Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage
•Attempts have been made to stabilize calcium chloride-based materials.•Impregnation and microencapsulation methods are applied.•Stability, kinetics and energy density are investigated.•Combined TGA-DSC methods and microscopic observation are employed.•Microencapsulation improved stability and kinet...
Saved in:
Published in | Applied energy Vol. 212; pp. 1165 - 1177 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Attempts have been made to stabilize calcium chloride-based materials.•Impregnation and microencapsulation methods are applied.•Stability, kinetics and energy density are investigated.•Combined TGA-DSC methods and microscopic observation are employed.•Microencapsulation improved stability and kinetics but not energy density.
Thermochemical heat storage in salt hydrates is a promising method to improve the solar fraction in the built environment. The major concern at this stage is liquefaction followed by washing out of active material and agglomeration into large chunks of salt, thus deteriorating the diffusive properties of the porous salt hydrate structure. In this work, specific attention is given to the methods to stabilize a sample salt hydrate. Attempts have been made to stabilize calcium chloride by impregnation in expanded natural graphite and vermiculite, and by microencapsulation with ethyl cellulose. The effect of these stabilization methods on the performance of the material, such as kinetics and energy density, is investigated. Characterization of the materials is carried out with combined Thermo-Gravitational Analysis (TGA) and Differential Scanning Calorimetry (DSC) methods and microscopic observation, in order to evaluate the improvements on the basis of three subjects: reaction kinetics, heat storage density and stability. Within the boundary conditions for thermochemical energy storage as presented in this work, microencapsulated calcium chloride showed high multicyclic stability, compared with pure and impregnated materials, that liquefy upon hydration under the given conditions. Microencapsulated material remains stable over multiple cycles and at the same time shows the faster kinetics, but has a lower volumetric energy storage density. |
---|---|
AbstractList | Thermochemical heat storage in salt hydrates is a promising method to improve the solar fraction in the built environment. The major concern at this stage is liquefaction followed by washing out of active material and agglomeration into large chunks of salt, thus deteriorating the diffusive properties of the porous salt hydrate structure. In this work, specific attention is given to the methods to stabilize a sample salt hydrate. Attempts have been made to stabilize calcium chloride by impregnation in expanded natural graphite and vermiculite, and by microencapsulation with ethyl cellulose. The effect of these stabilization methods on the performance of the material, such as kinetics and energy density, is investigated. Characterization of the materials is carried out with combined Thermo-Gravitational Analysis (TGA) and Differential Scanning Calorimetry (DSC) methods and microscopic observation, in order to evaluate the improvements on the basis of three subjects: reaction kinetics, heat storage density and stability. Within the boundary conditions for thermochemical energy storage as presented in this work, microencapsulated calcium chloride showed high multicyclic stability, compared with pure and impregnated materials, that liquefy upon hydration under the given conditions. Microencapsulated material remains stable over multiple cycles and at the same time shows the faster kinetics, but has a lower volumetric energy storage density. •Attempts have been made to stabilize calcium chloride-based materials.•Impregnation and microencapsulation methods are applied.•Stability, kinetics and energy density are investigated.•Combined TGA-DSC methods and microscopic observation are employed.•Microencapsulation improved stability and kinetics but not energy density. Thermochemical heat storage in salt hydrates is a promising method to improve the solar fraction in the built environment. The major concern at this stage is liquefaction followed by washing out of active material and agglomeration into large chunks of salt, thus deteriorating the diffusive properties of the porous salt hydrate structure. In this work, specific attention is given to the methods to stabilize a sample salt hydrate. Attempts have been made to stabilize calcium chloride by impregnation in expanded natural graphite and vermiculite, and by microencapsulation with ethyl cellulose. The effect of these stabilization methods on the performance of the