SPPEK/TPA composite membrane as a separator of vanadium redox flow battery
To improve the performance of a low cost sulfonated poly(phthalazinone ether ketone) (SPPEK) membrane in vanadium redox flow battery (VRFB), composite membranes composed of SPPEK and tungstophosphoric acid (TPA) with 8–25wt% concentration were prepared by solution casting. The results of scanning el...
Saved in:
Published in | Journal of membrane science Vol. 437; pp. 114 - 121 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.06.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To improve the performance of a low cost sulfonated poly(phthalazinone ether ketone) (SPPEK) membrane in vanadium redox flow battery (VRFB), composite membranes composed of SPPEK and tungstophosphoric acid (TPA) with 8–25wt% concentration were prepared by solution casting. The results of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) of the SPPEK/TPA composite membrane revealed that TPA had excellent compatibility with SPPEK in the bulk of the membrane. The effect of the TPA concentration on the primary properties, permeability of vanadium ions and ionic selectivity, and chemical stability of the composite membrane was investigated. The single cell tests showed that the VRFB employing the SPPEK–TPA-17 membrane with 17wt% TPA exhibited a higher coulombic efficiency (98.75% vs. 92.81%) and energy efficiency (74.58% vs. 73.83%) than those of the Nafion system. Cycling and chemical stability tests indicated that the SPPEK/TPA composite membrane had high stability in the VRFB system.
► A SPPEK/TPA composite membrane by the solution casting method was investigated in VRFB application. ► The introduction of TPA (8–25wt%) can improve the proton conductivity. ► VRFB with the composite membrane exhibited superior performance compared with Nafion membrane. |
---|---|
AbstractList | To improve the performance of a low cost sulfonated poly(phthalazinone ether ketone) (SPPEK) membrane in vanadium redox flow battery (VRFB), composite membranes composed of SPPEK and tungstophosphoric acid (TPA) with 8–25wt% concentration were prepared by solution casting. The results of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) of the SPPEK/TPA composite membrane revealed that TPA had excellent compatibility with SPPEK in the bulk of the membrane. The effect of the TPA concentration on the primary properties, permeability of vanadium ions and ionic selectivity, and chemical stability of the composite membrane was investigated. The single cell tests showed that the VRFB employing the SPPEK–TPA-17 membrane with 17wt% TPA exhibited a higher coulombic efficiency (98.75% vs. 92.81%) and energy efficiency (74.58% vs. 73.83%) than those of the Nafion system. Cycling and chemical stability tests indicated that the SPPEK/TPA composite membrane had high stability in the VRFB system. To improve the performance of a low cost sulfonated poly(phthalazinone ether ketone) (SPPEK) membrane in vanadium redox flow battery (VRFB), composite membranes composed of SPPEK and tungstophosphoric acid (TPA) with 8–25wt% concentration were prepared by solution casting. The results of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) of the SPPEK/TPA composite membrane revealed that TPA had excellent compatibility with SPPEK in the bulk of the membrane. The effect of the TPA concentration on the primary properties, permeability of vanadium ions and ionic selectivity, and chemical stability of the composite membrane was investigated. The single cell tests showed that the VRFB employing the SPPEK–TPA-17 membrane with 17wt% TPA exhibited a higher coulombic efficiency (98.75% vs. 92.81%) and energy efficiency (74.58% vs. 73.83%) than those of the Nafion system. Cycling and chemical stability tests indicated that the SPPEK/TPA composite membrane had high stability in the VRFB system. ► A SPPEK/TPA composite membrane by the solution casting method was investigated in VRFB application. ► The introduction of TPA (8–25wt%) can improve the proton conductivity. ► VRFB with the composite membrane exhibited superior performance compared with Nafion membrane. To improve the performance of a low cost sulfonated poly(phthalazinone ether ketone) (SPPEK) membrane in vanadium redox flow battery (VRFB), composite membranes composed of SPPEK and tungstophosphoric acid (TPA) with 8a25 wt% concentration were prepared by solution casting. The results of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) of the SPPEK/TPA composite membrane revealed that TPA had excellent compatibility with SPPEK in the bulk of the membrane. The effect of the TPA concentration on the primary properties, permeability of vanadium ions and ionic selectivity, and chemical stability of the composite membrane was investigated. The single cell tests showed that the VRFB employing the SPPEKaTPA-17 membrane with 17 wt% TPA exhibited a higher coulombic efficiency (98.75% vs. 92.81%) and energy efficiency (74.58% vs. 73.83%) than those of the Nafion system. Cycling and chemical stability tests indicated that the SPPEK/TPA composite membrane had high stability in the VRFB system. |
Author | Yu, Jingang Wang, Nanfang Fang, Dong Zhou, Zhi Liu, Suqin Liu, Younian |
Author_xml | – sequence: 1 givenname: Nanfang surname: Wang fullname: Wang, Nanfang email: cdwnf@126.com organization: School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, 88 Fuxing East Road, Xiangtan 411104, China – sequence: 2 givenname: Jingang surname: Yu fullname: Yu, Jingang organization: Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China – sequence: 3 givenname: Zhi surname: Zhou fullname: Zhou, Zhi organization: Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China – sequence: 4 givenname: Dong surname: Fang fullname: Fang, Dong organization: Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, 430073 Wuhan, China – sequence: 5 givenname: Suqin surname: Liu fullname: Liu, Suqin email: sqliu2003@126.com organization: Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China – sequence: 6 givenname: Younian surname: Liu fullname: Liu, Younian organization: Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27391275$$DView record in Pascal Francis |
BookMark | eNqFkc1u1DAUhS1UJKaFN0DCGyQ2Sa9_YscskKqq_FZipLZry3Fs5FESD7anpW-PhykbFszKC3_n3Kv7naKTJS4OodcEWgJEnG_a2c3ZhpYCYS3QFjr2DK1IL1nDCGUnaAVMikayvn-BTnPeABAJvVqhrzfr9dW389v1BbZx3sYcisO1bUhmcdhkbHB2W5NMiQlHj-_NYsawm3FyY_yF_RQf8GBKcenxJXruzZTdq6f3DN19vLq9_Nxcf__05fLiurFcidIMMI5MqdFaZoduoJ3qgQ_eM8GHwTjWCec5dx5gFI4IRSXpuJVUUjFC_WFn6N2hd5viz53LRc8hWzdNdeO4y5r0wEAxSrvjqJBEUOiJOo52hHGp-B_07RNqsjWTr6eyIettCrNJj5pKpgiV--nvD5xNMefkvLahmBLiUpIJkyag9_r0Rh_06b0-DVRXfTXM_wn_7T8Se3OIeRO1-ZHqXnc3FRAA0PNeiUp8OBCuOroPLuna4RbrxpCcLXqM4f8jfgNfLb-J |
CODEN | JMESDO |
CitedBy_id | crossref_primary_10_1016_j_memsci_2016_10_050 crossref_primary_10_1039_D4QI00520A crossref_primary_10_1016_j_jpowsour_2015_02_070 crossref_primary_10_3390_coatings12030378 crossref_primary_10_1002_slct_201801548 crossref_primary_10_1007_s11581_016_1967_8 crossref_primary_10_1016_j_jpowsour_2015_09_026 crossref_primary_10_1002_celc_201901887 crossref_primary_10_1007_s11814_015_0077_z crossref_primary_10_1016_j_ijhydene_2017_12_012 crossref_primary_10_1177_09540083241264625 crossref_primary_10_1016_j_jpowsour_2014_08_101 crossref_primary_10_1016_j_memsci_2015_02_014 crossref_primary_10_1016_j_pecs_2021_100926 crossref_primary_10_1039_C6RA22665E crossref_primary_10_1039_C5RA05914C crossref_primary_10_9713_kcer_2013_51_5_615 crossref_primary_10_1016_j_jpowsour_2017_04_045 crossref_primary_10_1016_j_electacta_2017_11_063 crossref_primary_10_1016_j_jiec_2017_11_027 crossref_primary_10_1149_2_0601805jes crossref_primary_10_3390_membranes13100820 crossref_primary_10_1007_s10008_014_2574_0 crossref_primary_10_1016_j_polymer_2022_125667 crossref_primary_10_1016_j_memsci_2018_11_009 crossref_primary_10_1039_D0TA11037J crossref_primary_10_3389_fchem_2018_00549 crossref_primary_10_1016_j_jpowsour_2015_03_102 crossref_primary_10_1016_j_memsci_2016_10_049 crossref_primary_10_1149_2_0601811jes crossref_primary_10_1016_j_jpowsour_2015_03_104 crossref_primary_10_1039_C7TA05155G crossref_primary_10_1155_2015_207525 crossref_primary_10_1016_j_electacta_2018_06_083 crossref_primary_10_1016_j_memsci_2024_123410 crossref_primary_10_4028_www_scientific_net_AMM_891_169 crossref_primary_10_1016_j_est_2023_108321 crossref_primary_10_1021_acs_energyfuels_3c02373 crossref_primary_10_1039_C8TA08349E crossref_primary_10_1039_C9TA01891C crossref_primary_10_1016_j_surfcoat_2018_11_018 crossref_primary_10_1016_j_est_2020_101754 crossref_primary_10_1016_j_memsci_2019_117616 crossref_primary_10_1016_j_jcis_2016_03_036 crossref_primary_10_1149_1945_7111_ac99a3 crossref_primary_10_1002_slct_201900888 crossref_primary_10_1115_1_4040921 crossref_primary_10_54097_ajst_v8i1_14315 crossref_primary_10_1016_j_electacta_2016_09_039 crossref_primary_10_1016_j_jpowsour_2014_01_127 crossref_primary_10_1016_j_est_2021_103180 crossref_primary_10_3390_membranes11030214 crossref_primary_10_1016_j_renene_2021_12_074 crossref_primary_10_1016_j_electacta_2021_139434 crossref_primary_10_1680_jener_22_00025 crossref_primary_10_1021_am5047125 crossref_primary_10_1021_acs_iecr_9b06813 crossref_primary_10_1016_j_memsci_2014_06_019 crossref_primary_10_1177_0954008315596587 crossref_primary_10_1002_admt_202001308 crossref_primary_10_1016_j_jpowsour_2017_02_055 crossref_primary_10_1039_D0MA00508H crossref_primary_10_1016_j_jpowsour_2016_07_046 crossref_primary_10_1016_j_electacta_2015_01_159 crossref_primary_10_1016_j_memsci_2020_118179 crossref_primary_10_1002_adsu_201900020 crossref_primary_10_1021_acsomega_8b01215 crossref_primary_10_1080_17518253_2024_2302834 crossref_primary_10_1016_j_est_2024_113318 crossref_primary_10_1016_j_apenergy_2018_12_087 crossref_primary_10_1016_j_electacta_2016_05_116 crossref_primary_10_1002_aenm_202200469 crossref_primary_10_1016_j_memsci_2024_122663 crossref_primary_10_1016_j_memsci_2023_121394 crossref_primary_10_1007_s10008_016_3121_y crossref_primary_10_1016_j_memsci_2023_121390 crossref_primary_10_1039_c4ta00917g crossref_primary_10_1016_j_memsci_2018_07_065 crossref_primary_10_1016_j_memsci_2021_119159 crossref_primary_10_1016_j_memsci_2020_118800 crossref_primary_10_1038_pj_2016_42 |
Cites_doi | 10.1002/cssc.201100068 10.1039/c0ee00770f 10.1016/j.enconman.2010.06.019 10.1039/B917117G 10.1016/j.jpowsour.2007.01.069 10.1016/0378-7753(91)80058-6 10.1016/j.memsci.2010.11.049 10.1023/B:JACH.0000009931.83368.dc 10.1149/1.2108706 10.1016/S0376-7388(97)00092-6 10.1007/s10008-012-1641-7 10.1016/j.polymer.2011.09.021 10.1016/j.memsci.2008.08.025 10.1016/0378-7753(85)80071-9 10.1016/j.jpowsour.2010.05.026 10.1016/j.jpowsour.2009.11.010 10.1016/j.memsci.2007.07.041 10.1016/j.memsci.2008.05.042 10.1149/1.2100321 10.1016/j.jpowsour.2010.10.039 10.1002/pola.10601 10.1016/j.jpowsour.2010.02.008 10.1016/j.memsci.2003.11.016 10.1016/S0167-2738(03)00238-8 10.1016/j.memsci.2009.02.009 10.1016/j.jiec.2010.07.007 10.1016/S0376-7388(97)00040-9 10.1016/j.jpowsour.2007.11.089 10.1039/b718526j 10.1016/j.jpowsour.2010.07.028 10.1142/S0256767909003789 10.1007/s10800-011-0313-0 10.1007/s40145-012-0007-z 10.1002/1097-4628(20010228)79:9<1685::AID-APP180>3.0.CO;2-L 10.1016/j.elecom.2012.01.012 10.1016/0376-7388(96)00135-4 10.1016/j.elecom.2010.09.018 10.1016/0378-7753(85)80082-3 10.1016/0376-7388(95)00096-U 10.1016/S0376-7388(99)00112-X 10.1016/S0376-7388(00)00632-3 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2014 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7QH 7UA C1K F1W H97 L.G 7SE 7SR 7SU 7TB 8FD FR3 JG9 7S9 L.6 |
DOI | 10.1016/j.memsci.2013.02.053 |
DatabaseName | AGRIS CrossRef Pascal-Francis Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Corrosion Abstracts Engineered Materials Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Engineering Research Database Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Chemistry |
EISSN | 1873-3123 |
EndPage | 121 |
ExternalDocumentID | 27391275 10_1016_j_memsci_2013_02_053 US201600084896 S0376738813001804 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ABXRA ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFPUW AFRZQ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHPOS AIEXJ AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSH SSM SSZ T5K XPP Y6R ZMT ~G- 29L AACTN AAIAV AAQXK ABPIF ABPTK ABYKQ ACNNM ADMUD AFKWA AI. AJBFU AJOXV AMFUW ASPBG AVWKF AZFZN BBWZM EJD FBQ FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ AAYXX ACRPL ADNMO AFJKZ AGQPQ AIGII APXCP BNPGV CITATION IQODW 7QH 7UA C1K F1W H97 L.G 7SE 7SR 7SU 7TB 8FD FR3 JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c496t-b0dd399dcc3cb5b259804bff364bbae356ef44ef00d6e16927154c72726d0f443 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Fri Jul 11 13:44:01 EDT 2025 Fri Jul 11 01:48:53 EDT 2025 Fri Jul 11 04:03:07 EDT 2025 Mon Jul 21 09:13:57 EDT 2025 Thu Apr 24 22:56:06 EDT 2025 Tue Jul 01 03:37:51 EDT 2025 Wed Dec 27 19:13:59 EST 2023 Thu Jul 17 02:00:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vanadium permeability Ionic selectivity Vanadium redox flow battery Low cost SPPEK/TPA composite membrane Membrane separation Heteropolyacid Polymeric membrane Battery Vanadium Transition metal Permeability |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-b0dd399dcc3cb5b259804bff364bbae356ef44ef00d6e16927154c72726d0f443 |
Notes | http://dx.doi.org/10.1016/j.memsci.2013.02.053 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1513479419 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1803093225 proquest_miscellaneous_1671620819 proquest_miscellaneous_1513479419 pascalfrancis_primary_27391275 crossref_citationtrail_10_1016_j_memsci_2013_02_053 crossref_primary_10_1016_j_memsci_2013_02_053 fao_agris_US201600084896 elsevier_sciencedirect_doi_10_1016_j_memsci_2013_02_053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-15 |
PublicationDateYYYYMMDD | 2013-06-15 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of membrane science |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Chen, Wang, Xiao, Meng (bib15) 2010; 51 Chen, Chen, An, Chen, Okamoto (bib17) 2010; 196 Chen, Wang, Xiao, Han, Meng (bib18) 2011; 52 Skyllas-Kazacos, Grossmith (bib3) 1987; 134 Chen, Wang, Xiao, Han, Meng (bib24) 2010; 195 Xi, Wu, Teng, Zhao, Chen, Qiu (bib34) 2008; 18 Hwang, Ohya (bib9) 1997; 132 Kim, Tighe, Schwenzer, Yan, Zhang, Liu, Yang, Hickner (bib12) 2011; 41 Schwenzer, Zhang, Kim, Li, Liu, Yang (bib5) 2011; 4 Kim, Lee, Choi, Jin, Kim, Ryu, Hwang (bib28) 2010; 16 Wang, Peng, Li, Wang, Liu, Liu (bib19) 2012; 16 Mohammadi, Skyllas-Kazacos (bib7) 1995; 107 Luo, Zhang, Chen, You, Sun, Zhang (bib42) 2008; 325 Sum, Rychcik, Skyllas-kazacos (bib1) 1985; 16 Skyllas-Kazacos, Rychcik, Robins, Fane, Green (bib4) 1986; 133 Jian, Dai, He, Chen (bib22) 1999; 161 Xiang, Yang, Zhang, Lan, Lu (bib26) 2011; 368 Chen, Wang, Xiao, Meng (bib14) 2010; 195 Li, Zhang, Mai, Zhang, Vankelecom (bib6) 2011; 4 Gao, Robertson, Guiver, Jian (bib20) 2003; 41 Sang, Wu, Huang (bib33) 2007; 305 Kreuer (bib41) 2001; 185 Ramani, Kunz, Fenton (bib25) 2004; 232 Jia, Liu, Yan (bib29) 2010; 195 Qiu, Zhao, Zhai, Ni, Zhou, Peng, Li, Wei (bib35) 2008; 177 Sukkar, Skyllas-Kazacos (bib31) 2004; 34 Mohammadi, Chieng, Skyllas Kazacos (bib10) 1997; 133 Ward, Sweeney (bib38) 2004 Le, Qu, Mackay, Rothwell (bib39) 2012; 1 Sum, Skyllas-Kazacos (bib2) 1985; 15 Kim, Yan, Schwenzer, Zhang, Li, Liu, Yang, Hickner (bib11) 2010; 12 Dai, Jian, Liu, Guiver (bib21) 2001; 79 Hwang, Ohya (bib32) 1996; 120 Skyllas-Kazacos, Kasherman, Hong, Kazacos (bib8) 1991; 35 Wang, Peng, Wang, Li, Liu, Liu (bib23) 2012; 17 Qiu, Zhang, Chen, Peng, Xu, Zhai, Li, Wei (bib37) 2009; 334 Chen, Wang, Xiao, Meng (bib16) 2010; 3 Bello, Zaidi, Rahman (bib27) 2008; 322 Guhan, Kumar, Sangeetha (bib40) 2009; 27 Mai, Zhang, Li, Bi, Dai (bib13) 2011; 196 Damay, Klein (bib30) 2003; 162–163 Xi, Wu, Qiu, Chen (bib36) 2007; 166 Sum (10.1016/j.memsci.2013.02.053_bib1) 1985; 16 Damay (10.1016/j.memsci.2013.02.053_bib30) 2003; 162–163 Le (10.1016/j.memsci.2013.02.053_bib39) 2012; 1 Mohammadi (10.1016/j.memsci.2013.02.053_bib10) 1997; 133 Qiu (10.1016/j.memsci.2013.02.053_bib35) 2008; 177 Jia (10.1016/j.memsci.2013.02.053_bib29) 2010; 195 Bello (10.1016/j.memsci.2013.02.053_bib27) 2008; 322 Gao (10.1016/j.memsci.2013.02.053_bib20) 2003; 41 Sukkar (10.1016/j.memsci.2013.02.053_bib31) 2004; 34 Wang (10.1016/j.memsci.2013.02.053_bib19) 2012; 16 Luo (10.1016/j.memsci.2013.02.053_bib42) 2008; 325 Guhan (10.1016/j.memsci.2013.02.053_bib40) 2009; 27 Hwang (10.1016/j.memsci.2013.02.053_bib32) 1996; 120 Ramani (10.1016/j.memsci.2013.02.053_bib25) 2004; 232 Xiang (10.1016/j.memsci.2013.02.053_bib26) 2011; 368 Chen (10.1016/j.memsci.2013.02.053_bib15) 2010; 51 Chen (10.1016/j.memsci.2013.02.053_bib24) 2010; 195 Chen (10.1016/j.memsci.2013.02.053_bib18) 2011; 52 Sang (10.1016/j.memsci.2013.02.053_bib33) 2007; 305 Kim (10.1016/j.memsci.2013.02.053_bib28) 2010; 16 Kreuer (10.1016/j.memsci.2013.02.053_bib41) 2001; 185 Chen (10.1016/j.memsci.2013.02.053_bib17) 2010; 196 Dai (10.1016/j.memsci.2013.02.053_bib21) 2001; 79 Chen (10.1016/j.memsci.2013.02.053_bib16) 2010; 3 Sum (10.1016/j.memsci.2013.02.053_bib2) 1985; 15 Chen (10.1016/j.memsci.2013.02.053_bib14) 2010; 195 Xi (10.1016/j.memsci.2013.02.053_bib34) 2008; 18 Mai (10.1016/j.memsci.2013.02.053_bib13) 2011; 196 Kim (10.1016/j.memsci.2013.02.053_bib12) 2011; 41 Jian (10.1016/j.memsci.2013.02.053_bib22) 1999; 161 Schwenzer (10.1016/j.memsci.2013.02.053_bib5) 2011; 4 Hwang (10.1016/j.memsci.2013.02.053_bib9) 1997; 132 Skyllas-Kazacos (10.1016/j.memsci.2013.02.053_bib3) 1987; 134 Skyllas-Kazacos (10.1016/j.memsci.2013.02.053_bib4) 1986; 133 Wang (10.1016/j.memsci.2013.02.053_bib23) 2012; 17 Skyllas-Kazacos (10.1016/j.memsci.2013.02.053_bib8) 1991; 35 Mohammadi (10.1016/j.memsci.2013.02.053_bib7) 1995; 107 Li (10.1016/j.memsci.2013.02.053_bib6) 2011; 4 Kim (10.1016/j.memsci.2013.02.053_bib11) 2010; 12 Xi (10.1016/j.memsci.2013.02.053_bib36) 2007; 166 Qiu (10.1016/j.memsci.2013.02.053_bib37) 2009; 334 Ward (10.1016/j.memsci.2013.02.053_bib38) 2004 |
References_xml | – volume: 15 start-page: 179 year: 1985 end-page: 190 ident: bib2 article-title: A study of the V(II)/V(III) redox couple for redox flow cell applications publication-title: J. Power Sources – volume: 195 start-page: 2089 year: 2010 end-page: 2095 ident: bib14 article-title: Preparation and properties of sulfonated poly(fluorenyl ether ketone) membrane for vanadium redox flow battery application publication-title: J. Power Sources – volume: 41 start-page: 1201 year: 2011 end-page: 1213 ident: bib12 article-title: Chemical and mechanical degradation of sulfonated poly(sulfone) membranes in vanadium redox flow batteries publication-title: J. Appl. Electrochem. – volume: 1 start-page: 66 year: 2012 end-page: 71 ident: bib39 article-title: Fabrication and mechanical properties of chitosan composite membrane containing hydroxyapatite particles publication-title: J. Adv. Ceram. – volume: 185 start-page: 29 year: 2001 end-page: 39 ident: bib41 article-title: On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells publication-title: J. Membr. Sci. – volume: 51 start-page: 2816 year: 2010 end-page: 2824 ident: bib15 article-title: Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery publication-title: Energy Convers. Manage. – volume: 133 start-page: 1057 year: 1986 end-page: 1058 ident: bib4 article-title: New all-vanadium redox flow cell publication-title: J. Electrochem. Soc. – volume: 16 start-page: 2169 year: 2012 end-page: 2177 ident: bib19 article-title: Sulfonated poly(phthalazinone ether sulfone) membrane as a separator of vanadium redox flow battery publication-title: J. Solid State Electrochem. – volume: 196 start-page: 482 year: 2011 end-page: 487 ident: bib13 article-title: Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application publication-title: J. Power Sources – volume: 52 start-page: 5312 year: 2011 end-page: 5319 ident: bib18 article-title: Synthesis of sulfonated poly(fluorenyl ether thioether ketone)s with bulky-block structure and its application in vanadium redox flow battery publication-title: Polymer – volume: 16 start-page: 85 year: 1985 end-page: 95 ident: bib1 article-title: Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery publication-title: J. Power Sources – volume: 3 start-page: 622 year: 2010 end-page: 628 ident: bib16 article-title: Synthesis and characterization of novel sulfonated poly(arylene thioether) ionomers for vanadium redox flow battery applications publication-title: Energy Environ. Sci. – volume: 12 start-page: 1650 year: 2010 end-page: 1653 ident: bib11 article-title: Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries publication-title: Electrochem. Commun. – volume: 16 start-page: 756 year: 2010 end-page: 762 ident: bib28 article-title: Application of Psf–PPSS–TPA composite membrane in the all-vanadium redox flow battery publication-title: J. Ind. Eng. Chem. – volume: 334 start-page: 9 year: 2009 end-page: 15 ident: bib37 article-title: Amphoteric ion exchange membrane synthesized by radiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate into PVDF film for vanadium redox flow battery applications publication-title: J. Membr. Sci. – volume: 4 start-page: 1388 year: 2011 end-page: 1406 ident: bib5 article-title: Membrane development for vanadium redox flow batteries publication-title: ChemSusChem – volume: 27 start-page: 157 year: 2009 end-page: 164 ident: bib40 article-title: Sulphated poly ether ether ketone/polyvinyl alcohol/phosphotungstic acid composite membranes for PEM fuel cells publication-title: Chin. J. Polym. Sci. – volume: 107 start-page: 35 year: 1995 end-page: 45 ident: bib7 article-title: Preparation of sulfonated composite membrane for vanadium redox flow battery applications publication-title: J. Membr. Sci. – volume: 35 start-page: 399 year: 1991 end-page: 404 ident: bib8 article-title: Characteristics and performance of 1 publication-title: J. Power Sources – volume: 166 start-page: 531 year: 2007 end-page: 536 ident: bib36 article-title: Nafion/SiO publication-title: J. Power Sources – volume: 79 start-page: 1685 year: 2001 end-page: 1692 ident: bib21 article-title: Synthesis and characterization of sulfonated poly(phthalazinone ether sulfone ketone) for ultrafiltration and nanofiltration membranes publication-title: J. Appl. Polym. Sci. – volume: 161 start-page: 185 year: 1999 end-page: 191 ident: bib22 article-title: Preparation of UF and NF poly(phthalazine ether sulfone ketone) membranes for high temperature application publication-title: J. Membr. Sci. – volume: 196 start-page: 1694 year: 2010 end-page: 1703 ident: bib17 article-title: Crosslinked sulfonated poly(arylene ether ketone) membranes bearing quinoxaline and acid–base complex cross-linkages for fuel cell applications publication-title: J. Power Sources – volume: 41 start-page: 497 year: 2003 end-page: 507 ident: bib20 article-title: Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials publication-title: J. Polym. Sci. Part A: Polym. Chem. – volume: 4 start-page: 1147 year: 2011 end-page: 1160 ident: bib6 article-title: Ion exchange membranes for vanadium redox flow battery (VRB) applications publication-title: Energy Environ. Sci. – volume: 120 start-page: 55 year: 1996 end-page: 67 ident: bib32 article-title: Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery publication-title: J. Membr. Sci. – volume: 325 start-page: 553 year: 2008 end-page: 558 ident: bib42 article-title: Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery publication-title: J. Membr. Sci. – year: 2004 ident: bib38 article-title: An Introduction to the Mechanical Properties of Solid Polymers – volume: 34 start-page: 137 year: 2004 end-page: 145 ident: bib31 article-title: Membrane stability studies for vanadium redox cell applications publication-title: J. Appl. Electrochem. – volume: 195 start-page: 7701 year: 2010 end-page: 7708 ident: bib24 article-title: Sulfonated poly(fluorenyl ether ketone) membrane with embedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery publication-title: J. Power Sources – volume: 368 start-page: 241 year: 2011 end-page: 245 ident: bib26 article-title: Phosphotungstic acid (HPW) molecules anchored in the bulk of Nafion as methanol-blocking membrane for direct methanol fuel cells publication-title: J. Membr. Sci. – volume: 177 start-page: 617 year: 2008 end-page: 623 ident: bib35 article-title: Pre-irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries publication-title: J. Power Sources – volume: 322 start-page: 218 year: 2008 end-page: 224 ident: bib27 article-title: Proton and methanol transport behavior of SPEEK/TPA/MCM-41 composite membranes for fuel cell application publication-title: J. Membr. Sci. – volume: 232 start-page: 31 year: 2004 end-page: 44 ident: bib25 article-title: Investigation of Nafion publication-title: J. Membr. Sci. – volume: 195 start-page: 4380 year: 2010 end-page: 4383 ident: bib29 article-title: A significantly improved membrane for vanadium redox flow battery publication-title: J. Power Sources – volume: 134 start-page: 2950 year: 1987 end-page: 2953 ident: bib3 article-title: Efficient vanadium redox flow cell publication-title: J. Electrochem. Soc. – volume: 162–163 start-page: 261 year: 2003 end-page: 267 ident: bib30 article-title: Transport properties of Nafion(TM) composite membranes for proton-exchange membranes fuel cells publication-title: Solid State Ionics – volume: 17 start-page: 30 year: 2012 end-page: 33 ident: bib23 article-title: SPPEK/WO publication-title: Electrochem. Commun. – volume: 133 start-page: 151 year: 1997 end-page: 159 ident: bib10 article-title: Water transport study across commercial ion exchange membranes in the vanadium redox flow battery publication-title: J. Membr. Sci. – volume: 132 start-page: 55 year: 1997 end-page: 61 ident: bib9 article-title: Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery publication-title: J. Membr. Sci. – volume: 305 start-page: 118 year: 2007 end-page: 124 ident: bib33 article-title: Preparation of zirconium phosphate (ZrP)/Nafion1135 composite membrane and H publication-title: J. Membr. Sci. – volume: 18 start-page: 1232 year: 2008 end-page: 1238 ident: bib34 article-title: Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries publication-title: J. Mater. Chem. – volume: 4 start-page: 1388 year: 2011 ident: 10.1016/j.memsci.2013.02.053_bib5 article-title: Membrane development for vanadium redox flow batteries publication-title: ChemSusChem doi: 10.1002/cssc.201100068 – volume: 4 start-page: 1147 year: 2011 ident: 10.1016/j.memsci.2013.02.053_bib6 article-title: Ion exchange membranes for vanadium redox flow battery (VRB) applications publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00770f – volume: 51 start-page: 2816 year: 2010 ident: 10.1016/j.memsci.2013.02.053_bib15 article-title: Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2010.06.019 – volume: 3 start-page: 622 year: 2010 ident: 10.1016/j.memsci.2013.02.053_bib16 article-title: Synthesis and characterization of novel sulfonated poly(arylene thioether) ionomers for vanadium redox flow battery applications publication-title: Energy Environ. Sci. doi: 10.1039/B917117G – year: 2004 ident: 10.1016/j.memsci.2013.02.053_bib38 – volume: 166 start-page: 531 year: 2007 ident: 10.1016/j.memsci.2013.02.053_bib36 article-title: Nafion/SiO2 hybrid membrane for vanadium redox flow battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.01.069 – volume: 35 start-page: 399 year: 1991 ident: 10.1016/j.memsci.2013.02.053_bib8 article-title: Characteristics and performance of 1kW UNSW vanadium redox battery publication-title: J. Power Sources doi: 10.1016/0378-7753(91)80058-6 – volume: 368 start-page: 241 year: 2011 ident: 10.1016/j.memsci.2013.02.053_bib26 article-title: Phosphotungstic acid (HPW) molecules anchored in the bulk of Nafion as methanol-blocking membrane for direct methanol fuel cells publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.11.049 – volume: 34 start-page: 137 year: 2004 ident: 10.1016/j.memsci.2013.02.053_bib31 article-title: Membrane stability studies for vanadium redox cell applications publication-title: J. Appl. Electrochem. doi: 10.1023/B:JACH.0000009931.83368.dc – volume: 133 start-page: 1057 year: 1986 ident: 10.1016/j.memsci.2013.02.053_bib4 article-title: New all-vanadium redox flow cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.2108706 – volume: 133 start-page: 151 year: 1997 ident: 10.1016/j.memsci.2013.02.053_bib10 article-title: Water transport study across commercial ion exchange membranes in the vanadium redox flow battery publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(97)00092-6 – volume: 16 start-page: 2169 issue: 6 year: 2012 ident: 10.1016/j.memsci.2013.02.053_bib19 article-title: Sulfonated poly(phthalazinone ether sulfone) membrane as a separator of vanadium redox flow battery publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-012-1641-7 – volume: 52 start-page: 5312 year: 2011 ident: 10.1016/j.memsci.2013.02.053_bib18 article-title: Synthesis of sulfonated poly(fluorenyl ether thioether ketone)s with bulky-block structure and its application in vanadium redox flow battery publication-title: Polymer doi: 10.1016/j.polymer.2011.09.021 – volume: 325 start-page: 553 year: 2008 ident: 10.1016/j.memsci.2013.02.053_bib42 article-title: Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.08.025 – volume: 15 start-page: 179 year: 1985 ident: 10.1016/j.memsci.2013.02.053_bib2 article-title: A study of the V(II)/V(III) redox couple for redox flow cell applications publication-title: J. Power Sources doi: 10.1016/0378-7753(85)80071-9 – volume: 195 start-page: 7701 year: 2010 ident: 10.1016/j.memsci.2013.02.053_bib24 article-title: Sulfonated poly(fluorenyl ether ketone) membrane with embedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.05.026 – volume: 195 start-page: 2089 year: 2010 ident: 10.1016/j.memsci.2013.02.053_bib14 article-title: Preparation and properties of sulfonated poly(fluorenyl ether ketone) membrane for vanadium redox flow battery application publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.11.010 – volume: 305 start-page: 118 year: 2007 ident: 10.1016/j.memsci.2013.02.053_bib33 article-title: Preparation of zirconium phosphate (ZrP)/Nafion1135 composite membrane and H+/VO2+ transfer property investigation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.07.041 – volume: 322 start-page: 218 year: 2008 ident: 10.1016/j.memsci.2013.02.053_bib27 article-title: Proton and methanol transport behavior of SPEEK/TPA/MCM-41 composite membranes for fuel cell application publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.05.042 – volume: 134 start-page: 2950 year: 1987 ident: 10.1016/j.memsci.2013.02.053_bib3 article-title: Efficient vanadium redox flow cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.2100321 – volume: 196 start-page: 1694 year: 2010 ident: 10.1016/j.memsci.2013.02.053_bib17 article-title: Crosslinked sulfonated poly(arylene ether ketone) membranes bearing quinoxaline and acid–base complex cross-linkages for fuel cell applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.10.039 – volume: 41 start-page: 497 year: 2003 ident: 10.1016/j.memsci.2013.02.053_bib20 article-title: Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials publication-title: J. Polym. Sci. Part A: Polym. Chem. doi: 10.1002/pola.10601 – volume: 195 start-page: 4380 year: 2010 ident: 10.1016/j.memsci.2013.02.053_bib29 article-title: A significantly improved membrane for vanadium redox flow battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.02.008 – volume: 232 start-page: 31 year: 2004 ident: 10.1016/j.memsci.2013.02.053_bib25 article-title: Investigation of Nafion®/HPA composite membranes for high temperature/low relative humidity PEMFC operation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2003.11.016 – volume: 162–163 start-page: 261 year: 2003 ident: 10.1016/j.memsci.2013.02.053_bib30 article-title: Transport properties of Nafion(TM) composite membranes for proton-exchange membranes fuel cells publication-title: Solid State Ionics doi: 10.1016/S0167-2738(03)00238-8 – volume: 334 start-page: 9 year: 2009 ident: 10.1016/j.memsci.2013.02.053_bib37 article-title: Amphoteric ion exchange membrane synthesized by radiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate into PVDF film for vanadium redox flow battery applications publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.02.009 – volume: 16 start-page: 756 year: 2010 ident: 10.1016/j.memsci.2013.02.053_bib28 article-title: Application of Psf–PPSS–TPA composite membrane in the all-vanadium redox flow battery publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2010.07.007 – volume: 132 start-page: 55 year: 1997 ident: 10.1016/j.memsci.2013.02.053_bib9 article-title: Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(97)00040-9 – volume: 177 start-page: 617 year: 2008 ident: 10.1016/j.memsci.2013.02.053_bib35 article-title: Pre-irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.11.089 – volume: 18 start-page: 1232 year: 2008 ident: 10.1016/j.memsci.2013.02.053_bib34 article-title: Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries publication-title: J. Mater. Chem. doi: 10.1039/b718526j – volume: 196 start-page: 482 year: 2011 ident: 10.1016/j.memsci.2013.02.053_bib13 article-title: Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.07.028 – volume: 27 start-page: 157 year: 2009 ident: 10.1016/j.memsci.2013.02.053_bib40 article-title: Sulphated poly ether ether ketone/polyvinyl alcohol/phosphotungstic acid composite membranes for PEM fuel cells publication-title: Chin. J. Polym. Sci. doi: 10.1142/S0256767909003789 – volume: 41 start-page: 1201 issue: 10 year: 2011 ident: 10.1016/j.memsci.2013.02.053_bib12 article-title: Chemical and mechanical degradation of sulfonated poly(sulfone) membranes in vanadium redox flow batteries publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-011-0313-0 – volume: 1 start-page: 66 year: 2012 ident: 10.1016/j.memsci.2013.02.053_bib39 article-title: Fabrication and mechanical properties of chitosan composite membrane containing hydroxyapatite particles publication-title: J. Adv. Ceram. doi: 10.1007/s40145-012-0007-z – volume: 79 start-page: 1685 year: 2001 ident: 10.1016/j.memsci.2013.02.053_bib21 article-title: Synthesis and characterization of sulfonated poly(phthalazinone ether sulfone ketone) for ultrafiltration and nanofiltration membranes publication-title: J. Appl. Polym. Sci. doi: 10.1002/1097-4628(20010228)79:9<1685::AID-APP180>3.0.CO;2-L – volume: 17 start-page: 30 year: 2012 ident: 10.1016/j.memsci.2013.02.053_bib23 article-title: SPPEK/WO3 hybrid membrane fabricated via hydrothermal method for vanadium redox flow battery publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.01.012 – volume: 120 start-page: 55 year: 1996 ident: 10.1016/j.memsci.2013.02.053_bib32 article-title: Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(96)00135-4 – volume: 12 start-page: 1650 year: 2010 ident: 10.1016/j.memsci.2013.02.053_bib11 article-title: Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.09.018 – volume: 16 start-page: 85 year: 1985 ident: 10.1016/j.memsci.2013.02.053_bib1 article-title: Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery publication-title: J. Power Sources doi: 10.1016/0378-7753(85)80082-3 – volume: 107 start-page: 35 year: 1995 ident: 10.1016/j.memsci.2013.02.053_bib7 article-title: Preparation of sulfonated composite membrane for vanadium redox flow battery applications publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(95)00096-U – volume: 161 start-page: 185 year: 1999 ident: 10.1016/j.memsci.2013.02.053_bib22 article-title: Preparation of UF and NF poly(phthalazine ether sulfone ketone) membranes for high temperature application publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(99)00112-X – volume: 185 start-page: 29 year: 2001 ident: 10.1016/j.memsci.2013.02.053_bib41 article-title: On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)00632-3 |
SSID | ssj0017089 |
Score | 2.3895252 |
Snippet | To improve the performance of a low cost sulfonated poly(phthalazinone ether ketone) (SPPEK) membrane in vanadium redox flow battery (VRFB), composite... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 114 |
SubjectTerms | Applied sciences artificial membranes batteries Battery Chemistry Colloidal state and disperse state Corrosion resistance Diffraction Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells energy efficiency Energy management energy-dispersive X-ray analysis Ethers Exact sciences and technology Exchange resins and membranes Forms of application and semi-finished materials General and physical chemistry Ionic selectivity ions Low cost Membranes permeability phosphotungstic acid Polymer industry, paints, wood Scanning electron microscopy spectroscopy SPPEK/TPA composite membrane Technology of polymers Vanadium Vanadium permeability Vanadium redox flow battery X-radiation X-ray diffraction |
Title | SPPEK/TPA composite membrane as a separator of vanadium redox flow battery |
URI | https://dx.doi.org/10.1016/j.memsci.2013.02.053 https://www.proquest.com/docview/1513479419 https://www.proquest.com/docview/1671620819 https://www.proquest.com/docview/1803093225 |
Volume | 437 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4xeGEPE4MhOkblSbx6TWLHSR4rBOpAQ5VKJd6sOLYnJtog2u7HC3_77pykGpoAidfknDh39uWs--47gGM8M1QqywynNBBHL-m4sTblcWFiq5K8kgUVJ3-7VKOpPL9OrzfgpKuFIVhl6_sbnx68dXtl0GpzcHdzM5hEREQi8pwSMnEeOEGlzGiVf3lYwzziLApt8EiYk3RXPhcwXjM3w0cTwEsE5s5UPPV7euPLmnCT5QJV55ueF_-57_BPOtuBd20wyYbNfN_Dhpvvwtt_KAb34HwyHp9eDK7GQ0bocYJoOYYTwkPy3LFywUq2cIH_u75ntWc_AwhsNWNEJPqb-dv6FzOBg_PPB5ienV6djHjbP4GjhtWSm8hajD9sVYnKpAYPOqgl471Q0pjSiVQ5L6XzUWSVi1WRZBhPVZSZVTbCO2IfNuf13B0Ay2VsJQYnVKYrcYAR0uJLfOZSWRZp0gPRqU1XLbk49bi41R2K7IdulK1J2TpKNCq7B3w96q4h13hBPussoh8tEo3-_4WRB2hAXX5Hz6mnk4R49UIrgUL1oP_IquuZYGBXEP19Dz53Zta49yihghaqVwuN0RIV4sq4eEZGEUcXBV7PyOQhIY2u9eOrv_AQtpOmUweP00-wubxfuSOMl5amHzZEH7aGXy9Gl38BvEARCg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4x9sB4QNvYRMfGPGmvXpPYcZJHhEAdv1SprcSbFcf2BKINoi3bXvjbuXOSamgaSHtNzolzF5_Puu--A_iKZ4ZKZZnhlAbi6CUdN9amPC5MbFWSV7Kg4uSzczWYyOOL9GINDrpaGIJVtr6_8enBW7dX-q02-zeXl_1RREQkIs8pIRPnxAn6UuLypTYG3-5XOI84i0IfPJLmJN7VzwWQ19RN8dmE8BKBujMV_9qfXviyJuBkOUfd-abpxV_-O2xKR69hq40m2X4z4Tew5mZvYfMPjsFtOB4Nh4cn_fFwnxF8nDBajuGE8JQ8c6ycs5LNXSAAr29Z7dldQIEtp4yYRH8xf13_ZCaQcP5-B5Ojw_HBgLcNFDiqWC24iazFAMRWlahMavCkg2oy3gsljSmdSJXzUjofRVa5WBVJhgFVRalZZSO8I97D-qyeuR1guYytxOiE6nQlDjBCWnyJz1wqyyJNeiA6temqZRenJhfXuoORXelG2ZqUraNEo7J7wFejbhp2jWfks84i-tFfonEDeGbkDhpQlz_QderJKCFivdBLoFA92Htk1dVMMLIriP--B186M2tcfJRRQQvVy7nGcIkqcWVcPCGjiKSLIq8nZPKQkUbf-uG_v_AzbAzGZ6f69Pv5yS68Spq2HTxOP8L64nbpPmHwtDB7YXE8ANZgEpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SPPEK%2FTPA+composite+membrane+as+a+separator+of+vanadium+redox+flow+battery&rft.jtitle=Journal+of+membrane+science&rft.au=Wang%2C+Nanfang&rft.au=Yu%2C+Jingang&rft.au=Zhou%2C+Zhi&rft.au=Fang%2C+Dong&rft.date=2013-06-15&rft.issn=0376-7388&rft.volume=437&rft.spage=114&rft.epage=121&rft_id=info:doi/10.1016%2Fj.memsci.2013.02.053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2013_02_053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |