Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage

•Attempts have been made to stabilize calcium chloride-based materials.•Impregnation and microencapsulation methods are applied.•Stability, kinetics and energy density are investigated.•Combined TGA-DSC methods and microscopic observation are employed.•Microencapsulation improved stability and kinet...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 212; pp. 1165 - 1177
Main Authors Gaeini, M., Rouws, A.L., Salari, J.W.O., Zondag, H.A., Rindt, C.C.M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Attempts have been made to stabilize calcium chloride-based materials.•Impregnation and microencapsulation methods are applied.•Stability, kinetics and energy density are investigated.•Combined TGA-DSC methods and microscopic observation are employed.•Microencapsulation improved stability and kinetics but not energy density. Thermochemical heat storage in salt hydrates is a promising method to improve the solar fraction in the built environment. The major concern at this stage is liquefaction followed by washing out of active material and agglomeration into large chunks of salt, thus deteriorating the diffusive properties of the porous salt hydrate structure. In this work, specific attention is given to the methods to stabilize a sample salt hydrate. Attempts have been made to stabilize calcium chloride by impregnation in expanded natural graphite and vermiculite, and by microencapsulation with ethyl cellulose. The effect of these stabilization methods on the performance of the material, such as kinetics and energy density, is investigated. Characterization of the materials is carried out with combined Thermo-Gravitational Analysis (TGA) and Differential Scanning Calorimetry (DSC) methods and microscopic observation, in order to evaluate the improvements on the basis of three subjects: reaction kinetics, heat storage density and stability. Within the boundary conditions for thermochemical energy storage as presented in this work, microencapsulated calcium chloride showed high multicyclic stability, compared with pure and impregnated materials, that liquefy upon hydration under the given conditions. Microencapsulated material remains stable over multiple cycles and at the same time shows the faster kinetics, but has a lower volumetric energy storage density.
AbstractList Thermochemical heat storage in salt hydrates is a promising method to improve the solar fraction in the built environment. The major concern at this stage is liquefaction followed by washing out of active material and agglomeration into large chunks of salt, thus deteriorating the diffusive properties of the porous salt hydrate structure. In this work, specific attention is given to the methods to stabilize a sample salt hydrate. Attempts have been made to stabilize calcium chloride by impregnation in expanded natural graphite and vermiculite, and by microencapsulation with ethyl cellulose. The effect of these stabilization methods on the performance of the material, such as kinetics and energy density, is investigated. Characterization of the materials is carried out with combined Thermo-Gravitational Analysis (TGA) and Differential Scanning Calorimetry (DSC) methods and microscopic observation, in order to evaluate the improvements on the basis of three subjects: reaction kinetics, heat storage density and stability. Within the boundary conditions for thermochemical energy storage as presented in this work, microencapsulated calcium chloride showed high multicyclic stability, compared with pure and impregnated materials, that liquefy upon hydration under the given conditions. Microencapsulated material remains stable over multiple cycles and at the same time shows the faster kinetics, but has a lower volumetric energy storage density.
•Attempts have been made to stabilize calcium chloride-based materials.•Impregnation and microencapsulation methods are applied.•Stability, kinetics and energy density are investigated.•Combined TGA-DSC methods and microscopic observation are employed.•Microencapsulation improved stability and kinetics but not energy density. Thermochemical heat storage in salt hydrates is a promising method to improve the solar fraction in the built environment. The major concern at this stage is liquefaction followed by washing out of active material and agglomeration into large chunks of salt, thus deteriorating the diffusive properties of the porous salt hydrate structure. In this work, specific attention is given to the methods to stabilize a sample salt hydrate. Attempts have been made to stabilize calcium chloride by impregnation in expanded natural graphite and vermiculite, and by microencapsulation with ethyl cellulose. The effect of these stabilization methods on the performance of the material, such as kinetics and energy density, is investigated. Characterization of the materials is carried out with combined Thermo-Gravitational Analysis (TGA) and Differential Scanning Calorimetry (DSC) methods and microscopic observation, in order to evaluate the improvements on the basis of three subjects: reaction kinetics, heat storage density and stability. Within the boundary conditions for thermochemical energy storage as presented in this work, microencapsulated calcium chloride showed high multicyclic stability, compared with pure and impregnated materials, that liquefy upon hydration under the given conditions. Microencapsulated material remains stable over multiple cycles and at the same time shows the faster kinetics, but has a lower volumetric energy storage density.
Author Rindt, C.C.M.
Rouws, A.L.
Gaeini, M.
Zondag, H.A.
Salari, J.W.O.
Author_xml – sequence: 1
  givenname: M.
  surname: Gaeini
  fullname: Gaeini, M.
  organization: Eindhoven University of Technology, Department of Mechanical Engineering, P.O.Box 513, 5600MB Eindhoven, The Netherlands
– sequence: 2
  givenname: A.L.
  surname: Rouws
  fullname: Rouws, A.L.
  organization: Eindhoven University of Technology, Department of Mechanical Engineering, P.O.Box 513, 5600MB Eindhoven, The Netherlands
– sequence: 3
  givenname: J.W.O.
  surname: Salari
  fullname: Salari, J.W.O.
  organization: TNO, Netherlands Institute for Applied Scientific Research, P.O. Box 6235, 5612 AP Eindhoven, The Netherlands
– sequence: 4
  givenname: H.A.
  surname: Zondag
  fullname: Zondag, H.A.
  organization: Eindhoven University of Technology, Department of Mechanical Engineering, P.O.Box 513, 5600MB Eindhoven, The Netherlands
– sequence: 5
  givenname: C.C.M.
  surname: Rindt
  fullname: Rindt, C.C.M.
  email: C.C.M.Rindt@tue.nl
  organization: Eindhoven University of Technology, Department of Mechanical Engineering, P.O.Box 513, 5600MB Eindhoven, The Netherlands
BookMark eNqFkcFq3DAQhkVJoZu0r1B0zMWORl5r15BDy9KkgUAv7VmMpdFai225kraQvkBfu9psc-klJzFo_o-Zby7ZxRxmYuwjiBoEqJtDjQvNFPdPtRSwqUHW0MAbtoLtRlYdwPaCrUQjVCUVdO_YZUoHIYQEKVbsz27AiCZT9L8x-zDz4PjkTQw0G1zSccRMluNsuZ-WSPv5uV5CDMfEh5Ayn_CUxjHxHlP5KwyDo_HHiZthDNFb4i5EngeKUzADFTyO_DwyTzlE3NN79tYVBH34916xH3dfvu--Vo_f7h92nx8rs-5UrnoJpKyRbottI2zfOGqs6DogoL4_lV2_Fq0T5DZSGSFaq9y6da0VrTISmyt2feYuMfw8Usp68snQOOJMZSMti9IGpIR1ab09txYZKUVy2vj87ChH9KMGoU_-9UG_-Ncn_xqkLogSV__Fl-gnjE-vBz-dg1Q8_PIUdTK-XIOsj2SytsG_hvgLkqCrYA
CitedBy_id crossref_primary_10_1016_j_tca_2021_179097
crossref_primary_10_1016_j_est_2022_106158
crossref_primary_10_1038_s41598_022_11548_3
crossref_primary_10_1016_j_enconman_2019_111843
crossref_primary_10_1016_j_renene_2025_122784
crossref_primary_10_3390_nano9010027
crossref_primary_10_1016_j_est_2018_02_014
crossref_primary_10_1007_s12517_020_05886_7
crossref_primary_10_1016_j_apenergy_2019_113525
crossref_primary_10_1080_15567036_2022_2128941
crossref_primary_10_1016_j_apsadv_2022_100309
crossref_primary_10_1016_j_est_2022_104259
crossref_primary_10_1016_j_measurement_2023_113420
crossref_primary_10_3390_en15124339
crossref_primary_10_1016_j_pecs_2023_101072
crossref_primary_10_1016_j_applthermaleng_2022_119313
crossref_primary_10_1016_j_matpr_2022_04_048
crossref_primary_10_1016_j_enconman_2024_118145
crossref_primary_10_1016_j_est_2024_111916
crossref_primary_10_1016_j_apenergy_2018_09_008
crossref_primary_10_1021_acs_cgd_4c00589
crossref_primary_10_1016_j_renene_2023_119767
crossref_primary_10_1016_j_est_2025_115726
crossref_primary_10_1016_j_apenergy_2023_121068
crossref_primary_10_1039_D4CP01870B
crossref_primary_10_1016_j_est_2022_104702
crossref_primary_10_1016_j_apenergy_2020_115024
crossref_primary_10_1002_adfm_202213846
crossref_primary_10_1016_j_enconman_2020_112694
crossref_primary_10_1016_j_est_2024_112697
crossref_primary_10_1039_D3RA04859D
crossref_primary_10_3390_thermo3040035
crossref_primary_10_1016_j_micromeso_2025_113605
crossref_primary_10_3390_en16186572
crossref_primary_10_1016_j_applthermaleng_2021_116880
crossref_primary_10_1016_j_est_2021_102561
crossref_primary_10_1016_j_energy_2021_120937
crossref_primary_10_1016_j_rser_2022_112197
crossref_primary_10_1016_j_energy_2024_134102
crossref_primary_10_3390_gels8080489
crossref_primary_10_1080_15567036_2019_1666187
crossref_primary_10_1016_j_renene_2020_07_036
crossref_primary_10_3390_en14133754
crossref_primary_10_1016_j_renene_2019_11_119
crossref_primary_10_1016_j_ijhydene_2021_02_211
crossref_primary_10_1016_j_solmat_2022_112154
crossref_primary_10_1016_j_est_2023_108862
crossref_primary_10_1016_j_jclepro_2020_124907
crossref_primary_10_1016_j_energy_2020_117595
crossref_primary_10_3390_nano9030420
crossref_primary_10_1016_j_est_2020_101699
crossref_primary_10_3389_fther_2022_1003863
crossref_primary_10_1016_j_susmat_2018_e00073
crossref_primary_10_1252_jcej_19we159
crossref_primary_10_1016_j_ijft_2023_100326
crossref_primary_10_1016_j_ces_2024_120853
crossref_primary_10_1016_j_micromeso_2021_111329
crossref_primary_10_1002_est2_232
crossref_primary_10_1016_j_applthermaleng_2024_124557
crossref_primary_10_1016_j_renene_2023_119331
crossref_primary_10_1016_j_solener_2018_08_075
crossref_primary_10_1016_j_renene_2022_06_024
crossref_primary_10_1016_j_applthermaleng_2025_125482
crossref_primary_10_1016_j_energy_2020_118370
crossref_primary_10_1039_D4CP00790E
crossref_primary_10_3390_en17030578
crossref_primary_10_3390_en16062875
crossref_primary_10_1016_j_applthermaleng_2019_113893
crossref_primary_10_1016_j_cej_2024_157042
crossref_primary_10_1016_j_solener_2018_06_102
crossref_primary_10_1016_j_tca_2020_178752
crossref_primary_10_1021_acsaem_0c00971
crossref_primary_10_1016_j_solmat_2022_111769
crossref_primary_10_3390_en11123421
crossref_primary_10_1016_j_seppur_2024_129820
crossref_primary_10_1080_15567036_2023_2244457
crossref_primary_10_1016_j_ensm_2022_11_042
crossref_primary_10_1016_j_est_2023_110043
crossref_primary_10_1016_j_applthermaleng_2025_126186
crossref_primary_10_1007_s10853_023_08370_1
crossref_primary_10_1016_j_tsep_2024_102955
crossref_primary_10_1002_advs_202100320
crossref_primary_10_1021_acsomega_1c03909
crossref_primary_10_1021_acs_energyfuels_0c04021
crossref_primary_10_1016_j_enconman_2020_113617
crossref_primary_10_1016_j_energy_2024_130478
crossref_primary_10_1016_j_cep_2025_110267
crossref_primary_10_1038_s41598_023_50672_6
crossref_primary_10_1088_1742_6596_2765_1_012007
crossref_primary_10_1016_j_enbuild_2019_05_029
crossref_primary_10_1016_j_renene_2024_121668
crossref_primary_10_1016_j_solener_2019_03_076
crossref_primary_10_1016_j_apenergy_2020_116397
crossref_primary_10_1016_j_renene_2022_04_076
crossref_primary_10_1016_j_est_2025_116075
crossref_primary_10_1016_j_est_2020_101495
crossref_primary_10_1016_j_renene_2025_122831
crossref_primary_10_1016_j_rser_2021_111846
crossref_primary_10_1016_j_apenergy_2024_122953
crossref_primary_10_1021_acsaem_1c00786
crossref_primary_10_1016_j_commatsci_2021_110595
Cites_doi 10.1016/j.pecs.2013.05.004
10.1016/j.ijheatmasstransfer.2017.06.034
10.1016/j.applthermaleng.2016.03.055
10.1016/j.apenergy.2017.04.080
10.1016/j.apenergy.2016.12.148
10.1016/0040-6031(83)80237-8
10.1016/j.solener.2003.07.036
10.1016/j.rser.2009.05.008
10.1016/j.apenergy.2014.04.073
10.1007/s10973-015-5210-z
10.1016/j.tca.2005.01.009
10.1016/j.rser.2017.01.159
10.18086/eurosun.2010.16.14
10.1016/j.tca.2015.10.005
10.1016/j.apenergy.2015.08.037
10.1016/j.apenergy.2013.01.082
10.1016/j.apenergy.2015.02.011
10.1016/j.rser.2017.03.101
10.1016/j.egypro.2017.09.491
10.1016/j.rser.2015.03.077
10.1016/j.micromeso.2012.06.054
10.1016/j.applthermaleng.2014.09.047
10.1007/BF02068130
10.1016/0927-0248(96)00010-4
10.1016/j.apenergy.2014.09.025
10.1016/j.apenergy.2014.02.053
10.1252/jcej.07WE228
10.1016/j.energy.2014.05.097
10.1016/j.ijthermalsci.2005.10.009
10.1016/j.apenergy.2015.08.109
ContentType Journal Article
Copyright 2018 The Authors
Copyright_xml – notice: 2018 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2017.12.131
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 1177
ExternalDocumentID 10_1016_j_apenergy_2017_12_131
S0306261917318548
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c496t-b21e6dc2f8a530db3fe3d0991e1ebbb3fe9b405f0ef726c005d6f45f5d056c2a3
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri Jul 11 13:04:40 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Tue Jul 01 02:53:22 EDT 2025
Fri Feb 23 02:46:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Calcium chloride composites
TGA-DSC
Thermochemical heat storage
Stability
Microencapsulation and impregnated
Kinetics and energy storage density
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-b21e6dc2f8a530db3fe3d0991e1ebbb3fe9b405f0ef726c005d6f45f5d056c2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0306261917318548
PQID 2101312214
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2101312214
crossref_citationtrail_10_1016_j_apenergy_2017_12_131
crossref_primary_10_1016_j_apenergy_2017_12_131
elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_12_131
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-15
PublicationDateYYYYMMDD 2018-02-15
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lan, Gaeini, Zondag, van Steenhoven, Rindt (b0195) 2017
Scapino, Zondag, Van Bael, Diriken, Rindt (b0095) 2017; 76
Zhu, Wu, Wang (b0125) 2006; 45
Rindt, Lan, Gaeini, Zhang, Nedea, Smeulders (b0010) 2016
Johannes, Kuznik, Hubert, Durier, Obrecht (b0050) 2015; 159
Gaeini, Wind, Donkers, Zondag, Rindt (b0080) 2017; 113
Lele, Kuznik, Rammelberg, Schmidt, Ruck (b0090) 2015; 154
Ristić, Mauec, Henninger, Kaui (b0115) 2012; 164
Levitskij, Aristov, Tokarev, Parmon (b0120) 1996; 44
Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I. The NBS tables of chemical thermodynamic properties, Tech. rep. DTIC Document; 1982.
N’Tsoukpoe, Rammelberg, Lele, Korhammer, Watts, Schmidt (b0165) 2015; 75
Kerskes H, Mette B, Asenbeck S, Drück H, Müller-Steinhagen H. Experimental and numerical investigations on thermo-chemical heat storage. In: Proceedings of the EUROSUN; 2010.
Gaeini, Zondag, Rindt (b0210) 2016; 102
Iyimen-Schwarz, Lechner (b0105) 1983; 68
Donkers, Sögütoglu, Huinink, Fischer, Adan (b0025) 2017; 199
Michel, Mazet, Neveu (b0060) 2014; 129
Solé, Martorell, Cabeza (b0065) 2015; 47
Lan, Zondag, van Steenhoven, Rindt (b0190) 2016; 124
Aristov, Tokarev, Cacciola, Restuccia (b0110) 1996; 59
Jänchen J, Ackermann D, Weiler E, Stach H, Brösicke W. Thermochemical storage of low temperature heat by zeolites; sapos and impregnated active carbon. In: 7 th Workshop of IEA/ECES, annex, vol. 17; 2004.
Aristov (b0145) 2007; 40
Ntsoukpoe, Liu, Le Pierrès, Luo (b0035) 2009; 13
Bales C, Gantenbein P, Jaenig D, Kerskes H, Summer K, van Essen M, Weber R. Laboratory tests of chemical reactions and prototype sorption storage units. A Report of IEA Solar Heating and Cooling programme-Task 32; 2008.
Gaeini M, Javed R, Ouwerkerk H, Zondag HA, Rindt CC. Realization of a 4kw thermochemical segmented reactor in household scale for seasonal heat storage. In: Energy Procedia special issue for 11th international renewable energy storage conference, IRES; 2017.
DOW. Calcium chloride handbook. The Dow Chemical Company
Yu, Wang, Wang (b0075) 2013; 39
Barreneche, Fernández, Cabeza, Cuypers (b0030) 2015; 137
.
Lan, Zondag, Van Steenhoven, Rindt (b0205) 2015; 621
NTsoukpoe, Schmidt, Rammelberg, Watts, Ruck (b0020) 2014; 124
Cuypers R, de Jong A, Eversdijk J, van’t Spijker J, Oversloot H, Ingenhut B, et al. Microencapsulation of salts for enhanced thermochemical storage materials. In: 40th Annual meeting and exposition of the controlled release society, 21–24 July 2013. Honolulu (HI, USA); 2013. p. 1–2.
Ferchaud C. Experimental study of salt hydrates for thermochemical seasonal heat storage, Ph.D. thesis. Eindhoven University of Technology; 2016.
DOW. Ethocel ethylcellulose polymers technical handbook. The Dow Chemical Company
Jänchen, Ackermann, Stach, Brsicke (b0015) 2004; 76
Michel, Neveu, Mazet (b0085) 2014; 72
Jänchen, Ackermann, Weiler, Stach, Brösicke (b0140) 2005; 434
Scapino, Zondag, Van Bael, Diriken, Rindt (b0070) 2017; 190
Alibaba.com
Rammelberg HU, Myrau M, Schmidt T, Ruck W. An optimization of salt hydrates for thermochemical heat storage. In: IMPRES 2013, Fukuoka, 04–06; 2013.
Milián, Gutiérrez, Grágeda, Ushak (b0150) 2017; 73
Saheb (b0005) 2011
Zondag, Kikkert, Smeding, de Boer, Bakker (b0055) 2013; 109
Korhammer, Druske, Fopah-Lele, Rammelberg, Wegscheider, Opel, Osterland, Ruck (b0200) 2016; 162
Iyimen-Schwarz (10.1016/j.apenergy.2017.12.131_b0105) 1983; 68
Lan (10.1016/j.apenergy.2017.12.131_b0195) 2017
Aristov (10.1016/j.apenergy.2017.12.131_b0110) 1996; 59
Jänchen (10.1016/j.apenergy.2017.12.131_b0015) 2004; 76
Johannes (10.1016/j.apenergy.2017.12.131_b0050) 2015; 159
Ntsoukpoe (10.1016/j.apenergy.2017.12.131_b0035) 2009; 13
Zondag (10.1016/j.apenergy.2017.12.131_b0055) 2013; 109
10.1016/j.apenergy.2017.12.131_b0175
NTsoukpoe (10.1016/j.apenergy.2017.12.131_b0020) 2014; 124
Michel (10.1016/j.apenergy.2017.12.131_b0060) 2014; 129
10.1016/j.apenergy.2017.12.131_b0130
Milián (10.1016/j.apenergy.2017.12.131_b0150) 2017; 73
Solé (10.1016/j.apenergy.2017.12.131_b0065) 2015; 47
Jänchen (10.1016/j.apenergy.2017.12.131_b0140) 2005; 434
10.1016/j.apenergy.2017.12.131_b0170
Michel (10.1016/j.apenergy.2017.12.131_b0085) 2014; 72
Lan (10.1016/j.apenergy.2017.12.131_b0190) 2016; 124
Gaeini (10.1016/j.apenergy.2017.12.131_b0210) 2016; 102
10.1016/j.apenergy.2017.12.131_b0155
Ristić (10.1016/j.apenergy.2017.12.131_b0115) 2012; 164
10.1016/j.apenergy.2017.12.131_b0135
Scapino (10.1016/j.apenergy.2017.12.131_b0070) 2017; 190
Korhammer (10.1016/j.apenergy.2017.12.131_b0200) 2016; 162
Saheb (10.1016/j.apenergy.2017.12.131_b0005) 2011
Barreneche (10.1016/j.apenergy.2017.12.131_b0030) 2015; 137
Levitskij (10.1016/j.apenergy.2017.12.131_b0120) 1996; 44
Gaeini (10.1016/j.apenergy.2017.12.131_b0080) 2017; 113
Zhu (10.1016/j.apenergy.2017.12.131_b0125) 2006; 45
Donkers (10.1016/j.apenergy.2017.12.131_b0025) 2017; 199
10.1016/j.apenergy.2017.12.131_b0040
10.1016/j.apenergy.2017.12.131_b0185
10.1016/j.apenergy.2017.12.131_b0180
10.1016/j.apenergy.2017.12.131_b0160
Rindt (10.1016/j.apenergy.2017.12.131_b0010) 2016
Lele (10.1016/j.apenergy.2017.12.131_b0090) 2015; 154
Aristov (10.1016/j.apenergy.2017.12.131_b0145) 2007; 40
Lan (10.1016/j.apenergy.2017.12.131_b0205) 2015; 621
Yu (10.1016/j.apenergy.2017.12.131_b0075) 2013; 39
Scapino (10.1016/j.apenergy.2017.12.131_b0095) 2017; 76
10.1016/j.apenergy.2017.12.131_b0045
10.1016/j.apenergy.2017.12.131_b0100
N’Tsoukpoe (10.1016/j.apenergy.2017.12.131_b0165) 2015; 75
References_xml – volume: 154
  start-page: 447
  year: 2015
  end-page: 458
  ident: b0090
  article-title: Thermal decomposition kinetic of salt hydrates for heat storage systems
  publication-title: Appl Energy
– volume: 40
  start-page: 1242
  year: 2007
  end-page: 1251
  ident: b0145
  article-title: Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties
  publication-title: J Chem Eng Japan
– volume: 44
  start-page: 219
  year: 1996
  end-page: 235
  ident: b0120
  article-title: Chemical heat accumulators: a new approach to accumulating low potential heat
  publication-title: Solar Energy Mater Solar Cells
– reference: Kerskes H, Mette B, Asenbeck S, Drück H, Müller-Steinhagen H. Experimental and numerical investigations on thermo-chemical heat storage. In: Proceedings of the EUROSUN; 2010.
– reference: DOW. Calcium chloride handbook. The Dow Chemical Company <
– volume: 124
  start-page: 1109
  year: 2016
  end-page: 1118
  ident: b0190
  article-title: An experimentally validated numerical model of interface advance of the lithium sulfate monohydrate dehydration reaction
  publication-title: J Therm Anal Calor
– volume: 68
  start-page: 349
  year: 1983
  end-page: 361
  ident: b0105
  article-title: Energiespeicherung durch chemische reaktionen. i. dsc-messungen zur quantitativen verfolgung der enthalpienderungen von speicherstoffen fr die hin- und rckreaktion
  publication-title: Thermochim Acta
– volume: 137
  start-page: 726
  year: 2015
  end-page: 730
  ident: b0030
  article-title: Thermophysical characterization and thermal cycling stability of two TCM: CaCl
  publication-title: Appl Energy
– reference: DOW. Ethocel ethylcellulose polymers technical handbook. The Dow Chemical Company <
– start-page: 187
  year: 2016
  end-page: 197
  ident: b0010
  article-title: Phase change materials and thermochemical materials for large-scale energy storage
  publication-title: Continuous media with microstructure 2
– volume: 45
  start-page: 804
  year: 2006
  end-page: 813
  ident: b0125
  article-title: Experimental study on composite silica gel supported CaCl
  publication-title: Int J Therm Sci
– volume: 75
  start-page: 513
  year: 2015
  end-page: 531
  ident: b0165
  article-title: A review on the use of calcium chloride in applied thermal engineering
  publication-title: Appl Therm Eng
– volume: 162
  start-page: 1462
  year: 2016
  end-page: 1472
  ident: b0200
  article-title: Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage
  publication-title: Appl Energy
– volume: 434
  start-page: 37
  year: 2005
  end-page: 41
  ident: b0140
  article-title: Calorimetric investigation on zeolites, alpo 4’s and cacl 2 impregnated attapulgite for thermochemical storage of heat
  publication-title: Thermochim Acta
– reference: Rammelberg HU, Myrau M, Schmidt T, Ruck W. An optimization of salt hydrates for thermochemical heat storage. In: IMPRES 2013, Fukuoka, 04–06; 2013.
– volume: 13
  start-page: 2385
  year: 2009
  end-page: 2396
  ident: b0035
  article-title: A review on long-term sorption solar energy storage
  publication-title: Renew Sustain Energy Rev
– volume: 102
  start-page: 520
  year: 2016
  end-page: 531
  ident: b0210
  article-title: Effect of kinetics on the thermal performance of a sorption heat storage reactor
  publication-title: Appl Therm Eng
– volume: 59
  start-page: 325
  year: 1996
  end-page: 333
  ident: b0110
  article-title: Selective water sorbents for multiple applications, 1. CaCl
  publication-title: React Kinet Catal Lett
– volume: 113
  start-page: 1116
  year: 2017
  end-page: 1129
  ident: b0080
  article-title: Development of a validated 2d model for flow, moisture and heat transport in a packed bed reactor using MRI experiment and a lab-scale reactor setup
  publication-title: Int J Heat Mass Transfer
– volume: 76
  start-page: 1314
  year: 2017
  end-page: 1331
  ident: b0095
  article-title: Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating
  publication-title: Renew Sustain Energy Rev
– volume: 72
  start-page: 702
  year: 2014
  end-page: 716
  ident: b0085
  article-title: Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications
  publication-title: Energy
– reference: Jänchen J, Ackermann D, Weiler E, Stach H, Brösicke W. Thermochemical storage of low temperature heat by zeolites; sapos and impregnated active carbon. In: 7 th Workshop of IEA/ECES, annex, vol. 17; 2004.
– volume: 164
  start-page: 266
  year: 2012
  end-page: 272
  ident: b0115
  article-title: New two-component water sorbent CaCl2-fekil2 for solar thermal energy storage
  publication-title: Microp Mesop Mater
– volume: 47
  start-page: 386
  year: 2015
  end-page: 398
  ident: b0065
  article-title: State of the art on gas–solid thermochemical energy storage systems and reactors for building applications
  publication-title: Renew Sustain Energy Rev
– reference: Ferchaud C. Experimental study of salt hydrates for thermochemical seasonal heat storage, Ph.D. thesis. Eindhoven University of Technology; 2016.
– reference: Cuypers R, de Jong A, Eversdijk J, van’t Spijker J, Oversloot H, Ingenhut B, et al. Microencapsulation of salts for enhanced thermochemical storage materials. In: 40th Annual meeting and exposition of the controlled release society, 21–24 July 2013. Honolulu (HI, USA); 2013. p. 1–2.
– reference: >.
– volume: 39
  start-page: 489
  year: 2013
  end-page: 514
  ident: b0075
  article-title: Sorption thermal storage for solar energy
  publication-title: Prog Energy Combust Sci
– volume: 159
  start-page: 80
  year: 2015
  end-page: 86
  ident: b0050
  article-title: Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings
  publication-title: Appl Energy
– volume: 76
  start-page: 339
  year: 2004
  end-page: 344
  ident: b0015
  article-title: Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat
  publication-title: Solar Energy
– volume: 129
  start-page: 177
  year: 2014
  end-page: 186
  ident: b0060
  article-title: Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: global performance
  publication-title: Appl Energy
– volume: 109
  start-page: 360
  year: 2013
  end-page: 365
  ident: b0055
  article-title: Prototype thermochemical heat storage with open reactor system
  publication-title: Appl Energy
– volume: 73
  start-page: 983
  year: 2017
  end-page: 999
  ident: b0150
  article-title: A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties
  publication-title: Renew Sustain Energy Rev
– volume: 199
  start-page: 45
  year: 2017
  end-page: 68
  ident: b0025
  article-title: A review of salt hydrates for seasonal heat storage in domestic applications
  publication-title: Appl Energy
– reference: Bales C, Gantenbein P, Jaenig D, Kerskes H, Summer K, van Essen M, Weber R. Laboratory tests of chemical reactions and prototype sorption storage units. A Report of IEA Solar Heating and Cooling programme-Task 32; 2008.
– reference: Gaeini M, Javed R, Ouwerkerk H, Zondag HA, Rindt CC. Realization of a 4kw thermochemical segmented reactor in household scale for seasonal heat storage. In: Energy Procedia special issue for 11th international renewable energy storage conference, IRES; 2017.
– volume: 621
  start-page: 44
  year: 2015
  end-page: 55
  ident: b0205
  article-title: Kinetic study of the dehydration reaction of lithium sulfate monohydrate crystals using microscopy and modeling
  publication-title: Thermochim Acta
– volume: 190
  start-page: 920
  year: 2017
  end-page: 948
  ident: b0070
  article-title: Sorption heat storage for long-term low-temperature applications: a review on the advancements at material and prototype scale
  publication-title: Appl Energy
– reference: Alibaba.com <
– reference: Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I. The NBS tables of chemical thermodynamic properties, Tech. rep. DTIC Document; 1982.
– volume: 124
  start-page: 1
  year: 2014
  end-page: 16
  ident: b0020
  article-title: A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage
  publication-title: Appl Energy
– year: 2017
  ident: b0195
  article-title: Direct numerical simulation of the thermal dehydration reaction in a {TGA} experiment
  publication-title: Appl Therm Eng
– year: 2011
  ident: b0005
  article-title: Modernising building energy codes to secure our global energy future
– volume: 39
  start-page: 489
  issue: 5
  year: 2013
  ident: 10.1016/j.apenergy.2017.12.131_b0075
  article-title: Sorption thermal storage for solar energy
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2013.05.004
– volume: 113
  start-page: 1116
  year: 2017
  ident: 10.1016/j.apenergy.2017.12.131_b0080
  article-title: Development of a validated 2d model for flow, moisture and heat transport in a packed bed reactor using MRI experiment and a lab-scale reactor setup
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2017.06.034
– ident: 10.1016/j.apenergy.2017.12.131_b0170
– volume: 102
  start-page: 520
  year: 2016
  ident: 10.1016/j.apenergy.2017.12.131_b0210
  article-title: Effect of kinetics on the thermal performance of a sorption heat storage reactor
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.03.055
– ident: 10.1016/j.apenergy.2017.12.131_b0040
– volume: 199
  start-page: 45
  year: 2017
  ident: 10.1016/j.apenergy.2017.12.131_b0025
  article-title: A review of salt hydrates for seasonal heat storage in domestic applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.04.080
– volume: 190
  start-page: 920
  year: 2017
  ident: 10.1016/j.apenergy.2017.12.131_b0070
  article-title: Sorption heat storage for long-term low-temperature applications: a review on the advancements at material and prototype scale
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.12.148
– volume: 68
  start-page: 349
  issue: 2
  year: 1983
  ident: 10.1016/j.apenergy.2017.12.131_b0105
  article-title: Energiespeicherung durch chemische reaktionen. i. dsc-messungen zur quantitativen verfolgung der enthalpienderungen von speicherstoffen fr die hin- und rckreaktion
  publication-title: Thermochim Acta
  doi: 10.1016/0040-6031(83)80237-8
– year: 2011
  ident: 10.1016/j.apenergy.2017.12.131_b0005
– volume: 76
  start-page: 339
  issue: 13
  year: 2004
  ident: 10.1016/j.apenergy.2017.12.131_b0015
  article-title: Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2003.07.036
– volume: 13
  start-page: 2385
  issue: 9
  year: 2009
  ident: 10.1016/j.apenergy.2017.12.131_b0035
  article-title: A review on long-term sorption solar energy storage
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2009.05.008
– volume: 129
  start-page: 177
  year: 2014
  ident: 10.1016/j.apenergy.2017.12.131_b0060
  article-title: Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: global performance
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.04.073
– volume: 124
  start-page: 1109
  issue: 2
  year: 2016
  ident: 10.1016/j.apenergy.2017.12.131_b0190
  article-title: An experimentally validated numerical model of interface advance of the lithium sulfate monohydrate dehydration reaction
  publication-title: J Therm Anal Calor
  doi: 10.1007/s10973-015-5210-z
– volume: 434
  start-page: 37
  issue: 1
  year: 2005
  ident: 10.1016/j.apenergy.2017.12.131_b0140
  article-title: Calorimetric investigation on zeolites, alpo 4’s and cacl 2 impregnated attapulgite for thermochemical storage of heat
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2005.01.009
– ident: 10.1016/j.apenergy.2017.12.131_b0160
– volume: 73
  start-page: 983
  year: 2017
  ident: 10.1016/j.apenergy.2017.12.131_b0150
  article-title: A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.01.159
– ident: 10.1016/j.apenergy.2017.12.131_b0135
  doi: 10.18086/eurosun.2010.16.14
– volume: 621
  start-page: 44
  year: 2015
  ident: 10.1016/j.apenergy.2017.12.131_b0205
  article-title: Kinetic study of the dehydration reaction of lithium sulfate monohydrate crystals using microscopy and modeling
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2015.10.005
– ident: 10.1016/j.apenergy.2017.12.131_b0185
– volume: 162
  start-page: 1462
  year: 2016
  ident: 10.1016/j.apenergy.2017.12.131_b0200
  article-title: Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.08.037
– volume: 109
  start-page: 360
  year: 2013
  ident: 10.1016/j.apenergy.2017.12.131_b0055
  article-title: Prototype thermochemical heat storage with open reactor system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.01.082
– volume: 154
  start-page: 447
  year: 2015
  ident: 10.1016/j.apenergy.2017.12.131_b0090
  article-title: Thermal decomposition kinetic of salt hydrates for heat storage systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.02.011
– volume: 76
  start-page: 1314
  year: 2017
  ident: 10.1016/j.apenergy.2017.12.131_b0095
  article-title: Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.03.101
– ident: 10.1016/j.apenergy.2017.12.131_b0100
– ident: 10.1016/j.apenergy.2017.12.131_b0045
  doi: 10.1016/j.egypro.2017.09.491
– volume: 47
  start-page: 386
  year: 2015
  ident: 10.1016/j.apenergy.2017.12.131_b0065
  article-title: State of the art on gas–solid thermochemical energy storage systems and reactors for building applications
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.03.077
– volume: 164
  start-page: 266
  year: 2012
  ident: 10.1016/j.apenergy.2017.12.131_b0115
  article-title: New two-component water sorbent CaCl2-fekil2 for solar thermal energy storage
  publication-title: Microp Mesop Mater
  doi: 10.1016/j.micromeso.2012.06.054
– volume: 75
  start-page: 513
  year: 2015
  ident: 10.1016/j.apenergy.2017.12.131_b0165
  article-title: A review on the use of calcium chloride in applied thermal engineering
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2014.09.047
– ident: 10.1016/j.apenergy.2017.12.131_b0175
– start-page: 187
  year: 2016
  ident: 10.1016/j.apenergy.2017.12.131_b0010
  article-title: Phase change materials and thermochemical materials for large-scale energy storage
– volume: 59
  start-page: 325
  issue: 2
  year: 1996
  ident: 10.1016/j.apenergy.2017.12.131_b0110
  article-title: Selective water sorbents for multiple applications, 1. CaCl2 confined in mesopores of silica gel: sorption properties
  publication-title: React Kinet Catal Lett
  doi: 10.1007/BF02068130
– volume: 44
  start-page: 219
  issue: 3
  year: 1996
  ident: 10.1016/j.apenergy.2017.12.131_b0120
  article-title: Chemical heat accumulators: a new approach to accumulating low potential heat
  publication-title: Solar Energy Mater Solar Cells
  doi: 10.1016/0927-0248(96)00010-4
– volume: 137
  start-page: 726
  year: 2015
  ident: 10.1016/j.apenergy.2017.12.131_b0030
  article-title: Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.09.025
– year: 2017
  ident: 10.1016/j.apenergy.2017.12.131_b0195
  article-title: Direct numerical simulation of the thermal dehydration reaction in a {TGA} experiment
  publication-title: Appl Therm Eng
– ident: 10.1016/j.apenergy.2017.12.131_b0155
– ident: 10.1016/j.apenergy.2017.12.131_b0180
– volume: 124
  start-page: 1
  year: 2014
  ident: 10.1016/j.apenergy.2017.12.131_b0020
  article-title: A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.02.053
– ident: 10.1016/j.apenergy.2017.12.131_b0130
– volume: 40
  start-page: 1242
  issue: 13
  year: 2007
  ident: 10.1016/j.apenergy.2017.12.131_b0145
  article-title: Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties
  publication-title: J Chem Eng Japan
  doi: 10.1252/jcej.07WE228
– volume: 72
  start-page: 702
  year: 2014
  ident: 10.1016/j.apenergy.2017.12.131_b0085
  article-title: Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.097
– volume: 45
  start-page: 804
  issue: 8
  year: 2006
  ident: 10.1016/j.apenergy.2017.12.131_b0125
  article-title: Experimental study on composite silica gel supported CaCl2 sorbent for low grade heat storage
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2005.10.009
– volume: 159
  start-page: 80
  year: 2015
  ident: 10.1016/j.apenergy.2017.12.131_b0050
  article-title: Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.08.109
SSID ssj0002120
Score 2.5399182
Snippet •Attempts have been made to stabilize calcium chloride-based materials.•Impregnation and microencapsulation methods are applied.•Stability, kinetics and energy...
Thermochemical heat storage in salt hydrates is a promising method to improve the solar fraction in the built environment. The major concern at this stage is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1165
SubjectTerms calcium chloride
Calcium chloride composites
cellulose
differential scanning calorimetry
energy
energy density
graphene
heat
Kinetics and energy storage density
liquefaction
microencapsulation
Microencapsulation and impregnated
microscopy
reaction kinetics
Stability
TGA-DSC
Thermochemical heat storage
vermiculite
washing
Title Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage
URI https://dx.doi.org/10.1016/j.apenergy.2017.12.131
https://www.proquest.com/docview/2101312214
Volume 212
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLaqssCAOMUtI7GmrR0nTkZUtSogWKBSNyu-oKhNq9KurPxt3svBJSEGRie2lfhdn5PvPRNy4WIpmeU-gO2EDIS1SZAAzAi062g0Pm8LVuXtXTwYiutRNGqQbp0Lg7TKyveXPr3w1tWVdrWa7fl43L5HtIv4n0nMABaY8CuERC1vvX7SPHhVmhE6B9j7S5bwcyubuyLDDileEj8LspD9FqB-uOoi_vS3yGYFHOll-WzbpOHyHbLxpZzgDtnvfWatQdfKbF92yVv3oyxzmXVJZ55OkYoHHTLYJ08AcVqa5ZaOp_OFe8yLNkDz2eqFYh4IBWBb6irFuGcpzAHSNePVlJonZPFZRwH_UsSTUzyFqyhDQMsXp0jBBMe1R4b93kN3EFQnMARGpPEy0Jy52BrukywKO1aH3oUWMCVzzGmNzVQD4vMd5yWPDVi0jb2IfGQBVxmehfukmc9yd0Dg4bhlppNxH2khTZoanxgQVxxmEnbJ7JBE9bIrU5Unx1MyJqrmoT2rWlwKxaUYVwzHtT_GzcsCHX-OSGupqm-qpiCK_Dn2vFYDBXaIP1ey3IEsFOg63OeciaN_zH9M1qGVIC2cRSekuVys3CmgnqU-K9T6jKxdXt0M7t4BVbsHwg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLY4BmBAnOLGSKyhtePEyYgqUIGWBZDYrPiCVm1alXZl5W_zXg4uCTEwOj7k-B3-nHzvmZBTF0vJLPcBHCdkIKxNggRgRqBdU6PxeVuwKru3cftBXD9Gj3OkVcfCIK2y8v2lTy-8dfWkUa1mY9zrNe4Q7SL-ZxIjgEUyTxYFmC9eY3D2-snz4FVuRmgdYPMvYcL9s2zsihA75HhJ_C7IQvbbDvXDVxcb0OUaWa2QIz0vJ7dO5ly-QVa-5BPcINsXn2Fr0LSy25dN8tb6yMtchl3SkadD5OJBgwwOygOAnJZmuaW94XjinvKiDNh8NHuhGAhCAdmWykpx47MUxgDxmt5sSM0z0visowCAKQLKIV7DVeQhoOWLU-RggufaIg-XF_etdlBdwRAYkcbTQHPmYmu4T7IobFodehdaAJXMMac1FlMNkM83nZc8NmDSNvYi8pEFYGV4Fm6ThXyUux0Ck-OWmWbGfaSFNGlqfGKEBMSTSTgms10S1cuuTJWfHK_JGKiaiNZXtbgUiksxrhj2a3z0G5cZOv7skdZSVd90TcE28mffk1oNFBgi_l3JcgeyUKDsUM85E3v_GP-YLLXvux3Vubq92SfLUJMgR5xFB2RhOpm5Q4BAU31UqPg7P30JUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+microencapsulated+and+impregnated+porous+host+materials+based+on+calcium+chloride+for+thermochemical+energy+storage&rft.jtitle=Applied+energy&rft.au=Gaeini%2C+M.&rft.au=Rouws%2C+A.L.&rft.au=Salari%2C+J.W.O.&rft.au=Zondag%2C+H.A.&rft.date=2018-02-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=212&rft.spage=1165&rft.epage=1177&rft_id=info:doi/10.1016%2Fj.apenergy.2017.12.131&rft.externalDocID=S0306261917318548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon