits of synthetic materials publication-title: Adv. Mater. doi: 10.1002/adma.201804826 – volume: 23 start-page: 2389 year: 2016 ident: B51 article-title: Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis publication-title: Cellulose doi: 10.1007/s10570-016-0963-5 – volume: 25 start-page: 5035 year: 2018 ident: B246 article-title: A novel effective approach of nanocrystalline cellulose production: oxidation–hydrolysis strategy publication-title: Cellulose doi: 10.1007/s10570-018-1910-4 – volume: 9 start-page: 952 year: 2013 ident: B109 article-title: Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions publication-title: Soft Matter doi: 10.1039/C2SM26472B – volume: 10 start-page: 4652 year: 2019 ident: B241 article-title: Natural isotopic abundance 13C and 15N multidimensional solid-state NMR enabled by dynamic nuclear polarization publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b03874 – volume: 244 start-page: 136 year: 2006 ident: B126 article-title: Nanocellulose polymer composites as innovative pool for (bio) material development publication-title: Macromol. Symp. doi: 10.1002/masy.200651213 – volume: 29 start-page: 675 year: 2011 ident: B7 article-title: Biomass pretreatment: fundamentals toward application publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2011.05.005 – volume: 25 start-page: 3899 year: 2018 ident: B61 article-title: Morphology of the nanocellulose produced by periodate oxidation and reductive treatment of cellulose fibers publication-title: Cellulose doi: 10.1007/s10570-018-1871-7 – volume: 104 start-page: 109963 year: 2019 ident: B235 article-title: Bacterial nanocellulose: present status, biomedical applications and future perspectives publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.109963 – volume-title: Proceedings of SPE Automotive Composites Conference and Exhibition (ACCE) year: 2013 ident: B122 article-title: Micro-and nanocellulose composites for automotive applications – volume: 18 start-page: 95 year: 1998 ident: B60 article-title: Urea–formaldehyde (UF) adhesive resins for wood publication-title: Int. J. Adhes. Adhes. doi: 10.1016/S0143-7496(97)00054-7 – start-page: 253 volume-title: Handbook of Green Materials: Processing Technologies, Properties and Applications year: 2014 ident: B73 article-title: Nanocellulose-modified wood adhesives doi: 10.1142/9789814566469_0031 – volume: 200 start-page: 1008 year: 2016 ident: B117 article-title: A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.11.022 – volume: 38 start-page: 1 year: 2018 ident: B155 article-title: Hydrolytic removal of cured urea–formaldehyde resins in medium-density fiberboard for recycling publication-title: J. Wood Chem. Technol. doi: 10.1080/02773813.2017.1316741 – volume: 26 start-page: 7769 year: 2019 ident: B207 article-title: Enhancing the redispersibility of TEMPO-mediated oxidized cellulose nanofibrils in N,N-dimethylformamide by modification with cetyltrimethylammonium bromide publication-title: Cellulose doi: 10.1007/s10570-019-02655-y – volume: 42 start-page: 237 year: 2005 ident: B139 article-title: Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2004.08.002 – volume: 25 start-page: 933 year: 2013 ident: B308 article-title: Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals publication-title: Int. J. Environ. Sci. doi: 10.1016/S1001-0742(12)60145-4 – volume: 118 start-page: 11575 year: 2018 ident: B261 article-title: Nanocellulose, a versatile green platform: from biosources to materials and their applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00627 – volume: 439 start-page: 139 ident: B88 article-title: Surfactant-enhanced cellulose nanocrystal Pickering emulsions publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2014.10.034 – volume: 102 start-page: 281 year: 2020 ident: B129 article-title: Waste paper: an underutilized but promising source for nanocellulose mining publication-title: Waste Manage doi: 10.1016/j.wasman.2019.10.041 – volume: 55 start-page: 14455 year: 2016 ident: B124 article-title: Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606626 – volume: 3 start-page: 1023 ident: B89 article-title: Synergistic stabilization of emulsions and emulsion gels with water-soluble polymers and cellulose nanocrystals publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00194 – volume: 6 start-page: 2807 year: 2018 ident: B209 article-title: Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b03437 – volume: 18 start-page: 1227 year: 2011 ident: B273 article-title: Cellulose nanofibrils as filler for adhesives: effect on specific fracture energy of solid wood-adhesive bonds publication-title: Cellulose doi: 10.1007/s10570-011-9576-1 – volume: 26 start-page: 5937 year: 2019 ident: B69 article-title: Preparation of high-aspect-ratio cellulose nanocrystals by solvothermal synthesis followed by mechanical exfoliation publication-title: Cellulose doi: 10.1007/s10570-019-02507-9 – volume: 197 start-page: 92 year: 2018 ident: B231 article-title: Sonication-assisted surface modification method to expedite the water removal from cellulose nanofibers for use in nanopapers and paper making publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2018.05.072 – volume: 6 start-page: 11871 year: 2014 ident: B221 article-title: Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding publication-title: Nanoscale doi: 10.1039/C4NR03584D – volume: 5 start-page: 1965 year: 2017 ident: B49 article-title: Chemically modified cellulose filter paper for heavy metal remediation in water publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b02768 – volume: 9 start-page: 86 year: 2019 ident: B278 article-title: Chemical modification of nanocellulose in wood adhesive publication-title: Open J. Polym. Chem. doi: 10.4236/ojpchem.2019.94008 – volume: 216 start-page: 247 year: 2019 ident: B237 article-title: A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2019.04.033 – volume: 20 start-page: 635 year: 2018 ident: B90 article-title: Low solids emulsion gels based on nanocellulose for 3D-printing publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b01224 – volume: 39 start-page: 76 year: 2016 ident: B3 article-title: Nanocellulose, a tiny fiber with huge applications publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2016.01.002 – volume: 53 start-page: 669 year: 2019 ident: B15 article-title: Mechanical and thermal properties of Moringa oleifera cellulose-based epoxy nanocomposites publication-title: J. Compos. Mater. doi: 10.1177/0021998318789732 – volume: 20 start-page: 2428 year: 2018 ident: B177 article-title: Nanocellulose nanocomposite hydrogels: technological and environmental issues publication-title: Green Chem. doi: 10.1039/C8GC00205C – volume: 26 start-page: 7753 year: 2019 ident: B248 article-title: Pickering emulsions stabilized by hydrophobically modified nanocellulose containing various structural characteristics publication-title: Cellulose doi: 10.1007/s10570-019-02648-x – volume: 2 start-page: 149 year: 2018 ident: B176 article-title: A review on preparation and properties of cellulose nanocrystal-incorporated natural biopolymer publication-title: J. Package Technol. Res. doi: 10.1007/s41783-018-0036-3 – volume: 8 start-page: 6064 year: 2017 ident: B290 article-title: Synthesis of surfactant-free micro-and nanolatexes from Pickering emulsions stabilized by acetylated cellulose nanocrystals publication-title: Polym. Chem. doi: 10.1039/C7PY01203A – volume: 224 start-page: 115149 year: 2019 ident: B257 article-title: Application of nanocellulose in sustainable electrochemical and piezoelectric systems: a review publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2019.115149 – volume: 230 start-page: 115620 year: 2020 ident: B50 article-title: Green tire technology: effect of rice husk derived nanocellulose (RHNC) in replacing carbon black (CB) in natural rubber (NR) compounding. Carbohyd publication-title: Polym doi: 10.1016/j.carbpol.2019.115620 – ident: B268 – volume: 23 start-page: 100761 year: 2019 ident: B163 article-title: Critical insights into the reinforcement potential of cellulose nanocrystals in polymer nanocomposites publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2019.06.005 – volume: 18 start-page: 959 year: 2017 ident: B67 article-title: Nanocellulose-stabilized Pickering emulsions and their applications publication-title: Sci. Technol. Adv. Mat. doi: 10.1080/14686996.2017.1401423 – volume: 65 start-page: 45 year: 2015 ident: B107 article-title: Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant publication-title: Ind. Crop Prod. doi: 10.1016/j.indcrop.2014.11.027 – volume: 11 start-page: 1009 year: 2019 ident: B153 article-title: Properties of polylactic acid reinforced by hydroxyapatite modified nanocellulose publication-title: Polymers doi: 10.3390/polym11061009 – start-page: 19 volume-title: ACS Symposium Series year: 2017 ident: B160 article-title: Comparative assessment of methods for producing cellulose I nanocrystals from cellulosic sources. Nanocelluloses: their preparation, properties, and applications – volume: 53 start-page: 12618 year: 2014 ident: B271 article-title: A chemoenzymatic approach to protein immobilization onto crystalline cellulose nanoscaffolds publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201404616 – volume: 446 start-page: 376 year: 2013 ident: B281 article-title: Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.06.020 – volume: 29 start-page: 1902990 year: 2019 ident: B91 article-title: Two-phase emulgels for direct ink writing of skin-bearing architectures publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902990 – volume: 59 start-page: 223 year: 2020 ident: B137 article-title: Microstructure and thermal and tensile properties of poly (vinyl alcohol) nanocomposite films reinforced by polyacrylamide grafted cellulose nanocrystals publication-title: J. Macromol. Sci. B doi: 10.1080/00222348.2019.1710364 – volume: 32 start-page: 713 year: 2014 ident: B239 article-title: A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.01.051 – volume: 229 start-page: 115454 year: 2020 ident: B312 article-title: Methods and applications of nanocellulose loaded with inorganic nanomaterials: a review. Carbohyd publication-title: Polym doi: 10.1016/j.carbpol.2019.115454 – volume: 124 start-page: 1485 ident: B267 article-title: Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-016-5293-1 – volume: 26 start-page: 2825 year: 2018 ident: B301 article-title: Reuse of selected lignocellulosic and processed biomasses as sustainable sources for the fabrication of nanocellulose via Ni (II)-catalyzed hydrolysis approach: a comparative study publication-title: J. Polym. Environ. doi: 10.1007/s10924-017-1167-2 – volume: 87 start-page: 197 ident: B113 article-title: Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2018.07.008 – volume: 8 start-page: 1334 year: 2019 ident: B212 article-title: Interfacial polymerization of cellulose nanocrystal polyamide janus nanocomposites with controlled architectures publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.9b00692 – volume: 298 start-page: 122446 year: 2020 ident: B315 article-title: Recent advances on ammonia-based pretreatments of lignocellulosic biomass publication-title: Bioresour. Technol doi: 10.1016/j.biortech.2019.122446 – volume: 7 start-page: 19202 year: 2019 ident: B279 article-title: Direct surface functionalization of cellulose nanocrystals with hyperbranched polymers through the anionic polymerization for ph-responsive intracellular drug delivery publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05231 – volume: 48 start-page: 1829 year: 2012 ident: B108 article-title: Nanocrystalline cellulose (NCC): a renewable nano-material for polyvinyl acetate (PVA) adhesive publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2012.08.008 – volume: 2 start-page: 65 year: 2016 ident: B134 article-title: Acid-free extraction of cellulose type I nanocrystals using Brønsted acid-type ionic liquids publication-title: Nanocomposites doi: 10.1080/20550324.2016.1199410 – volume: 7 start-page: 1700130 year: 2017 ident: B285 article-title: Cellulose-based supercapacitors: material and performance considerations publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700130 – volume: 27 start-page: 1149 year: 2020 ident: B172 article-title: Cellulose nanomaterials: new generation materials for solving global issues publication-title: Cellulose doi: 10.1007/s10570-019-02889-w – volume: 7 start-page: 19809 year: 2015 ident: B180 article-title: Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05841 – volume: 23 start-page: 277 year: 2013 ident: B59 article-title: Cellulose-reinforced composites: from micro-to nanoscale publication-title: Polímeros doi: 10.4322/polimeros.2010.01.001 – volume: 151 start-page: 716 year: 2016 ident: B147 article-title: Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2016.06.025 – volume: 24 start-page: 2499 year: 2017 ident: B166 article-title: Rheological properties of nanocellulose suspensions: effects of fibril/particle dimensions and surface characteristics publication-title: Cellulose doi: 10.1007/s10570-017-1283-0 – volume: 20 start-page: 490 ident: B291 article-title: Convenient synthesis of hybrid polymer materials by AGET-ATRP polymerization of Pickering emulsions stabilized by cellulose nanocrystals grafted with reactive moieties publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b01482 – volume: 228 start-page: 115424 year: 2020 ident: B87 article-title: Modified tunicate nanocellulose liquid crystalline fiber as closed loop for recycling platinum-group metals publication-title: Carbohyd. Polym doi: 10.1016/j.carbpol.2019.115424 – volume: 18 start-page: 242 year: 2017 ident: B229 article-title: Highly carboxylated cellulose nanofibers via succinic anhydride esterification of wheat fibers and facile mechanical disintegration publication-title: Biomacromolecules doi: 10.1021/acs.biomac.6b01548 – volume: 25 start-page: 526 year: 2020 ident: B20 article-title: Industrial Application of nanocelluloses in papermaking: a review of challenges, technical solutions, and market perspectives publication-title: Molecules doi: 10.3390/molecules25030526 – volume: 11 start-page: 2991 year: 2019 ident: B157 article-title: The fate of cellulose nanocrystal stabilised emulsions after simulated gastrointestinal digestion and exposure to intestinal mucosa publication-title: Nanoscale doi: 10.1039/C8NR05860A – volume: 560 start-page: 849 year: 2020 ident: B81 article-title: Magnetic nanocellulose-magnetite aerogel for easy oil adsorption publication-title: J. Colloid Interface Sci doi: 10.1016/j.jcis.2019.10.084 – volume: 14 start-page: 035003 year: 2019 ident: B48 article-title: Nanocrystalline cellulose–hyaluronic acid composite enriched with GM-CSF loaded chitosan nanoparticles for enhanced wound healing publication-title: Biomed. Mater. doi: 10.1088/1748-605X/ab026c – volume: 9 start-page: 5043 ident: B292 article-title: A new strategy to elaborate polymer composites via Pickering emulsion polymerization of a wide range of monomers publication-title: Polym. Chem. doi: 10.1039/C8PY01022F – volume: 5 start-page: 16105 year: 2017 ident: B133 article-title: Nanocellulose-based foams and aerogels: processing, properties, and applications publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02807E – volume: 10 start-page: 186 year: 2020 ident: B165 article-title: A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes publication-title: Nanomaterials doi: 10.3390/nano10020186 – volume: 346 start-page: 361 year: 2018 ident: B94 article-title: Preparation of a novel nanobiocatalyst by immobilizing penicillin acylase onto magnetic nanocrystalline cellulose and its use for efficient synthesis of cefaclor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.026 – volume: 135 start-page: 829 year: 2019 ident: B102 article-title: Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.05.210 – volume: 227 start-page: 115323 year: 2020 ident: B70 article-title: Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions publication-title: Carbohyd. Polym doi: 10.1016/j.carbpol.2019.115323 – volume: 235 start-page: 117497 year: 2020 ident: B173 article-title: Rheological impact of using cellulose nanocrystals (CNC) in cement pastes publication-title: Constr. Build. Mater doi: 10.1016/j.conbuildmat.2019.117497 – volume: 497 start-page: 143802 year: 2019 ident: B302 article-title: High strength and toughness epoxy nanocomposites reinforced with graphene oxide-nanocellulose micro/nanoscale structures publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143802 – volume: 35 start-page: 140 year: 2019 ident: B83 article-title: A new mixture of hydroxypropyl cellulose and nanocellulose for wood consolidation publication-title: J. Cult. Herit. doi: 10.1016/j.culher.2018.07.001 – volume: 199 start-page: 117457 year: 2020 ident: B214 article-title: Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview publication-title: Energy doi: 10.1016/j.energy.2020.117457 – volume: 275 start-page: 102076 year: 2019 ident: B300 article-title: A review of nanocrystalline cellulose suspensions: rheology, liquid crystal ordering and colloidal phase behaviour publication-title: Adv. Colloid Interfac. Sci. doi: 10.1016/j.cis.2019.102076 – volume: 35 start-page: 571 year: 2019 ident: B24 article-title: Adsorption and interfacial structure of nanocelluloses at fluid interfaces publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2019.102089 – volume: 109 start-page: 241 year: 2017 ident: B303 article-title: Effects of preparation methods on the morphology and properties of nanocellulose (NC) extracted from corn husk publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2017.08.032 – volume: 124 start-page: 591 year: 2019 ident: B306 article-title: A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.11.064 – volume: 58 start-page: 1526 year: 2018 ident: B277 article-title: Nanocellulose in green food packaging publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2016.1270254 – volume: 52 start-page: 791 year: 2014 ident: B161 article-title: Cellulose nanocrystals and related nanocomposites: review of some properties and challenges publication-title: J. Polym. Sci. Pol. Phys. doi: 10.1002/polb.23490 – volume: 5 start-page: 201 year: 2018 ident: B264 article-title: Nanocellulose as a promising sustainable material for biomedical applications publication-title: AIMS Mater. Sci. doi: 10.3934/matersci.2018.2.201 – volume: 140 start-page: 111642 year: 2019 ident: B204 article-title: Valorization of energy crops as a source for nanocellulose production–current knowledge and future prospects publication-title: Ind. Crop Prod. doi: 10.1016/j.indcrop.2019.111642 – volume-title: Handbook of Nanocellulose and Cellulose Nanocomposites. year: 2017 ident: B112 doi: 10.1002/9783527689972 – volume: 11 start-page: 3868 year: 2020 ident: B127 article-title: The surface chemistry of a nanocellulose drug carrier unravelled by MAS-DNP publication-title: Chem. Sci. doi: 10.1039/C9SC06312A – volume: 27 start-page: 2967 year: 2020 ident: B125 article-title: Applications and impact of nanocellulose based adsorbents publication-title: Cellulose doi: 10.1007/s10570-020-03011-1 – volume: 29 start-page: 105 year: 2014 ident: B205 article-title: A review of nanocellulose as a novel vehicle for drug delivery publication-title: Nord. Pulp Paper Res. J. doi: 10.3183/npprj-2014-29-01-p105-118 – volume: 169 start-page: 108 year: 2017 ident: B288 article-title: Chemical modification of nanocellulose with canola oil fatty acid methyl ester publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2017.04.008 – volume: 12 start-page: 241 year: 2017 ident: B21 article-title: Preparation and properties of nanocellulose from organosolv straw pulp publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-2001-4 – volume: 121 start-page: 814 year: 2019 ident: B233 article-title: Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.10.081 – volume: 30 start-page: 2032 year: 2016 ident: B14 article-title: Microfibrillated-cellulose-modified urea-formaldehyde adhesives with different F/U molar ratios for wood-based composites publication-title: J. Adhes. Sci. Technol. doi: 10.1080/01694243.2016.1175246 – volume: 49 start-page: 532 year: 2013 ident: B198 article-title: Crystallinity and domain size of cured urea–formaldehyde resin adhesives with different formaldehyde/urea mole ratios publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2012.10.029 – volume: 7 start-page: 5986 year: 2019 ident: B309 article-title: High performance biobased epoxy nanocomposite reinforced with a bacterial cellulose nanofiber network publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b06073 – volume: 5 start-page: 76 year: 2019 ident: B58 article-title: Nanocellulose processing properties and potential applications publication-title: Curr. For. Rep. doi: 10.1007/s40725-019-00088-1 – volume: 45 start-page: 32 year: 2013 ident: B243 article-title: Mechanical properties of adhesives for bonding wood—a review publication-title: Int. J. Adhes. Adhes. doi: 10.1016/j.ijadhadh.2013.03.013 – volume: 152 start-page: 616 year: 2020 ident: B269 article-title: Nanocellulose-based composites for the removal of contaminants from wastewater publication-title: Int. J. Biol. Macromol doi: 10.1016/j.ijbiomac.2020.02.221 – volume: 288 start-page: 121548 year: 2019 ident: B295 article-title: Improving biocatalysis of cefaclor with penicillin acylase immobilized on magnetic nanocrystalline cellulose in deep eutectic solvent based co-solvent publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121548 – volume: 557 start-page: 196 year: 2019 ident: B203 article-title: Role of protein-cellulose nanocrystal interactions in the stabilization of emulsion publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.09.002 – volume: 21 start-page: 720 year: 2018 ident: B123 article-title: Nanocellulose as a natural source for groundbreaking applications in materials science: Today's state publication-title: Mater. Today doi: 10.1016/j.mattod.2018.02.001 – volume: 2012 start-page: 158503 year: 2012 ident: B274 article-title: Particle board and oriented strand board prepared with nanocellulose-reinforced adhesive publication-title: J. Nanomater. doi: 10.1155/2012/158503 – volume: 4 start-page: 289 year: 2017 ident: B5 article-title: Isolation and surface modification of nanocellulose: necessity of enzymes over chemicals publication-title: Chem. Biol. Eng. Rev. doi: 10.1002/cben.201600001 – volume: 14 start-page: 1900059 year: 2019 ident: B34 article-title: Latest advances on bacterial cellulose-based materials for wound healing, delivery systems, and tissue engineering publication-title: Biotechnol. J. doi: 10.1002/biot.201900059 – volume: 110 start-page: 3479 year: 2010 ident: B82 article-title: Cellulose nanocrystals: chemistry, self-assembly, and applications publication-title: Chem. Rev. doi: 10.1021/cr900339w – volume: 53 start-page: 169 year: 2016 ident: B282 article-title: Recent advances in regenerated cellulose materials publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2015.07.003 – volume: 224 start-page: 115144 year: 2019 ident: B156 article-title: Advances in tissue engineering of nanocellulose-based scaffolds: a review publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2019.115144 – volume: 34 start-page: 631 year: 2017 ident: B220 article-title: Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.06.040 – volume: 9 start-page: 1763 year: 2017 ident: B266 article-title: Recent progress in cellulose nanocrystals: sources and production publication-title: Nanoscale doi: 10.1039/C6NR09494E – volume-title: Advanced Functional Materials from Nanopolysaccharides. year: 2019 ident: B146 doi: 10.1007/978-981-15-0913-1 – volume: 220 start-page: 1900358 ident: B254 article-title: A promising energetic polymer from Posidonia oceanica brown algae: synthesis, characterization, and kinetic modeling publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201900358 – volume: 376 start-page: 20170040 year: 2018 ident: B57 article-title: Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites publication-title: Philos. Trans. R. Soc. doi: 10.1098/rsta.2017.0040 – volume: 24 start-page: 1171 year: 2017 ident: B158 article-title: Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review publication-title: Cellulose doi: 10.1007/s10570-017-1194-0 – volume: 16 start-page: 1906567 year: 2020 ident: B45 article-title: Ultrasensitive physical, bio, and chemical sensors derived from 1, 2, and 3-D nanocellulosic materials publication-title: Small doi: 10.1002/smll.201906567 – volume: 37 start-page: 510 year: 2017 ident: B213 article-title: Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2016.1189871 – volume: 100 start-page: 111 year: 2014 ident: B226 article-title: Laccase immobilization on cellulose nanofiber: the catalytic efficiency and recyclic application for simulated dye effluent treatment publication-title: J. Mol. Catal. B Enzym. doi: 10.1016/j.molcatb.2013.12.008 – volume: 107 start-page: 1599 year: 2018 ident: B232 article-title: Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.10.028 – volume: 14 start-page: 1223 year: 2013 ident: B29 article-title: Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis publication-title: Biomacromolecules doi: 10.1021/bm400219u – volume: 2 start-page: 187 year: 2019 ident: B178 article-title: Nanocellulose isolation characterization and applications: a journey from non-remedial to biomedical claims publication-title: Biodesign Manuf doi: 10.1007/s42242-019-00049-4 – volume: 119 start-page: 5911 year: 2015 ident: B135 article-title: Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b00715 – volume: 157 start-page: 1892 ident: B170 article-title: Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2016.11.078 – volume: 93 start-page: 88 year: 2016 ident: B187 article-title: A study of the production of cellulose nanocrystals through subcritical water hydrolysis publication-title: Ind. Crop Prod. doi: 10.1016/j.indcrop.2016.01.012 – volume: 82 start-page: 440 year: 2016 ident: B276 article-title: Removal of copper (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.09.070 – volume: 23 start-page: 93 year: 2016 ident: B192 article-title: Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review publication-title: Cellulose doi: 10.1007/s10570-015-0798-5 – volume: 112 start-page: 668 year: 2014 ident: B116 article-title: Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2014.06.048 – volume: 4 start-page: 80 year: 2015 ident: B99 article-title: 3 nm thick lignocellulose nanofibers obtained from esterified wood with maleic anhydride publication-title: ACS Macro Lett. doi: 10.1021/mz500787p – volume: 100 start-page: 105411 year: 2020 ident: B283 article-title: Properties and antimicrobial activity of polyvinyl alcohol-modified bacterial nanocellulose packaging films incorporated with silver nanoparticles publication-title: Food Hydrocoll doi: 10.1016/j.foodhyd.2019.105411 – volume: 96 start-page: 709 year: 2019 ident: B18 article-title: Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 2. In vitro lipid digestion publication-title: Food Hydrocol. doi: 10.1016/j.foodhyd.2019.04.039 – volume: 27 start-page: 657 year: 2019 ident: B280 article-title: Synthesis of nanocrystalline cellulose via ammonium persulfate-assisted swelling followed by oxidation and their chiral self-assembly publication-title: Cellulose doi: 10.1007/s10570-019-02789-z – volume: 36 start-page: 796 year: 2019 ident: B75 article-title: Microsuspension polymerization of styrene using cellulose nanocrystals as pickering emulsifiers: on the evolution of latex particles publication-title: Langmuir doi: 10.1021/acs.langmuir.9b03583 – volume: 13 start-page: 858 year: 2019 ident: B216 article-title: Polylactic acid-lauryl functionalized nanocellulose nanocomposites: microstructural, thermo-mechanical and gas transport properties publication-title: Express Polym. Lett. doi: 10.3144/expresspolymlett.2019.75 – volume: 231 start-page: 115701 year: 2020 ident: B42 article-title: Facile and rapid one–step extraction of carboxylated cellulose nanocrystals by H2SO4/HNO3 mixed acid hydrolysis. Carbohyd publication-title: Polym doi: 10.1016/j.carbpol.2019.115701 – volume-title: Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications. year: 2017 ident: B101 – volume: 6 start-page: 2954 year: 2018 ident: B111 article-title: Green preparation of cellulose nanocrystal and its application publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02363 – volume: 27 start-page: 1 year: 2019 ident: B86 article-title: The current application of nanotechnology in food and agriculture publication-title: J. Food. Drug. Anal. doi: 10.1016/j.jfda.2018.12.002 – start-page: 653 volume-title: Sustainable Polymer Composites and Nanocomposites year: 2019 ident: B95 article-title: Extraction of cellulose nanofibers and their eco-friendly polymer composites doi: 10.1007/978-3-030-05399-4_23 – volume: 56 start-page: 687 year: 2017 ident: B184 article-title: Review of nanocellulose polymer composite characteristics and challenges publication-title: Polym Plast. Technol. doi: 10.1080/03602559.2016.1233277 – start-page: 1 year: 2020 ident: B92 article-title: Introduction to nanocellulose – volume: 9 start-page: 16426 year: 2017 ident: B314 article-title: Preparation, characterization, and electrochromic properties of nanocellulose-based polyaniline nanocomposite films publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02794 – volume: 27 start-page: 1023 year: 2013 ident: B311 article-title: Particulate reinforcement and formaldehyde adsorption of modified nanocrystalline cellulose in urea-formaldehyde resin adhesive publication-title: J. Adhes. Sci. Technol. doi: 10.1080/01694243.2012.727173 – volume: 168 start-page: 146 year: 2016 ident: B194 article-title: Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: effect of isolation method publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.01.052 – volume: 8 start-page: 16505 year: 2018 ident: B313 article-title: High energy oxidation and organosolv solubilization for high yield isolation of cellulose nanocrystals (CNC) from Eucalyptus hardwood publication-title: Sci. Rep. doi: 10.1038/s41598-018-34667-2 – volume: 25 start-page: 2151 ident: B114 article-title: Advances in cellulose nanomaterials publication-title: Cellulose doi: 10.1007/s10570-018-1723-5 – volume: 209 start-page: 130 year: 2019 ident: B52 article-title: Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2019.01.020 – volume: 7 start-page: 56 year: 2013 ident: B36 article-title: Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose publication-title: Recent Pat. Nanotechnol. doi: 10.2174/187221013804484854 – volume: 10 start-page: 80 year: 2017 ident: B93 article-title: Cellulose nanocrystals (CNCs) from corn stalk: activation energy analysis publication-title: Materials doi: 10.3390/ma10010080 – volume: 9 start-page: 164 year: 2019 ident: B16 article-title: Versatile application of nanocellulose: from industry to skin tissue engineering and wound healing publication-title: Nanomaterials doi: 10.3390/nano9020164 – volume: 72 start-page: 62 year: 2017 ident: B189 article-title: Insights into the development of crystallinity in liquid urea-formaldehyde resins publication-title: Int. J. Adhes. Adhes. doi: 10.1016/j.ijadhadh.2016.10.004 – volume: 6 start-page: 20420 year: 2016 ident: B32 article-title: Preparation and characterization of immobilized lipase from Pseudomonas cepacia onto magnetic cellulose nanocrystals publication-title: Sci. Rep. doi: 10.1038/srep20420 – start-page: 1001 volume-title: Sustainable Polymer Composites and Nanocomposites year: 2019 ident: B136 article-title: Nanocellulose-reinforced adhesives for wood-based panels doi: 10.1007/978-3-030-05399-4_35 – volume: 23 start-page: 57 year: 2016 ident: B30 article-title: Enhancement of the fermentation process and properties of bacterial cellulose: a review publication-title: Cellulose doi: 10.1007/s10570-015-0802-0 – volume: 27 start-page: 575 year: 2020 ident: B201 article-title: Trends in the production of cellulose nanofibers from non-wood sources publication-title: Cellulose doi: 10.1007/s10570-019-02828-9 – volume: 229 start-page: 115401 year: 2020 ident: B140 article-title: Novel amphiphilic cellulose nanocrystals for pH-responsive Pickering emulsions. Carbohyd publication-title: Polym doi: 10.1016/j.carbpol.2019.115401 – volume: 36 start-page: 91 year: 2014 ident: B23 article-title: Importance of chemical pretreatment for bioconversion of lignocellulosic biomass publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.04.047 – volume: 59 start-page: 302 year: 2014 ident: B144 article-title: Nanocellulose in biomedicine: current status and future prospect publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2014.07.025 – volume: 196 start-page: 1169 year: 2018 ident: B242 article-title: A green and environmental benign method to extract cellulose nanocrystal by ball mill assisted solid acid hydrolysis publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.06.128 – volume: 60 start-page: 88 year: 2015 ident: B130 article-title: Tensile shear strength of wood bonded with urea–formaldehyde with different amounts of microfibrillated cellulose publication-title: Int. J. Adhes. Adhes. doi: 10.1016/j.ijadhadh.2015.04.002 – volume: 192 start-page: 327 year: 2018 ident: B44 article-title: Cellulose nanocrystals from grape pomace: production, properties and cytotoxicity assessment publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2018.03.023 – volume: 47 start-page: 2837 year: 2018 ident: B39 article-title: Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00790F – volume: 10 start-page: 65 year: 2020 ident: B174 article-title: Cellulose nanofibers and other biopolymers for biomedical applications. A review publication-title: Appl. Sci. doi: 10.3390/app10010065 – volume: 83 start-page: 551 year: 2016 ident: B275 article-title: Influence of the maturation time on the physico-chemical properties of nanocellulose and associated constituents isolated from pseudostems of banana plant c.v. Valery publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2015.12.070 – volume: 30 start-page: 1703655 year: 2018 ident: B10 article-title: Cellulose-based biomimetics and their applications publication-title: Adv. Mater. doi: 10.1002/adma.201703655 – start-page: 101 volume-title: Handbook of Nanocellulose and Cellulose Nanocomposites year: 2017 ident: B46 article-title: Surface modification of nanocellulose doi: 10.1002/9783527689972.ch3 – volume: 207 start-page: 418 year: 2019 ident: B164 article-title: Biomass and waste materials as potential sources of nanocrystalline cellulose: comparative review of preparation methods (2016–Till date) publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2018.12.004 – volume: 103 start-page: 1232 ident: B169 article-title: An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.05.181 – volume: 26 start-page: 941 year: 2016 ident: B188 article-title: Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2015.12.060 – volume: 51 start-page: 58 year: 2012 ident: B128 article-title: Application of cellulose-clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie201349h – volume: 54 start-page: 6709 year: 2019 ident: B287 article-title: Nanocellulose-based magnetic hybrid aerogel for adsorption of heavy metal ions from water publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-03322-0 – volume: 82 start-page: 96 year: 2018 ident: B149 article-title: Pickering high internal phase emulsions stabilized by protein-covered cellulose nanocrystals publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2018.03.047 – year: 2020 ident: B64 article-title: Comparison of the physicochemical properties and thermal stability of organosolv and kraft lignins from hardwood and softwood biomass for their potential valorization publication-title: Wast. Biomass Valori doi: 10.1007/s12649-020-00955-0. – volume: 112 start-page: 359 year: 2017 ident: B200 article-title: Enhanced dispersion and properties of a two-component epoxy nanocomposite using surface modified cellulose nanocrystals publication-title: Polymer doi: 10.1016/j.polymer.2017.02.016 – volume: 132 start-page: 41719 year: 2015 ident: B106 article-title: Recent advances in nanocellulose for biomedical applications publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.41719 – volume: 4 start-page: 11987 year: 2019 ident: B131 article-title: Isolation of nanocellulose from broomcorn stalks and its application for nanocellulose/xanthan film preparation publication-title: Chem. Select doi: 10.1002/slct.201902533 – volume: 145 start-page: 1 year: 2016 ident: B225 article-title: Laccase immobilization on bacterial nanocellulose membranes: a atimicrobial, kinetic and stability properties publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2016.03.009 – volume: 17 start-page: 388 year: 2019 ident: B12 article-title: Investigation on morphology of composite poly (ethylene oxide)-cellulose nanofibers publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2019.06.265 – start-page: 201 volume-title: Nanocellulose: From Fundamentals to Advanced Materials year: 2019 ident: B40 article-title: Reinforcing mechanism of cellulose nanocrystals in nanocomposites doi: 10.1002/9783527807437.ch7 – volume: 5 start-page: 7514 year: 2017 ident: B53 article-title: Heterogeneously modified cellulose nanocrystals-stabilized pickering emulsion: preparation and their template application for the creation of PS microspheres with amino-rich surfaces publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00375 – volume: 199 start-page: 445 year: 2018 ident: B84 article-title: Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2018.06.114 – volume: 21 start-page: 3499 ident: B151 article-title: Cascade utilization of lignocellulosic biomass to high-value products publication-title: Green Chem. doi: 10.1039/C9GC00473D – volume-title: Nanocellulose Polymer Nanocomposites: Fundamentals and Applications ident: B259 doi: 10.1002/9781118872246 – start-page: 61 volume-title: Handbook of Composites From Renewable Materials year: 2017 ident: B263 article-title: Microcrystalline cellulose and related polymer somposites: synthesis, characterization and properties doi: 10.1002/9781119441632.ch3 – volume: 436 start-page: 1113 year: 2018 ident: B62 article-title: Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: from a micro- to a nano-scale view publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.12.137 – volume: 133 start-page: 850 year: 2019 ident: B118 article-title: Nanocrystalline cellulose: preparation, physicochemical properties, and applications in drug delivery systems publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.04.117 – volume: 25 start-page: 4525 year: 2018 ident: B251 article-title: Design and synthesis of functionalized cellulose nanocrystals-based drug conjugates for colon-targeted drug delivery publication-title: Cellulose doi: 10.1007/s10570-018-1904-2 – volume: 22 start-page: 3725 year: 2015 ident: B171 article-title: Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions publication-title: Cellulose doi: 10.1007/s10570-015-0747-3 – volume: 4 start-page: 3274 year: 2012 ident: B145 article-title: Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review publication-title: Nanoscale doi: 10.1039/c2nr30260h – volume: 198 start-page: 249 year: 2018 ident: B6 article-title: Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites–a review publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2018.06.045 – volume: 19 start-page: 1674 year: 2018 ident: B19 article-title: Formulation and stabilization of concentrated edible oil-in-water emulsions based on electrostatic complexes of a food-grade cationic surfactant (ethyl lauroyl arginate) and cellulose nanocrystals publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b00233 – volume: 8 start-page: 859 year: 2018 ident: B286 article-title: Ultrasonic irradiation coupled with microwave treatment for eco-friendly process of isolating bacterial cellulose nanocrystals publication-title: Nanomaterials doi: 10.3390/nano8100859 – volume: 23 start-page: 3589 year: 2016 ident: B13 article-title: Enhanced radical scavenging activity of polyhydroxylated C 60 functionalized cellulose nanocrystals publication-title: Cellulose doi: 10.1007/s10570-016-1057-0 – volume: 36 start-page: 2032 year: 2018 ident: B227 article-title: Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2018.08.009 – volume: 59 start-page: 989 year: 2019 ident: B43 article-title: Crystalline nanocellulose/thermoplastic polyester composites prepared by in situ polymerization publication-title: Polym. Eng. Sci. doi: 10.1002/pen.25052 – volume: 134 start-page: 155 year: 2018 ident: B310 article-title: Surface-modified cellulose nanocrystals for biobased epoxy nanocomposites publication-title: Polymer doi: 10.1016/j.polymer.2017.11.051 – volume: 68 start-page: 2383 year: 2016 ident: B175 article-title: Overview of cellulose nanomaterials, their capabilities and applications publication-title: JOM doi: 10.1007/s11837-016-2018-7 – volume: 3 start-page: 2839 year: 2015 ident: B186 article-title: Subcritical water: a method for green production of cellulose nanocrystals publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00762 – volume: 8 start-page: 45 year: 2015 ident: B72 article-title: Cellulose nanocrystals: synthesis, functional properties, and applications publication-title: Nanotechnol. Sci. Appl. doi: 10.2147/NSA.S64386 – volume: 14 start-page: 1867 year: 2019 ident: B74 article-title: A comparative study on the mechanical, thermal, and water barrier properties of PLA nanocomposite films prepared with bacterial nanocellulose and cellulose nanofibrils publication-title: Bioresources doi: 10.15376/biores.14.1.1867-1889 – volume: 41 start-page: 1529 year: 2006 ident: B120 article-title: Arsenic removal from water using lignocellulose adsorption medium (LAM) publication-title: J. Environ. Sci. Health A doi: 10.1080/10934520600754284 – volume: 138 start-page: 837 ident: B253 article-title: Microcrystalline cellulose from Posidonia oceanica brown algae: extraction and characterization publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.07.176 – volume: 9 start-page: 253 year: 2019 ident: B298 article-title: Fabrication of cellulose nanocrystal/chitosan hydrogel for controlled drug release publication-title: Nanomaterials doi: 10.3390/nano9020253 – volume: 331 start-page: 587 year: 2018 ident: B210 article-title: New spherical nanocellulose and thiol-based adsorbent for rapid and selective removal of mercuric ions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.08.128 – volume: 20 start-page: 4361 year: 2019 ident: B296 article-title: How cellulose nanofibrils affect bulk, surface, and foam properties of anionic surfactant solutions publication-title: Biomacromolecules doi: 10.1021/acs.biomac.9b01037 – volume: 237 start-page: 116039 year: 2020 ident: B35 article-title: Patents involving nanocellulose: analysis of their evolution since 2010 publication-title: Carbohyd. Polym doi: 10.1016/j.carbpol.2020.116039 – volume: 13 start-page: 35 year: 2014 ident: B11 article-title: Enzymatic preparation of nanocrystalline and microcrystalline cellulose publication-title: TAPPI J. doi: 10.32964/TJ13.5.35 – volume: 37 start-page: 355 year: 2017 ident: B115 article-title: Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388551.2016.1163322 – start-page: e00316 volume-title: Biotechnol. Rep year: 2019 ident: B234 article-title: Commercial application of cellulose nano-composites-a review – volume: 1 start-page: 32 year: 2018 ident: B202 article-title: Nanocellulose: extraction and application publication-title: Carbon Resour. Convers. doi: 10.1016/j.crcon.2018.05.004 – volume: 33 start-page: 1357 year: 2019 ident: B41 article-title: Cottonseed protein-based wood adhesive reinforced with nanocellulose publication-title: J. Adhes. Sci. Technol. doi: 10.1080/01694243.2019.1596650 – start-page: 131 volume-title: Materials for Biomedical Engineering: Nanomaterials-Based Drug Delivery year: 2019 ident: B247 article-title: A review of nanocellulose in the drug-delivery system doi: 10.1016/B978-0-12-816913-1.00005-2 – volume: 24 start-page: 3724 year: 2019 ident: B143 article-title: Cellulose nanocrystal isolation from hardwood pulp using various hydrolysis conditions publication-title: Molecules doi: 10.3390/molecules24203724 – volume: 60 start-page: 435 year: 2020 ident: B195 article-title: Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials publication-title: Crit. Rev. Food Sci. Nutr doi: 10.1080/10408398.2018.1536966 – volume: 13 start-page: 78 year: 2020 ident: B142 article-title: Cross-linked nanocellulosic materials and their applications publication-title: Chem. Sus. Chem. doi: 10.1002/cssc.201901676 – volume: 25 start-page: 7053 year: 2018 ident: B197 article-title: Ultrasonic pretreatment of cellulose in ionic liquid for efficient preparation of cellulose nanocrystals publication-title: Cellulose doi: 10.1007/s10570-018-2070-2 – volume: 8 start-page: 134 year: 2017 ident: B206 article-title: Nanocellulose based biosorbents for wastewater treatment: study of isotherm, kinetic, thermodynamic and reusability publication-title: Environ. Nanotechnol. Monit. Manage. doi: 10.1016/j.enmm.2017.07.002 – year: 2020 ident: B185 article-title: Hydrophobization of cellulose nanocrystals for aqueous colloidal suspensions and gels publication-title: Biomacromolecules doi: 10.1021/acs.biomac.9b01721. – volume: 10 start-page: 727 year: 2019 ident: B223 article-title: Synthesis of latex stabilized by unmodified cellulose nanocrystals: the effect of monomers on particle size publication-title: Polym. Chem. doi: 10.1039/C8PY01575A – volume: 13 start-page: 47 year: 2014 ident: B154 article-title: Nanocellulose in polymer composites and biomedical applications publication-title: TAPPI J. doi: 10.32964/TJ13.6.47 – volume: 122 start-page: 724 year: 2017 ident: B26 article-title: Insight into progress in pre-treatment of lignocellulosic biomass publication-title: Energy doi: 10.1016/j.energy.2017.01.005 – volume: 13 start-page: 59 year: 2019 ident: B78 article-title: General scenarios of cellulose and its use in the biomedical field publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2019.04.012 – volume: 7 start-page: 7951 year: 2019 ident: B63 article-title: Mechanochemical phosphorylation of polymers and synthesis of flame-retardant cellulose nanocrystals publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b00764 – year: 2020 ident: B236 article-title: Nanocellulose-enabled membranes for water purification: perspectives publication-title: Adv. Sustain. Syst doi: 10.1002/adsu.201900114 – volume: 19 start-page: 103 year: 2019 ident: B9 article-title: Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications publication-title: E Polymers doi: 10.1515/epoly-2019-0013 – volume: 139 start-page: 361 year: 2019 ident: B150 article-title: In vitro investigation of the influence of nano-fibrillated cellulose on lipid digestion and absorption publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.07.189 – start-page: 106292 volume-title: J. Pet. Sci. Eng year: 2020 ident: B211 article-title: Nanocellulose for oil and gas field drilling and cementing applications – volume: 98 start-page: 820 year: 2013 ident: B260 article-title: Rapid synthesis of graft copolymers from natural cellulose fibers publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2013.06.072 – volume: 148 start-page: 249 year: 2017 ident: B110 article-title: Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.05.074 – start-page: 171 volume-title: Advanced Functional Materials from Nanopolysaccharides year: 2019 ident: B119 article-title: The use of nano-polysaccharides in biomedical applications doi: 10.1007/978-981-15-0913-1_5 – volume: 5 start-page: 607 year: 2020 ident: B252 article-title: Reducing end modification on cellulose nanocrystals: strategy, characterization, applications and challenges publication-title: Nanoscale Horizons doi: 10.1039/D0NH00016G – start-page: 239 volume-title: Proceedings of the Swiss Bonding year: 2009 ident: B215 article-title: Performance of cellulose nanofibrils in wood adhesives – volume: 14 start-page: 203 year: 2018 ident: B96 article-title: Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: a review publication-title: Curr. Anal. Chem. doi: 10.2174/1573411013666171003155624 – volume: 68 start-page: 1193 year: 2017 ident: B219 article-title: Pretreatment techniques used in biogas production from grass publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.02.022 – volume: 339 start-page: 91 year: 2017 ident: B299 article-title: Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.06.005 – volume: 41 start-page: 402 year: 2015 ident: B270 article-title: A critical review on cellulose: from fundamental to an approach on sensor technology publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.08.050 – volume: 13 start-page: 1702240 year: 2017 ident: B284 article-title: Cellulose-based nanomaterials for energy applications publication-title: Small doi: 10.1002/smll.201702240 – volume: 87 start-page: 152 year: 2019 ident: B193 article-title: Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.01.049 – volume: 160 start-page: 196 year: 2017 ident: B38 article-title: A review on the pretreatment of lignocellulose for high-value chemicals publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.12.007 – volume-title: Cellulose Science and Technology year: 2010 ident: B293 doi: 10.1201/b16496 – volume: 26 start-page: 4417 year: 2019 ident: B183 article-title: Characterization of polystyrene nanocomposites and expanded nanocomposites reinforced with cellulose nanofibers and nanocrystals publication-title: Cellulose doi: 10.1007/s10570-019-02392-2 – volume: 7 start-page: 4912 year: 2019 ident: B307 article-title: Simple process to produce high-yield cellulose nanocrystals using recyclable citric/hydrochloric acids publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b05526 – volume: 35 start-page: 299 year: 2017 ident: B54 article-title: Nanocellulose-based conductive materials and their emerging applications in energy devices-a review publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.001 – volume: 56 start-page: 185 year: 2014 ident: B238 article-title: Morphological, chemical and crystalline features of urea–formaldehyde resin cured in contact with wood publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2014.04.014 – ident: B65 – ident: B97 – volume-title: Nanocellulose: From Nature to High Performance Tailored Materials year: 2013 ident: B55 – volume: 289 start-page: 140 year: 2015 ident: B141 article-title: In situ growing directional spindle TiO2 nanocrystals on cellulose fibers for enhanced Pb2+ adsorption from water publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.02.051 – volume: 262 start-page: 310 year: 2018 ident: B85 article-title: Emerging technologies for the pretreatment of lignocellulosic biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.04.099 – volume: 26 start-page: 8963 year: 2019 ident: B162 article-title: Recyclable carboxylated cellulose beads with tunable pore structure and size for highly efficient dye removal publication-title: Cellulose doi: 10.1007/s10570-019-02733-1 – volume-title: J. Appl. Polym. Sci. year: 2020 ident: B132 article-title: Nanocellulose-based polymer composites for energy applications—a review doi: 10.1002/app.48959 – volume: 16 start-page: 131 year: 2017 ident: B159 article-title: Preparation, properties and future perspectives of nanocrystals from agro-industrial residues: a review of recent research publication-title: Rev. Environ. Sci. Biol. doi: 10.1007/s11157-017-9423-4 – volume: 30 start-page: 190 year: 2019 ident: B305 article-title: Preparation and properties of cellulose nanocrystals, gelatin, hyaluronic acid composite hydrogel as wound dressing publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1080/09205063.2018.1558933 – volume: 187 start-page: 110634 year: 2020 ident: B27 article-title: Functionalization of LC molecular films with nanocrystalline cellulose: a study of the self-assembly processes and molecular stability. Colloids Surf publication-title: B Biointerfaces doi: 10.1016/j.colsurfb.2019.110634 – volume: 3 start-page: 71 year: 2011 ident: B98 article-title: TEMPO-oxidized cellulose nanofibers publication-title: Nanoscale doi: 10.1039/C0NR00583E – volume: 26 start-page: 7635 ident: B255 article-title: Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media publication-title: Cellulose doi: 10.1007/s10570-019-02672-x – volume: 20 start-page: 3492 year: 2004 ident: B256 article-title: Structure of microparticles in solid-stabilized emulsions publication-title: Langmuir doi: 10.1021/la036129e – volume: 17 start-page: 3025 year: 2016 ident: B240 article-title: Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production publication-title: Biomacromolecules doi: 10.1021/acs.biomac.6b00910 – start-page: 175 volume-title: Nanocellulose and sustainability: production, properties, applications, and case studies year: 2018 ident: B33 article-title: Application of nanocellulose as pickering emulsifier doi: 10.1201/9781351262927-9 – volume: 26 start-page: 5959 year: 2019 ident: B105 article-title: Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste publication-title: Cellulose doi: 10.1007/s10570-019-02533-7 – volume: 47 start-page: 2609 year: 2018 ident: B66 article-title: Current characterization methods for cellulose nanomaterials publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00895J – volume-title: Fabrication and Self-Assembly of Nanobiomaterials: Applications of Nanobiomaterials year: 2016 ident: B80 – volume: 137 start-page: 48544 year: 2020 ident: B68 article-title: Thermal properties of nanocellulose-reinforced composites: a review publication-title: J. Appl. Polym. Sci doi: 10.1002/app.48544 – volume: 199 start-page: 83 year: 2016 ident: B208 article-title: Various pretreatments of lignocellulosics publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.029 – volume: 198 start-page: 546 year: 2018 ident: B289 article-title: Bio-inspired functionalization of microcrystalline cellulose aerogel with high adsorption performance toward dyes publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2018.06.112 – volume: 57 start-page: 178 year: 2016 ident: B230 article-title: Vegetable nanocellulose in food science: a review publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2016.01.023 – volume: 29 start-page: 32 year: 2017 ident: B79 article-title: Recent advances in the application of cellulose nanocrystals publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2017.01.005 – volume: 34 start-page: 3925 year: 2018 ident: B2 article-title: Surface charge influence on the phase separation and viscosity of cellulose nanocrystals publication-title: Langmuir doi: 10.1021/acs.langmuir.7b04127 – volume: 93 start-page: 2 year: 2016 ident: B179 article-title: Production of cellulose nanofibrils: a review of recent advances publication-title: Ind. Crop Prod. doi: 10.1016/j.indcrop.2016.02.016 – volume: 7 start-page: 44 year: 2014 ident: B304 article-title: Biodecolorization and biodegradation of textile dyes by the newly isolated saline-pH tolerant fungus Pestalotiopsis sp publication-title: J. Environ. Sci. Technol. doi: 10.3923/jest.2014.44.55 – volume: 35 start-page: 10920 year: 2019 ident: B76 article-title: Dual functions of tempo-oxidized cellulose nanofibers in oil-in-water emulsions: a pickering emulsifier and a unique dispersion stabilizer publication-title: Langmuir doi: 10.1021/acs.langmuir.9b01977 – volume-title: Handbook of Polymer Nanocomposites. Processing, Performance and Application. year: 2015 ident: B196 doi: 10.1007/978-3-642-45232-1 – volume: 241 start-page: 118061 year: 2020 ident: B8 article-title: Application of bacterial nanocellulose fibers as reinforcement in cement composites publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118061 – year: 2020 ident: B22 article-title: Preparation and application of nanocellulose from non-wood plants to improve the quality of paper and cardboard publication-title: Appl. Nanosci doi: 10.1007/s13204-019-01242-8 – volume: 17 start-page: 1748 year: 2016 ident: B249 article-title: Stimuli-responsive cellulose nanocrystals for surfactant-free oil harvesting publication-title: Biomacromolecules doi: 10.1021/acs.biomac.6b00144 – volume: 94 start-page: 154 year: 2013 ident: B28 article-title: Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2013.01.033 – volume-title: Lignocellulosic Polymer Composites: Processing, Characterization, and Properties ident: B258 doi: 10.1002/9781118773949 – volume: 223 start-page: 115114 year: 2019 ident: B199 article-title: Facile extraction of cellulose nanocrystals publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2019.115114 – volume: 181 start-page: 514 year: 2018 ident: B228 article-title: Cellulose nanocrystals as carriers in medicine and their toxicities: a review publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2017.12.014 – volume: 10 start-page: 196 year: 2020 ident: B17 article-title: Applications of nanocellulose/nanocarbon composites: focus on biotechnology and medicine publication-title: Nanomaterials doi: 10.3390/nano10020196 – volume: 22 start-page: 935 year: 2015 ident: B104 article-title: Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review publication-title: Cellulose doi: 10.1007/s10570-015-0551-0 – volume: 24 start-page: 119 year: 2017 ident: B181 article-title: Extraction and characterization of cellulose nanowhiskers from Mandacaru (Cereus jamacaru DC.) spines publication-title: Cellulose doi: 10.1007/s10570-016-1109-5 – volume: 18 start-page: 2503 year: 2016 ident: B168 article-title: Characterization of nanocellulose recovery from Elaeis guineensis frond for sustainable development publication-title: Clean Technol. Environ. Policy doi: 10.1007/s10098-016-1191-2 – volume: 2018 start-page: 1 year: 2018 ident: B297 article-title: Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials publication-title: Int. J. Polym. Sci. doi: 10.1155/2018/7923068 – volume: 6 start-page: 14802 year: 2018 ident: B31 article-title: Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b03331 – volume: 29 start-page: 1 year: 2017 ident: B56 article-title: Cellulose nanomaterial reinforced polymer nanocomposites publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2017.01.004 – volume: 4 start-page: 240 year: 2017 ident: B100 article-title: Cellulose-based materials for the removal of heavy metals from wastewater–an overview publication-title: Chem. Biol. Eng. Rev. doi: 10.1002/cben.201700002 – volume: 21 start-page: 3427 year: 2014 ident: B316 article-title: Excellent chemical and material cellulose from tunicates: diversity in cellulose production yield and chemical and morphological structures from different tunicate species publication-title: Cellulose doi: 10.1007/s10570-014-0348-6 – volume: 11 start-page: 1272 year: 2018 ident: B25 article-title: Characterization of cellulase-treated fibers and resulting cellulose nanocrystals generated through acid hydrolysis publication-title: Materials doi: 10.3390/ma11081272 – volume: 26 start-page: 3040 year: 2018 ident: B47 article-title: Urea formaldehyde and cellulose nanocrystals adhesive: studies applied to sugarcane bagasse particleboards publication-title: J. Polym. Environ. doi: 10.1007/s10924-018-1189-4 – ident: B103 – volume: 463 start-page: 127 year: 2014 ident: B167 article-title: Natural and synthetic polymers for wounds and burns dressing publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2013.12.015 – volume-title: Handbook of Green Materials: Processing Technologies, Properties and Applications (in 4 volumes year: 2014 ident: B191 doi: 10.1142/8975 – volume: 19 start-page: 1449 year: 2012 ident: B148 article-title: Bamboo fiber and its reinforced composites: structure and properties publication-title: Cellulose doi: 10.1007/s10570-012-9741-1 – volume: 45 start-page: 9101 year: 2011 ident: B71 article-title: Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air publication-title: Environ. Sci. Technol. doi: 10.1021/es202223p – volume: 93 start-page: 789 ident: B265 article-title: Microcrystalline cellulose: isolation, characterization and bio-composites application– a review publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.09.056 – volume: 136 start-page: 47251 year: 2019 ident: B1 article-title: Enhancement of basic properties of polysaccharide-based composites with organic and inorganic fillers: a review publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.47251 – start-page: 221 volume-title: Advanced Functional Materials from Nanopolysaccharides year: 2019 ident: B250 article-title: Nanopolysaccharides in emulsion stabilization doi: 10.1007/978-981-15-0913-1_6 |
SSID | ssj0001213420 |
Score | 2.651012 |
SecondaryResourceType | review_article |
Snippet | Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 392 |
SubjectTerms | application cellulose nanocrystals Chemical and Process Engineering Chemical Sciences Chemistry Engineering Sciences functionalization Materials nanocellulose Organic chemistry Polymers production |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBvEkpKEVcOEQb27N-9LZUrFYVcKJSb5bj2CpSSaruLr-_M3F2tQEJLlwT20m-GWW-8YxnGPuQLPBUN6pSIoQKlIDKBwoX8lD7xhskBeQofv2mVpdwcTW_Omj1RTlhuTxwBm7GYd62kGoDQ-kxZXww9dzI2qNjIbLjgzbvwJnKuys4WtQ5LolemJ0lxIBOngtK5ZJWTOzQUK4frcs1JUP-yTR_T5g8sEDLJ-zxSB3LRX7lp-xB7J6xh-e7jm3PmcVfZU878dubfh3PyuVd_7Nc0lGPXMF_XW76cjEG_cvFQej6Bbtcfv5-vqrG1ghVAKs2VWs8b7jnskU-IYLw0cpoPAQeAzoUXHoLLUjZWg7aWt9IG5OR0RqVoNVevmRHXd_F16zEOTrolDQkASaGRiOHbGQTBYTWB12w2Q4oF8a64dS-4sah_0DQugFaR9C6AdqCfdzPuM01M_4y9hNhvx9H1a6HC6gDbtQB9y8dKNh7lNxkjdXii6Nr6GKClaB-4aDTnWAdyoWk4bvYb9cOSQ2SXiKGBXuVBb1fC_mmnCspC6YnKjB52PRO9-N6KNOtiT1pdfw_vvANe0SYDZmW6oQdbe628S2yoU3zblD8e1wUA-I priority: 102 providerName: Directory of Open Access Journals |
Title | Nanocellulose: From Fundamentals to Advanced Applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32435633 https://www.proquest.com/docview/2405336441 https://hal.univ-lorraine.fr/hal-02649346 https://pubmed.ncbi.nlm.nih.gov/PMC7218176 https://doaj.org/article/145dd4f0841341968ac805830a448261 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSNAL4k1aqALiwiE0fqwfSAgtFasVopxYqTfLcWyKtCR0H1X5951xsksDhatjT5SZceb77PGYkFfRCBrLShaSeV8IyUThPG4XUl-6ymkABUgUj7_I6Ux8Ohmd_D4e3StweS21w_ukZov5m4uzX-9hwr9Dxgnx9jDC5-GhcoZZWhDvb5JbEJcUTtPjHux3Ky6Ui1SnkTEjMbWr37e8VsguuQ1Yg48k54OQlSr7QyA6xbzJv0Hpn7mVV4LV5B6526PMfNy5xX1yIzQPyJ2jzeVuD4mBv2qLi_brebsMb_PJov2RT_BUSFfsf5mv2nzc5wfk4yu73I_IbPLx69G06G9RKLwwclXU2tGKOsprgB7MMxcMD9oJT4MH7kG5M6IWnNeGCmWMq7gJUfNgtIyiVo4_JjtN24SnJIcxyqsYlYhM6OArBXCz4lVgwtfOq4wcbhRlfV9iHG-6mFugGqhlm7RsUcs2aTkjr7cjfnblNf7T9wPqftsPC2OnhnbxzfbzDJjMqK5FLLVIleqkdl6XI81LBzwU2GJGXoLlBjKm488W24CNCsOFPIdOLzaGtWAXtIZrQrteWsA_gI8RQ2bkSWforayNu2REDVxg8LLhk-b7aarorRBoKbn3T5n7ZBcVkTIt5TOys1qsw3NAQ6vqIK0iHCRXvwR4CQO- |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanocellulose%3A+From+Fundamentals+to+Advanced+Applications&rft.jtitle=Frontiers+in+chemistry&rft.au=Trache%2C+Djalal&rft.au=Tarchoun%2C+Ahmed+Fouzi&rft.au=Derradji%2C+Mehdi&rft.au=Hamidon%2C+Tuan+Sherwyn&rft.date=2020-05-06&rft.issn=2296-2646&rft.eissn=2296-2646&rft.volume=8&rft.spage=392&rft_id=info:doi/10.3389%2Ffchem.2020.00392&rft_id=info%3Apmid%2F32435633&rft.externalDocID=32435633 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-2646&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-2646&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-2646&client=summon |