SPPEK/TPA composite membrane as a separator of vanadium redox flow battery

To improve the performance of a low cost sulfonated poly(phthalazinone ether ketone) (SPPEK) membrane in vanadium redox flow battery (VRFB), composite membranes composed of SPPEK and tungstophosphoric acid (TPA) with 8–25wt% concentration were prepared by solution casting. The results of scanning el...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 437; pp. 114 - 121
Main Authors Wang, Nanfang, Yu, Jingang, Zhou, Zhi, Fang, Dong, Liu, Suqin, Liu, Younian
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.06.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To improve the performance of a low cost sulfonated poly(phthalazinone ether ketone) (SPPEK) membrane in vanadium redox flow battery (VRFB), composite membranes composed of SPPEK and tungstophosphoric acid (TPA) with 8–25wt% concentration were prepared by solution casting. The results of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) of the SPPEK/TPA composite membrane revealed that TPA had excellent compatibility with SPPEK in the bulk of the membrane. The effect of the TPA concentration on the primary properties, permeability of vanadium ions and ionic selectivity, and chemical stability of the composite membrane was investigated. The single cell tests showed that the VRFB employing the SPPEK–TPA-17 membrane with 17wt% TPA exhibited a higher coulombic efficiency (98.75% vs. 92.81%) and energy efficiency (74.58% vs. 73.83%) than those of the Nafion system. Cycling and chemical stability tests indicated that the SPPEK/TPA composite membrane had high stability in the VRFB system. ► A SPPEK/TPA composite membrane by the solution casting method was investigated in VRFB application. ► The introduction of TPA (8–25wt%) can improve the proton conductivity. ► VRFB with the composite membrane exhibited superior performance compared with Nafion membrane.
AbstractList To improve the performance of a low cost sulfonated poly(phthalazinone ether ketone) (SPPEK) membrane in vanadium redox flow battery (VRFB), composite membranes composed of SPPEK and tungstophosphoric acid (TPA) with 8–25wt% concentration were prepared by solution casting. The results of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) of the SPPEK/TPA composite membrane revealed that TPA had excellent compatibility with SPPEK in the bulk of the membrane. The effect of the TPA concentration on the primary properties, permeability of vanadium ions and ionic selectivity, and chemical stability of the composite membrane was investigated. The single cell tests showed that the VRFB employing the SPPEK–TPA-17 membrane with 17wt% TPA exhibited a higher coulombic efficiency (98.75% vs. 92.81%) and energy efficiency (74.58% vs. 73.83%) than those of the Nafion system. Cycling and chemical stability tests indicated that the SPPEK/TPA composite membrane had high stability in the VRFB system.
To improve the performance of a low cost sulfonated poly(phthalazinone ether ketone) (SPPEK) membrane in vanadium redox flow battery (VRFB), composite membranes composed of SPPEK and tungstophosphoric acid (TPA) with 8–25wt% concentration were prepared by solution casting. The results of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) of the SPPEK/TPA composite membrane revealed that TPA had excellent compatibility with SPPEK in the bulk of the membrane. The effect of the TPA concentration on the primary properties, permeability of vanadium ions and ionic selectivity, and chemical stability of the composite membrane was investigated. The single cell tests showed that the VRFB employing the SPPEK–TPA-17 membrane with 17wt% TPA exhibited a higher coulombic efficiency (98.75% vs. 92.81%) and energy efficiency (74.58% vs. 73.83%) than those of the Nafion system. Cycling and chemical stability tests indicated that the SPPEK/TPA composite membrane had high stability in the VRFB system. ► A SPPEK/TPA composite membrane by the solution casting method was investigated in VRFB application. ► The introduction of TPA (8–25wt%) can improve the proton conductivity. ► VRFB with the composite membrane exhibited superior performance compared with Nafion membrane.
To improve the performance of a low cost sulfonated poly(phthalazinone ether ketone) (SPPEK) membrane in vanadium redox flow battery (VRFB), composite membranes composed of SPPEK and tungstophosphoric acid (TPA) with 8a25 wt% concentration were prepared by solution casting. The results of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) of the SPPEK/TPA composite membrane revealed that TPA had excellent compatibility with SPPEK in the bulk of the membrane. The effect of the TPA concentration on the primary properties, permeability of vanadium ions and ionic selectivity, and chemical stability of the composite membrane was investigated. The single cell tests showed that the VRFB employing the SPPEKaTPA-17 membrane with 17 wt% TPA exhibited a higher coulombic efficiency (98.75% vs. 92.81%) and energy efficiency (74.58% vs. 73.83%) than those of the Nafion system. Cycling and chemical stability tests indicated that the SPPEK/TPA composite membrane had high stability in the VRFB system.
Author Yu, Jingang
Wang, Nanfang
Fang, Dong
Zhou, Zhi
Liu, Suqin
Liu, Younian
Author_xml – sequence: 1
  givenname: Nanfang
  surname: Wang
  fullname: Wang, Nanfang
  email: cdwnf@126.com
  organization: School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, 88 Fuxing East Road, Xiangtan 411104, China
– sequence: 2
  givenname: Jingang
  surname: Yu
  fullname: Yu, Jingang
  organization: Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
– sequence: 3
  givenname: Zhi
  surname: Zhou
  fullname: Zhou, Zhi
  organization: Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
– sequence: 4
  givenname: Dong
  surname: Fang
  fullname: Fang, Dong
  organization: Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, 430073 Wuhan, China
– sequence: 5
  givenname: Suqin
  surname: Liu
  fullname: Liu, Suqin
  email: sqliu2003@126.com
  organization: Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
– sequence: 6
  givenname: Younian
  surname: Liu
  fullname: Liu, Younian
  organization: Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27391275$$DView record in Pascal Francis
BookMark eNqFkc1u1DAUhS1UJKaFN0DCGyQ2Sa9_YscskKqq_FZipLZry3Fs5FESD7anpW-PhykbFszKC3_n3Kv7naKTJS4OodcEWgJEnG_a2c3ZhpYCYS3QFjr2DK1IL1nDCGUnaAVMikayvn-BTnPeABAJvVqhrzfr9dW389v1BbZx3sYcisO1bUhmcdhkbHB2W5NMiQlHj-_NYsawm3FyY_yF_RQf8GBKcenxJXruzZTdq6f3DN19vLq9_Nxcf__05fLiurFcidIMMI5MqdFaZoduoJ3qgQ_eM8GHwTjWCec5dx5gFI4IRSXpuJVUUjFC_WFn6N2hd5viz53LRc8hWzdNdeO4y5r0wEAxSrvjqJBEUOiJOo52hHGp-B_07RNqsjWTr6eyIettCrNJj5pKpgiV--nvD5xNMefkvLahmBLiUpIJkyag9_r0Rh_06b0-DVRXfTXM_wn_7T8Se3OIeRO1-ZHqXnc3FRAA0PNeiUp8OBCuOroPLuna4RbrxpCcLXqM4f8jfgNfLb-J
CODEN JMESDO
CitedBy_id crossref_primary_10_1016_j_memsci_2016_10_050
crossref_primary_10_1039_D4QI00520A
crossref_primary_10_1016_j_jpowsour_2015_02_070
crossref_primary_10_3390_coatings12030378
crossref_primary_10_1002_slct_201801548
crossref_primary_10_1007_s11581_016_1967_8
crossref_primary_10_1016_j_jpowsour_2015_09_026
crossref_primary_10_1002_celc_201901887
crossref_primary_10_1007_s11814_015_0077_z
crossref_primary_10_1016_j_ijhydene_2017_12_012
crossref_primary_10_1177_09540083241264625
crossref_primary_10_1016_j_jpowsour_2014_08_101
crossref_primary_10_1016_j_memsci_2015_02_014
crossref_primary_10_1016_j_pecs_2021_100926
crossref_primary_10_1039_C6RA22665E
crossref_primary_10_1039_C5RA05914C
crossref_primary_10_9713_kcer_2013_51_5_615
crossref_primary_10_1016_j_jpowsour_2017_04_045
crossref_primary_10_1016_j_electacta_2017_11_063
crossref_primary_10_1016_j_jiec_2017_11_027
crossref_primary_10_1149_2_0601805jes
crossref_primary_10_3390_membranes13100820
crossref_primary_10_1007_s10008_014_2574_0
crossref_primary_10_1016_j_polymer_2022_125667
crossref_primary_10_1016_j_memsci_2018_11_009
crossref_primary_10_1039_D0TA11037J
crossref_primary_10_3389_fchem_2018_00549
crossref_primary_10_1016_j_jpowsour_2015_03_102
crossref_primary_10_1016_j_memsci_2016_10_049
crossref_primary_10_1149_2_0601811jes
crossref_primary_10_1016_j_jpowsour_2015_03_104
crossref_primary_10_1039_C7TA05155G
crossref_primary_10_1155_2015_207525
crossref_primary_10_1016_j_electacta_2018_06_083
crossref_primary_10_1016_j_memsci_2024_123410
crossref_primary_10_4028_www_scientific_net_AMM_891_169
crossref_primary_10_1016_j_est_2023_108321
crossref_primary_10_1021_acs_energyfuels_3c02373
crossref_primary_10_1039_C8TA08349E
crossref_primary_10_1039_C9TA01891C
crossref_primary_10_1016_j_surfcoat_2018_11_018
crossref_primary_10_1016_j_est_2020_101754
crossref_primary_10_1016_j_memsci_2019_117616
crossref_primary_10_1016_j_jcis_2016_03_036
crossref_primary_10_1149_1945_7111_ac99a3
crossref_primary_10_1002_slct_201900888
crossref_primary_10_1115_1_4040921
crossref_primary_10_54097_ajst_v8i1_14315
crossref_primary_10_1016_j_electacta_2016_09_039
crossref_primary_10_1016_j_jpowsour_2014_01_127
crossref_primary_10_1016_j_est_2021_103180
crossref_primary_10_3390_membranes11030214
crossref_primary_10_1016_j_renene_2021_12_074
crossref_primary_10_1016_j_electacta_2021_139434
crossref_primary_10_1680_jener_22_00025
crossref_primary_10_1021_am5047125
crossref_primary_10_1021_acs_iecr_9b06813
crossref_primary_10_1016_j_memsci_2014_06_019
crossref_primary_10_1177_0954008315596587
crossref_primary_10_1002_admt_202001308
crossref_primary_10_1016_j_jpowsour_2017_02_055
crossref_primary_10_1039_D0MA00508H
crossref_primary_10_1016_j_jpowsour_2016_07_046
crossref_primary_10_1016_j_electacta_2015_01_159
crossref_primary_10_1016_j_memsci_2020_118179
crossref_primary_10_1002_adsu_201900020
crossref_primary_10_1021_acsomega_8b01215
crossref_primary_10_1080_17518253_2024_2302834
crossref_primary_10_1016_j_est_2024_113318
crossref_primary_10_1016_j_apenergy_2018_12_087
crossref_primary_10_1016_j_electacta_2016_05_116
crossref_primary_10_1002_aenm_202200469
crossref_primary_10_1016_j_memsci_2024_122663
crossref_primary_10_1016_j_memsci_2023_121394
crossref_primary_10_1007_s10008_016_3121_y
crossref_primary_10_1016_j_memsci_2023_121390
crossref_primary_10_1039_c4ta00917g
crossref_primary_10_1016_j_memsci_2018_07_065
crossref_primary_10_1016_j_memsci_2021_119159
crossref_primary_10_1016_j_memsci_2020_118800
crossref_primary_10_1038_pj_2016_42
Cites_doi 10.1002/cssc.201100068
10.1039/c0ee00770f
10.1016/j.enconman.2010.06.019
10.1039/B917117G
10.1016/j.jpowsour.2007.01.069
10.1016/0378-7753(91)80058-6
10.1016/j.memsci.2010.11.049
10.1023/B:JACH.0000009931.83368.dc
10.1149/1.2108706
10.1016/S0376-7388(97)00092-6
10.1007/s10008-012-1641-7
10.1016/j.polymer.2011.09.021
10.1016/j.memsci.2008.08.025
10.1016/0378-7753(85)80071-9
10.1016/j.jpowsour.2010.05.026
10.1016/j.jpowsour.2009.11.010
10.1016/j.memsci.2007.07.041
10.1016/j.memsci.2008.05.042
10.1149/1.2100321
10.1016/j.jpowsour.2010.10.039
10.1002/pola.10601
10.1016/j.jpowsour.2010.02.008
10.1016/j.memsci.2003.11.016
10.1016/S0167-2738(03)00238-8
10.1016/j.memsci.2009.02.009
10.1016/j.jiec.2010.07.007
10.1016/S0376-7388(97)00040-9
10.1016/j.jpowsour.2007.11.089
10.1039/b718526j
10.1016/j.jpowsour.2010.07.028
10.1142/S0256767909003789
10.1007/s10800-011-0313-0
10.1007/s40145-012-0007-z
10.1002/1097-4628(20010228)79:9<1685::AID-APP180>3.0.CO;2-L
10.1016/j.elecom.2012.01.012
10.1016/0376-7388(96)00135-4
10.1016/j.elecom.2010.09.018
10.1016/0378-7753(85)80082-3
10.1016/0376-7388(95)00096-U
10.1016/S0376-7388(99)00112-X
10.1016/S0376-7388(00)00632-3
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7QH
7UA
C1K
F1W
H97
L.G
7SE
7SR
7SU
7TB
8FD
FR3
JG9
7S9
L.6
DOI 10.1016/j.memsci.2013.02.053
DatabaseName AGRIS
CrossRef
Pascal-Francis
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Corrosion Abstracts
Engineered Materials Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Materials Research Database

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Chemistry
EISSN 1873-3123
EndPage 121
ExternalDocumentID 27391275
10_1016_j_memsci_2013_02_053
US201600084896
S0376738813001804
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFPUW
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSH
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AACTN
AAIAV
AAQXK
ABPIF
ABPTK
ABYKQ
ACNNM
ADMUD
AFKWA
AI.
AJBFU
AJOXV
AMFUW
ASPBG
AVWKF
AZFZN
BBWZM
EJD
FBQ
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
VH1
WUQ
AAYXX
ACRPL
ADNMO
AFJKZ
AGQPQ
AIGII
APXCP
BNPGV
CITATION
IQODW
7QH
7UA
C1K
F1W
H97
L.G
7SE
7SR
7SU
7TB
8FD
FR3
JG9
7S9
L.6
ID FETCH-LOGICAL-c496t-b0dd399dcc3cb5b259804bff364bbae356ef44ef00d6e16927154c72726d0f443
IEDL.DBID .~1
ISSN 0376-7388
IngestDate Fri Jul 11 13:44:01 EDT 2025
Fri Jul 11 01:48:53 EDT 2025
Fri Jul 11 04:03:07 EDT 2025
Mon Jul 21 09:13:57 EDT 2025
Thu Apr 24 22:56:06 EDT 2025
Tue Jul 01 03:37:51 EDT 2025
Wed Dec 27 19:13:59 EST 2023
Thu Jul 17 02:00:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Vanadium permeability
Ionic selectivity
Vanadium redox flow battery
Low cost
SPPEK/TPA composite membrane
Membrane separation
Heteropolyacid
Polymeric membrane
Battery
Vanadium
Transition metal
Permeability
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-b0dd399dcc3cb5b259804bff364bbae356ef44ef00d6e16927154c72726d0f443
Notes http://dx.doi.org/10.1016/j.memsci.2013.02.053
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1513479419
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_1803093225
proquest_miscellaneous_1671620819
proquest_miscellaneous_1513479419
pascalfrancis_primary_27391275
crossref_citationtrail_10_1016_j_memsci_2013_02_053
crossref_primary_10_1016_j_memsci_2013_02_053
fao_agris_US201600084896
elsevier_sciencedirect_doi_10_1016_j_memsci_2013_02_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-15
PublicationDateYYYYMMDD 2013-06-15
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of membrane science
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Chen, Wang, Xiao, Meng (bib15) 2010; 51
Chen, Chen, An, Chen, Okamoto (bib17) 2010; 196
Chen, Wang, Xiao, Han, Meng (bib18) 2011; 52
Skyllas-Kazacos, Grossmith (bib3) 1987; 134
Chen, Wang, Xiao, Han, Meng (bib24) 2010; 195
Xi, Wu, Teng, Zhao, Chen, Qiu (bib34) 2008; 18
Hwang, Ohya (bib9) 1997; 132
Kim, Tighe, Schwenzer, Yan, Zhang, Liu, Yang, Hickner (bib12) 2011; 41
Schwenzer, Zhang, Kim, Li, Liu, Yang (bib5) 2011; 4
Kim, Lee, Choi, Jin, Kim, Ryu, Hwang (bib28) 2010; 16
Wang, Peng, Li, Wang, Liu, Liu (bib19) 2012; 16
Mohammadi, Skyllas-Kazacos (bib7) 1995; 107
Luo, Zhang, Chen, You, Sun, Zhang (bib42) 2008; 325
Sum, Rychcik, Skyllas-kazacos (bib1) 1985; 16
Skyllas-Kazacos, Rychcik, Robins, Fane, Green (bib4) 1986; 133
Jian, Dai, He, Chen (bib22) 1999; 161
Xiang, Yang, Zhang, Lan, Lu (bib26) 2011; 368
Chen, Wang, Xiao, Meng (bib14) 2010; 195
Li, Zhang, Mai, Zhang, Vankelecom (bib6) 2011; 4
Gao, Robertson, Guiver, Jian (bib20) 2003; 41
Sang, Wu, Huang (bib33) 2007; 305
Kreuer (bib41) 2001; 185
Ramani, Kunz, Fenton (bib25) 2004; 232
Jia, Liu, Yan (bib29) 2010; 195
Qiu, Zhao, Zhai, Ni, Zhou, Peng, Li, Wei (bib35) 2008; 177
Sukkar, Skyllas-Kazacos (bib31) 2004; 34
Mohammadi, Chieng, Skyllas Kazacos (bib10) 1997; 133
Ward, Sweeney (bib38) 2004
Le, Qu, Mackay, Rothwell (bib39) 2012; 1
Sum, Skyllas-Kazacos (bib2) 1985; 15
Kim, Yan, Schwenzer, Zhang, Li, Liu, Yang, Hickner (bib11) 2010; 12
Dai, Jian, Liu, Guiver (bib21) 2001; 79
Hwang, Ohya (bib32) 1996; 120
Skyllas-Kazacos, Kasherman, Hong, Kazacos (bib8) 1991; 35
Wang, Peng, Wang, Li, Liu, Liu (bib23) 2012; 17
Qiu, Zhang, Chen, Peng, Xu, Zhai, Li, Wei (bib37) 2009; 334
Chen, Wang, Xiao, Meng (bib16) 2010; 3
Bello, Zaidi, Rahman (bib27) 2008; 322
Guhan, Kumar, Sangeetha (bib40) 2009; 27
Mai, Zhang, Li, Bi, Dai (bib13) 2011; 196
Damay, Klein (bib30) 2003; 162–163
Xi, Wu, Qiu, Chen (bib36) 2007; 166
Sum (10.1016/j.memsci.2013.02.053_bib1) 1985; 16
Damay (10.1016/j.memsci.2013.02.053_bib30) 2003; 162–163
Le (10.1016/j.memsci.2013.02.053_bib39) 2012; 1
Mohammadi (10.1016/j.memsci.2013.02.053_bib10) 1997; 133
Qiu (10.1016/j.memsci.2013.02.053_bib35) 2008; 177
Jia (10.1016/j.memsci.2013.02.053_bib29) 2010; 195
Bello (10.1016/j.memsci.2013.02.053_bib27) 2008; 322
Gao (10.1016/j.memsci.2013.02.053_bib20) 2003; 41
Sukkar (10.1016/j.memsci.2013.02.053_bib31) 2004; 34
Wang (10.1016/j.memsci.2013.02.053_bib19) 2012; 16
Luo (10.1016/j.memsci.2013.02.053_bib42) 2008; 325
Guhan (10.1016/j.memsci.2013.02.053_bib40) 2009; 27
Hwang (10.1016/j.memsci.2013.02.053_bib32) 1996; 120
Ramani (10.1016/j.memsci.2013.02.053_bib25) 2004; 232
Xiang (10.1016/j.memsci.2013.02.053_bib26) 2011; 368
Chen (10.1016/j.memsci.2013.02.053_bib15) 2010; 51
Chen (10.1016/j.memsci.2013.02.053_bib24) 2010; 195
Chen (10.1016/j.memsci.2013.02.053_bib18) 2011; 52
Sang (10.1016/j.memsci.2013.02.053_bib33) 2007; 305
Kim (10.1016/j.memsci.2013.02.053_bib28) 2010; 16
Kreuer (10.1016/j.memsci.2013.02.053_bib41) 2001; 185
Chen (10.1016/j.memsci.2013.02.053_bib17) 2010; 196
Dai (10.1016/j.memsci.2013.02.053_bib21) 2001; 79
Chen (10.1016/j.memsci.2013.02.053_bib16) 2010; 3
Sum (10.1016/j.memsci.2013.02.053_bib2) 1985; 15
Chen (10.1016/j.memsci.2013.02.053_bib14) 2010; 195
Xi (10.1016/j.memsci.2013.02.053_bib34) 2008; 18
Mai (10.1016/j.memsci.2013.02.053_bib13) 2011; 196
Kim (10.1016/j.memsci.2013.02.053_bib12) 2011; 41
Jian (10.1016/j.memsci.2013.02.053_bib22) 1999; 161
Schwenzer (10.1016/j.memsci.2013.02.053_bib5) 2011; 4
Hwang (10.1016/j.memsci.2013.02.053_bib9) 1997; 132
Skyllas-Kazacos (10.1016/j.memsci.2013.02.053_bib3) 1987; 134
Skyllas-Kazacos (10.1016/j.memsci.2013.02.053_bib4) 1986; 133
Wang (10.1016/j.memsci.2013.02.053_bib23) 2012; 17
Skyllas-Kazacos (10.1016/j.memsci.2013.02.053_bib8) 1991; 35
Mohammadi (10.1016/j.memsci.2013.02.053_bib7) 1995; 107
Li (10.1016/j.memsci.2013.02.053_bib6) 2011; 4
Kim (10.1016/j.memsci.2013.02.053_bib11) 2010; 12
Xi (10.1016/j.memsci.2013.02.053_bib36) 2007; 166
Qiu (10.1016/j.memsci.2013.02.053_bib37) 2009; 334
Ward (10.1016/j.memsci.2013.02.053_bib38) 2004
References_xml – volume: 15
  start-page: 179
  year: 1985
  end-page: 190
  ident: bib2
  article-title: A study of the V(II)/V(III) redox couple for redox flow cell applications
  publication-title: J. Power Sources
– volume: 195
  start-page: 2089
  year: 2010
  end-page: 2095
  ident: bib14
  article-title: Preparation and properties of sulfonated poly(fluorenyl ether ketone) membrane for vanadium redox flow battery application
  publication-title: J. Power Sources
– volume: 41
  start-page: 1201
  year: 2011
  end-page: 1213
  ident: bib12
  article-title: Chemical and mechanical degradation of sulfonated poly(sulfone) membranes in vanadium redox flow batteries
  publication-title: J. Appl. Electrochem.
– volume: 1
  start-page: 66
  year: 2012
  end-page: 71
  ident: bib39
  article-title: Fabrication and mechanical properties of chitosan composite membrane containing hydroxyapatite particles
  publication-title: J. Adv. Ceram.
– volume: 185
  start-page: 29
  year: 2001
  end-page: 39
  ident: bib41
  article-title: On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells
  publication-title: J. Membr. Sci.
– volume: 51
  start-page: 2816
  year: 2010
  end-page: 2824
  ident: bib15
  article-title: Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery
  publication-title: Energy Convers. Manage.
– volume: 133
  start-page: 1057
  year: 1986
  end-page: 1058
  ident: bib4
  article-title: New all-vanadium redox flow cell
  publication-title: J. Electrochem. Soc.
– volume: 16
  start-page: 2169
  year: 2012
  end-page: 2177
  ident: bib19
  article-title: Sulfonated poly(phthalazinone ether sulfone) membrane as a separator of vanadium redox flow battery
  publication-title: J. Solid State Electrochem.
– volume: 196
  start-page: 482
  year: 2011
  end-page: 487
  ident: bib13
  article-title: Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application
  publication-title: J. Power Sources
– volume: 52
  start-page: 5312
  year: 2011
  end-page: 5319
  ident: bib18
  article-title: Synthesis of sulfonated poly(fluorenyl ether thioether ketone)s with bulky-block structure and its application in vanadium redox flow battery
  publication-title: Polymer
– volume: 16
  start-page: 85
  year: 1985
  end-page: 95
  ident: bib1
  article-title: Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery
  publication-title: J. Power Sources
– volume: 3
  start-page: 622
  year: 2010
  end-page: 628
  ident: bib16
  article-title: Synthesis and characterization of novel sulfonated poly(arylene thioether) ionomers for vanadium redox flow battery applications
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 1650
  year: 2010
  end-page: 1653
  ident: bib11
  article-title: Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries
  publication-title: Electrochem. Commun.
– volume: 16
  start-page: 756
  year: 2010
  end-page: 762
  ident: bib28
  article-title: Application of Psf–PPSS–TPA composite membrane in the all-vanadium redox flow battery
  publication-title: J. Ind. Eng. Chem.
– volume: 334
  start-page: 9
  year: 2009
  end-page: 15
  ident: bib37
  article-title: Amphoteric ion exchange membrane synthesized by radiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate into PVDF film for vanadium redox flow battery applications
  publication-title: J. Membr. Sci.
– volume: 4
  start-page: 1388
  year: 2011
  end-page: 1406
  ident: bib5
  article-title: Membrane development for vanadium redox flow batteries
  publication-title: ChemSusChem
– volume: 27
  start-page: 157
  year: 2009
  end-page: 164
  ident: bib40
  article-title: Sulphated poly ether ether ketone/polyvinyl alcohol/phosphotungstic acid composite membranes for PEM fuel cells
  publication-title: Chin. J. Polym. Sci.
– volume: 107
  start-page: 35
  year: 1995
  end-page: 45
  ident: bib7
  article-title: Preparation of sulfonated composite membrane for vanadium redox flow battery applications
  publication-title: J. Membr. Sci.
– volume: 35
  start-page: 399
  year: 1991
  end-page: 404
  ident: bib8
  article-title: Characteristics and performance of 1
  publication-title: J. Power Sources
– volume: 166
  start-page: 531
  year: 2007
  end-page: 536
  ident: bib36
  article-title: Nafion/SiO
  publication-title: J. Power Sources
– volume: 79
  start-page: 1685
  year: 2001
  end-page: 1692
  ident: bib21
  article-title: Synthesis and characterization of sulfonated poly(phthalazinone ether sulfone ketone) for ultrafiltration and nanofiltration membranes
  publication-title: J. Appl. Polym. Sci.
– volume: 161
  start-page: 185
  year: 1999
  end-page: 191
  ident: bib22
  article-title: Preparation of UF and NF poly(phthalazine ether sulfone ketone) membranes for high temperature application
  publication-title: J. Membr. Sci.
– volume: 196
  start-page: 1694
  year: 2010
  end-page: 1703
  ident: bib17
  article-title: Crosslinked sulfonated poly(arylene ether ketone) membranes bearing quinoxaline and acid–base complex cross-linkages for fuel cell applications
  publication-title: J. Power Sources
– volume: 41
  start-page: 497
  year: 2003
  end-page: 507
  ident: bib20
  article-title: Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials
  publication-title: J. Polym. Sci. Part A: Polym. Chem.
– volume: 4
  start-page: 1147
  year: 2011
  end-page: 1160
  ident: bib6
  article-title: Ion exchange membranes for vanadium redox flow battery (VRB) applications
  publication-title: Energy Environ. Sci.
– volume: 120
  start-page: 55
  year: 1996
  end-page: 67
  ident: bib32
  article-title: Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery
  publication-title: J. Membr. Sci.
– volume: 325
  start-page: 553
  year: 2008
  end-page: 558
  ident: bib42
  article-title: Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery
  publication-title: J. Membr. Sci.
– year: 2004
  ident: bib38
  article-title: An Introduction to the Mechanical Properties of Solid Polymers
– volume: 34
  start-page: 137
  year: 2004
  end-page: 145
  ident: bib31
  article-title: Membrane stability studies for vanadium redox cell applications
  publication-title: J. Appl. Electrochem.
– volume: 195
  start-page: 7701
  year: 2010
  end-page: 7708
  ident: bib24
  article-title: Sulfonated poly(fluorenyl ether ketone) membrane with embedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery
  publication-title: J. Power Sources
– volume: 368
  start-page: 241
  year: 2011
  end-page: 245
  ident: bib26
  article-title: Phosphotungstic acid (HPW) molecules anchored in the bulk of Nafion as methanol-blocking membrane for direct methanol fuel cells
  publication-title: J. Membr. Sci.
– volume: 177
  start-page: 617
  year: 2008
  end-page: 623
  ident: bib35
  article-title: Pre-irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries
  publication-title: J. Power Sources
– volume: 322
  start-page: 218
  year: 2008
  end-page: 224
  ident: bib27
  article-title: Proton and methanol transport behavior of SPEEK/TPA/MCM-41 composite membranes for fuel cell application
  publication-title: J. Membr. Sci.
– volume: 232
  start-page: 31
  year: 2004
  end-page: 44
  ident: bib25
  article-title: Investigation of Nafion
  publication-title: J. Membr. Sci.
– volume: 195
  start-page: 4380
  year: 2010
  end-page: 4383
  ident: bib29
  article-title: A significantly improved membrane for vanadium redox flow battery
  publication-title: J. Power Sources
– volume: 134
  start-page: 2950
  year: 1987
  end-page: 2953
  ident: bib3
  article-title: Efficient vanadium redox flow cell
  publication-title: J. Electrochem. Soc.
– volume: 162–163
  start-page: 261
  year: 2003
  end-page: 267
  ident: bib30
  article-title: Transport properties of Nafion(TM) composite membranes for proton-exchange membranes fuel cells
  publication-title: Solid State Ionics
– volume: 17
  start-page: 30
  year: 2012
  end-page: 33
  ident: bib23
  article-title: SPPEK/WO
  publication-title: Electrochem. Commun.
– volume: 133
  start-page: 151
  year: 1997
  end-page: 159
  ident: bib10
  article-title: Water transport study across commercial ion exchange membranes in the vanadium redox flow battery
  publication-title: J. Membr. Sci.
– volume: 132
  start-page: 55
  year: 1997
  end-page: 61
  ident: bib9
  article-title: Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery
  publication-title: J. Membr. Sci.
– volume: 305
  start-page: 118
  year: 2007
  end-page: 124
  ident: bib33
  article-title: Preparation of zirconium phosphate (ZrP)/Nafion1135 composite membrane and H
  publication-title: J. Membr. Sci.
– volume: 18
  start-page: 1232
  year: 2008
  end-page: 1238
  ident: bib34
  article-title: Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 1388
  year: 2011
  ident: 10.1016/j.memsci.2013.02.053_bib5
  article-title: Membrane development for vanadium redox flow batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100068
– volume: 4
  start-page: 1147
  year: 2011
  ident: 10.1016/j.memsci.2013.02.053_bib6
  article-title: Ion exchange membranes for vanadium redox flow battery (VRB) applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00770f
– volume: 51
  start-page: 2816
  year: 2010
  ident: 10.1016/j.memsci.2013.02.053_bib15
  article-title: Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2010.06.019
– volume: 3
  start-page: 622
  year: 2010
  ident: 10.1016/j.memsci.2013.02.053_bib16
  article-title: Synthesis and characterization of novel sulfonated poly(arylene thioether) ionomers for vanadium redox flow battery applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/B917117G
– year: 2004
  ident: 10.1016/j.memsci.2013.02.053_bib38
– volume: 166
  start-page: 531
  year: 2007
  ident: 10.1016/j.memsci.2013.02.053_bib36
  article-title: Nafion/SiO2 hybrid membrane for vanadium redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.01.069
– volume: 35
  start-page: 399
  year: 1991
  ident: 10.1016/j.memsci.2013.02.053_bib8
  article-title: Characteristics and performance of 1kW UNSW vanadium redox battery
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(91)80058-6
– volume: 368
  start-page: 241
  year: 2011
  ident: 10.1016/j.memsci.2013.02.053_bib26
  article-title: Phosphotungstic acid (HPW) molecules anchored in the bulk of Nafion as methanol-blocking membrane for direct methanol fuel cells
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.11.049
– volume: 34
  start-page: 137
  year: 2004
  ident: 10.1016/j.memsci.2013.02.053_bib31
  article-title: Membrane stability studies for vanadium redox cell applications
  publication-title: J. Appl. Electrochem.
  doi: 10.1023/B:JACH.0000009931.83368.dc
– volume: 133
  start-page: 1057
  year: 1986
  ident: 10.1016/j.memsci.2013.02.053_bib4
  article-title: New all-vanadium redox flow cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2108706
– volume: 133
  start-page: 151
  year: 1997
  ident: 10.1016/j.memsci.2013.02.053_bib10
  article-title: Water transport study across commercial ion exchange membranes in the vanadium redox flow battery
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(97)00092-6
– volume: 16
  start-page: 2169
  issue: 6
  year: 2012
  ident: 10.1016/j.memsci.2013.02.053_bib19
  article-title: Sulfonated poly(phthalazinone ether sulfone) membrane as a separator of vanadium redox flow battery
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-012-1641-7
– volume: 52
  start-page: 5312
  year: 2011
  ident: 10.1016/j.memsci.2013.02.053_bib18
  article-title: Synthesis of sulfonated poly(fluorenyl ether thioether ketone)s with bulky-block structure and its application in vanadium redox flow battery
  publication-title: Polymer
  doi: 10.1016/j.polymer.2011.09.021
– volume: 325
  start-page: 553
  year: 2008
  ident: 10.1016/j.memsci.2013.02.053_bib42
  article-title: Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.08.025
– volume: 15
  start-page: 179
  year: 1985
  ident: 10.1016/j.memsci.2013.02.053_bib2
  article-title: A study of the V(II)/V(III) redox couple for redox flow cell applications
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(85)80071-9
– volume: 195
  start-page: 7701
  year: 2010
  ident: 10.1016/j.memsci.2013.02.053_bib24
  article-title: Sulfonated poly(fluorenyl ether ketone) membrane with embedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.05.026
– volume: 195
  start-page: 2089
  year: 2010
  ident: 10.1016/j.memsci.2013.02.053_bib14
  article-title: Preparation and properties of sulfonated poly(fluorenyl ether ketone) membrane for vanadium redox flow battery application
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.11.010
– volume: 305
  start-page: 118
  year: 2007
  ident: 10.1016/j.memsci.2013.02.053_bib33
  article-title: Preparation of zirconium phosphate (ZrP)/Nafion1135 composite membrane and H+/VO2+ transfer property investigation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.07.041
– volume: 322
  start-page: 218
  year: 2008
  ident: 10.1016/j.memsci.2013.02.053_bib27
  article-title: Proton and methanol transport behavior of SPEEK/TPA/MCM-41 composite membranes for fuel cell application
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.05.042
– volume: 134
  start-page: 2950
  year: 1987
  ident: 10.1016/j.memsci.2013.02.053_bib3
  article-title: Efficient vanadium redox flow cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2100321
– volume: 196
  start-page: 1694
  year: 2010
  ident: 10.1016/j.memsci.2013.02.053_bib17
  article-title: Crosslinked sulfonated poly(arylene ether ketone) membranes bearing quinoxaline and acid–base complex cross-linkages for fuel cell applications
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.10.039
– volume: 41
  start-page: 497
  year: 2003
  ident: 10.1016/j.memsci.2013.02.053_bib20
  article-title: Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials
  publication-title: J. Polym. Sci. Part A: Polym. Chem.
  doi: 10.1002/pola.10601
– volume: 195
  start-page: 4380
  year: 2010
  ident: 10.1016/j.memsci.2013.02.053_bib29
  article-title: A significantly improved membrane for vanadium redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.02.008
– volume: 232
  start-page: 31
  year: 2004
  ident: 10.1016/j.memsci.2013.02.053_bib25
  article-title: Investigation of Nafion®/HPA composite membranes for high temperature/low relative humidity PEMFC operation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2003.11.016
– volume: 162–163
  start-page: 261
  year: 2003
  ident: 10.1016/j.memsci.2013.02.053_bib30
  article-title: Transport properties of Nafion(TM) composite membranes for proton-exchange membranes fuel cells
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(03)00238-8
– volume: 334
  start-page: 9
  year: 2009
  ident: 10.1016/j.memsci.2013.02.053_bib37
  article-title: Amphoteric ion exchange membrane synthesized by radiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate into PVDF film for vanadium redox flow battery applications
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.02.009
– volume: 16
  start-page: 756
  year: 2010
  ident: 10.1016/j.memsci.2013.02.053_bib28
  article-title: Application of Psf–PPSS–TPA composite membrane in the all-vanadium redox flow battery
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2010.07.007
– volume: 132
  start-page: 55
  year: 1997
  ident: 10.1016/j.memsci.2013.02.053_bib9
  article-title: Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(97)00040-9
– volume: 177
  start-page: 617
  year: 2008
  ident: 10.1016/j.memsci.2013.02.053_bib35
  article-title: Pre-irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.11.089
– volume: 18
  start-page: 1232
  year: 2008
  ident: 10.1016/j.memsci.2013.02.053_bib34
  article-title: Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/b718526j
– volume: 196
  start-page: 482
  year: 2011
  ident: 10.1016/j.memsci.2013.02.053_bib13
  article-title: Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.07.028
– volume: 27
  start-page: 157
  year: 2009
  ident: 10.1016/j.memsci.2013.02.053_bib40
  article-title: Sulphated poly ether ether ketone/polyvinyl alcohol/phosphotungstic acid composite membranes for PEM fuel cells
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1142/S0256767909003789
– volume: 41
  start-page: 1201
  issue: 10
  year: 2011
  ident: 10.1016/j.memsci.2013.02.053_bib12
  article-title: Chemical and mechanical degradation of sulfonated poly(sulfone) membranes in vanadium redox flow batteries
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-011-0313-0
– volume: 1
  start-page: 66
  year: 2012
  ident: 10.1016/j.memsci.2013.02.053_bib39
  article-title: Fabrication and mechanical properties of chitosan composite membrane containing hydroxyapatite particles
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-012-0007-z
– volume: 79
  start-page: 1685
  year: 2001
  ident: 10.1016/j.memsci.2013.02.053_bib21
  article-title: Synthesis and characterization of sulfonated poly(phthalazinone ether sulfone ketone) for ultrafiltration and nanofiltration membranes
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/1097-4628(20010228)79:9<1685::AID-APP180>3.0.CO;2-L
– volume: 17
  start-page: 30
  year: 2012
  ident: 10.1016/j.memsci.2013.02.053_bib23
  article-title: SPPEK/WO3 hybrid membrane fabricated via hydrothermal method for vanadium redox flow battery
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.01.012
– volume: 120
  start-page: 55
  year: 1996
  ident: 10.1016/j.memsci.2013.02.053_bib32
  article-title: Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(96)00135-4
– volume: 12
  start-page: 1650
  year: 2010
  ident: 10.1016/j.memsci.2013.02.053_bib11
  article-title: Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.09.018
– volume: 16
  start-page: 85
  year: 1985
  ident: 10.1016/j.memsci.2013.02.053_bib1
  article-title: Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(85)80082-3
– volume: 107
  start-page: 35
  year: 1995
  ident: 10.1016/j.memsci.2013.02.053_bib7
  article-title: Preparation of sulfonated composite membrane for vanadium redox flow battery applications
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(95)00096-U
– volume: 161
  start-page: 185
  year: 1999
  ident: 10.1016/j.memsci.2013.02.053_bib22
  article-title: Preparation of UF and NF poly(phthalazine ether sulfone ketone) membranes for high temperature application
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(99)00112-X
– volume: 185
  start-page: 29
  year: 2001
  ident: 10.1016/j.memsci.2013.02.053_bib41
  article-title: On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)00632-3
SSID ssj0017089
Score 2.3895252
Snippet To improve the performance of a low cost sulfonated poly(phthalazinone ether ketone) (SPPEK) membrane in vanadium redox flow battery (VRFB), composite...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114
SubjectTerms Applied sciences
artificial membranes
batteries
Battery
Chemistry
Colloidal state and disperse state
Corrosion resistance
Diffraction
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
energy efficiency
Energy management
energy-dispersive X-ray analysis
Ethers
Exact sciences and technology
Exchange resins and membranes
Forms of application and semi-finished materials
General and physical chemistry
Ionic selectivity
ions
Low cost
Membranes
permeability
phosphotungstic acid
Polymer industry, paints, wood
Scanning electron microscopy
spectroscopy
SPPEK/TPA composite membrane
Technology of polymers
Vanadium
Vanadium permeability
Vanadium redox flow battery
X-radiation
X-ray diffraction
Title SPPEK/TPA composite membrane as a separator of vanadium redox flow battery
URI https://dx.doi.org/10.1016/j.memsci.2013.02.053
https://www.proquest.com/docview/1513479419
https://www.proquest.com/docview/1671620819
https://www.proquest.com/docview/1803093225
Volume 437
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4xeGEPE4MhOkblSbx6TWLHSR4rBOpAQ5VKJd6sOLYnJtog2u7HC3_77pykGpoAidfknDh39uWs--47gGM8M1QqywynNBBHL-m4sTblcWFiq5K8kgUVJ3-7VKOpPL9OrzfgpKuFIVhl6_sbnx68dXtl0GpzcHdzM5hEREQi8pwSMnEeOEGlzGiVf3lYwzziLApt8EiYk3RXPhcwXjM3w0cTwEsE5s5UPPV7euPLmnCT5QJV55ueF_-57_BPOtuBd20wyYbNfN_Dhpvvwtt_KAb34HwyHp9eDK7GQ0bocYJoOYYTwkPy3LFywUq2cIH_u75ntWc_AwhsNWNEJPqb-dv6FzOBg_PPB5ienV6djHjbP4GjhtWSm8hajD9sVYnKpAYPOqgl471Q0pjSiVQ5L6XzUWSVi1WRZBhPVZSZVTbCO2IfNuf13B0Ay2VsJQYnVKYrcYAR0uJLfOZSWRZp0gPRqU1XLbk49bi41R2K7IdulK1J2TpKNCq7B3w96q4h13hBPussoh8tEo3-_4WRB2hAXX5Hz6mnk4R49UIrgUL1oP_IquuZYGBXEP19Dz53Zta49yihghaqVwuN0RIV4sq4eEZGEUcXBV7PyOQhIY2u9eOrv_AQtpOmUweP00-wubxfuSOMl5amHzZEH7aGXy9Gl38BvEARCg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4x9sB4QNvYRMfGPGmvXpPYcZJHhEAdv1SprcSbFcf2BKINoi3bXvjbuXOSamgaSHtNzolzF5_Puu--A_iKZ4ZKZZnhlAbi6CUdN9amPC5MbFWSV7Kg4uSzczWYyOOL9GINDrpaGIJVtr6_8enBW7dX-q02-zeXl_1RREQkIs8pIRPnxAn6UuLypTYG3-5XOI84i0IfPJLmJN7VzwWQ19RN8dmE8BKBujMV_9qfXviyJuBkOUfd-abpxV_-O2xKR69hq40m2X4z4Tew5mZvYfMPjsFtOB4Nh4cn_fFwnxF8nDBajuGE8JQ8c6ycs5LNXSAAr29Z7dldQIEtp4yYRH8xf13_ZCaQcP5-B5Ojw_HBgLcNFDiqWC24iazFAMRWlahMavCkg2oy3gsljSmdSJXzUjofRVa5WBVJhgFVRalZZSO8I97D-qyeuR1guYytxOiE6nQlDjBCWnyJz1wqyyJNeiA6temqZRenJhfXuoORXelG2ZqUraNEo7J7wFejbhp2jWfks84i-tFfonEDeGbkDhpQlz_QderJKCFivdBLoFA92Htk1dVMMLIriP--B186M2tcfJRRQQvVy7nGcIkqcWVcPCGjiKSLIq8nZPKQkUbf-uG_v_AzbAzGZ6f69Pv5yS68Spq2HTxOP8L64nbpPmHwtDB7YXE8ANZgEpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SPPEK%2FTPA+composite+membrane+as+a+separator+of+vanadium+redox+flow+battery&rft.jtitle=Journal+of+membrane+science&rft.au=Wang%2C+Nanfang&rft.au=Yu%2C+Jingang&rft.au=Zhou%2C+Zhi&rft.au=Fang%2C+Dong&rft.date=2013-06-15&rft.issn=0376-7388&rft.volume=437&rft.spage=114&rft.epage=121&rft_id=info:doi/10.1016%2Fj.memsci.2013.02.053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2013_02_053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon