Nanocellulose: From Fundamentals to Advanced Applications

Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect rat...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in chemistry Vol. 8; p. 392
Main Authors Trache, Djalal, Tarchoun, Ahmed Fouzi, Derradji, Mehdi, Hamidon, Tuan Sherwyn, Masruchin, Nanang, Brosse, Nicolas, Hussin, M. Hazwan
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media 06.05.2020
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN2296-2646
2296-2646
DOI10.3389/fchem.2020.00392

Cover

Loading…
Abstract Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.
AbstractList Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.
Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.
Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.
Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.
Author Trache, Djalal
Hamidon, Tuan Sherwyn
Brosse, Nicolas
Tarchoun, Ahmed Fouzi
Masruchin, Nanang
Derradji, Mehdi
Hussin, M. Hazwan
AuthorAffiliation 3 Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI) , Jakarta , Indonesia
1 UER Procédés Energétiques, Ecole Militaire Polytechnique , Bordj El-Bahri , Algeria
4 Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine , Vandœuvre-lès-Nancy , France
2 Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia , Penang , Malaysia
AuthorAffiliation_xml – name: 4 Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine , Vandœuvre-lès-Nancy , France
– name: 1 UER Procédés Energétiques, Ecole Militaire Polytechnique , Bordj El-Bahri , Algeria
– name: 3 Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI) , Jakarta , Indonesia
– name: 2 Materials Technology Research Group, School of Chemical Sciences, Universiti Sains Malaysia , Penang , Malaysia
Author_xml – sequence: 1
  givenname: Djalal
  surname: Trache
  fullname: Trache, Djalal
– sequence: 2
  givenname: Ahmed Fouzi
  surname: Tarchoun
  fullname: Tarchoun, Ahmed Fouzi
– sequence: 3
  givenname: Mehdi
  surname: Derradji
  fullname: Derradji, Mehdi
– sequence: 4
  givenname: Tuan Sherwyn
  surname: Hamidon
  fullname: Hamidon, Tuan Sherwyn
– sequence: 5
  givenname: Nanang
  surname: Masruchin
  fullname: Masruchin, Nanang
– sequence: 6
  givenname: Nicolas
  surname: Brosse
  fullname: Brosse, Nicolas
– sequence: 7
  givenname: M. Hazwan
  surname: Hussin
  fullname: Hussin, M. Hazwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32435633$$D View this record in MEDLINE/PubMed
https://hal.univ-lorraine.fr/hal-02649346$$DView record in HAL
BookMark eNp1ks9v0zAUxy00xMbYnRPKEQ4ttt-rY3NAqia6TargAmfr1XbWTIld4qTS_nuSdpu2SZxsvR-f9-v7np3EFANjHwWfA2jztXLb0M4ll3zOORj5hp1JadRMKlQnz_6n7CLnO865kAJQ8nfsFCTCQgGcMfOTYnKhaYYm5fCtWHWpLVZD9NSG2FOTiz4VS7-n6IIvlrtdUzvq6xTzB_a2Gv3h4uE9Z39WP35fXs_Wv65uLpfrmUOj-pnXJDaCBHgwpXSSgoGgCZ0IDqUWQAY9AngjsDSGNmBCpSEYrSr0JcE5uzlyfaI7u-vqlrp7m6i2B0Pqbi11fe2aYAUuvMeKaxwHFUZpcpovNHBC1FKJkfX9yNoNmzZ4N47YUfMC-tIT6629TXtbSqFFqUbAlyNg-yrterm2k42PGzeAaj8V-_xQrEt_h5B729Z5WjXFkIZsJfIFgEKcQj897-uJ_HinMUAdA1yXcu5CZV3dH-4wtlk3VnA7acIeNGEnTdiDJsZE_irxkf3flH-QILel
CitedBy_id crossref_primary_10_1093_plphys_kiac184
crossref_primary_10_1021_acsomega_3c03871
crossref_primary_10_1080_17480272_2023_2258119
crossref_primary_10_1016_j_nxmate_2025_100484
crossref_primary_10_1002_pen_26585
crossref_primary_10_1007_s10570_021_03965_w
crossref_primary_10_3103_S1062873822100070
crossref_primary_10_1002_batt_202400302
crossref_primary_10_3389_fnano_2021_747329
crossref_primary_10_1016_j_renene_2023_119536
crossref_primary_10_3390_app13106159
crossref_primary_10_1016_j_carbpol_2022_119947
crossref_primary_10_1007_s13399_022_03171_z
crossref_primary_10_1007_s10924_024_03316_3
crossref_primary_10_1186_s43094_021_00324_1
crossref_primary_10_1515_psr_2022_0032
crossref_primary_10_25159_NanoHorizons_49f1ef7cdb7
crossref_primary_10_1016_j_mtchem_2024_102226
crossref_primary_10_1021_acsomega_3c10053
crossref_primary_10_1016_j_matpr_2023_06_271
crossref_primary_10_1021_acsaenm_3c00574
crossref_primary_10_1016_j_fpsl_2024_101379
crossref_primary_10_1016_j_jorganchem_2024_123087
crossref_primary_10_1002_jbm_b_35513
crossref_primary_10_1002_pat_6187
crossref_primary_10_1016_j_coco_2025_102258
crossref_primary_10_3390_biomimetics9100624
crossref_primary_10_1016_j_mtsust_2022_100115
crossref_primary_10_1016_j_pmatsci_2025_101430
crossref_primary_10_1016_j_ijbiomac_2024_138584
crossref_primary_10_1088_1361_6463_ad2335
crossref_primary_10_1038_s41428_021_00599_4
crossref_primary_10_1039_D2GC01871C
crossref_primary_10_1177_20412479241300225
crossref_primary_10_3390_pharmaceutics16010145
crossref_primary_10_3390_macromol3020024
crossref_primary_10_3390_polym16131936
crossref_primary_10_3390_nano12183188
crossref_primary_10_1016_j_cscee_2024_100863
crossref_primary_10_1007_s12649_022_01929_0
crossref_primary_10_1016_j_mtsust_2025_101074
crossref_primary_10_1016_j_ijbiomac_2024_131829
crossref_primary_10_3390_nano10091800
crossref_primary_10_3390_polym14010068
crossref_primary_10_1016_j_ijbiomac_2021_04_136
crossref_primary_10_1007_s10570_023_05546_5
crossref_primary_10_1016_j_carbpol_2023_121298
crossref_primary_10_18311_jmmf_2023_41768
crossref_primary_10_1016_j_carbpol_2023_121057
crossref_primary_10_1016_j_colsurfa_2025_136393
crossref_primary_10_1039_D2RA07940B
crossref_primary_10_1016_j_nexres_2024_100053
crossref_primary_10_1002_pc_27034
crossref_primary_10_1016_j_jobe_2024_111571
crossref_primary_10_3390_coatings12020108
crossref_primary_10_1002_jctb_7006
crossref_primary_10_1080_07370652_2022_2032484
crossref_primary_10_3390_molecules25153373
crossref_primary_10_1016_j_cscee_2024_100993
crossref_primary_10_1016_j_indcrop_2022_115177
crossref_primary_10_1016_j_seppur_2024_126627
crossref_primary_10_1080_15583724_2021_1896545
crossref_primary_10_1016_j_molliq_2022_118577
crossref_primary_10_1016_j_chemosphere_2021_130738
crossref_primary_10_1016_j_biortech_2021_126491
crossref_primary_10_3390_polym15051196
crossref_primary_10_1021_acsanm_3c04272
crossref_primary_10_1021_acssuschemeng_1c08476
crossref_primary_10_3390_nano12071139
crossref_primary_10_3390_nano13182611
crossref_primary_10_3390_polym13132168
crossref_primary_10_1021_acs_langmuir_1c00014
crossref_primary_10_3390_pr9091594
crossref_primary_10_35812_CelluloseChemTechnol_2022_56_61
crossref_primary_10_1007_s40725_023_00195_0
crossref_primary_10_1039_D3NH00063J
crossref_primary_10_1007_s10570_021_03943_2
crossref_primary_10_1007_s13204_024_03039_w
crossref_primary_10_3390_polym15112562
crossref_primary_10_1021_acssuschemeng_2c01668
crossref_primary_10_35812_CelluloseChemTechnol_2022_56_47
crossref_primary_10_46481_jnsps_2021_202
crossref_primary_10_1016_j_molliq_2024_125973
crossref_primary_10_3390_jfb15100304
crossref_primary_10_1007_s10570_023_05339_w
crossref_primary_10_1016_j_ijbiomac_2024_136130
crossref_primary_10_3390_gels10120766
crossref_primary_10_1007_s00289_024_05510_8
crossref_primary_10_1016_j_indcrop_2023_116888
crossref_primary_10_3390_polym15234489
crossref_primary_10_1016_j_mtcomm_2022_103362
crossref_primary_10_3390_polym14132648
crossref_primary_10_1016_j_cis_2024_103158
crossref_primary_10_1007_s11814_023_1543_7
crossref_primary_10_1515_ijmr_2023_0104
crossref_primary_10_1002_adfm_202412869
crossref_primary_10_3390_gels9080621
crossref_primary_10_1016_j_ccr_2021_214263
crossref_primary_10_1002_app_55231
crossref_primary_10_1038_s41428_022_00619_x
crossref_primary_10_1007_s10570_022_04773_6
crossref_primary_10_1016_j_indcrop_2021_113917
crossref_primary_10_7584_JKTAPPI_2023_6_55_3_15
crossref_primary_10_1002_app_53298
crossref_primary_10_1520_MPC20230092
crossref_primary_10_54097_hset_v66i_11613
crossref_primary_10_1016_j_ijbiomac_2022_08_186
crossref_primary_10_1016_j_jclepro_2024_143461
crossref_primary_10_3390_membranes13080694
crossref_primary_10_1007_s10570_023_05537_6
crossref_primary_10_3390_su151410814
crossref_primary_10_1016_j_jmrt_2024_12_183
crossref_primary_10_1515_psr_2022_0007
crossref_primary_10_1016_j_indcrop_2023_117609
crossref_primary_10_3390_mi14071450
crossref_primary_10_3390_f14091715
crossref_primary_10_3390_jcs7040168
crossref_primary_10_1021_acs_langmuir_2c01713
crossref_primary_10_3390_molecules29184406
crossref_primary_10_32434_0321_4095_2023_151_6_5_12
crossref_primary_10_1080_10408398_2025_2476118
crossref_primary_10_3390_fire7010031
crossref_primary_10_1016_j_ijbiomac_2023_125810
crossref_primary_10_1186_s11671_020_03438_2
crossref_primary_10_1007_s10570_024_05913_w
crossref_primary_10_3390_jfb15040093
crossref_primary_10_1016_j_toxrep_2021_12_006
crossref_primary_10_1021_acsanm_2c02968
crossref_primary_10_1039_D1TB02848K
crossref_primary_10_1002_tcr_202100135
crossref_primary_10_1002_bio_4634
crossref_primary_10_1007_s11694_024_03034_3
crossref_primary_10_1016_j_eti_2020_101335
crossref_primary_10_3390_polym16010051
crossref_primary_10_3390_macromol3040044
crossref_primary_10_1007_s13399_024_05561_x
crossref_primary_10_1007_s10570_023_05162_3
crossref_primary_10_1039_D4NR01794C
crossref_primary_10_1039_D2SM01291J
crossref_primary_10_1007_s10570_022_04871_5
crossref_primary_10_1021_acsomega_3c05748
crossref_primary_10_1515_psr_2022_0015
crossref_primary_10_1039_D2TA09456H
crossref_primary_10_3390_polym14204270
crossref_primary_10_1515_psr_2022_0012
crossref_primary_10_1016_j_indcrop_2023_117632
crossref_primary_10_1093_fqsafe_fyae021
crossref_primary_10_4028_p_j7d3rH
crossref_primary_10_3390_molecules27217170
crossref_primary_10_1021_acsami_4c22475
crossref_primary_10_1007_s41939_024_00369_8
crossref_primary_10_1155_2023_9645190
crossref_primary_10_3390_ma14123264
crossref_primary_10_3390_polym13193433
crossref_primary_10_1039_D2TA00457G
crossref_primary_10_1021_acs_biomac_2c00987
crossref_primary_10_1021_acsbiomaterials_4c01518
crossref_primary_10_1039_D2RA06689K
crossref_primary_10_1016_j_ijbiomac_2024_134165
crossref_primary_10_3390_foods12173221
crossref_primary_10_1007_s12649_021_01547_2
crossref_primary_10_1021_acsami_4c13523
crossref_primary_10_3390_ma15207313
crossref_primary_10_1080_15583724_2021_2007121
crossref_primary_10_1515_psr_2022_0021
crossref_primary_10_1021_acs_biomac_1c01056
crossref_primary_10_1016_j_bioactmat_2021_07_006
crossref_primary_10_1016_j_chphi_2022_100111
crossref_primary_10_1016_j_aiepr_2023_04_003
crossref_primary_10_1016_j_bcab_2024_103036
crossref_primary_10_1016_j_jece_2024_113262
crossref_primary_10_1088_1755_1315_572_1_012045
crossref_primary_10_1007_s13399_022_02977_1
crossref_primary_10_3390_ijms241713205
crossref_primary_10_1016_j_polymer_2022_125154
crossref_primary_10_1016_j_biteb_2021_100811
crossref_primary_10_3390_coatings12101376
crossref_primary_10_1021_acsapm_1c01430
crossref_primary_10_1007_s12649_021_01436_8
crossref_primary_10_3390_polym15102323
crossref_primary_10_1016_j_abst_2022_03_001
crossref_primary_10_1177_08927057231205451
crossref_primary_10_1007_s00289_024_05433_4
crossref_primary_10_3390_app122412846
crossref_primary_10_1002_jbm_b_35472
crossref_primary_10_1007_s40820_021_00627_1
crossref_primary_10_1002_admt_202400232
crossref_primary_10_1007_s10570_023_05637_3
crossref_primary_10_1039_D4TB00397G
crossref_primary_10_1007_s10570_023_05386_3
crossref_primary_10_3390_gels9090734
crossref_primary_10_1002_elt2_42
crossref_primary_10_1016_j_bprint_2023_e00291
crossref_primary_10_1016_j_ijbiomac_2021_10_215
crossref_primary_10_1016_j_heliyon_2024_e41269
crossref_primary_10_3390_membranes12030320
crossref_primary_10_12688_f1000research_147446_1
crossref_primary_10_1021_acs_chemrev_2c00611
crossref_primary_10_3390_molecules26010149
crossref_primary_10_3390_pr10020187
crossref_primary_10_1007_s13399_024_05971_x
crossref_primary_10_1016_j_biteb_2024_101764
crossref_primary_10_1007_s10570_023_05169_w
crossref_primary_10_1515_npprj_2022_0052
crossref_primary_10_1021_acssuschemeng_2c03220
crossref_primary_10_1021_acssuschemeng_2c02255
crossref_primary_10_1016_j_carbpol_2023_121453
crossref_primary_10_1016_j_ijbiomac_2024_133396
crossref_primary_10_1093_micmic_ozad067_324
crossref_primary_10_2174_2452271605666220823102507
crossref_primary_10_1007_s11356_024_33105_3
crossref_primary_10_1016_j_jmrt_2024_06_134
crossref_primary_10_1108_PRT_02_2022_0018
crossref_primary_10_1016_j_ijbiomac_2025_142264
crossref_primary_10_1016_j_mtsust_2022_100191
crossref_primary_10_1007_s12649_024_02774_z
crossref_primary_10_3390_nano14201645
crossref_primary_10_1016_j_ijbiomac_2025_141192
crossref_primary_10_1007_s10924_024_03227_3
crossref_primary_10_1016_j_fpc_2022_09_003
crossref_primary_10_1016_j_molliq_2024_125969
crossref_primary_10_1016_j_dt_2021_03_009
crossref_primary_10_3389_fsufs_2023_1190979
crossref_primary_10_1007_s10570_022_04918_7
crossref_primary_10_3390_polym14102015
crossref_primary_10_1016_j_carbpol_2024_122977
crossref_primary_10_1016_j_biortech_2022_126833
crossref_primary_10_3390_biomedicines11041124
crossref_primary_10_1016_j_ijbiomac_2024_135200
crossref_primary_10_3390_pr11010154
crossref_primary_10_1007_s10570_023_05591_0
crossref_primary_10_1007_s12247_022_09705_2
crossref_primary_10_3390_applbiosci2010009
crossref_primary_10_1016_j_ijbiomac_2025_140098
crossref_primary_10_3390_membranes12050537
crossref_primary_10_1002_smll_202207207
crossref_primary_10_1007_s10570_024_06070_w
crossref_primary_10_1016_j_matpr_2022_07_043
crossref_primary_10_1016_j_ijbiomac_2024_135799
crossref_primary_10_3390_nano12111828
crossref_primary_10_1016_j_indcrop_2023_117219
crossref_primary_10_1039_D2EE04063H
crossref_primary_10_1021_acs_langmuir_1c02780
crossref_primary_10_3390_polym13162648
crossref_primary_10_1007_s10924_022_02573_4
crossref_primary_10_1515_hf_2022_0191
crossref_primary_10_1515_zpch_2023_0308
crossref_primary_10_1016_j_psep_2024_08_035
crossref_primary_10_1038_s41598_020_76144_9
crossref_primary_10_25159_NanoHorizons_49f1ef7cdb71
crossref_primary_10_3390_polysaccharides4040024
crossref_primary_10_1021_acsami_0c14485
crossref_primary_10_1016_j_carpta_2025_100769
crossref_primary_10_1061_JMCEE7_MTENG_15117
crossref_primary_10_1016_j_conbuildmat_2022_128683
crossref_primary_10_3390_coatings11080990
crossref_primary_10_1155_2022_7502796
crossref_primary_10_1002_adsu_202100354
crossref_primary_10_1016_j_bej_2021_108199
crossref_primary_10_1021_acs_jafc_4c03997
crossref_primary_10_1007_s42114_024_00970_y
crossref_primary_10_1016_j_seppur_2022_122917
crossref_primary_10_1016_j_ijbiomac_2025_142498
crossref_primary_10_24011_barofd_1358005
crossref_primary_10_1021_acsapm_1c00489
crossref_primary_10_1007_s13726_025_01462_6
crossref_primary_10_1016_j_bamboo_2025_100134
crossref_primary_10_1002_pc_26427
crossref_primary_10_1038_s41598_023_50298_8
crossref_primary_10_1016_j_indcrop_2023_116383
crossref_primary_10_1016_j_indcrop_2023_117590
crossref_primary_10_5254_rct_22_77013
crossref_primary_10_2903_sp_efsa_2023_EN_8258
crossref_primary_10_1016_j_chempr_2024_09_007
crossref_primary_10_1016_j_ijbiomac_2024_132385
crossref_primary_10_1016_j_scp_2022_100950
crossref_primary_10_1021_acs_biomac_4c00575
crossref_primary_10_1021_acsomega_4c07196
crossref_primary_10_3390_catal10091006
crossref_primary_10_5937_savteh2102073K
crossref_primary_10_1016_j_envres_2023_115429
crossref_primary_10_3390_pr11082312
crossref_primary_10_1007_s10570_023_05616_8
crossref_primary_10_1016_j_polymdegradstab_2022_110153
crossref_primary_10_1016_j_biteb_2024_101799
crossref_primary_10_1080_15440478_2021_1932673
crossref_primary_10_3390_polym14020286
crossref_primary_10_1016_j_foodres_2024_114741
crossref_primary_10_1021_acs_biomac_3c01424
crossref_primary_10_1016_j_seppur_2024_126893
crossref_primary_10_35812_CelluloseChemTechnol_2023_57_65
crossref_primary_10_1016_j_ijbiomac_2022_11_241
crossref_primary_10_1016_j_mtcomm_2022_103630
crossref_primary_10_1007_s13399_023_05228_z
crossref_primary_10_1016_j_carbpol_2021_118507
crossref_primary_10_1007_s10570_021_04088_y
crossref_primary_10_3390_su16229609
crossref_primary_10_1021_acssuschemeng_3c02679
crossref_primary_10_2174_0113852728268779240102101311
crossref_primary_10_1007_s11483_024_09875_1
crossref_primary_10_1007_s13205_021_02920_7
crossref_primary_10_1016_j_biteb_2022_101222
crossref_primary_10_1016_j_foodhyd_2022_107689
crossref_primary_10_1016_j_aiepr_2024_12_003
crossref_primary_10_1016_j_ijbiomac_2022_12_073
crossref_primary_10_1007_s13399_022_02660_5
crossref_primary_10_1016_j_ijbiomac_2023_126405
crossref_primary_10_3390_polym14091887
crossref_primary_10_3390_polym17060735
crossref_primary_10_1002_adma_202002404
crossref_primary_10_1016_j_enmm_2024_100942
crossref_primary_10_7717_peerj_matsci_20
crossref_primary_10_1016_j_ultsonch_2022_106176
crossref_primary_10_3390_polym14214468
crossref_primary_10_1016_j_greeac_2022_100009
crossref_primary_10_1016_j_foodhyd_2023_108700
crossref_primary_10_1021_acsabm_1c00712
crossref_primary_10_1515_ntrev_2024_0119
crossref_primary_10_3390_nano13172399
crossref_primary_10_1016_j_apsusc_2024_159419
crossref_primary_10_3390_pr13030790
crossref_primary_10_1680_jinam_23_00053
crossref_primary_10_3390_polym14204305
crossref_primary_10_1016_j_foodchem_2024_141905
crossref_primary_10_1016_j_ijbiomac_2023_126534
crossref_primary_10_4028_p_7369dc
crossref_primary_10_1007_s10570_024_06229_5
crossref_primary_10_1021_acs_macromol_4c00205
crossref_primary_10_1038_s41598_022_26600_5
crossref_primary_10_1007_s13399_024_06411_6
crossref_primary_10_1016_j_molliq_2022_121183
crossref_primary_10_1007_s11356_024_35449_2
crossref_primary_10_1021_acsmacrolett_3c00536
crossref_primary_10_1177_00219983231155595
crossref_primary_10_1080_00986445_2025_2469588
crossref_primary_10_1002_cbdv_202402249
crossref_primary_10_1016_j_ultsonch_2023_106581
crossref_primary_10_1177_15589250241265709
crossref_primary_10_3390_molecules28104216
crossref_primary_10_3390_polym14214578
crossref_primary_10_1016_j_mtchem_2022_101247
crossref_primary_10_1016_j_ijbiomac_2025_140279
crossref_primary_10_1002_cben_202300069
crossref_primary_10_1007_s13233_023_00197_8
crossref_primary_10_1021_acssuschemeng_3c00599
crossref_primary_10_1002_adma_202415725
crossref_primary_10_3389_fchem_2023_1233889
crossref_primary_10_1016_j_eurpolymj_2023_112446
crossref_primary_10_1021_acs_langmuir_1c01906
crossref_primary_10_1016_j_carbpol_2022_119251
crossref_primary_10_1016_j_scp_2023_101280
crossref_primary_10_1021_acssuschemeng_1c06607
crossref_primary_10_1039_D1MA00049G
crossref_primary_10_1016_j_ijbiomac_2023_126427
crossref_primary_10_3390_ijms252413333
crossref_primary_10_1016_j_ijbiomac_2023_126309
crossref_primary_10_3390_nano10081523
crossref_primary_10_1007_s40883_024_00348_y
crossref_primary_10_56083_RCV4N5_115
crossref_primary_10_1080_15583724_2022_2106491
crossref_primary_10_3390_membranes15010012
crossref_primary_10_1007_s10924_023_02899_7
crossref_primary_10_1039_D2SU00014H
crossref_primary_10_1002_pts_2617
crossref_primary_10_1016_j_carbpol_2022_119123
crossref_primary_10_1002_adfm_202005646
crossref_primary_10_1016_j_xphs_2025_02_004
crossref_primary_10_3390_polym14112215
crossref_primary_10_24857_rgsa_v16n3_012
crossref_primary_10_1016_j_biombioe_2024_107331
crossref_primary_10_1016_j_ijbiomac_2023_125228
crossref_primary_10_1007_s13399_024_05820_x
crossref_primary_10_1016_j_ijbiomac_2024_134512
crossref_primary_10_1039_D2GC01141G
crossref_primary_10_1080_10942912_2023_2286897
crossref_primary_10_3390_polym14235248
crossref_primary_10_1016_j_psep_2024_01_085
crossref_primary_10_1007_s10570_021_03760_7
crossref_primary_10_1016_j_rechem_2024_101506
crossref_primary_10_1016_j_carbpol_2022_120117
crossref_primary_10_1021_acs_biomac_2c01363
crossref_primary_10_1002_adfm_202302785
crossref_primary_10_1016_j_spc_2023_12_026
crossref_primary_10_1515_ntrev_2024_0005
crossref_primary_10_1007_s10924_022_02507_0
crossref_primary_10_3390_polym15040984
crossref_primary_10_1051_e3sconf_202342009003
crossref_primary_10_1371_journal_pone_0299312
crossref_primary_10_1007_s00289_023_05084_x
crossref_primary_10_1039_D0RA08987G
crossref_primary_10_3390_polym15061542
crossref_primary_10_1016_j_ccr_2022_214496
crossref_primary_10_3390_nano12193483
crossref_primary_10_1021_acsomega_4c00497
crossref_primary_10_1007_s10965_021_02702_y
crossref_primary_10_1016_j_carbpol_2023_121313
crossref_primary_10_1016_j_porgcoat_2023_107546
crossref_primary_10_1016_j_matpr_2023_01_386
crossref_primary_10_1016_j_tca_2021_178882
crossref_primary_10_1016_j_carbpol_2023_121558
crossref_primary_10_1021_acsanm_1c03508
crossref_primary_10_3390_jcs7060210
crossref_primary_10_1007_s10570_022_04977_w
crossref_primary_10_3390_polysaccharides3010010
crossref_primary_10_1007_s10570_022_04592_9
crossref_primary_10_1016_j_crgsc_2024_100412
crossref_primary_10_1016_j_ijbiomac_2024_133891
crossref_primary_10_1007_s42247_021_00300_8
crossref_primary_10_1016_j_ijbiomac_2024_134990
crossref_primary_10_1016_j_carbpol_2024_122807
crossref_primary_10_1515_arh_2024_0026
crossref_primary_10_1016_j_apmt_2021_101078
crossref_primary_10_1088_1755_1315_1388_1_012028
crossref_primary_10_1080_15440478_2021_1904484
crossref_primary_10_1021_acsaenm_4c00592
crossref_primary_10_1016_j_jddst_2022_103665
crossref_primary_10_3390_nanoenergyadv4030013
crossref_primary_10_3390_polysaccharides6010010
crossref_primary_10_3390_pr9040611
crossref_primary_10_1016_j_jenvman_2023_119928
crossref_primary_10_1016_j_cej_2020_125960
crossref_primary_10_1016_j_ijbiomac_2023_125486
crossref_primary_10_1007_s10570_022_04964_1
crossref_primary_10_1007_s13399_023_05027_6
crossref_primary_10_3390_nano12193375
crossref_primary_10_35812_CelluloseChemTechnol_2024_58_82
crossref_primary_10_35118_apjmbb_2024_032_2_01
crossref_primary_10_1016_j_scp_2021_100584
crossref_primary_10_1021_acs_iecr_2c01402
crossref_primary_10_1016_j_carbpol_2023_121325
crossref_primary_10_1007_s10570_024_06204_0
crossref_primary_10_4236_ojpchem_2022_121002
crossref_primary_10_1016_j_matpr_2021_12_218
crossref_primary_10_1002_fob2_12011
crossref_primary_10_1080_00207233_2025_2480472
crossref_primary_10_1016_j_jcis_2023_12_164
crossref_primary_10_1016_j_susmat_2024_e01077
crossref_primary_10_1016_j_ijbiomac_2025_141448
crossref_primary_10_1016_j_jcis_2023_12_041
crossref_primary_10_1016_j_jece_2022_108145
crossref_primary_10_3390_foods11040589
crossref_primary_10_1002_asia_202301068
crossref_primary_10_1016_j_ijbiomac_2023_123431
crossref_primary_10_1016_j_jobe_2021_103747
crossref_primary_10_1007_s00204_024_03911_2
crossref_primary_10_1016_j_heliyon_2023_e23846
crossref_primary_10_1088_1757_899X_1258_1_012017
crossref_primary_10_1016_j_carpta_2024_100651
crossref_primary_10_1016_j_indcrop_2024_119771
crossref_primary_10_1016_j_biteb_2022_101242
crossref_primary_10_1088_1757_899X_1258_1_012014
crossref_primary_10_1177_08927057241249731
crossref_primary_10_1016_j_ijbiomac_2024_132302
crossref_primary_10_1007_s10570_023_05587_w
crossref_primary_10_3390_polym13142337
crossref_primary_10_3389_fbioe_2022_1059097
crossref_primary_10_1016_j_envres_2023_116110
crossref_primary_10_1016_j_mtcomm_2024_109926
crossref_primary_10_3390_ma16124447
crossref_primary_10_1063_5_0085660
crossref_primary_10_1016_j_carbpol_2023_121418
crossref_primary_10_1016_j_cej_2025_161257
crossref_primary_10_1007_s12649_020_01198_9
crossref_primary_10_1016_j_toxrep_2023_11_009
crossref_primary_10_1016_j_ijbiomac_2023_123785
crossref_primary_10_1007_s10311_022_01401_4
crossref_primary_10_1557_s43580_022_00434_9
crossref_primary_10_1016_j_ijbiomac_2025_141770
crossref_primary_10_1016_j_scp_2023_101373
crossref_primary_10_1016_j_enmm_2023_100791
crossref_primary_10_3390_polym15040937
crossref_primary_10_3390_polym14091819
crossref_primary_10_3390_ma13235347
crossref_primary_10_1016_j_ijbiomac_2024_130239
crossref_primary_10_1016_j_trac_2020_116109
crossref_primary_10_1007_s13399_022_02442_z
crossref_primary_10_3390_polym15204159
crossref_primary_10_1021_acssuschemeng_2c04224
crossref_primary_10_3390_ma14185137
crossref_primary_10_1007_s40820_024_01348_x
crossref_primary_10_1016_j_carpta_2024_100529
crossref_primary_10_1016_j_carpta_2025_100707
crossref_primary_10_1016_j_matpr_2023_01_031
crossref_primary_10_7584_JKTAPPI_2022_04_54_2_51
crossref_primary_10_1089_3dp_2021_0294
crossref_primary_10_1007_s10570_023_05222_8
crossref_primary_10_3390_molecules26175282
crossref_primary_10_1080_09205063_2023_2177474
crossref_primary_10_1016_j_indcrop_2021_114318
crossref_primary_10_1016_j_cej_2024_155409
crossref_primary_10_1016_j_rineng_2024_103012
crossref_primary_10_1016_j_jobab_2023_04_002
crossref_primary_10_1016_j_ijbiomac_2025_140570
crossref_primary_10_1016_j_carpta_2023_100350
crossref_primary_10_1016_j_ijbiomac_2023_126007
crossref_primary_10_7584_JKTAPPI_2023_10_55_5_96
crossref_primary_10_1007_s10570_022_04725_0
crossref_primary_10_1007_s13204_021_01749_z
crossref_primary_10_1016_j_compositesb_2022_110221
crossref_primary_10_1016_j_sajce_2024_12_007
crossref_primary_10_3390_coatings13071177
crossref_primary_10_3390_polym14101930
crossref_primary_10_3390_ma16103856
crossref_primary_10_3390_polym14091925
crossref_primary_10_3390_app14177964
crossref_primary_10_1021_acs_iecr_0c05448
crossref_primary_10_1360_SSC_2024_0212
crossref_primary_10_31875_2410_4701_2022_09_06
crossref_primary_10_1007_s10570_023_05676_w
crossref_primary_10_1007_s13399_022_03159_9
crossref_primary_10_20473_j_djmkg_v56_i1_p30_35
crossref_primary_10_1002_app_55273
crossref_primary_10_1016_j_bcdf_2020_100251
crossref_primary_10_4028_p_p321wu
crossref_primary_10_1016_j_coco_2021_100914
crossref_primary_10_1007_s10924_022_02428_y
crossref_primary_10_1016_j_molstruc_2021_130108
crossref_primary_10_1088_1755_1315_1282_1_012036
crossref_primary_10_3390_app142210670
crossref_primary_10_3390_gels9070574
crossref_primary_10_1515_npprj_2024_0056
crossref_primary_10_3390_membranes12111089
crossref_primary_10_1007_s13399_024_05812_x
crossref_primary_10_1021_acs_biomac_4c01279
crossref_primary_10_3389_fnano_2021_729743
crossref_primary_10_1016_j_chemosphere_2023_140833
crossref_primary_10_1039_D4MA00716F
crossref_primary_10_1007_s10965_023_03637_2
crossref_primary_10_3390_nano13101585
crossref_primary_10_1016_j_carpta_2020_100032
crossref_primary_10_1016_j_mtcomm_2022_105193
crossref_primary_10_1016_j_ijbiomac_2025_140794
crossref_primary_10_1016_j_ijbiomac_2023_123511
crossref_primary_10_3390_polym16101312
crossref_primary_10_1016_j_carpta_2020_100031
crossref_primary_10_1016_j_scitotenv_2022_156903
crossref_primary_10_1080_25740881_2022_2086813
crossref_primary_10_1186_s42252_023_00048_w
crossref_primary_10_1016_j_ijbiomac_2022_09_279
crossref_primary_10_1016_j_fbio_2024_105656
crossref_primary_10_1016_j_chnaes_2023_02_002
crossref_primary_10_3390_polym16121629
crossref_primary_10_1039_D2MA00249C
crossref_primary_10_1002_pc_28091
crossref_primary_10_1021_acsomega_2c05547
crossref_primary_10_1177_87560879231226442
crossref_primary_10_1002_pls2_10168
crossref_primary_10_1016_j_ijbiomac_2022_01_007
crossref_primary_10_1016_j_carpta_2023_100327
crossref_primary_10_1039_D1TA05420A
crossref_primary_10_1080_17518253_2022_2121183
crossref_primary_10_3390_nano12020273
crossref_primary_10_5937_jaes0_29059
crossref_primary_10_1016_j_cej_2023_147142
crossref_primary_10_1021_acs_bioconjchem_3c00304
crossref_primary_10_1016_j_indcrop_2023_116501
crossref_primary_10_1007_s13196_023_00325_y
crossref_primary_10_3390_fermentation11030120
crossref_primary_10_3390_polym15051115
crossref_primary_10_1016_j_chemosphere_2025_144064
crossref_primary_10_1016_j_jece_2024_113835
crossref_primary_10_3390_plants11223175
crossref_primary_10_1002_adhm_202304287
crossref_primary_10_1016_j_ijbiomac_2024_130674
crossref_primary_10_5604_01_3001_0015_6636
crossref_primary_10_7584_JKTAPPI_2021_12_53_6_12
crossref_primary_10_1002_jemt_23736
crossref_primary_10_2174_1389557522666220829085805
crossref_primary_10_3390_polym15122622
crossref_primary_10_1016_j_ijbiomac_2023_125195
crossref_primary_10_32604_jrm_2022_020478
crossref_primary_10_1007_s10570_024_05816_w
crossref_primary_10_1007_s00107_025_02213_3
crossref_primary_10_1016_j_ijbiomac_2023_126287
crossref_primary_10_1038_s41428_021_00611_x
crossref_primary_10_3390_polym15122628
crossref_primary_10_1016_j_ijbiomac_2024_131759
crossref_primary_10_1021_acsabm_4c01169
crossref_primary_10_1039_D3GC05027K
crossref_primary_10_1016_j_indcrop_2024_119112
crossref_primary_10_3390_catal12101215
crossref_primary_10_1016_j_ijbiomac_2024_131633
crossref_primary_10_3390_ma17112739
crossref_primary_10_1039_D2SE00442A
crossref_primary_10_3389_fenrg_2020_596164
crossref_primary_10_1080_25740881_2023_2237101
crossref_primary_10_1016_j_ijbiomac_2020_06_168
crossref_primary_10_15243_jdmlm_2024_113_5793
crossref_primary_10_1002_prep_202100293
crossref_primary_10_15625_2525_2518_18831
crossref_primary_10_1016_j_jclepro_2021_129453
crossref_primary_10_3390_jcs8100413
crossref_primary_10_3390_polym14235074
crossref_primary_10_1039_D4NR04673K
crossref_primary_10_1016_j_mtcomm_2022_105028
crossref_primary_10_1016_j_foodchem_2021_131912
crossref_primary_10_1007_s12649_022_02014_2
crossref_primary_10_1016_j_envres_2022_114998
crossref_primary_10_1016_j_ceja_2022_100252
crossref_primary_10_3390_bioengineering10080986
crossref_primary_10_1016_j_carpta_2021_100065
crossref_primary_10_3390_ijms25020685
crossref_primary_10_1038_s41598_022_24735_z
crossref_primary_10_1039_D1GC02841C
crossref_primary_10_3390_app14052184
crossref_primary_10_1016_j_jddst_2022_104121
crossref_primary_10_1080_00914037_2024_2376247
crossref_primary_10_1016_j_molliq_2024_124256
crossref_primary_10_1016_j_ijbiomac_2024_130892
crossref_primary_10_1371_journal_pone_0281142
crossref_primary_10_1002_admt_202301874
crossref_primary_10_3390_polym13040550
crossref_primary_10_1007_s10570_021_04379_4
crossref_primary_10_1016_j_ijbiomac_2020_08_179
crossref_primary_10_3390_ma13183951
crossref_primary_10_26599_PBM_2023_9260012
crossref_primary_10_1007_s10570_024_06250_8
crossref_primary_10_1016_j_giant_2024_100299
crossref_primary_10_1088_2631_6331_abcfaf
crossref_primary_10_3390_su141811386
crossref_primary_10_1007_s43630_023_00526_x
crossref_primary_10_3390_polym14204461
crossref_primary_10_2174_1570178620666221227164410
crossref_primary_10_1111_1750_3841_15854
crossref_primary_10_1016_j_carpta_2021_100172
crossref_primary_10_1016_j_matdes_2023_112472
crossref_primary_10_1007_s11157_020_09551_z
crossref_primary_10_1007_s11274_023_03605_4
crossref_primary_10_1590_jped6384
crossref_primary_10_1016_j_sciaf_2021_e01078
crossref_primary_10_1007_s10570_024_06153_8
crossref_primary_10_1080_15440478_2024_2418357
crossref_primary_10_7584_JKTAPPI_2025_2_57_1_78
crossref_primary_10_1039_D3NA00401E
crossref_primary_10_1590_01047760202330013354
crossref_primary_10_1016_j_mser_2024_100852
crossref_primary_10_3390_foods11101394
crossref_primary_10_1002_adfm_202302351
crossref_primary_10_1007_s10570_021_03842_6
crossref_primary_10_1007_s10570_024_06055_9
crossref_primary_10_1016_j_carbpol_2023_120603
crossref_primary_10_1016_j_mtchem_2022_100869
crossref_primary_10_1016_j_cej_2024_157318
crossref_primary_10_1116_6_0003441
crossref_primary_10_1021_acsanm_1c02008
crossref_primary_10_3390_pr11041006
crossref_primary_10_1002_macp_202100501
crossref_primary_10_1016_j_carbpol_2022_119563
crossref_primary_10_3390_polym15224371
crossref_primary_10_1002_gch2_202200235
crossref_primary_10_1016_j_ijbiomac_2022_01_163
crossref_primary_10_3390_nano11020356
crossref_primary_10_1557_s43578_022_00797_7
crossref_primary_10_1039_D3TB00478C
crossref_primary_10_1016_j_ijbiomac_2021_09_063
crossref_primary_10_1007_s00604_021_04960_5
crossref_primary_10_1016_j_carbpol_2023_120850
crossref_primary_10_1007_s13399_024_06410_7
crossref_primary_10_1016_j_cej_2022_137233
crossref_primary_10_1016_j_indcrop_2024_120015
crossref_primary_10_1080_02678292_2024_2381550
crossref_primary_10_1155_2022_5242808
crossref_primary_10_1016_j_foodchem_2024_141241
crossref_primary_10_3390_pharmaceutics15071918
crossref_primary_10_1007_s10570_022_04959_y
crossref_primary_10_1039_D0NJ05484D
crossref_primary_10_3390_polym16040530
crossref_primary_10_1016_j_carpta_2022_100212
crossref_primary_10_3390_coatings14081036
crossref_primary_10_3390_nano11113008
crossref_primary_10_7584_JKTAPPI_2023_12_55_6_109
crossref_primary_10_3390_f15071174
crossref_primary_10_3390_nano14221837
crossref_primary_10_3390_polym16213001
crossref_primary_10_1016_j_carbpol_2020_116820
crossref_primary_10_3390_gels9120958
Cites_doi 10.1016/j.compositesa.2015.10.041
10.1007/s10570-015-0575-5
10.1016/j.carbpol.2017.11.100
10.1007/978-3-642-45232-1_57
10.1021/acs.chemmater.7b01170
10.1021/acs.langmuir.8b04013
10.1016/j.carbpol.2016.07.073
10.1021/acs.macromol.8b00733
10.1016/j.carbpol.2018.01.015
10.1002/app.48407
10.1021/acssuschemeng.9b02744
10.1016/j.ijbiomac.2017.01.029
10.1002/adhm.201800334
10.1080/17425247.2016.1182491
10.1016/j.indcrop.2015.03.075
10.1021/acs.biomac.8b00839
10.1002/adma.201804826
10.1007/s10570-016-0963-5
10.1007/s10570-018-1910-4
10.1039/C2SM26472B
10.1021/acs.jpclett.8b03874
10.1002/masy.200651213
10.1016/j.biotechadv.2011.05.005
10.1007/s10570-018-1871-7
10.1016/j.msec.2019.109963
10.1016/S0143-7496(97)00054-7
10.1142/9789814566469_0031
10.1016/j.biortech.2015.11.022
10.1080/02773813.2017.1316741
10.1007/s10570-019-02655-y
10.1016/j.seppur.2004.08.002
10.1016/S1001-0742(12)60145-4
10.1021/acs.chemrev.7b00627
10.1016/j.jcis.2014.10.034
10.1016/j.wasman.2019.10.041
10.1002/anie.201606626
10.1021/acssuschemeng.5b00194
10.1021/acssuschemeng.7b03437
10.1007/s10570-011-9576-1
10.1007/s10570-019-02507-9
10.1016/j.carbpol.2018.05.072
10.1039/C4NR03584D
10.1021/acssuschemeng.6b02768
10.4236/ojpchem.2019.94008
10.1016/j.carbpol.2019.04.033
10.1021/acs.biomac.8b01224
10.1016/j.copbio.2016.01.002
10.1177/0021998318789732
10.1039/C8GC00205C
10.1007/s10570-019-02648-x
10.1007/s41783-018-0036-3
10.1039/C7PY01203A
10.1016/j.carbpol.2019.115149
10.1016/j.carbpol.2019.115620
10.1016/j.cossms.2019.06.005
10.1080/14686996.2017.1401423
10.1016/j.indcrop.2014.11.027
10.3390/polym11061009
10.1002/anie.201404616
10.1016/j.memsci.2013.06.020
10.1002/adfm.201902990
10.1080/00222348.2019.1710364
10.1016/j.rser.2014.01.051
10.1016/j.carbpol.2019.115454
10.1007/s10973-016-5293-1
10.1007/s10924-017-1167-2
10.1016/j.progpolymsci.2018.07.008
10.1021/acsmacrolett.9b00692
10.1016/j.biortech.2019.122446
10.1021/acssuschemeng.9b05231
10.1016/j.eurpolymj.2012.08.008
10.1080/20550324.2016.1199410
10.1002/aenm.201700130
10.1007/s10570-019-02889-w
10.1021/acsami.5b05841
10.4322/polimeros.2010.01.001
10.1016/j.carbpol.2016.06.025
10.1007/s10570-017-1283-0
10.1021/acs.biomac.8b01482
10.1016/j.carbpol.2019.115424
10.1021/acs.biomac.6b01548
10.3390/molecules25030526
10.1039/C8NR05860A
10.1016/j.jcis.2019.10.084
10.1088/1748-605X/ab026c
10.1039/C8PY01022F
10.1039/C7TA02807E
10.3390/nano10020186
10.1016/j.cej.2018.04.026
10.1016/j.ijbiomac.2019.05.210
10.1016/j.carbpol.2019.115323
10.1016/j.conbuildmat.2019.117497
10.1016/j.apsusc.2019.143802
10.1016/j.culher.2018.07.001
10.1016/j.energy.2020.117457
10.1016/j.cis.2019.102076
10.1016/j.cis.2019.102089
10.1016/j.indcrop.2017.08.032
10.1016/j.ijbiomac.2018.11.064
10.1080/10408398.2016.1270254
10.1002/polb.23490
10.3934/matersci.2018.2.201
10.1016/j.indcrop.2019.111642
10.1002/9783527689972
10.1039/C9SC06312A
10.1007/s10570-020-03011-1
10.3183/npprj-2014-29-01-p105-118
10.1016/j.carbpol.2017.04.008
10.1186/s11671-017-2001-4
10.1016/j.ijbiomac.2018.10.081
10.1080/01694243.2016.1175246
10.1016/j.eurpolymj.2012.10.029
10.1021/acssuschemeng.8b06073
10.1007/s40725-019-00088-1
10.1016/j.ijadhadh.2013.03.013
10.1016/j.ijbiomac.2020.02.221
10.1016/j.biortech.2019.121548
10.1016/j.jcis.2019.09.002
10.1016/j.mattod.2018.02.001
10.1155/2012/158503
10.1002/cben.201600001
10.1002/biot.201900059
10.1021/cr900339w
10.1016/j.progpolymsci.2015.07.003
10.1016/j.carbpol.2019.115144
10.1016/j.ultsonch.2016.06.040
10.1039/C6NR09494E
10.1007/978-981-15-0913-1
10.1002/macp.201900358
10.1098/rsta.2017.0040
10.1007/s10570-017-1194-0
10.1002/smll.201906567
10.1080/07388551.2016.1189871
10.1016/j.molcatb.2013.12.008
10.1016/j.ijbiomac.2017.10.028
10.1021/bm400219u
10.1007/s42242-019-00049-4
10.1021/acs.jpcb.5b00715
10.1016/j.carbpol.2016.11.078
10.1016/j.indcrop.2016.01.012
10.1016/j.ijbiomac.2015.09.070
10.1007/s10570-015-0798-5
10.1016/j.carbpol.2014.06.048
10.1021/mz500787p
10.1016/j.foodhyd.2019.105411
10.1016/j.foodhyd.2019.04.039
10.1007/s10570-019-02789-z
10.1021/acs.langmuir.9b03583
10.3144/expresspolymlett.2019.75
10.1016/j.carbpol.2019.115701
10.1021/acssuschemeng.7b02363
10.1016/j.jfda.2018.12.002
10.1007/978-3-030-05399-4_23
10.1080/03602559.2016.1233277
10.1021/acsami.7b02794
10.1080/01694243.2012.727173
10.1016/j.matlet.2016.01.052
10.1038/s41598-018-34667-2
10.1007/s10570-018-1723-5
10.1016/j.carbpol.2019.01.020
10.2174/187221013804484854
10.3390/ma10010080
10.3390/nano9020164
10.1016/j.ijadhadh.2016.10.004
10.1038/srep20420
10.1007/978-3-030-05399-4_35
10.1007/s10570-015-0802-0
10.1007/s10570-019-02828-9
10.1016/j.carbpol.2019.115401
10.1016/j.rser.2014.04.047
10.1016/j.eurpolymj.2014.07.025
10.1016/j.jclepro.2018.06.128
10.1016/j.ijadhadh.2015.04.002
10.1016/j.carbpol.2018.03.023
10.1039/C7CS00790F
10.3390/app10010065
10.1016/j.indcrop.2015.12.070
10.1002/adma.201703655
10.1002/9783527689972.ch3
10.1016/j.carbpol.2018.12.004
10.1016/j.ijbiomac.2017.05.181
10.1016/j.bmcl.2015.12.060
10.1021/ie201349h
10.1007/s10853-019-03322-0
10.1016/j.foodhyd.2018.03.047
10.1007/s12649-020-00955-0.
10.1016/j.polymer.2017.02.016
10.1002/app.41719
10.1002/slct.201902533
10.1016/j.carbpol.2016.03.009
10.1016/j.matpr.2019.06.265
10.1002/9783527807437.ch7
10.1021/acssuschemeng.7b00375
10.1016/j.carbpol.2018.06.114
10.1039/C9GC00473D
10.1002/9781118872246
10.1002/9781119441632.ch3
10.1016/j.apsusc.2017.12.137
10.1016/j.ijbiomac.2019.04.117
10.1007/s10570-018-1904-2
10.1007/s10570-015-0747-3
10.1039/c2nr30260h
10.1016/j.carbpol.2018.06.045
10.1021/acs.biomac.8b00233
10.3390/nano8100859
10.1007/s10570-016-1057-0
10.1016/j.biotechadv.2018.08.009
10.1002/pen.25052
10.1016/j.polymer.2017.11.051
10.1007/s11837-016-2018-7
10.1021/acssuschemeng.5b00762
10.2147/NSA.S64386
10.15376/biores.14.1.1867-1889
10.1080/10934520600754284
10.1016/j.ijbiomac.2019.07.176
10.3390/nano9020253
10.1016/j.cej.2017.08.128
10.1021/acs.biomac.9b01037
10.1016/j.carbpol.2020.116039
10.32964/TJ13.5.35
10.3109/07388551.2016.1163322
10.1016/j.crcon.2018.05.004
10.1080/01694243.2019.1596650
10.1016/B978-0-12-816913-1.00005-2
10.3390/molecules24203724
10.1080/10408398.2018.1536966
10.1002/cssc.201901676
10.1007/s10570-018-2070-2
10.1016/j.enmm.2017.07.002
10.1021/acs.biomac.9b01721.
10.1039/C8PY01575A
10.32964/TJ13.6.47
10.1016/j.energy.2017.01.005
10.1016/j.mtchem.2019.04.012
10.1021/acssuschemeng.9b00764
10.1002/adsu.201900114
10.1515/epoly-2019-0013
10.1016/j.ijbiomac.2019.07.189
10.1016/j.carbpol.2013.06.072
10.1016/j.conbuildmat.2017.05.074
10.1007/978-981-15-0913-1_5
10.1039/D0NH00016G
10.2174/1573411013666171003155624
10.1016/j.rser.2016.02.022
10.1016/j.jhazmat.2017.06.005
10.1016/j.rser.2014.08.050
10.1002/smll.201702240
10.1016/j.actbio.2019.01.049
10.1016/j.fuproc.2016.12.007
10.1201/b16496
10.1007/s10570-019-02392-2
10.1021/acssuschemeng.8b05526
10.1016/j.nanoen.2017.04.001
10.1016/j.eurpolymj.2014.04.014
10.1016/j.jhazmat.2015.02.051
10.1016/j.biortech.2018.04.099
10.1007/s10570-019-02733-1
10.1002/app.48959
10.1007/s11157-017-9423-4
10.1080/09205063.2018.1558933
10.1016/j.colsurfb.2019.110634
10.1039/C0NR00583E
10.1007/s10570-019-02672-x
10.1021/la036129e
10.1021/acs.biomac.6b00910
10.1201/9781351262927-9
10.1007/s10570-019-02533-7
10.1039/C6CS00895J
10.1002/app.48544
10.1016/j.biortech.2015.08.029
10.1016/j.carbpol.2018.06.112
10.1016/j.foodhyd.2016.01.023
10.1016/j.cocis.2017.01.005
10.1021/acs.langmuir.7b04127
10.1016/j.indcrop.2016.02.016
10.3923/jest.2014.44.55
10.1021/acs.langmuir.9b01977
10.1007/978-3-642-45232-1
10.1016/j.conbuildmat.2020.118061
10.1007/s13204-019-01242-8
10.1021/acs.biomac.6b00144
10.1016/j.carbpol.2013.01.033
10.1002/9781118773949
10.1016/j.carbpol.2019.115114
10.1016/j.carbpol.2017.12.014
10.3390/nano10020196
10.1007/s10570-015-0551-0
10.1007/s10570-016-1109-5
10.1007/s10098-016-1191-2
10.1155/2018/7923068
10.1021/acssuschemeng.8b03331
10.1016/j.cocis.2017.01.004
10.1002/cben.201700002
10.1007/s10570-014-0348-6
10.3390/ma11081272
10.1007/s10924-018-1189-4
10.1016/j.ijpharm.2013.12.015
10.1142/8975
10.1007/s10570-012-9741-1
10.1021/es202223p
10.1016/j.ijbiomac.2016.09.056
10.1002/app.47251
10.1007/978-981-15-0913-1_6
ContentType Journal Article
Copyright Copyright © 2020 Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse and Hussin.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2020 Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse and Hussin. 2020 Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse and Hussin
Copyright_xml – notice: Copyright © 2020 Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse and Hussin.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2020 Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse and Hussin. 2020 Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse and Hussin
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.3389/fchem.2020.00392
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2296-2646
ExternalDocumentID oai_doaj_org_article_145dd4f0841341968ac805830a448261
PMC7218176
oai_HAL_hal_02649346v1
32435633
10_3389_fchem_2020_00392
Genre Journal Article
Review
GrantInformation_xml – fundername: Universiti Sains Malaysia
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
GROUPED_DOAJ
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
ABDBF
ADMLS
IAO
IEA
IPNFZ
ISR
NPM
RIG
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c496t-d8a1b1a13d3972c2ae93e8a4c1ec42813a94d433d914799ab39ef83e986f4d7a3
IEDL.DBID M48
ISSN 2296-2646
IngestDate Wed Aug 27 01:31:17 EDT 2025
Thu Aug 21 18:11:13 EDT 2025
Fri May 09 12:26:58 EDT 2025
Fri Jul 11 10:00:22 EDT 2025
Wed Feb 19 02:08:57 EST 2025
Thu Apr 24 22:56:41 EDT 2025
Tue Jul 01 03:18:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords functionalization
nanocellulose
application
production
cellulose nanocrystals
Language English
License Copyright © 2020 Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse and Hussin.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-d8a1b1a13d3972c2ae93e8a4c1ec42813a94d433d914799ab39ef83e986f4d7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Clemens Kilian Weiss, Fachhochschule Bingen, Germany
Reviewed by: Akira Isogai, The University of Tokyo, Japan; Rocktotpal Konwarh, Addis Ababa Science and Technology University, Ethiopia
ORCID: Djalal Trache orcid.org/0000-0002-3004-9855; M. Hazwan Hussin orcid.org/0000-0001-8204-3685
This article was submitted to Polymer Chemistry, a section of the journal Frontiers in Chemistry
ORCID 0000-0001-8505-8401
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fchem.2020.00392
PMID 32435633
PQID 2405336441
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_145dd4f0841341968ac805830a448261
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7218176
hal_primary_oai_HAL_hal_02649346v1
proquest_miscellaneous_2405336441
pubmed_primary_32435633
crossref_citationtrail_10_3389_fchem_2020_00392
crossref_primary_10_3389_fchem_2020_00392
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-06
PublicationDateYYYYMMDD 2020-05-06
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-06
  day: 06
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in chemistry
PublicationTitleAlternate Front Chem
PublicationYear 2020
Publisher Frontiers Media
Frontiers Media S.A
Publisher_xml – name: Frontiers Media
– name: Frontiers Media S.A
References Kumar (B129) 2020; 102
Bertsch (B24) 2019; 35
Jonoobi (B104) 2015; 22
Mahfoudhi (B158) 2017; 24
Sharma (B235) 2019; 104
Lin (B143) 2019; 24
de Almeida Mesquita (B47) 2018; 26
Klemm (B123) 2018; 21
Tarchoun (B255); 26
Coelho (B44) 2018; 192
Wohlhauser (B294) 2018; 51
Sehaqui (B229) 2017; 18
Gu (B81) 2020; 560
Kalashnikova (B109) 2013; 9
Dufresne (B59) 2013; 23
Wang (B284) 2017; 13
Lin (B145) 2012; 4
Osorio (B193) 2019; 87
Rezania (B214) 2020; 199
Satlewal (B227) 2018; 36
Cao (B31) 2018; 6
Luo (B156) 2019; 224
Chávez-Guerrero (B37) 2018; 181
Langari (B131) 2019; 4
Vineeth (B278) 2019; 9
Montes (B173) 2020; 235
Charreau (B36) 2013; 7
Ng (B184) 2017; 56
Capron (B33) 2018
Grumezescu (B80) 2016
Mohammed (B171) 2015; 22
Kim (B119) 2019
Köse (B125) 2020; 27
Huang (B93) 2017; 10
Tarchoun (B253); 138
Cao (B32) 2016; 6
Pang (B197) 2018; 25
Yu (B308) 2013; 25
Moon (B175) 2016; 68
Jorfi (B106) 2015; 132
Brinchi (B28) 2013; 94
Lazko (B134) 2016; 2
Habibi (B82) 2010; 110
Li (B141) 2015; 289
Abdul Khalil (B1) 2019; 136
Akhlaghi (B8) 2020; 241
Golmohammadi (B77) 2017; 29
Behera (B23) 2014; 36
Dufresne (B57) 2018; 376
Malucelli (B159) 2017; 16
Ram (B210) 2018; 331
Gitari (B74) 2019; 14
Stoeckel (B243) 2013; 45
Fodil Cherif (B64) 2020
Abitbol (B2) 2018; 34
Almeida (B10) 2018; 30
Tang (B248) 2019; 26
Cheng (B42) 2020; 231
Huan (B91) 2019; 29
Kaboorani (B108) 2012; 48
Hussin (B95) 2019
Wang (B280) 2019; 27
Liu (B147) 2016; 151
B103
Tan (B247) 2019
Wang (B285) 2017; 7
Phanthong (B202) 2018; 1
Lengowski (B136) 2019
Camarero Espinosa (B29) 2013; 14
Wei (B289) 2018; 198
Li (B138) 2018; 7
Ntoutoume (B188) 2016; 26
Liu (B151); 21
Errokh (B61) 2018; 25
Nechyporchuk (B179) 2016; 93
Chen (B40) 2019
Jeddi (B102) 2019; 135
Yang (B303) 2017; 109
Arof (B12) 2019; 17
B65
Xu (B299) 2017; 339
Mogoşanu (B167) 2014; 463
Moberg (B166) 2017; 24
Mohamed (B170); 157
Zhao (B315) 2020; 298
Thomas (B261) 2018; 118
Xiang (B296) 2019; 20
Smith (B241) 2019; 10
Rajinipriya (B209) 2018; 6
Hassan (B85) 2018; 262
Rohaizu (B220) 2017; 34
Veigel (B273) 2011; 18
Sethi (B231) 2018; 197
Zhang (B314) 2017; 9
Jawaid (B101) 2017
Naz (B178) 2019; 2
Du (B51) 2016; 23
Karim (B115) 2017; 37
Seabra (B228) 2018; 181
Glasing (B75) 2019; 36
Tong (B262) 2020; 137
Li (B137) 2020; 59
Karimi (B117) 2016; 200
Ferreira (B62) 2018; 436
Ramasamy (B211) 2020
Yahya (B301) 2018; 26
Jamshaid (B100) 2017; 4
Richter (B215) 2009
Tao (B252) 2020; 5
Hamed (B83) 2019; 35
Oun (B194) 2016; 168
Tayeb (B257) 2019; 224
Sharma (B236) 2020
Goi (B76) 2019; 35
Trache (B263) 2017
Neto (B182) 2016; 153
Singh (B238) 2014; 56
Yan (B302) 2019; 497
Sathishkumar (B226) 2014; 100
Dominic (B50) 2020; 230
d'Halluin (B49) 2017; 5
Huan (B90) 2018; 20
Dunky (B60) 1998; 18
George (B72) 2015; 8
Kargarzadeh (B113); 87
Surov (B246) 2018; 25
Gao (B70) 2020; 227
Charreau (B35) 2020; 237
Hamedi (B84) 2018; 199
Yanto (B304) 2014; 7
Park (B198) 2013; 49
Gopi (B78) 2019; 13
Kalhori (B110) 2017; 148
Liu (B150) 2019; 139
Lin (B146) 2019
Sharma (B234) 2019
Trache (B267); 124
He (B86) 2019; 27
B97
Kim (B121) 2019; 31
Li (B140) 2020; 229
Nigmatullin (B185) 2020
Putro (B206) 2017; 8
Reiniati (B213) 2017; 37
Liu (B152); 35
Afrin (B5) 2017; 4
Kumar (B127) 2020; 11
Mao (B160) 2017
Novo (B187) 2016; 93
B268
Beyene (B25) 2018; 11
Sampaio (B225) 2016; 145
Fiss (B63) 2019; 7
Kontturi (B124) 2016; 55
Sun (B244) 2015; 22
Neves (B183) 2019; 26
Balea (B20) 2020; 25
Agate (B6) 2018; 198
Clarke (B43) 2019; 59
Miao (B163) 2019; 23
Meng (B162) 2019; 26
Velásquez-Cock (B275) 2016; 83
Du (B52) 2019; 209
Fujisawa (B67) 2017; 18
Rigotti (B216) 2019; 13
Oksman (B191) 2014
Nascimento (B177) 2018; 20
Dai (B45) 2020; 16
Du (B53) 2017; 5
Karimian (B118) 2019; 133
Pindáková (B203) 2019; 557
Grishkewich (B79) 2017; 29
Lin (B144) 2014; 59
Tang (B249) 2016; 17
Rosilo (B221) 2014; 6
Kargarzadeh (B112) 2017
Zhang (B313) 2018; 8
Barbash (B22) 2020
Mohamed (B169); 103
Kang (B111) 2018; 6
Jordan (B105) 2019; 26
Pires (B204) 2019; 140
Singh (B239) 2014; 32
Daud (B46) 2017
Hong (B87) 2020; 228
Rabemanolontsoa (B208) 2016; 199
Saelices (B223) 2019; 10
Salimi (B224) 2019; 7
Bacakova (B16) 2019; 9
Kaboorani (B107) 2015; 65
Nuryawan (B189) 2017; 72
Trache (B265); 93
Alavi (B9) 2019; 19
Moohan (B174) 2020; 10
Lasrado (B132) 2020
Wang (B281) 2013; 446
Nandi (B176) 2018; 2
Bai (B19) 2018; 19
Hu (B88); 439
Thakur (B259)
Ayrilmis (B15) 2019; 53
Yue (B309) 2019; 7
Veigel (B274) 2012; 2012
Isogai (B98) 2011; 3
Mohaiyiddin (B168) 2016; 18
Robles (B217) 2018; 183
Ayrilmis (B14) 2016; 30
Pandey (B196) 2015
Zhang (B311) 2013; 27
Dufresne (B58) 2019; 5
Agbor (B7) 2011; 29
Tshikovhi (B269) 2020; 152
Tang (B251) 2018; 25
Yu (B307) 2019; 7
Xu (B300) 2019; 275
Cheng (B41) 2019; 33
Dehkordi (B48) 2019; 14
Li (B139) 2005; 42
Campano (B30) 2016; 23
Gebald (B71) 2011; 45
Kim (B120) 2006; 41
Pennells (B201) 2020; 27
Werner (B291); 20
Reid (B212) 2019; 8
Plackett (B205) 2014; 29
Zhao (B316) 2014; 21
Karim (B116) 2014; 112
Werner (B290) 2017; 8
Ummartyotin (B270) 2015; 41
Chen (B38) 2017; 160
Liang (B142) 2020; 13
Wang (B282) 2016; 53
Yue (B310) 2018; 134
Kargarzadeh (B114); 25
Nepomuceno (B181) 2017; 24
Kumar (B128) 2012; 51
Chen (B39) 2018; 47
Gao (B69) 2019; 26
Robles (B218) 2015; 71
Awan (B13) 2016; 23
Bacakova (B17) 2020; 10
Carvalho (B34) 2019; 14
Shaheen (B233) 2019; 121
Mishra (B164) 2019; 207
Wardhono (B286) 2018; 8
Bai (B18) 2019; 96
Foster (B66) 2018; 47
Kramer (B126) 2006; 244
Dufresne (B55) 2013
Song (B242) 2018; 196
Nemoto (B180) 2015; 7
Oksman (B190) 2016; 83
Serpa (B230) 2016; 57
Thakur (B258)
Xu (B298) 2019; 9
Sunasee (B245) 2016; 13
Wan (B279) 2019; 7
Wu (B295) 2019; 288
Shaheen (B232) 2018; 107
Werner (B292); 9
Barbash (B21) 2017; 12
Dufresne (B56) 2017; 29
Du (B54) 2017; 35
Hu (B89); 3
Tarchoun (B254); 220
Liu (B148) 2012; 19
Park (B199) 2019; 223
Ilyas (B96) 2018; 14
Trache (B266) 2017; 9
Oun (B195) 2020; 60
Zhang (B312) 2020; 229
Lavoine (B133) 2017; 5
Wang (B283) 2020; 100
Wei (B288) 2017; 169
Gan (B68) 2020; 137
Iwamoto (B99) 2015; 4
Kiziltas (B122) 2013
Lu (B153) 2019; 11
Osong (B192) 2016; 23
Le Bras (B135) 2015; 119
Uth (B271) 2014; 53
Huang (B92) 2020
Miyashiro (B165) 2020; 10
Tang (B250) 2019
Trache (B264) 2018; 5
Yin (B305) 2019; 30
Vazquez (B272) 2015
Bielejewska (B27) 2020; 187
Qu (B207) 2019; 26
Gindl-Altmutter (B73) 2014
Shojaeiarani (B237) 2019; 216
Xie (B297) 2018; 2018
Novo (B186) 2015; 3
Saba (B222) 2017; 97
Rodriguez (B219) 2017; 68
Lu (B154) 2014; 13
Anderson (B11) 2014; 13
Bhutto (B26) 2017; 122
Tarimala (B256) 2004; 20
Vilarinho (B277) 2018; 58
Abitbol (B3) 2016; 39
Lubis (B155) 2018; 38
Thakur (B260) 2013; 98
Mackie (B157) 2019; 11
Wertz (B293) 2010
Sirviö (B240) 2016; 17
Mariano (B161) 2014; 52
Wei (B287) 2019; 54
Younas (B306) 2019; 124
Kwon (B130) 2015; 60
Liu (B149) 2018; 82
Mokhena (B172) 2020; 27
Huang (B94) 2018; 346
Vijayalakshmi (B276) 2016; 82
Peng (B200) 2017; 112
Abouzeid (B4) 2018; 20
References_xml – volume: 83
  start-page: 2
  year: 2016
  ident: B190
  article-title: Review of the recent developments in cellulose nanocomposite processing
  publication-title: Compos. Part. A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2015.10.041
– volume: 22
  start-page: 1135
  year: 2015
  ident: B244
  article-title: Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0575-5
– volume: 181
  start-page: 642
  year: 2018
  ident: B37
  article-title: Eco-friendly isolation of cellulose nanoplatelets through oxidation under mild conditions
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2017.11.100
– start-page: 81
  volume-title: Handbook of Polymer Nanocomposites. Processing, Performance and Application
  year: 2015
  ident: B272
  article-title: Extraction and production of cellulose nanofibers
  doi: 10.1007/978-3-642-45232-1_57
– volume: 29
  start-page: 5426
  year: 2017
  ident: B77
  article-title: Nanocellulose in sensing and biosensing
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01170
– volume: 35
  start-page: 3600
  ident: B152
  article-title: Assembly, gelation, and helicoidal consolidation of nanocellulose dispersions
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b04013
– volume: 153
  start-page: 143
  year: 2016
  ident: B182
  article-title: Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2016.07.073
– volume: 51
  start-page: 6157
  year: 2018
  ident: B294
  article-title: Grafting polymers from cellulose nanocrystals: synthesis, properties, and applications
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b00733
– volume: 183
  start-page: 294
  year: 2018
  ident: B217
  article-title: Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2018.01.015
– volume: 137
  start-page: 48407
  year: 2020
  ident: B262
  article-title: Preparation and mechanism analysis of morphology-controlled cellulose nanocrystals via compound enzymatic hydrolysis of eucalyptus pulp
  publication-title: J. Appl. Polym. Sci
  doi: 10.1002/app.48407
– volume: 7
  start-page: 15800
  year: 2019
  ident: B224
  article-title: Production of nanocellulose and its applications in drug delivery: a critical review
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b02744
– volume: 97
  start-page: 190
  year: 2017
  ident: B222
  article-title: Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.01.029
– volume: 7
  start-page: 1800334
  year: 2018
  ident: B138
  article-title: Nanocellulose-Based Antibacterial Materials
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201800334
– volume: 13
  start-page: 1243
  year: 2016
  ident: B245
  article-title: Cellulose nanocrystals: a versatile nanoplatform for emerging biomedical applications
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2016.1182491
– volume: 71
  start-page: 44
  year: 2015
  ident: B218
  article-title: Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites
  publication-title: Ind. Crop Prod.
  doi: 10.1016/j.indcrop.2015.03.075
– volume: 20
  start-page: 573
  year: 2018
  ident: B4
  article-title: Current state and new trends in the use of cellulose nanomaterials for wastewater treatment
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b00839
– volume: 31
  start-page: 1804826
  year: 2019
  ident: B121
  article-title: Nanocellulose for energy storage systems: beyond the limits of synthetic materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804826
– volume: 23
  start-page: 2389
  year: 2016
  ident: B51
  article-title: Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis
  publication-title: Cellulose
  doi: 10.1007/s10570-016-0963-5
– volume: 25
  start-page: 5035
  year: 2018
  ident: B246
  article-title: A novel effective approach of nanocrystalline cellulose production: oxidation–hydrolysis strategy
  publication-title: Cellulose
  doi: 10.1007/s10570-018-1910-4
– volume: 9
  start-page: 952
  year: 2013
  ident: B109
  article-title: Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions
  publication-title: Soft Matter
  doi: 10.1039/C2SM26472B
– volume: 10
  start-page: 4652
  year: 2019
  ident: B241
  article-title: Natural isotopic abundance 13C and 15N multidimensional solid-state NMR enabled by dynamic nuclear polarization
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b03874
– volume: 244
  start-page: 136
  year: 2006
  ident: B126
  article-title: Nanocellulose polymer composites as innovative pool for (bio) material development
  publication-title: Macromol. Symp.
  doi: 10.1002/masy.200651213
– volume: 29
  start-page: 675
  year: 2011
  ident: B7
  article-title: Biomass pretreatment: fundamentals toward application
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2011.05.005
– volume: 25
  start-page: 3899
  year: 2018
  ident: B61
  article-title: Morphology of the nanocellulose produced by periodate oxidation and reductive treatment of cellulose fibers
  publication-title: Cellulose
  doi: 10.1007/s10570-018-1871-7
– volume: 104
  start-page: 109963
  year: 2019
  ident: B235
  article-title: Bacterial nanocellulose: present status, biomedical applications and future perspectives
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.109963
– volume-title: Proceedings of SPE Automotive Composites Conference and Exhibition (ACCE)
  year: 2013
  ident: B122
  article-title: Micro-and nanocellulose composites for automotive applications
– volume: 18
  start-page: 95
  year: 1998
  ident: B60
  article-title: Urea–formaldehyde (UF) adhesive resins for wood
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/S0143-7496(97)00054-7
– start-page: 253
  volume-title: Handbook of Green Materials: Processing Technologies, Properties and Applications
  year: 2014
  ident: B73
  article-title: Nanocellulose-modified wood adhesives
  doi: 10.1142/9789814566469_0031
– volume: 200
  start-page: 1008
  year: 2016
  ident: B117
  article-title: A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.11.022
– volume: 38
  start-page: 1
  year: 2018
  ident: B155
  article-title: Hydrolytic removal of cured urea–formaldehyde resins in medium-density fiberboard for recycling
  publication-title: J. Wood Chem. Technol.
  doi: 10.1080/02773813.2017.1316741
– volume: 26
  start-page: 7769
  year: 2019
  ident: B207
  article-title: Enhancing the redispersibility of TEMPO-mediated oxidized cellulose nanofibrils in N,N-dimethylformamide by modification with cetyltrimethylammonium bromide
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02655-y
– volume: 42
  start-page: 237
  year: 2005
  ident: B139
  article-title: Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2004.08.002
– volume: 25
  start-page: 933
  year: 2013
  ident: B308
  article-title: Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals
  publication-title: Int. J. Environ. Sci.
  doi: 10.1016/S1001-0742(12)60145-4
– volume: 118
  start-page: 11575
  year: 2018
  ident: B261
  article-title: Nanocellulose, a versatile green platform: from biosources to materials and their applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00627
– volume: 439
  start-page: 139
  ident: B88
  article-title: Surfactant-enhanced cellulose nanocrystal Pickering emulsions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2014.10.034
– volume: 102
  start-page: 281
  year: 2020
  ident: B129
  article-title: Waste paper: an underutilized but promising source for nanocellulose mining
  publication-title: Waste Manage
  doi: 10.1016/j.wasman.2019.10.041
– volume: 55
  start-page: 14455
  year: 2016
  ident: B124
  article-title: Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201606626
– volume: 3
  start-page: 1023
  ident: B89
  article-title: Synergistic stabilization of emulsions and emulsion gels with water-soluble polymers and cellulose nanocrystals
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00194
– volume: 6
  start-page: 2807
  year: 2018
  ident: B209
  article-title: Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b03437
– volume: 18
  start-page: 1227
  year: 2011
  ident: B273
  article-title: Cellulose nanofibrils as filler for adhesives: effect on specific fracture energy of solid wood-adhesive bonds
  publication-title: Cellulose
  doi: 10.1007/s10570-011-9576-1
– volume: 26
  start-page: 5937
  year: 2019
  ident: B69
  article-title: Preparation of high-aspect-ratio cellulose nanocrystals by solvothermal synthesis followed by mechanical exfoliation
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02507-9
– volume: 197
  start-page: 92
  year: 2018
  ident: B231
  article-title: Sonication-assisted surface modification method to expedite the water removal from cellulose nanofibers for use in nanopapers and paper making
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2018.05.072
– volume: 6
  start-page: 11871
  year: 2014
  ident: B221
  article-title: Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding
  publication-title: Nanoscale
  doi: 10.1039/C4NR03584D
– volume: 5
  start-page: 1965
  year: 2017
  ident: B49
  article-title: Chemically modified cellulose filter paper for heavy metal remediation in water
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b02768
– volume: 9
  start-page: 86
  year: 2019
  ident: B278
  article-title: Chemical modification of nanocellulose in wood adhesive
  publication-title: Open J. Polym. Chem.
  doi: 10.4236/ojpchem.2019.94008
– volume: 216
  start-page: 247
  year: 2019
  ident: B237
  article-title: A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2019.04.033
– volume: 20
  start-page: 635
  year: 2018
  ident: B90
  article-title: Low solids emulsion gels based on nanocellulose for 3D-printing
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b01224
– volume: 39
  start-page: 76
  year: 2016
  ident: B3
  article-title: Nanocellulose, a tiny fiber with huge applications
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2016.01.002
– volume: 53
  start-page: 669
  year: 2019
  ident: B15
  article-title: Mechanical and thermal properties of Moringa oleifera cellulose-based epoxy nanocomposites
  publication-title: J. Compos. Mater.
  doi: 10.1177/0021998318789732
– volume: 20
  start-page: 2428
  year: 2018
  ident: B177
  article-title: Nanocellulose nanocomposite hydrogels: technological and environmental issues
  publication-title: Green Chem.
  doi: 10.1039/C8GC00205C
– volume: 26
  start-page: 7753
  year: 2019
  ident: B248
  article-title: Pickering emulsions stabilized by hydrophobically modified nanocellulose containing various structural characteristics
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02648-x
– volume: 2
  start-page: 149
  year: 2018
  ident: B176
  article-title: A review on preparation and properties of cellulose nanocrystal-incorporated natural biopolymer
  publication-title: J. Package Technol. Res.
  doi: 10.1007/s41783-018-0036-3
– volume: 8
  start-page: 6064
  year: 2017
  ident: B290
  article-title: Synthesis of surfactant-free micro-and nanolatexes from Pickering emulsions stabilized by acetylated cellulose nanocrystals
  publication-title: Polym. Chem.
  doi: 10.1039/C7PY01203A
– volume: 224
  start-page: 115149
  year: 2019
  ident: B257
  article-title: Application of nanocellulose in sustainable electrochemical and piezoelectric systems: a review
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2019.115149
– volume: 230
  start-page: 115620
  year: 2020
  ident: B50
  article-title: Green tire technology: effect of rice husk derived nanocellulose (RHNC) in replacing carbon black (CB) in natural rubber (NR) compounding. Carbohyd
  publication-title: Polym
  doi: 10.1016/j.carbpol.2019.115620
– ident: B268
– volume: 23
  start-page: 100761
  year: 2019
  ident: B163
  article-title: Critical insights into the reinforcement potential of cellulose nanocrystals in polymer nanocomposites
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2019.06.005
– volume: 18
  start-page: 959
  year: 2017
  ident: B67
  article-title: Nanocellulose-stabilized Pickering emulsions and their applications
  publication-title: Sci. Technol. Adv. Mat.
  doi: 10.1080/14686996.2017.1401423
– volume: 65
  start-page: 45
  year: 2015
  ident: B107
  article-title: Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant
  publication-title: Ind. Crop Prod.
  doi: 10.1016/j.indcrop.2014.11.027
– volume: 11
  start-page: 1009
  year: 2019
  ident: B153
  article-title: Properties of polylactic acid reinforced by hydroxyapatite modified nanocellulose
  publication-title: Polymers
  doi: 10.3390/polym11061009
– start-page: 19
  volume-title: ACS Symposium Series
  year: 2017
  ident: B160
  article-title: Comparative assessment of methods for producing cellulose I nanocrystals from cellulosic sources. Nanocelluloses: their preparation, properties, and applications
– volume: 53
  start-page: 12618
  year: 2014
  ident: B271
  article-title: A chemoenzymatic approach to protein immobilization onto crystalline cellulose nanoscaffolds
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201404616
– volume: 446
  start-page: 376
  year: 2013
  ident: B281
  article-title: Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.06.020
– volume: 29
  start-page: 1902990
  year: 2019
  ident: B91
  article-title: Two-phase emulgels for direct ink writing of skin-bearing architectures
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902990
– volume: 59
  start-page: 223
  year: 2020
  ident: B137
  article-title: Microstructure and thermal and tensile properties of poly (vinyl alcohol) nanocomposite films reinforced by polyacrylamide grafted cellulose nanocrystals
  publication-title: J. Macromol. Sci. B
  doi: 10.1080/00222348.2019.1710364
– volume: 32
  start-page: 713
  year: 2014
  ident: B239
  article-title: A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.01.051
– volume: 229
  start-page: 115454
  year: 2020
  ident: B312
  article-title: Methods and applications of nanocellulose loaded with inorganic nanomaterials: a review. Carbohyd
  publication-title: Polym
  doi: 10.1016/j.carbpol.2019.115454
– volume: 124
  start-page: 1485
  ident: B267
  article-title: Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-016-5293-1
– volume: 26
  start-page: 2825
  year: 2018
  ident: B301
  article-title: Reuse of selected lignocellulosic and processed biomasses as sustainable sources for the fabrication of nanocellulose via Ni (II)-catalyzed hydrolysis approach: a comparative study
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-017-1167-2
– volume: 87
  start-page: 197
  ident: B113
  article-title: Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2018.07.008
– volume: 8
  start-page: 1334
  year: 2019
  ident: B212
  article-title: Interfacial polymerization of cellulose nanocrystal polyamide janus nanocomposites with controlled architectures
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.9b00692
– volume: 298
  start-page: 122446
  year: 2020
  ident: B315
  article-title: Recent advances on ammonia-based pretreatments of lignocellulosic biomass
  publication-title: Bioresour. Technol
  doi: 10.1016/j.biortech.2019.122446
– volume: 7
  start-page: 19202
  year: 2019
  ident: B279
  article-title: Direct surface functionalization of cellulose nanocrystals with hyperbranched polymers through the anionic polymerization for ph-responsive intracellular drug delivery
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05231
– volume: 48
  start-page: 1829
  year: 2012
  ident: B108
  article-title: Nanocrystalline cellulose (NCC): a renewable nano-material for polyvinyl acetate (PVA) adhesive
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2012.08.008
– volume: 2
  start-page: 65
  year: 2016
  ident: B134
  article-title: Acid-free extraction of cellulose type I nanocrystals using Brønsted acid-type ionic liquids
  publication-title: Nanocomposites
  doi: 10.1080/20550324.2016.1199410
– volume: 7
  start-page: 1700130
  year: 2017
  ident: B285
  article-title: Cellulose-based supercapacitors: material and performance considerations
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700130
– volume: 27
  start-page: 1149
  year: 2020
  ident: B172
  article-title: Cellulose nanomaterials: new generation materials for solving global issues
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02889-w
– volume: 7
  start-page: 19809
  year: 2015
  ident: B180
  article-title: Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05841
– volume: 23
  start-page: 277
  year: 2013
  ident: B59
  article-title: Cellulose-reinforced composites: from micro-to nanoscale
  publication-title: Polímeros
  doi: 10.4322/polimeros.2010.01.001
– volume: 151
  start-page: 716
  year: 2016
  ident: B147
  article-title: Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2016.06.025
– volume: 24
  start-page: 2499
  year: 2017
  ident: B166
  article-title: Rheological properties of nanocellulose suspensions: effects of fibril/particle dimensions and surface characteristics
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1283-0
– volume: 20
  start-page: 490
  ident: B291
  article-title: Convenient synthesis of hybrid polymer materials by AGET-ATRP polymerization of Pickering emulsions stabilized by cellulose nanocrystals grafted with reactive moieties
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b01482
– volume: 228
  start-page: 115424
  year: 2020
  ident: B87
  article-title: Modified tunicate nanocellulose liquid crystalline fiber as closed loop for recycling platinum-group metals
  publication-title: Carbohyd. Polym
  doi: 10.1016/j.carbpol.2019.115424
– volume: 18
  start-page: 242
  year: 2017
  ident: B229
  article-title: Highly carboxylated cellulose nanofibers via succinic anhydride esterification of wheat fibers and facile mechanical disintegration
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.6b01548
– volume: 25
  start-page: 526
  year: 2020
  ident: B20
  article-title: Industrial Application of nanocelluloses in papermaking: a review of challenges, technical solutions, and market perspectives
  publication-title: Molecules
  doi: 10.3390/molecules25030526
– volume: 11
  start-page: 2991
  year: 2019
  ident: B157
  article-title: The fate of cellulose nanocrystal stabilised emulsions after simulated gastrointestinal digestion and exposure to intestinal mucosa
  publication-title: Nanoscale
  doi: 10.1039/C8NR05860A
– volume: 560
  start-page: 849
  year: 2020
  ident: B81
  article-title: Magnetic nanocellulose-magnetite aerogel for easy oil adsorption
  publication-title: J. Colloid Interface Sci
  doi: 10.1016/j.jcis.2019.10.084
– volume: 14
  start-page: 035003
  year: 2019
  ident: B48
  article-title: Nanocrystalline cellulose–hyaluronic acid composite enriched with GM-CSF loaded chitosan nanoparticles for enhanced wound healing
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-605X/ab026c
– volume: 9
  start-page: 5043
  ident: B292
  article-title: A new strategy to elaborate polymer composites via Pickering emulsion polymerization of a wide range of monomers
  publication-title: Polym. Chem.
  doi: 10.1039/C8PY01022F
– volume: 5
  start-page: 16105
  year: 2017
  ident: B133
  article-title: Nanocellulose-based foams and aerogels: processing, properties, and applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02807E
– volume: 10
  start-page: 186
  year: 2020
  ident: B165
  article-title: A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes
  publication-title: Nanomaterials
  doi: 10.3390/nano10020186
– volume: 346
  start-page: 361
  year: 2018
  ident: B94
  article-title: Preparation of a novel nanobiocatalyst by immobilizing penicillin acylase onto magnetic nanocrystalline cellulose and its use for efficient synthesis of cefaclor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.026
– volume: 135
  start-page: 829
  year: 2019
  ident: B102
  article-title: Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.05.210
– volume: 227
  start-page: 115323
  year: 2020
  ident: B70
  article-title: Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions
  publication-title: Carbohyd. Polym
  doi: 10.1016/j.carbpol.2019.115323
– volume: 235
  start-page: 117497
  year: 2020
  ident: B173
  article-title: Rheological impact of using cellulose nanocrystals (CNC) in cement pastes
  publication-title: Constr. Build. Mater
  doi: 10.1016/j.conbuildmat.2019.117497
– volume: 497
  start-page: 143802
  year: 2019
  ident: B302
  article-title: High strength and toughness epoxy nanocomposites reinforced with graphene oxide-nanocellulose micro/nanoscale structures
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143802
– volume: 35
  start-page: 140
  year: 2019
  ident: B83
  article-title: A new mixture of hydroxypropyl cellulose and nanocellulose for wood consolidation
  publication-title: J. Cult. Herit.
  doi: 10.1016/j.culher.2018.07.001
– volume: 199
  start-page: 117457
  year: 2020
  ident: B214
  article-title: Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117457
– volume: 275
  start-page: 102076
  year: 2019
  ident: B300
  article-title: A review of nanocrystalline cellulose suspensions: rheology, liquid crystal ordering and colloidal phase behaviour
  publication-title: Adv. Colloid Interfac. Sci.
  doi: 10.1016/j.cis.2019.102076
– volume: 35
  start-page: 571
  year: 2019
  ident: B24
  article-title: Adsorption and interfacial structure of nanocelluloses at fluid interfaces
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2019.102089
– volume: 109
  start-page: 241
  year: 2017
  ident: B303
  article-title: Effects of preparation methods on the morphology and properties of nanocellulose (NC) extracted from corn husk
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2017.08.032
– volume: 124
  start-page: 591
  year: 2019
  ident: B306
  article-title: A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.11.064
– volume: 58
  start-page: 1526
  year: 2018
  ident: B277
  article-title: Nanocellulose in green food packaging
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2016.1270254
– volume: 52
  start-page: 791
  year: 2014
  ident: B161
  article-title: Cellulose nanocrystals and related nanocomposites: review of some properties and challenges
  publication-title: J. Polym. Sci. Pol. Phys.
  doi: 10.1002/polb.23490
– volume: 5
  start-page: 201
  year: 2018
  ident: B264
  article-title: Nanocellulose as a promising sustainable material for biomedical applications
  publication-title: AIMS Mater. Sci.
  doi: 10.3934/matersci.2018.2.201
– volume: 140
  start-page: 111642
  year: 2019
  ident: B204
  article-title: Valorization of energy crops as a source for nanocellulose production–current knowledge and future prospects
  publication-title: Ind. Crop Prod.
  doi: 10.1016/j.indcrop.2019.111642
– volume-title: Handbook of Nanocellulose and Cellulose Nanocomposites.
  year: 2017
  ident: B112
  doi: 10.1002/9783527689972
– volume: 11
  start-page: 3868
  year: 2020
  ident: B127
  article-title: The surface chemistry of a nanocellulose drug carrier unravelled by MAS-DNP
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC06312A
– volume: 27
  start-page: 2967
  year: 2020
  ident: B125
  article-title: Applications and impact of nanocellulose based adsorbents
  publication-title: Cellulose
  doi: 10.1007/s10570-020-03011-1
– volume: 29
  start-page: 105
  year: 2014
  ident: B205
  article-title: A review of nanocellulose as a novel vehicle for drug delivery
  publication-title: Nord. Pulp Paper Res. J.
  doi: 10.3183/npprj-2014-29-01-p105-118
– volume: 169
  start-page: 108
  year: 2017
  ident: B288
  article-title: Chemical modification of nanocellulose with canola oil fatty acid methyl ester
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2017.04.008
– volume: 12
  start-page: 241
  year: 2017
  ident: B21
  article-title: Preparation and properties of nanocellulose from organosolv straw pulp
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-017-2001-4
– volume: 121
  start-page: 814
  year: 2019
  ident: B233
  article-title: Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.10.081
– volume: 30
  start-page: 2032
  year: 2016
  ident: B14
  article-title: Microfibrillated-cellulose-modified urea-formaldehyde adhesives with different F/U molar ratios for wood-based composites
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1080/01694243.2016.1175246
– volume: 49
  start-page: 532
  year: 2013
  ident: B198
  article-title: Crystallinity and domain size of cured urea–formaldehyde resin adhesives with different formaldehyde/urea mole ratios
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2012.10.029
– volume: 7
  start-page: 5986
  year: 2019
  ident: B309
  article-title: High performance biobased epoxy nanocomposite reinforced with a bacterial cellulose nanofiber network
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06073
– volume: 5
  start-page: 76
  year: 2019
  ident: B58
  article-title: Nanocellulose processing properties and potential applications
  publication-title: Curr. For. Rep.
  doi: 10.1007/s40725-019-00088-1
– volume: 45
  start-page: 32
  year: 2013
  ident: B243
  article-title: Mechanical properties of adhesives for bonding wood—a review
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2013.03.013
– volume: 152
  start-page: 616
  year: 2020
  ident: B269
  article-title: Nanocellulose-based composites for the removal of contaminants from wastewater
  publication-title: Int. J. Biol. Macromol
  doi: 10.1016/j.ijbiomac.2020.02.221
– volume: 288
  start-page: 121548
  year: 2019
  ident: B295
  article-title: Improving biocatalysis of cefaclor with penicillin acylase immobilized on magnetic nanocrystalline cellulose in deep eutectic solvent based co-solvent
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121548
– volume: 557
  start-page: 196
  year: 2019
  ident: B203
  article-title: Role of protein-cellulose nanocrystal interactions in the stabilization of emulsion
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.09.002
– volume: 21
  start-page: 720
  year: 2018
  ident: B123
  article-title: Nanocellulose as a natural source for groundbreaking applications in materials science: Today's state
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.02.001
– volume: 2012
  start-page: 158503
  year: 2012
  ident: B274
  article-title: Particle board and oriented strand board prepared with nanocellulose-reinforced adhesive
  publication-title: J. Nanomater.
  doi: 10.1155/2012/158503
– volume: 4
  start-page: 289
  year: 2017
  ident: B5
  article-title: Isolation and surface modification of nanocellulose: necessity of enzymes over chemicals
  publication-title: Chem. Biol. Eng. Rev.
  doi: 10.1002/cben.201600001
– volume: 14
  start-page: 1900059
  year: 2019
  ident: B34
  article-title: Latest advances on bacterial cellulose-based materials for wound healing, delivery systems, and tissue engineering
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201900059
– volume: 110
  start-page: 3479
  year: 2010
  ident: B82
  article-title: Cellulose nanocrystals: chemistry, self-assembly, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr900339w
– volume: 53
  start-page: 169
  year: 2016
  ident: B282
  article-title: Recent advances in regenerated cellulose materials
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2015.07.003
– volume: 224
  start-page: 115144
  year: 2019
  ident: B156
  article-title: Advances in tissue engineering of nanocellulose-based scaffolds: a review
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2019.115144
– volume: 34
  start-page: 631
  year: 2017
  ident: B220
  article-title: Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.06.040
– volume: 9
  start-page: 1763
  year: 2017
  ident: B266
  article-title: Recent progress in cellulose nanocrystals: sources and production
  publication-title: Nanoscale
  doi: 10.1039/C6NR09494E
– volume-title: Advanced Functional Materials from Nanopolysaccharides.
  year: 2019
  ident: B146
  doi: 10.1007/978-981-15-0913-1
– volume: 220
  start-page: 1900358
  ident: B254
  article-title: A promising energetic polymer from Posidonia oceanica brown algae: synthesis, characterization, and kinetic modeling
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201900358
– volume: 376
  start-page: 20170040
  year: 2018
  ident: B57
  article-title: Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites
  publication-title: Philos. Trans. R. Soc.
  doi: 10.1098/rsta.2017.0040
– volume: 24
  start-page: 1171
  year: 2017
  ident: B158
  article-title: Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1194-0
– volume: 16
  start-page: 1906567
  year: 2020
  ident: B45
  article-title: Ultrasensitive physical, bio, and chemical sensors derived from 1, 2, and 3-D nanocellulosic materials
  publication-title: Small
  doi: 10.1002/smll.201906567
– volume: 37
  start-page: 510
  year: 2017
  ident: B213
  article-title: Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388551.2016.1189871
– volume: 100
  start-page: 111
  year: 2014
  ident: B226
  article-title: Laccase immobilization on cellulose nanofiber: the catalytic efficiency and recyclic application for simulated dye effluent treatment
  publication-title: J. Mol. Catal. B Enzym.
  doi: 10.1016/j.molcatb.2013.12.008
– volume: 107
  start-page: 1599
  year: 2018
  ident: B232
  article-title: Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.10.028
– volume: 14
  start-page: 1223
  year: 2013
  ident: B29
  article-title: Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis
  publication-title: Biomacromolecules
  doi: 10.1021/bm400219u
– volume: 2
  start-page: 187
  year: 2019
  ident: B178
  article-title: Nanocellulose isolation characterization and applications: a journey from non-remedial to biomedical claims
  publication-title: Biodesign Manuf
  doi: 10.1007/s42242-019-00049-4
– volume: 119
  start-page: 5911
  year: 2015
  ident: B135
  article-title: Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b00715
– volume: 157
  start-page: 1892
  ident: B170
  article-title: Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2016.11.078
– volume: 93
  start-page: 88
  year: 2016
  ident: B187
  article-title: A study of the production of cellulose nanocrystals through subcritical water hydrolysis
  publication-title: Ind. Crop Prod.
  doi: 10.1016/j.indcrop.2016.01.012
– volume: 82
  start-page: 440
  year: 2016
  ident: B276
  article-title: Removal of copper (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2015.09.070
– volume: 23
  start-page: 93
  year: 2016
  ident: B192
  article-title: Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0798-5
– volume: 112
  start-page: 668
  year: 2014
  ident: B116
  article-title: Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2014.06.048
– volume: 4
  start-page: 80
  year: 2015
  ident: B99
  article-title: 3 nm thick lignocellulose nanofibers obtained from esterified wood with maleic anhydride
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz500787p
– volume: 100
  start-page: 105411
  year: 2020
  ident: B283
  article-title: Properties and antimicrobial activity of polyvinyl alcohol-modified bacterial nanocellulose packaging films incorporated with silver nanoparticles
  publication-title: Food Hydrocoll
  doi: 10.1016/j.foodhyd.2019.105411
– volume: 96
  start-page: 709
  year: 2019
  ident: B18
  article-title: Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 2. In vitro lipid digestion
  publication-title: Food Hydrocol.
  doi: 10.1016/j.foodhyd.2019.04.039
– volume: 27
  start-page: 657
  year: 2019
  ident: B280
  article-title: Synthesis of nanocrystalline cellulose via ammonium persulfate-assisted swelling followed by oxidation and their chiral self-assembly
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02789-z
– volume: 36
  start-page: 796
  year: 2019
  ident: B75
  article-title: Microsuspension polymerization of styrene using cellulose nanocrystals as pickering emulsifiers: on the evolution of latex particles
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b03583
– volume: 13
  start-page: 858
  year: 2019
  ident: B216
  article-title: Polylactic acid-lauryl functionalized nanocellulose nanocomposites: microstructural, thermo-mechanical and gas transport properties
  publication-title: Express Polym. Lett.
  doi: 10.3144/expresspolymlett.2019.75
– volume: 231
  start-page: 115701
  year: 2020
  ident: B42
  article-title: Facile and rapid one–step extraction of carboxylated cellulose nanocrystals by H2SO4/HNO3 mixed acid hydrolysis. Carbohyd
  publication-title: Polym
  doi: 10.1016/j.carbpol.2019.115701
– volume-title: Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications.
  year: 2017
  ident: B101
– volume: 6
  start-page: 2954
  year: 2018
  ident: B111
  article-title: Green preparation of cellulose nanocrystal and its application
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02363
– volume: 27
  start-page: 1
  year: 2019
  ident: B86
  article-title: The current application of nanotechnology in food and agriculture
  publication-title: J. Food. Drug. Anal.
  doi: 10.1016/j.jfda.2018.12.002
– start-page: 653
  volume-title: Sustainable Polymer Composites and Nanocomposites
  year: 2019
  ident: B95
  article-title: Extraction of cellulose nanofibers and their eco-friendly polymer composites
  doi: 10.1007/978-3-030-05399-4_23
– volume: 56
  start-page: 687
  year: 2017
  ident: B184
  article-title: Review of nanocellulose polymer composite characteristics and challenges
  publication-title: Polym Plast. Technol.
  doi: 10.1080/03602559.2016.1233277
– start-page: 1
  year: 2020
  ident: B92
  article-title: Introduction to nanocellulose
– volume: 9
  start-page: 16426
  year: 2017
  ident: B314
  article-title: Preparation, characterization, and electrochromic properties of nanocellulose-based polyaniline nanocomposite films
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02794
– volume: 27
  start-page: 1023
  year: 2013
  ident: B311
  article-title: Particulate reinforcement and formaldehyde adsorption of modified nanocrystalline cellulose in urea-formaldehyde resin adhesive
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1080/01694243.2012.727173
– volume: 168
  start-page: 146
  year: 2016
  ident: B194
  article-title: Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: effect of isolation method
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.01.052
– volume: 8
  start-page: 16505
  year: 2018
  ident: B313
  article-title: High energy oxidation and organosolv solubilization for high yield isolation of cellulose nanocrystals (CNC) from Eucalyptus hardwood
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34667-2
– volume: 25
  start-page: 2151
  ident: B114
  article-title: Advances in cellulose nanomaterials
  publication-title: Cellulose
  doi: 10.1007/s10570-018-1723-5
– volume: 209
  start-page: 130
  year: 2019
  ident: B52
  article-title: Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2019.01.020
– volume: 7
  start-page: 56
  year: 2013
  ident: B36
  article-title: Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose
  publication-title: Recent Pat. Nanotechnol.
  doi: 10.2174/187221013804484854
– volume: 10
  start-page: 80
  year: 2017
  ident: B93
  article-title: Cellulose nanocrystals (CNCs) from corn stalk: activation energy analysis
  publication-title: Materials
  doi: 10.3390/ma10010080
– volume: 9
  start-page: 164
  year: 2019
  ident: B16
  article-title: Versatile application of nanocellulose: from industry to skin tissue engineering and wound healing
  publication-title: Nanomaterials
  doi: 10.3390/nano9020164
– volume: 72
  start-page: 62
  year: 2017
  ident: B189
  article-title: Insights into the development of crystallinity in liquid urea-formaldehyde resins
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2016.10.004
– volume: 6
  start-page: 20420
  year: 2016
  ident: B32
  article-title: Preparation and characterization of immobilized lipase from Pseudomonas cepacia onto magnetic cellulose nanocrystals
  publication-title: Sci. Rep.
  doi: 10.1038/srep20420
– start-page: 1001
  volume-title: Sustainable Polymer Composites and Nanocomposites
  year: 2019
  ident: B136
  article-title: Nanocellulose-reinforced adhesives for wood-based panels
  doi: 10.1007/978-3-030-05399-4_35
– volume: 23
  start-page: 57
  year: 2016
  ident: B30
  article-title: Enhancement of the fermentation process and properties of bacterial cellulose: a review
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0802-0
– volume: 27
  start-page: 575
  year: 2020
  ident: B201
  article-title: Trends in the production of cellulose nanofibers from non-wood sources
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02828-9
– volume: 229
  start-page: 115401
  year: 2020
  ident: B140
  article-title: Novel amphiphilic cellulose nanocrystals for pH-responsive Pickering emulsions. Carbohyd
  publication-title: Polym
  doi: 10.1016/j.carbpol.2019.115401
– volume: 36
  start-page: 91
  year: 2014
  ident: B23
  article-title: Importance of chemical pretreatment for bioconversion of lignocellulosic biomass
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.04.047
– volume: 59
  start-page: 302
  year: 2014
  ident: B144
  article-title: Nanocellulose in biomedicine: current status and future prospect
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2014.07.025
– volume: 196
  start-page: 1169
  year: 2018
  ident: B242
  article-title: A green and environmental benign method to extract cellulose nanocrystal by ball mill assisted solid acid hydrolysis
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.06.128
– volume: 60
  start-page: 88
  year: 2015
  ident: B130
  article-title: Tensile shear strength of wood bonded with urea–formaldehyde with different amounts of microfibrillated cellulose
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2015.04.002
– volume: 192
  start-page: 327
  year: 2018
  ident: B44
  article-title: Cellulose nanocrystals from grape pomace: production, properties and cytotoxicity assessment
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2018.03.023
– volume: 47
  start-page: 2837
  year: 2018
  ident: B39
  article-title: Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00790F
– volume: 10
  start-page: 65
  year: 2020
  ident: B174
  article-title: Cellulose nanofibers and other biopolymers for biomedical applications. A review
  publication-title: Appl. Sci.
  doi: 10.3390/app10010065
– volume: 83
  start-page: 551
  year: 2016
  ident: B275
  article-title: Influence of the maturation time on the physico-chemical properties of nanocellulose and associated constituents isolated from pseudostems of banana plant c.v. Valery
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2015.12.070
– volume: 30
  start-page: 1703655
  year: 2018
  ident: B10
  article-title: Cellulose-based biomimetics and their applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703655
– start-page: 101
  volume-title: Handbook of Nanocellulose and Cellulose Nanocomposites
  year: 2017
  ident: B46
  article-title: Surface modification of nanocellulose
  doi: 10.1002/9783527689972.ch3
– volume: 207
  start-page: 418
  year: 2019
  ident: B164
  article-title: Biomass and waste materials as potential sources of nanocrystalline cellulose: comparative review of preparation methods (2016–Till date)
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2018.12.004
– volume: 103
  start-page: 1232
  ident: B169
  article-title: An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.05.181
– volume: 26
  start-page: 941
  year: 2016
  ident: B188
  article-title: Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2015.12.060
– volume: 51
  start-page: 58
  year: 2012
  ident: B128
  article-title: Application of cellulose-clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie201349h
– volume: 54
  start-page: 6709
  year: 2019
  ident: B287
  article-title: Nanocellulose-based magnetic hybrid aerogel for adsorption of heavy metal ions from water
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-03322-0
– volume: 82
  start-page: 96
  year: 2018
  ident: B149
  article-title: Pickering high internal phase emulsions stabilized by protein-covered cellulose nanocrystals
  publication-title: Food Hydrocoll.
  doi: 10.1016/j.foodhyd.2018.03.047
– year: 2020
  ident: B64
  article-title: Comparison of the physicochemical properties and thermal stability of organosolv and kraft lignins from hardwood and softwood biomass for their potential valorization
  publication-title: Wast. Biomass Valori
  doi: 10.1007/s12649-020-00955-0.
– volume: 112
  start-page: 359
  year: 2017
  ident: B200
  article-title: Enhanced dispersion and properties of a two-component epoxy nanocomposite using surface modified cellulose nanocrystals
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.02.016
– volume: 132
  start-page: 41719
  year: 2015
  ident: B106
  article-title: Recent advances in nanocellulose for biomedical applications
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.41719
– volume: 4
  start-page: 11987
  year: 2019
  ident: B131
  article-title: Isolation of nanocellulose from broomcorn stalks and its application for nanocellulose/xanthan film preparation
  publication-title: Chem. Select
  doi: 10.1002/slct.201902533
– volume: 145
  start-page: 1
  year: 2016
  ident: B225
  article-title: Laccase immobilization on bacterial nanocellulose membranes: a atimicrobial, kinetic and stability properties
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2016.03.009
– volume: 17
  start-page: 388
  year: 2019
  ident: B12
  article-title: Investigation on morphology of composite poly (ethylene oxide)-cellulose nanofibers
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2019.06.265
– start-page: 201
  volume-title: Nanocellulose: From Fundamentals to Advanced Materials
  year: 2019
  ident: B40
  article-title: Reinforcing mechanism of cellulose nanocrystals in nanocomposites
  doi: 10.1002/9783527807437.ch7
– volume: 5
  start-page: 7514
  year: 2017
  ident: B53
  article-title: Heterogeneously modified cellulose nanocrystals-stabilized pickering emulsion: preparation and their template application for the creation of PS microspheres with amino-rich surfaces
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00375
– volume: 199
  start-page: 445
  year: 2018
  ident: B84
  article-title: Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2018.06.114
– volume: 21
  start-page: 3499
  ident: B151
  article-title: Cascade utilization of lignocellulosic biomass to high-value products
  publication-title: Green Chem.
  doi: 10.1039/C9GC00473D
– volume-title: Nanocellulose Polymer Nanocomposites: Fundamentals and Applications
  ident: B259
  doi: 10.1002/9781118872246
– start-page: 61
  volume-title: Handbook of Composites From Renewable Materials
  year: 2017
  ident: B263
  article-title: Microcrystalline cellulose and related polymer somposites: synthesis, characterization and properties
  doi: 10.1002/9781119441632.ch3
– volume: 436
  start-page: 1113
  year: 2018
  ident: B62
  article-title: Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: from a micro- to a nano-scale view
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.12.137
– volume: 133
  start-page: 850
  year: 2019
  ident: B118
  article-title: Nanocrystalline cellulose: preparation, physicochemical properties, and applications in drug delivery systems
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.04.117
– volume: 25
  start-page: 4525
  year: 2018
  ident: B251
  article-title: Design and synthesis of functionalized cellulose nanocrystals-based drug conjugates for colon-targeted drug delivery
  publication-title: Cellulose
  doi: 10.1007/s10570-018-1904-2
– volume: 22
  start-page: 3725
  year: 2015
  ident: B171
  article-title: Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0747-3
– volume: 4
  start-page: 3274
  year: 2012
  ident: B145
  article-title: Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review
  publication-title: Nanoscale
  doi: 10.1039/c2nr30260h
– volume: 198
  start-page: 249
  year: 2018
  ident: B6
  article-title: Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites–a review
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2018.06.045
– volume: 19
  start-page: 1674
  year: 2018
  ident: B19
  article-title: Formulation and stabilization of concentrated edible oil-in-water emulsions based on electrostatic complexes of a food-grade cationic surfactant (ethyl lauroyl arginate) and cellulose nanocrystals
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b00233
– volume: 8
  start-page: 859
  year: 2018
  ident: B286
  article-title: Ultrasonic irradiation coupled with microwave treatment for eco-friendly process of isolating bacterial cellulose nanocrystals
  publication-title: Nanomaterials
  doi: 10.3390/nano8100859
– volume: 23
  start-page: 3589
  year: 2016
  ident: B13
  article-title: Enhanced radical scavenging activity of polyhydroxylated C 60 functionalized cellulose nanocrystals
  publication-title: Cellulose
  doi: 10.1007/s10570-016-1057-0
– volume: 36
  start-page: 2032
  year: 2018
  ident: B227
  article-title: Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2018.08.009
– volume: 59
  start-page: 989
  year: 2019
  ident: B43
  article-title: Crystalline nanocellulose/thermoplastic polyester composites prepared by in situ polymerization
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.25052
– volume: 134
  start-page: 155
  year: 2018
  ident: B310
  article-title: Surface-modified cellulose nanocrystals for biobased epoxy nanocomposites
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.11.051
– volume: 68
  start-page: 2383
  year: 2016
  ident: B175
  article-title: Overview of cellulose nanomaterials, their capabilities and applications
  publication-title: JOM
  doi: 10.1007/s11837-016-2018-7
– volume: 3
  start-page: 2839
  year: 2015
  ident: B186
  article-title: Subcritical water: a method for green production of cellulose nanocrystals
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00762
– volume: 8
  start-page: 45
  year: 2015
  ident: B72
  article-title: Cellulose nanocrystals: synthesis, functional properties, and applications
  publication-title: Nanotechnol. Sci. Appl.
  doi: 10.2147/NSA.S64386
– volume: 14
  start-page: 1867
  year: 2019
  ident: B74
  article-title: A comparative study on the mechanical, thermal, and water barrier properties of PLA nanocomposite films prepared with bacterial nanocellulose and cellulose nanofibrils
  publication-title: Bioresources
  doi: 10.15376/biores.14.1.1867-1889
– volume: 41
  start-page: 1529
  year: 2006
  ident: B120
  article-title: Arsenic removal from water using lignocellulose adsorption medium (LAM)
  publication-title: J. Environ. Sci. Health A
  doi: 10.1080/10934520600754284
– volume: 138
  start-page: 837
  ident: B253
  article-title: Microcrystalline cellulose from Posidonia oceanica brown algae: extraction and characterization
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.07.176
– volume: 9
  start-page: 253
  year: 2019
  ident: B298
  article-title: Fabrication of cellulose nanocrystal/chitosan hydrogel for controlled drug release
  publication-title: Nanomaterials
  doi: 10.3390/nano9020253
– volume: 331
  start-page: 587
  year: 2018
  ident: B210
  article-title: New spherical nanocellulose and thiol-based adsorbent for rapid and selective removal of mercuric ions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.08.128
– volume: 20
  start-page: 4361
  year: 2019
  ident: B296
  article-title: How cellulose nanofibrils affect bulk, surface, and foam properties of anionic surfactant solutions
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.9b01037
– volume: 237
  start-page: 116039
  year: 2020
  ident: B35
  article-title: Patents involving nanocellulose: analysis of their evolution since 2010
  publication-title: Carbohyd. Polym
  doi: 10.1016/j.carbpol.2020.116039
– volume: 13
  start-page: 35
  year: 2014
  ident: B11
  article-title: Enzymatic preparation of nanocrystalline and microcrystalline cellulose
  publication-title: TAPPI J.
  doi: 10.32964/TJ13.5.35
– volume: 37
  start-page: 355
  year: 2017
  ident: B115
  article-title: Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.3109/07388551.2016.1163322
– start-page: e00316
  volume-title: Biotechnol. Rep
  year: 2019
  ident: B234
  article-title: Commercial application of cellulose nano-composites-a review
– volume: 1
  start-page: 32
  year: 2018
  ident: B202
  article-title: Nanocellulose: extraction and application
  publication-title: Carbon Resour. Convers.
  doi: 10.1016/j.crcon.2018.05.004
– volume: 33
  start-page: 1357
  year: 2019
  ident: B41
  article-title: Cottonseed protein-based wood adhesive reinforced with nanocellulose
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1080/01694243.2019.1596650
– start-page: 131
  volume-title: Materials for Biomedical Engineering: Nanomaterials-Based Drug Delivery
  year: 2019
  ident: B247
  article-title: A review of nanocellulose in the drug-delivery system
  doi: 10.1016/B978-0-12-816913-1.00005-2
– volume: 24
  start-page: 3724
  year: 2019
  ident: B143
  article-title: Cellulose nanocrystal isolation from hardwood pulp using various hydrolysis conditions
  publication-title: Molecules
  doi: 10.3390/molecules24203724
– volume: 60
  start-page: 435
  year: 2020
  ident: B195
  article-title: Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials
  publication-title: Crit. Rev. Food Sci. Nutr
  doi: 10.1080/10408398.2018.1536966
– volume: 13
  start-page: 78
  year: 2020
  ident: B142
  article-title: Cross-linked nanocellulosic materials and their applications
  publication-title: Chem. Sus. Chem.
  doi: 10.1002/cssc.201901676
– volume: 25
  start-page: 7053
  year: 2018
  ident: B197
  article-title: Ultrasonic pretreatment of cellulose in ionic liquid for efficient preparation of cellulose nanocrystals
  publication-title: Cellulose
  doi: 10.1007/s10570-018-2070-2
– volume: 8
  start-page: 134
  year: 2017
  ident: B206
  article-title: Nanocellulose based biosorbents for wastewater treatment: study of isotherm, kinetic, thermodynamic and reusability
  publication-title: Environ. Nanotechnol. Monit. Manage.
  doi: 10.1016/j.enmm.2017.07.002
– year: 2020
  ident: B185
  article-title: Hydrophobization of cellulose nanocrystals for aqueous colloidal suspensions and gels
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.9b01721.
– volume: 10
  start-page: 727
  year: 2019
  ident: B223
  article-title: Synthesis of latex stabilized by unmodified cellulose nanocrystals: the effect of monomers on particle size
  publication-title: Polym. Chem.
  doi: 10.1039/C8PY01575A
– volume: 13
  start-page: 47
  year: 2014
  ident: B154
  article-title: Nanocellulose in polymer composites and biomedical applications
  publication-title: TAPPI J.
  doi: 10.32964/TJ13.6.47
– volume: 122
  start-page: 724
  year: 2017
  ident: B26
  article-title: Insight into progress in pre-treatment of lignocellulosic biomass
  publication-title: Energy
  doi: 10.1016/j.energy.2017.01.005
– volume: 13
  start-page: 59
  year: 2019
  ident: B78
  article-title: General scenarios of cellulose and its use in the biomedical field
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2019.04.012
– volume: 7
  start-page: 7951
  year: 2019
  ident: B63
  article-title: Mechanochemical phosphorylation of polymers and synthesis of flame-retardant cellulose nanocrystals
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b00764
– year: 2020
  ident: B236
  article-title: Nanocellulose-enabled membranes for water purification: perspectives
  publication-title: Adv. Sustain. Syst
  doi: 10.1002/adsu.201900114
– volume: 19
  start-page: 103
  year: 2019
  ident: B9
  article-title: Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications
  publication-title: E Polymers
  doi: 10.1515/epoly-2019-0013
– volume: 139
  start-page: 361
  year: 2019
  ident: B150
  article-title: In vitro investigation of the influence of nano-fibrillated cellulose on lipid digestion and absorption
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.07.189
– start-page: 106292
  volume-title: J. Pet. Sci. Eng
  year: 2020
  ident: B211
  article-title: Nanocellulose for oil and gas field drilling and cementing applications
– volume: 98
  start-page: 820
  year: 2013
  ident: B260
  article-title: Rapid synthesis of graft copolymers from natural cellulose fibers
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2013.06.072
– volume: 148
  start-page: 249
  year: 2017
  ident: B110
  article-title: Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.05.074
– start-page: 171
  volume-title: Advanced Functional Materials from Nanopolysaccharides
  year: 2019
  ident: B119
  article-title: The use of nano-polysaccharides in biomedical applications
  doi: 10.1007/978-981-15-0913-1_5
– volume: 5
  start-page: 607
  year: 2020
  ident: B252
  article-title: Reducing end modification on cellulose nanocrystals: strategy, characterization, applications and challenges
  publication-title: Nanoscale Horizons
  doi: 10.1039/D0NH00016G
– start-page: 239
  volume-title: Proceedings of the Swiss Bonding
  year: 2009
  ident: B215
  article-title: Performance of cellulose nanofibrils in wood adhesives
– volume: 14
  start-page: 203
  year: 2018
  ident: B96
  article-title: Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: a review
  publication-title: Curr. Anal. Chem.
  doi: 10.2174/1573411013666171003155624
– volume: 68
  start-page: 1193
  year: 2017
  ident: B219
  article-title: Pretreatment techniques used in biogas production from grass
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.02.022
– volume: 339
  start-page: 91
  year: 2017
  ident: B299
  article-title: Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.06.005
– volume: 41
  start-page: 402
  year: 2015
  ident: B270
  article-title: A critical review on cellulose: from fundamental to an approach on sensor technology
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.08.050
– volume: 13
  start-page: 1702240
  year: 2017
  ident: B284
  article-title: Cellulose-based nanomaterials for energy applications
  publication-title: Small
  doi: 10.1002/smll.201702240
– volume: 87
  start-page: 152
  year: 2019
  ident: B193
  article-title: Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.01.049
– volume: 160
  start-page: 196
  year: 2017
  ident: B38
  article-title: A review on the pretreatment of lignocellulose for high-value chemicals
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.12.007
– volume-title: Cellulose Science and Technology
  year: 2010
  ident: B293
  doi: 10.1201/b16496
– volume: 26
  start-page: 4417
  year: 2019
  ident: B183
  article-title: Characterization of polystyrene nanocomposites and expanded nanocomposites reinforced with cellulose nanofibers and nanocrystals
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02392-2
– volume: 7
  start-page: 4912
  year: 2019
  ident: B307
  article-title: Simple process to produce high-yield cellulose nanocrystals using recyclable citric/hydrochloric acids
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05526
– volume: 35
  start-page: 299
  year: 2017
  ident: B54
  article-title: Nanocellulose-based conductive materials and their emerging applications in energy devices-a review
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.001
– volume: 56
  start-page: 185
  year: 2014
  ident: B238
  article-title: Morphological, chemical and crystalline features of urea–formaldehyde resin cured in contact with wood
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2014.04.014
– ident: B65
– ident: B97
– volume-title: Nanocellulose: From Nature to High Performance Tailored Materials
  year: 2013
  ident: B55
– volume: 289
  start-page: 140
  year: 2015
  ident: B141
  article-title: In situ growing directional spindle TiO2 nanocrystals on cellulose fibers for enhanced Pb2+ adsorption from water
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.02.051
– volume: 262
  start-page: 310
  year: 2018
  ident: B85
  article-title: Emerging technologies for the pretreatment of lignocellulosic biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.04.099
– volume: 26
  start-page: 8963
  year: 2019
  ident: B162
  article-title: Recyclable carboxylated cellulose beads with tunable pore structure and size for highly efficient dye removal
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02733-1
– volume-title: J. Appl. Polym. Sci.
  year: 2020
  ident: B132
  article-title: Nanocellulose-based polymer composites for energy applications—a review
  doi: 10.1002/app.48959
– volume: 16
  start-page: 131
  year: 2017
  ident: B159
  article-title: Preparation, properties and future perspectives of nanocrystals from agro-industrial residues: a review of recent research
  publication-title: Rev. Environ. Sci. Biol.
  doi: 10.1007/s11157-017-9423-4
– volume: 30
  start-page: 190
  year: 2019
  ident: B305
  article-title: Preparation and properties of cellulose nanocrystals, gelatin, hyaluronic acid composite hydrogel as wound dressing
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1080/09205063.2018.1558933
– volume: 187
  start-page: 110634
  year: 2020
  ident: B27
  article-title: Functionalization of LC molecular films with nanocrystalline cellulose: a study of the self-assembly processes and molecular stability. Colloids Surf
  publication-title: B Biointerfaces
  doi: 10.1016/j.colsurfb.2019.110634
– volume: 3
  start-page: 71
  year: 2011
  ident: B98
  article-title: TEMPO-oxidized cellulose nanofibers
  publication-title: Nanoscale
  doi: 10.1039/C0NR00583E
– volume: 26
  start-page: 7635
  ident: B255
  article-title: Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02672-x
– volume: 20
  start-page: 3492
  year: 2004
  ident: B256
  article-title: Structure of microparticles in solid-stabilized emulsions
  publication-title: Langmuir
  doi: 10.1021/la036129e
– volume: 17
  start-page: 3025
  year: 2016
  ident: B240
  article-title: Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.6b00910
– start-page: 175
  volume-title: Nanocellulose and sustainability: production, properties, applications, and case studies
  year: 2018
  ident: B33
  article-title: Application of nanocellulose as pickering emulsifier
  doi: 10.1201/9781351262927-9
– volume: 26
  start-page: 5959
  year: 2019
  ident: B105
  article-title: Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02533-7
– volume: 47
  start-page: 2609
  year: 2018
  ident: B66
  article-title: Current characterization methods for cellulose nanomaterials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00895J
– volume-title: Fabrication and Self-Assembly of Nanobiomaterials: Applications of Nanobiomaterials
  year: 2016
  ident: B80
– volume: 137
  start-page: 48544
  year: 2020
  ident: B68
  article-title: Thermal properties of nanocellulose-reinforced composites: a review
  publication-title: J. Appl. Polym. Sci
  doi: 10.1002/app.48544
– volume: 199
  start-page: 83
  year: 2016
  ident: B208
  article-title: Various pretreatments of lignocellulosics
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.029
– volume: 198
  start-page: 546
  year: 2018
  ident: B289
  article-title: Bio-inspired functionalization of microcrystalline cellulose aerogel with high adsorption performance toward dyes
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2018.06.112
– volume: 57
  start-page: 178
  year: 2016
  ident: B230
  article-title: Vegetable nanocellulose in food science: a review
  publication-title: Food Hydrocoll.
  doi: 10.1016/j.foodhyd.2016.01.023
– volume: 29
  start-page: 32
  year: 2017
  ident: B79
  article-title: Recent advances in the application of cellulose nanocrystals
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2017.01.005
– volume: 34
  start-page: 3925
  year: 2018
  ident: B2
  article-title: Surface charge influence on the phase separation and viscosity of cellulose nanocrystals
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b04127
– volume: 93
  start-page: 2
  year: 2016
  ident: B179
  article-title: Production of cellulose nanofibrils: a review of recent advances
  publication-title: Ind. Crop Prod.
  doi: 10.1016/j.indcrop.2016.02.016
– volume: 7
  start-page: 44
  year: 2014
  ident: B304
  article-title: Biodecolorization and biodegradation of textile dyes by the newly isolated saline-pH tolerant fungus Pestalotiopsis sp
  publication-title: J. Environ. Sci. Technol.
  doi: 10.3923/jest.2014.44.55
– volume: 35
  start-page: 10920
  year: 2019
  ident: B76
  article-title: Dual functions of tempo-oxidized cellulose nanofibers in oil-in-water emulsions: a pickering emulsifier and a unique dispersion stabilizer
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b01977
– volume-title: Handbook of Polymer Nanocomposites. Processing, Performance and Application.
  year: 2015
  ident: B196
  doi: 10.1007/978-3-642-45232-1
– volume: 241
  start-page: 118061
  year: 2020
  ident: B8
  article-title: Application of bacterial nanocellulose fibers as reinforcement in cement composites
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118061
– year: 2020
  ident: B22
  article-title: Preparation and application of nanocellulose from non-wood plants to improve the quality of paper and cardboard
  publication-title: Appl. Nanosci
  doi: 10.1007/s13204-019-01242-8
– volume: 17
  start-page: 1748
  year: 2016
  ident: B249
  article-title: Stimuli-responsive cellulose nanocrystals for surfactant-free oil harvesting
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.6b00144
– volume: 94
  start-page: 154
  year: 2013
  ident: B28
  article-title: Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2013.01.033
– volume-title: Lignocellulosic Polymer Composites: Processing, Characterization, and Properties
  ident: B258
  doi: 10.1002/9781118773949
– volume: 223
  start-page: 115114
  year: 2019
  ident: B199
  article-title: Facile extraction of cellulose nanocrystals
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2019.115114
– volume: 181
  start-page: 514
  year: 2018
  ident: B228
  article-title: Cellulose nanocrystals as carriers in medicine and their toxicities: a review
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2017.12.014
– volume: 10
  start-page: 196
  year: 2020
  ident: B17
  article-title: Applications of nanocellulose/nanocarbon composites: focus on biotechnology and medicine
  publication-title: Nanomaterials
  doi: 10.3390/nano10020196
– volume: 22
  start-page: 935
  year: 2015
  ident: B104
  article-title: Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0551-0
– volume: 24
  start-page: 119
  year: 2017
  ident: B181
  article-title: Extraction and characterization of cellulose nanowhiskers from Mandacaru (Cereus jamacaru DC.) spines
  publication-title: Cellulose
  doi: 10.1007/s10570-016-1109-5
– volume: 18
  start-page: 2503
  year: 2016
  ident: B168
  article-title: Characterization of nanocellulose recovery from Elaeis guineensis frond for sustainable development
  publication-title: Clean Technol. Environ. Policy
  doi: 10.1007/s10098-016-1191-2
– volume: 2018
  start-page: 1
  year: 2018
  ident: B297
  article-title: Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials
  publication-title: Int. J. Polym. Sci.
  doi: 10.1155/2018/7923068
– volume: 6
  start-page: 14802
  year: 2018
  ident: B31
  article-title: Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03331
– volume: 29
  start-page: 1
  year: 2017
  ident: B56
  article-title: Cellulose nanomaterial reinforced polymer nanocomposites
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2017.01.004
– volume: 4
  start-page: 240
  year: 2017
  ident: B100
  article-title: Cellulose-based materials for the removal of heavy metals from wastewater–an overview
  publication-title: Chem. Biol. Eng. Rev.
  doi: 10.1002/cben.201700002
– volume: 21
  start-page: 3427
  year: 2014
  ident: B316
  article-title: Excellent chemical and material cellulose from tunicates: diversity in cellulose production yield and chemical and morphological structures from different tunicate species
  publication-title: Cellulose
  doi: 10.1007/s10570-014-0348-6
– volume: 11
  start-page: 1272
  year: 2018
  ident: B25
  article-title: Characterization of cellulase-treated fibers and resulting cellulose nanocrystals generated through acid hydrolysis
  publication-title: Materials
  doi: 10.3390/ma11081272
– volume: 26
  start-page: 3040
  year: 2018
  ident: B47
  article-title: Urea formaldehyde and cellulose nanocrystals adhesive: studies applied to sugarcane bagasse particleboards
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-018-1189-4
– ident: B103
– volume: 463
  start-page: 127
  year: 2014
  ident: B167
  article-title: Natural and synthetic polymers for wounds and burns dressing
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2013.12.015
– volume-title: Handbook of Green Materials: Processing Technologies, Properties and Applications (in 4 volumes
  year: 2014
  ident: B191
  doi: 10.1142/8975
– volume: 19
  start-page: 1449
  year: 2012
  ident: B148
  article-title: Bamboo fiber and its reinforced composites: structure and properties
  publication-title: Cellulose
  doi: 10.1007/s10570-012-9741-1
– volume: 45
  start-page: 9101
  year: 2011
  ident: B71
  article-title: Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202223p
– volume: 93
  start-page: 789
  ident: B265
  article-title: Microcrystalline cellulose: isolation, characterization and bio-composites application– a review
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.09.056
– volume: 136
  start-page: 47251
  year: 2019
  ident: B1
  article-title: Enhancement of basic properties of polysaccharide-based composites with organic and inorganic fillers: a review
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.47251
– start-page: 221
  volume-title: Advanced Functional Materials from Nanopolysaccharides
  year: 2019
  ident: B250
  article-title: Nanopolysaccharides in emulsion stabilization
  doi: 10.1007/978-981-15-0913-1_6
SSID ssj0001213420
Score 2.651012
SecondaryResourceType review_article
Snippet Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 392
SubjectTerms application
cellulose nanocrystals
Chemical and Process Engineering
Chemical Sciences
Chemistry
Engineering Sciences
functionalization
Materials
nanocellulose
Organic chemistry
Polymers
production
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBvEkpKEVcOEQb27N-9LZUrFYVcKJSb5bj2CpSSaruLr-_M3F2tQEJLlwT20m-GWW-8YxnGPuQLPBUN6pSIoQKlIDKBwoX8lD7xhskBeQofv2mVpdwcTW_Omj1RTlhuTxwBm7GYd62kGoDQ-kxZXww9dzI2qNjIbLjgzbvwJnKuys4WtQ5LolemJ0lxIBOngtK5ZJWTOzQUK4frcs1JUP-yTR_T5g8sEDLJ-zxSB3LRX7lp-xB7J6xh-e7jm3PmcVfZU878dubfh3PyuVd_7Nc0lGPXMF_XW76cjEG_cvFQej6Bbtcfv5-vqrG1ghVAKs2VWs8b7jnskU-IYLw0cpoPAQeAzoUXHoLLUjZWg7aWt9IG5OR0RqVoNVevmRHXd_F16zEOTrolDQkASaGRiOHbGQTBYTWB12w2Q4oF8a64dS-4sah_0DQugFaR9C6AdqCfdzPuM01M_4y9hNhvx9H1a6HC6gDbtQB9y8dKNh7lNxkjdXii6Nr6GKClaB-4aDTnWAdyoWk4bvYb9cOSQ2SXiKGBXuVBb1fC_mmnCspC6YnKjB52PRO9-N6KNOtiT1pdfw_vvANe0SYDZmW6oQdbe628S2yoU3zblD8e1wUA-I
  priority: 102
  providerName: Directory of Open Access Journals
Title Nanocellulose: From Fundamentals to Advanced Applications
URI https://www.ncbi.nlm.nih.gov/pubmed/32435633
https://www.proquest.com/docview/2405336441
https://hal.univ-lorraine.fr/hal-02649346
https://pubmed.ncbi.nlm.nih.gov/PMC7218176
https://doaj.org/article/145dd4f0841341968ac805830a448261
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSNAL4k1aqALiwiE0fqwfSAgtFasVopxYqTfLcWyKtCR0H1X5951xsksDhatjT5SZceb77PGYkFfRCBrLShaSeV8IyUThPG4XUl-6ymkABUgUj7_I6Ux8Ohmd_D4e3StweS21w_ukZov5m4uzX-9hwr9Dxgnx9jDC5-GhcoZZWhDvb5JbEJcUTtPjHux3Ky6Ui1SnkTEjMbWr37e8VsguuQ1Yg48k54OQlSr7QyA6xbzJv0Hpn7mVV4LV5B6526PMfNy5xX1yIzQPyJ2jzeVuD4mBv2qLi_brebsMb_PJov2RT_BUSFfsf5mv2nzc5wfk4yu73I_IbPLx69G06G9RKLwwclXU2tGKOsprgB7MMxcMD9oJT4MH7kG5M6IWnNeGCmWMq7gJUfNgtIyiVo4_JjtN24SnJIcxyqsYlYhM6OArBXCz4lVgwtfOq4wcbhRlfV9iHG-6mFugGqhlm7RsUcs2aTkjr7cjfnblNf7T9wPqftsPC2OnhnbxzfbzDJjMqK5FLLVIleqkdl6XI81LBzwU2GJGXoLlBjKm488W24CNCsOFPIdOLzaGtWAXtIZrQrteWsA_gI8RQ2bkSWforayNu2REDVxg8LLhk-b7aarorRBoKbn3T5n7ZBcVkTIt5TOys1qsw3NAQ6vqIK0iHCRXvwR4CQO-
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanocellulose%3A+From+Fundamentals+to+Advanced+Applications&rft.jtitle=Frontiers+in+chemistry&rft.au=Trache%2C+Djalal&rft.au=Tarchoun%2C+Ahmed+Fouzi&rft.au=Derradji%2C+Mehdi&rft.au=Hamidon%2C+Tuan+Sherwyn&rft.date=2020-05-06&rft.issn=2296-2646&rft.eissn=2296-2646&rft.volume=8&rft.spage=392&rft_id=info:doi/10.3389%2Ffchem.2020.00392&rft_id=info%3Apmid%2F32435633&rft.externalDocID=32435633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-2646&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-2646&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-2646&client=summon