material, such as kinetics and energy density, is investigated. Characterization of the materials is carried out with combined Thermo-Gravitational Analysis (TGA) and Differential Scanning Calorimetry (DSC) methods and microscopic observation, in order to evaluate the improvements on the basis of three subjects: reaction kinetics, heat storage density and stability. Within the boundary conditions for thermochemical energy storage as presented in this work, microencapsulated calcium chloride showed high multicyclic stability, compared with pure and impregnated materials, that liquefy upon hydration under the given conditions. Microencapsulated material remains stable over multiple cycles and at the same time shows the faster kinetics, but has a lower volumetric energy storage density. |
Author | Rindt, C.C.M. Rouws, A.L. Gaeini, M. Zondag, H.A. Salari, J.W.O. |
Author_xml | – sequence: 1 givenname: M. surname: Gaeini fullname: Gaeini, M. organization: Eindhoven University of Technology, Department of Mechanical Engineering, P.O.Box 513, 5600MB Eindhoven, The Netherlands – sequence: 2 givenname: A.L. surname: Rouws fullname: Rouws, A.L. organization: Eindhoven University of Technology, Department of Mechanical Engineering, P.O.Box 513, 5600MB Eindhoven, The Netherlands – sequence: 3 givenname: J.W.O. surname: Salari fullname: Salari, J.W.O. organization: TNO, Netherlands Institute for Applied Scientific Research, P.O. Box 6235, 5612 AP Eindhoven, The Netherlands – sequence: 4 givenname: H.A. surname: Zondag fullname: Zondag, H.A. organization: Eindhoven University of Technology, Department of Mechanical Engineering, P.O.Box 513, 5600MB Eindhoven, The Netherlands – sequence: 5 givenname: C.C.M. surname: Rindt fullname: Rindt, C.C.M. email: C.C.M.Rindt@tue.nl organization: Eindhoven University of Technology, Department of Mechanical Engineering, P.O.Box 513, 5600MB Eindhoven, The Netherlands |
BookMark | eNqFkcFq3DAQhkVJoZu0r1B0zMWORl5r15BDy9KkgUAv7VmMpdFai225kraQvkBfu9psc-klJzFo_o-Zby7ZxRxmYuwjiBoEqJtDjQvNFPdPtRSwqUHW0MAbtoLtRlYdwPaCrUQjVCUVdO_YZUoHIYQEKVbsz27AiCZT9L8x-zDz4PjkTQw0G1zSccRMluNsuZ-WSPv5uV5CDMfEh5Ayn_CUxjHxHlP5KwyDo_HHiZthDNFb4i5EngeKUzADFTyO_DwyTzlE3NN79tYVBH34916xH3dfvu--Vo_f7h92nx8rs-5UrnoJpKyRbottI2zfOGqs6DogoL4_lV2_Fq0T5DZSGSFaq9y6da0VrTISmyt2feYuMfw8Usp68snQOOJMZSMti9IGpIR1ab09txYZKUVy2vj87ChH9KMGoU_-9UG_-Ncn_xqkLogSV__Fl-gnjE-vBz-dg1Q8_PIUdTK-XIOsj2SytsG_hvgLkqCrYA |
CitedBy_id | crossref_primary_10_1016_j_tca_2021_179097 crossref_primary_10_1016_j_est_2022_106158 crossref_primary_10_1038_s41598_022_11548_3 crossref_primary_10_1016_j_enconman_2019_111843 crossref_primary_10_1016_j_renene_2025_122784 crossref_primary_10_3390_nano9010027 crossref_primary_10_1016_j_est_2018_02_014 crossref_primary_10_1007_s12517_020_05886_7 crossref_primary_10_1016_j_apenergy_2019_113525 crossref_primary_10_1080_15567036_2022_2128941 crossref_primary_10_1016_j_apsadv_2022_100309 crossref_primary_10_1016_j_est_2022_104259 crossref_primary_10_1016_j_measurement_2023_113420 crossref_primary_10_3390_en15124339 crossref_primary_10_1016_j_pecs_2023_101072 crossref_primary_10_1016_j_applthermaleng_2022_119313 crossref_primary_10_1016_j_matpr_2022_04_048 crossref_primary_10_1016_j_enconman_2024_118145 crossref_primary_10_1016_j_est_2024_111916 crossref_primary_10_1016_j_apenergy_2018_09_008 crossref_primary_10_1021_acs_cgd_4c00589 crossref_primary_10_1016_j_renene_2023_119767 crossref_primary_10_1016_j_est_2025_115726 crossref_primary_10_1016_j_apenergy_2023_121068 crossref_primary_10_1039_D4CP01870B crossref_primary_10_1016_j_est_2022_104702 crossref_primary_10_1016_j_apenergy_2020_115024 crossref_primary_10_1002_adfm_202213846 crossref_primary_10_1016_j_enconman_2020_112694 crossref_primary_10_1016_j_est_2024_112697 crossref_primary_10_1039_D3RA04859D crossref_primary_10_3390_thermo3040035 crossref_primary_10_1016_j_micromeso_2025_113605 crossref_primary_10_3390_en16186572 crossref_primary_10_1016_j_applthermaleng_2021_116880 crossref_primary_10_1016_j_est_2021_102561 crossref_primary_10_1016_j_energy_2021_120937 crossref_primary_10_1016_j_rser_2022_112197 crossref_primary_10_1016_j_energy_2024_134102 crossref_primary_10_3390_gels8080489 crossref_primary_10_1080_15567036_2019_1666187 crossref_primary_10_1016_j_renene_2020_07_036 crossref_primary_10_3390_en14133754 crossref_primary_10_1016_j_renene_2019_11_119 crossref_primary_10_1016_j_ijhydene_2021_02_211 crossref_primary_10_1016_j_solmat_2022_112154 crossref_primary_10_1016_j_est_2023_108862 crossref_primary_10_1016_j_jclepro_2020_124907 crossref_primary_10_1016_j_energy_2020_117595 crossref_primary_10_3390_nano9030420 crossref_primary_10_1016_j_est_2020_101699 crossref_primary_10_3389_fther_2022_1003863 crossref_primary_10_1016_j_susmat_2018_e00073 crossref_primary_10_1252_jcej_19we159 crossref_primary_10_1016_j_ijft_2023_100326 crossref_primary_10_1016_j_ces_2024_120853 crossref_primary_10_1016_j_micromeso_2021_111329 crossref_primary_10_1002_est2_232 crossref_primary_10_1016_j_applthermaleng_2024_124557 crossref_primary_10_1016_j_renene_2023_119331 crossref_primary_10_1016_j_solener_2018_08_075 crossref_primary_10_1016_j_renene_2022_06_024 crossref_primary_10_1016_j_applthermaleng_2025_125482 crossref_primary_10_1016_j_energy_2020_118370 crossref_primary_10_1039_D4CP00790E crossref_primary_10_3390_en17030578 crossref_primary_10_3390_en16062875 crossref_primary_10_1016_j_applthermaleng_2019_113893 crossref_primary_10_1016_j_cej_2024_157042 crossref_primary_10_1016_j_solener_2018_06_102 crossref_primary_10_1016_j_tca_2020_178752 crossref_primary_10_1021_acsaem_0c00971 crossref_primary_10_1016_j_solmat_2022_111769 crossref_primary_10_3390_en11123421 crossref_primary_10_1016_j_seppur_2024_129820 crossref_primary_10_1080_15567036_2023_2244457 crossref_primary_10_1016_j_ensm_2022_11_042 crossref_primary_10_1016_j_est_2023_110043 crossref_primary_10_1016_j_applthermaleng_2025_126186 crossref_primary_10_1007_s10853_023_08370_1 crossref_primary_10_1016_j_tsep_2024_102955 crossref_primary_10_1002_advs_202100320 crossref_primary_10_1021_acsomega_1c03909 crossref_primary_10_1021_acs_energyfuels_0c04021 crossref_primary_10_1016_j_enconman_2020_113617 crossref_primary_10_1016_j_energy_2024_130478 crossref_primary_10_1016_j_cep_2025_110267 crossref_primary_10_1038_s41598_023_50672_6 crossref_primary_10_1088_1742_6596_2765_1_012007 crossref_primary_10_1016_j_enbuild_2019_05_029 crossref_primary_10_1016_j_renene_2024_121668 crossref_primary_10_1016_j_solener_2019_03_076 crossref_primary_10_1016_j_apenergy_2020_116397 crossref_primary_10_1016_j_renene_2022_04_076 crossref_primary_10_1016_j_est_2025_116075 crossref_primary_10_1016_j_est_2020_101495 crossref_primary_10_1016_j_renene_2025_122831 crossref_primary_10_1016_j_rser_2021_111846 crossref_primary_10_1016_j_apenergy_2024_122953 crossref_primary_10_1021_acsaem_1c00786 crossref_primary_10_1016_j_commatsci_2021_110595 |
Cites_doi | 10.1016/j.pecs.2013.05.004 10.1016/j.ijheatmasstransfer.2017.06.034 10.1016/j.applthermaleng.2016.03.055 10.1016/j.apenergy.2017.04.080 10.1016/j.apenergy.2016.12.148 10.1016/0040-6031(83)80237-8 10.1016/j.solener.2003.07.036 10.1016/j.rser.2009.05.008 10.1016/j.apenergy.2014.04.073 10.1007/s10973-015-5210-z 10.1016/j.tca.2005.01.009 10.1016/j.rser.2017.01.159 10.18086/eurosun.2010.16.14 10.1016/j.tca.2015.10.005 10.1016/j.apenergy.2015.08.037 10.1016/j.apenergy.2013.01.082 10.1016/j.apenergy.2015.02.011 10.1016/j.rser.2017.03.101 10.1016/j.egypro.2017.09.491 10.1016/j.rser.2015.03.077 10.1016/j.micromeso.2012.06.054 10.1016/j.applthermaleng.2014.09.047 10.1007/BF02068130 10.1016/0927-0248(96)00010-4 10.1016/j.apenergy.2014.09.025 10.1016/j.apenergy.2014.02.053 10.1252/jcej.07WE228 10.1016/j.energy.2014.05.097 10.1016/j.ijthermalsci.2005.10.009 10.1016/j.apenergy.2015.08.109 |
ContentType | Journal Article |
Copyright | 2018 The Authors |
Copyright_xml | – notice: 2018 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2017.12.131 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
EndPage | 1177 |
ExternalDocumentID | 10_1016_j_apenergy_2017_12_131 S0306261917318548 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c496t-b21e6dc2f8a530db3fe3d0991e1ebbb3fe9b405f0ef726c005d6f45f5d056c2a3 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri Jul 11 13:04:40 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Tue Jul 01 02:53:22 EDT 2025 Fri Feb 23 02:46:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Calcium chloride composites TGA-DSC Thermochemical heat storage Stability Microencapsulation and impregnated Kinetics and energy storage density |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-b21e6dc2f8a530db3fe3d0991e1ebbb3fe9b405f0ef726c005d6f45f5d056c2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0306261917318548 |
PQID | 2101312214 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2101312214 crossref_citationtrail_10_1016_j_apenergy_2017_12_131 crossref_primary_10_1016_j_apenergy_2017_12_131 elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_12_131 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-15 |
PublicationDateYYYYMMDD | 2018-02-15 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Applied energy |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lan, Gaeini, Zondag, van Steenhoven, Rindt (b0195) 2017 Scapino, Zondag, Van Bael, Diriken, Rindt (b0095) 2017; 76 Zhu, Wu, Wang (b0125) 2006; 45 Rindt, Lan, Gaeini, Zhang, Nedea, Smeulders (b0010) 2016 Johannes, Kuznik, Hubert, Durier, Obrecht (b0050) 2015; 159 Gaeini, Wind, Donkers, Zondag, Rindt (b0080) 2017; 113 Lele, Kuznik, Rammelberg, Schmidt, Ruck (b0090) 2015; 154 Ristić, Mauec, Henninger, Kaui (b0115) 2012; 164 Levitskij, Aristov, Tokarev, Parmon (b0120) 1996; 44 Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I. The NBS tables of chemical thermodynamic properties, Tech. rep. DTIC Document; 1982. N’Tsoukpoe, Rammelberg, Lele, Korhammer, Watts, Schmidt (b0165) 2015; 75 Kerskes H, Mette B, Asenbeck S, Drück H, Müller-Steinhagen H. Experimental and numerical investigations on thermo-chemical heat storage. In: Proceedings of the EUROSUN; 2010. Gaeini, Zondag, Rindt (b0210) 2016; 102 Iyimen-Schwarz, Lechner (b0105) 1983; 68 Donkers, Sögütoglu, Huinink, Fischer, Adan (b0025) 2017; 199 Michel, Mazet, Neveu (b0060) 2014; 129 Solé, Martorell, Cabeza (b0065) 2015; 47 Lan, Zondag, van Steenhoven, Rindt (b0190) 2016; 124 Aristov, Tokarev, Cacciola, Restuccia (b0110) 1996; 59 Jänchen J, Ackermann D, Weiler E, Stach H, Brösicke W. Thermochemical storage of low temperature heat by zeolites; sapos and impregnated active carbon. In: 7 th Workshop of IEA/ECES, annex, vol. 17; 2004. Aristov (b0145) 2007; 40 Ntsoukpoe, Liu, Le Pierrès, Luo (b0035) 2009; 13 Bales C, Gantenbein P, Jaenig D, Kerskes H, Summer K, van Essen M, Weber R. Laboratory tests of chemical reactions and prototype sorption storage units. A Report of IEA Solar Heating and Cooling programme-Task 32; 2008. Gaeini M, Javed R, Ouwerkerk H, Zondag HA, Rindt CC. Realization of a 4kw thermochemical segmented reactor in household scale for seasonal heat storage. In: Energy Procedia special issue for 11th international renewable energy storage conference, IRES; 2017. DOW. Calcium chloride handbook. The Dow Chemical Company Yu, Wang, Wang (b0075) 2013; 39 Barreneche, Fernández, Cabeza, Cuypers (b0030) 2015; 137 . Lan, Zondag, Van Steenhoven, Rindt (b0205) 2015; 621 NTsoukpoe, Schmidt, Rammelberg, Watts, Ruck (b0020) 2014; 124 Cuypers R, de Jong A, Eversdijk J, van’t Spijker J, Oversloot H, Ingenhut B, et al. Microencapsulation of salts for enhanced thermochemical storage materials. In: 40th Annual meeting and exposition of the controlled release society, 21–24 July 2013. Honolulu (HI, USA); 2013. p. 1–2. Ferchaud C. Experimental study of salt hydrates for thermochemical seasonal heat storage, Ph.D. thesis. Eindhoven University of Technology; 2016. DOW. Ethocel ethylcellulose polymers technical handbook. The Dow Chemical Company Jänchen, Ackermann, Stach, Brsicke (b0015) 2004; 76 Michel, Neveu, Mazet (b0085) 2014; 72 Jänchen, Ackermann, Weiler, Stach, Brösicke (b0140) 2005; 434 Scapino, Zondag, Van Bael, Diriken, Rindt (b0070) 2017; 190 Alibaba.com Rammelberg HU, Myrau M, Schmidt T, Ruck W. An optimization of salt hydrates for thermochemical heat storage. In: IMPRES 2013, Fukuoka, 04–06; 2013. Milián, Gutiérrez, Grágeda, Ushak (b0150) 2017; 73 Saheb (b0005) 2011 Zondag, Kikkert, Smeding, de Boer, Bakker (b0055) 2013; 109 Korhammer, Druske, Fopah-Lele, Rammelberg, Wegscheider, Opel, Osterland, Ruck (b0200) 2016; 162 Iyimen-Schwarz (10.1016/j.apenergy.2017.12.131_b0105) 1983; 68 Lan (10.1016/j.apenergy.2017.12.131_b0195) 2017 Aristov (10.1016/j.apenergy.2017.12.131_b0110) 1996; 59 Jänchen (10.1016/j.apenergy.2017.12.131_b0015) 2004; 76 Johannes (10.1016/j.apenergy.2017.12.131_b0050) 2015; 159 Ntsoukpoe (10.1016/j.apenergy.2017.12.131_b0035) 2009; 13 Zondag (10.1016/j.apenergy.2017.12.131_b0055) 2013; 109 10.1016/j.apenergy.2017.12.131_b0175 NTsoukpoe (10.1016/j.apenergy.2017.12.131_b0020) 2014; 124 Michel (10.1016/j.apenergy.2017.12.131_b0060) 2014; 129 10.1016/j.apenergy.2017.12.131_b0130 Milián (10.1016/j.apenergy.2017.12.131_b0150) 2017; 73 Solé (10.1016/j.apenergy.2017.12.131_b0065) 2015; 47 Jänchen (10.1016/j.apenergy.2017.12.131_b0140) 2005; 434 10.1016/j.apenergy.2017.12.131_b0170 Michel (10.1016/j.apenergy.2017.12.131_b0085) 2014; 72 Lan (10.1016/j.apenergy.2017.12.131_b0190) 2016; 124 Gaeini (10.1016/j.apenergy.2017.12.131_b0210) 2016; 102 10.1016/j.apenergy.2017.12.131_b0155 Ristić (10.1016/j.apenergy.2017.12.131_b0115) 2012; 164 10.1016/j.apenergy.2017.12.131_b0135 Scapino (10.1016/j.apenergy.2017.12.131_b0070) 2017; 190 Korhammer (10.1016/j.apenergy.2017.12.131_b0200) 2016; 162 Saheb (10.1016/j.apenergy.2017.12.131_b0005) 2011 Barreneche (10.1016/j.apenergy.2017.12.131_b0030) 2015; 137 Levitskij (10.1016/j.apenergy.2017.12.131_b0120) 1996; 44 Gaeini (10.1016/j.apenergy.2017.12.131_b0080) 2017; 113 Zhu (10.1016/j.apenergy.2017.12.131_b0125) 2006; 45 Donkers (10.1016/j.apenergy.2017.12.131_b0025) 2017; 199 10.1016/j.apenergy.2017.12.131_b0040 10.1016/j.apenergy.2017.12.131_b0185 10.1016/j.apenergy.2017.12.131_b0180 10.1016/j.apenergy.2017.12.131_b0160 Rindt (10.1016/j.apenergy.2017.12.131_b0010) 2016 Lele (10.1016/j.apenergy.2017.12.131_b0090) 2015; 154 Aristov (10.1016/j.apenergy.2017.12.131_b0145) 2007; 40 Lan (10.1016/j.apenergy.2017.12.131_b0205) 2015; 621 Yu (10.1016/j.apenergy.2017.12.131_b0075) 2013; 39 Scapino (10.1016/j.apenergy.2017.12.131_b0095) 2017; 76 10.1016/j.apenergy.2017.12.131_b0045 10.1016/j.apenergy.2017.12.131_b0100 N’Tsoukpoe (10.1016/j.apenergy.2017.12.131_b0165) 2015; 75 |
References_xml | – volume: 154 start-page: 447 year: 2015 end-page: 458 ident: b0090 article-title: Thermal decomposition kinetic of salt hydrates for heat storage systems publication-title: Appl Energy – volume: 40 start-page: 1242 year: 2007 end-page: 1251 ident: b0145 article-title: Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties publication-title: J Chem Eng Japan – volume: 44 start-page: 219 year: 1996 end-page: 235 ident: b0120 article-title: Chemical heat accumulators: a new approach to accumulating low potential heat publication-title: Solar Energy Mater Solar Cells – reference: Kerskes H, Mette B, Asenbeck S, Drück H, Müller-Steinhagen H. Experimental and numerical investigations on thermo-chemical heat storage. In: Proceedings of the EUROSUN; 2010. – reference: DOW. Calcium chloride handbook. The Dow Chemical Company < – volume: 124 start-page: 1109 year: 2016 end-page: 1118 ident: b0190 article-title: An experimentally validated numerical model of interface advance of the lithium sulfate monohydrate dehydration reaction publication-title: J Therm Anal Calor – volume: 68 start-page: 349 year: 1983 end-page: 361 ident: b0105 article-title: Energiespeicherung durch chemische reaktionen. i. dsc-messungen zur quantitativen verfolgung der enthalpienderungen von speicherstoffen fr die hin- und rckreaktion publication-title: Thermochim Acta – volume: 137 start-page: 726 year: 2015 end-page: 730 ident: b0030 article-title: Thermophysical characterization and thermal cycling stability of two TCM: CaCl publication-title: Appl Energy – reference: DOW. Ethocel ethylcellulose polymers technical handbook. The Dow Chemical Company < – start-page: 187 year: 2016 end-page: 197 ident: b0010 article-title: Phase change materials and thermochemical materials for large-scale energy storage publication-title: Continuous media with microstructure 2 – volume: 45 start-page: 804 year: 2006 end-page: 813 ident: b0125 article-title: Experimental study on composite silica gel supported CaCl publication-title: Int J Therm Sci – volume: 75 start-page: 513 year: 2015 end-page: 531 ident: b0165 article-title: A review on the use of calcium chloride in applied thermal engineering publication-title: Appl Therm Eng – volume: 162 start-page: 1462 year: 2016 end-page: 1472 ident: b0200 article-title: Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage publication-title: Appl Energy – volume: 434 start-page: 37 year: 2005 end-page: 41 ident: b0140 article-title: Calorimetric investigation on zeolites, alpo 4’s and cacl 2 impregnated attapulgite for thermochemical storage of heat publication-title: Thermochim Acta – reference: Rammelberg HU, Myrau M, Schmidt T, Ruck W. An optimization of salt hydrates for thermochemical heat storage. In: IMPRES 2013, Fukuoka, 04–06; 2013. – volume: 13 start-page: 2385 year: 2009 end-page: 2396 ident: b0035 article-title: A review on long-term sorption solar energy storage publication-title: Renew Sustain Energy Rev – volume: 102 start-page: 520 year: 2016 end-page: 531 ident: b0210 article-title: Effect of kinetics on the thermal performance of a sorption heat storage reactor publication-title: Appl Therm Eng – volume: 59 start-page: 325 year: 1996 end-page: 333 ident: b0110 article-title: Selective water sorbents for multiple applications, 1. CaCl publication-title: React Kinet Catal Lett – volume: 113 start-page: 1116 year: 2017 end-page: 1129 ident: b0080 article-title: Development of a validated 2d model for flow, moisture and heat transport in a packed bed reactor using MRI experiment and a lab-scale reactor setup publication-title: Int J Heat Mass Transfer – volume: 76 start-page: 1314 year: 2017 end-page: 1331 ident: b0095 article-title: Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating publication-title: Renew Sustain Energy Rev – volume: 72 start-page: 702 year: 2014 end-page: 716 ident: b0085 article-title: Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications publication-title: Energy – reference: Jänchen J, Ackermann D, Weiler E, Stach H, Brösicke W. Thermochemical storage of low temperature heat by zeolites; sapos and impregnated active carbon. In: 7 th Workshop of IEA/ECES, annex, vol. 17; 2004. – volume: 164 start-page: 266 year: 2012 end-page: 272 ident: b0115 article-title: New two-component water sorbent CaCl2-fekil2 for solar thermal energy storage publication-title: Microp Mesop Mater – volume: 47 start-page: 386 year: 2015 end-page: 398 ident: b0065 article-title: State of the art on gas–solid thermochemical energy storage systems and reactors for building applications publication-title: Renew Sustain Energy Rev – reference: Ferchaud C. Experimental study of salt hydrates for thermochemical seasonal heat storage, Ph.D. thesis. Eindhoven University of Technology; 2016. – reference: Cuypers R, de Jong A, Eversdijk J, van’t Spijker J, Oversloot H, Ingenhut B, et al. Microencapsulation of salts for enhanced thermochemical storage materials. In: 40th Annual meeting and exposition of the controlled release society, 21–24 July 2013. Honolulu (HI, USA); 2013. p. 1–2. – reference: >. – volume: 39 start-page: 489 year: 2013 end-page: 514 ident: b0075 article-title: Sorption thermal storage for solar energy publication-title: Prog Energy Combust Sci – volume: 159 start-page: 80 year: 2015 end-page: 86 ident: b0050 article-title: Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings publication-title: Appl Energy – volume: 76 start-page: 339 year: 2004 end-page: 344 ident: b0015 article-title: Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat publication-title: Solar Energy – volume: 129 start-page: 177 year: 2014 end-page: 186 ident: b0060 article-title: Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: global performance publication-title: Appl Energy – volume: 109 start-page: 360 year: 2013 end-page: 365 ident: b0055 article-title: Prototype thermochemical heat storage with open reactor system publication-title: Appl Energy – volume: 73 start-page: 983 year: 2017 end-page: 999 ident: b0150 article-title: A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties publication-title: Renew Sustain Energy Rev – volume: 199 start-page: 45 year: 2017 end-page: 68 ident: b0025 article-title: A review of salt hydrates for seasonal heat storage in domestic applications publication-title: Appl Energy – reference: Bales C, Gantenbein P, Jaenig D, Kerskes H, Summer K, van Essen M, Weber R. Laboratory tests of chemical reactions and prototype sorption storage units. A Report of IEA Solar Heating and Cooling programme-Task 32; 2008. – reference: Gaeini M, Javed R, Ouwerkerk H, Zondag HA, Rindt CC. Realization of a 4kw thermochemical segmented reactor in household scale for seasonal heat storage. In: Energy Procedia special issue for 11th international renewable energy storage conference, IRES; 2017. – volume: 621 start-page: 44 year: 2015 end-page: 55 ident: b0205 article-title: Kinetic study of the dehydration reaction of lithium sulfate monohydrate crystals using microscopy and modeling publication-title: Thermochim Acta – volume: 190 start-page: 920 year: 2017 end-page: 948 ident: b0070 article-title: Sorption heat storage for long-term low-temperature applications: a review on the advancements at material and prototype scale publication-title: Appl Energy – reference: Alibaba.com < – reference: Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I. The NBS tables of chemical thermodynamic properties, Tech. rep. DTIC Document; 1982. – volume: 124 start-page: 1 year: 2014 end-page: 16 ident: b0020 article-title: A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage publication-title: Appl Energy – year: 2017 ident: b0195 article-title: Direct numerical simulation of the thermal dehydration reaction in a {TGA} experiment publication-title: Appl Therm Eng – year: 2011 ident: b0005 article-title: Modernising building energy codes to secure our global energy future – volume: 39 start-page: 489 issue: 5 year: 2013 ident: 10.1016/j.apenergy.2017.12.131_b0075 article-title: Sorption thermal storage for solar energy publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2013.05.004 – volume: 113 start-page: 1116 year: 2017 ident: 10.1016/j.apenergy.2017.12.131_b0080 article-title: Development of a validated 2d model for flow, moisture and heat transport in a packed bed reactor using MRI experiment and a lab-scale reactor setup publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.06.034 – ident: 10.1016/j.apenergy.2017.12.131_b0170 – volume: 102 start-page: 520 year: 2016 ident: 10.1016/j.apenergy.2017.12.131_b0210 article-title: Effect of kinetics on the thermal performance of a sorption heat storage reactor publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.03.055 – ident: 10.1016/j.apenergy.2017.12.131_b0040 – volume: 199 start-page: 45 year: 2017 ident: 10.1016/j.apenergy.2017.12.131_b0025 article-title: A review of salt hydrates for seasonal heat storage in domestic applications publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.04.080 – volume: 190 start-page: 920 year: 2017 ident: 10.1016/j.apenergy.2017.12.131_b0070 article-title: Sorption heat storage for long-term low-temperature applications: a review on the advancements at material and prototype scale publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.12.148 – volume: 68 start-page: 349 issue: 2 year: 1983 ident: 10.1016/j.apenergy.2017.12.131_b0105 article-title: Energiespeicherung durch chemische reaktionen. i. dsc-messungen zur quantitativen verfolgung der enthalpienderungen von speicherstoffen fr die hin- und rckreaktion publication-title: Thermochim Acta doi: 10.1016/0040-6031(83)80237-8 – year: 2011 ident: 10.1016/j.apenergy.2017.12.131_b0005 – volume: 76 start-page: 339 issue: 13 year: 2004 ident: 10.1016/j.apenergy.2017.12.131_b0015 article-title: Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat publication-title: Solar Energy doi: 10.1016/j.solener.2003.07.036 – volume: 13 start-page: 2385 issue: 9 year: 2009 ident: 10.1016/j.apenergy.2017.12.131_b0035 article-title: A review on long-term sorption solar energy storage publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2009.05.008 – volume: 129 start-page: 177 year: 2014 ident: 10.1016/j.apenergy.2017.12.131_b0060 article-title: Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: global performance publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.04.073 – volume: 124 start-page: 1109 issue: 2 year: 2016 ident: 10.1016/j.apenergy.2017.12.131_b0190 article-title: An experimentally validated numerical model of interface advance of the lithium sulfate monohydrate dehydration reaction publication-title: J Therm Anal Calor doi: 10.1007/s10973-015-5210-z – volume: 434 start-page: 37 issue: 1 year: 2005 ident: 10.1016/j.apenergy.2017.12.131_b0140 article-title: Calorimetric investigation on zeolites, alpo 4’s and cacl 2 impregnated attapulgite for thermochemical storage of heat publication-title: Thermochim Acta doi: 10.1016/j.tca.2005.01.009 – ident: 10.1016/j.apenergy.2017.12.131_b0160 – volume: 73 start-page: 983 year: 2017 ident: 10.1016/j.apenergy.2017.12.131_b0150 article-title: A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.01.159 – ident: 10.1016/j.apenergy.2017.12.131_b0135 doi: 10.18086/eurosun.2010.16.14 – volume: 621 start-page: 44 year: 2015 ident: 10.1016/j.apenergy.2017.12.131_b0205 article-title: Kinetic study of the dehydration reaction of lithium sulfate monohydrate crystals using microscopy and modeling publication-title: Thermochim Acta doi: 10.1016/j.tca.2015.10.005 – ident: 10.1016/j.apenergy.2017.12.131_b0185 – volume: 162 start-page: 1462 year: 2016 ident: 10.1016/j.apenergy.2017.12.131_b0200 article-title: Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.08.037 – volume: 109 start-page: 360 year: 2013 ident: 10.1016/j.apenergy.2017.12.131_b0055 article-title: Prototype thermochemical heat storage with open reactor system publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.01.082 – volume: 154 start-page: 447 year: 2015 ident: 10.1016/j.apenergy.2017.12.131_b0090 article-title: Thermal decomposition kinetic of salt hydrates for heat storage systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.02.011 – volume: 76 start-page: 1314 year: 2017 ident: 10.1016/j.apenergy.2017.12.131_b0095 article-title: Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.03.101 – ident: 10.1016/j.apenergy.2017.12.131_b0100 – ident: 10.1016/j.apenergy.2017.12.131_b0045 doi: 10.1016/j.egypro.2017.09.491 – volume: 47 start-page: 386 year: 2015 ident: 10.1016/j.apenergy.2017.12.131_b0065 article-title: State of the art on gas–solid thermochemical energy storage systems and reactors for building applications publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.03.077 – volume: 164 start-page: 266 year: 2012 ident: 10.1016/j.apenergy.2017.12.131_b0115 article-title: New two-component water sorbent CaCl2-fekil2 for solar thermal energy storage publication-title: Microp Mesop Mater doi: 10.1016/j.micromeso.2012.06.054 – volume: 75 start-page: 513 year: 2015 ident: 10.1016/j.apenergy.2017.12.131_b0165 article-title: A review on the use of calcium chloride in applied thermal engineering publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2014.09.047 – ident: 10.1016/j.apenergy.2017.12.131_b0175 – start-page: 187 year: 2016 ident: 10.1016/j.apenergy.2017.12.131_b0010 article-title: Phase change materials and thermochemical materials for large-scale energy storage – volume: 59 start-page: 325 issue: 2 year: 1996 ident: 10.1016/j.apenergy.2017.12.131_b0110 article-title: Selective water sorbents for multiple applications, 1. CaCl2 confined in mesopores of silica gel: sorption properties publication-title: React Kinet Catal Lett doi: 10.1007/BF02068130 – volume: 44 start-page: 219 issue: 3 year: 1996 ident: 10.1016/j.apenergy.2017.12.131_b0120 article-title: Chemical heat accumulators: a new approach to accumulating low potential heat publication-title: Solar Energy Mater Solar Cells doi: 10.1016/0927-0248(96)00010-4 – volume: 137 start-page: 726 year: 2015 ident: 10.1016/j.apenergy.2017.12.131_b0030 article-title: Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.09.025 – year: 2017 ident: 10.1016/j.apenergy.2017.12.131_b0195 article-title: Direct numerical simulation of the thermal dehydration reaction in a {TGA} experiment publication-title: Appl Therm Eng – ident: 10.1016/j.apenergy.2017.12.131_b0155 – ident: 10.1016/j.apenergy.2017.12.131_b0180 – volume: 124 start-page: 1 year: 2014 ident: 10.1016/j.apenergy.2017.12.131_b0020 article-title: A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.02.053 – ident: 10.1016/j.apenergy.2017.12.131_b0130 – volume: 40 start-page: 1242 issue: 13 year: 2007 ident: 10.1016/j.apenergy.2017.12.131_b0145 article-title: Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties publication-title: J Chem Eng Japan doi: 10.1252/jcej.07WE228 – volume: 72 start-page: 702 year: 2014 ident: 10.1016/j.apenergy.2017.12.131_b0085 article-title: Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications publication-title: Energy doi: 10.1016/j.energy.2014.05.097 – volume: 45 start-page: 804 issue: 8 year: 2006 ident: 10.1016/j.apenergy.2017.12.131_b0125 article-title: Experimental study on composite silica gel supported CaCl2 sorbent for low grade heat storage publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2005.10.009 – volume: 159 start-page: 80 year: 2015 ident: 10.1016/j.apenergy.2017.12.131_b0050 article-title: Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.08.109 |
SSID | ssj0002120 |
Score | 2.5399182 |
Snippet | •Attempts have been made to stabilize calcium chloride-based materials.•Impregnation and microencapsulation methods are applied.•Stability, kinetics and energy... Thermochemical heat storage in salt hydrates is a promising method to improve the solar fraction in the built environment. The major concern at this stage is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1165 |
SubjectTerms | calcium chloride Calcium chloride composites cellulose differential scanning calorimetry energy energy density graphene heat Kinetics and energy storage density liquefaction microencapsulation Microencapsulation and impregnated microscopy reaction kinetics Stability TGA-DSC Thermochemical heat storage vermiculite washing |
Title | Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage |
URI | https://dx.doi.org/10.1016/j.apenergy.2017.12.131 https://www.proquest.com/docview/2101312214 |
Volume | 212 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLaqssCAOMUtI7GmrR0nTkZUtSogWKBSNyu-oKhNq9KurPxt3svBJSEGRie2lfhdn5PvPRNy4WIpmeU-gO2EDIS1SZAAzAi062g0Pm8LVuXtXTwYiutRNGqQbp0Lg7TKyveXPr3w1tWVdrWa7fl43L5HtIv4n0nMABaY8CuERC1vvX7SPHhVmhE6B9j7S5bwcyubuyLDDileEj8LspD9FqB-uOoi_vS3yGYFHOll-WzbpOHyHbLxpZzgDtnvfWatQdfKbF92yVv3oyxzmXVJZ55OkYoHHTLYJ08AcVqa5ZaOp_OFe8yLNkDz2eqFYh4IBWBb6irFuGcpzAHSNePVlJonZPFZRwH_UsSTUzyFqyhDQMsXp0jBBMe1R4b93kN3EFQnMARGpPEy0Jy52BrukywKO1aH3oUWMCVzzGmNzVQD4vMd5yWPDVi0jb2IfGQBVxmehfukmc9yd0Dg4bhlppNxH2khTZoanxgQVxxmEnbJ7JBE9bIrU5Unx1MyJqrmoT2rWlwKxaUYVwzHtT_GzcsCHX-OSGupqm-qpiCK_Dn2vFYDBXaIP1ey3IEsFOg63OeciaN_zH9M1qGVIC2cRSekuVys3CmgnqU-K9T6jKxdXt0M7t4BVbsHwg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLY4BmBAnOLGSKyhtePEyYgqUIGWBZDYrPiCVm1alXZl5W_zXg4uCTEwOj7k-B3-nHzvmZBTF0vJLPcBHCdkIKxNggRgRqBdU6PxeVuwKru3cftBXD9Gj3OkVcfCIK2y8v2lTy-8dfWkUa1mY9zrNe4Q7SL-ZxIjgEUyTxYFmC9eY3D2-snz4FVuRmgdYPMvYcL9s2zsihA75HhJ_C7IQvbbDvXDVxcb0OUaWa2QIz0vJ7dO5ly-QVa-5BPcINsXn2Fr0LSy25dN8tb6yMtchl3SkadD5OJBgwwOygOAnJZmuaW94XjinvKiDNh8NHuhGAhCAdmWykpx47MUxgDxmt5sSM0z0visowCAKQLKIV7DVeQhoOWLU-RggufaIg-XF_etdlBdwRAYkcbTQHPmYmu4T7IobFodehdaAJXMMac1FlMNkM83nZc8NmDSNvYi8pEFYGV4Fm6ThXyUux0Ck-OWmWbGfaSFNGlqfGKEBMSTSTgms10S1cuuTJWfHK_JGKiaiNZXtbgUiksxrhj2a3z0G5cZOv7skdZSVd90TcE28mffk1oNFBgi_l3JcgeyUKDsUM85E3v_GP-YLLXvux3Vubq92SfLUJMgR5xFB2RhOpm5Q4BAU31UqPg7P30JUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+microencapsulated+and+impregnated+porous+host+materials+based+on+calcium+chloride+for+thermochemical+energy+storage&rft.jtitle=Applied+energy&rft.au=Gaeini%2C+M.&rft.au=Rouws%2C+A.L.&rft.au=Salari%2C+J.W.O.&rft.au=Zondag%2C+H.A.&rft.date=2018-02-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=212&rft.spage=1165&rft.epage=1177&rft_id=info:doi/10.1016%2Fj.apenergy.2017.12.131&rft.externalDocID=S0306261917318548 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |