Genetic diversity for aluminum tolerance in sorghum

Genetic variation for aluminum (Al) tolerance in plants has allowed the development of cultivars that are high yielding on acidic, Al toxic soils. However, knowledge of intraspecific variation for Al tolerance control is needed in order to assess the potential for further Al tolerance improvement. H...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied genetics Vol. 114; no. 5; pp. 863 - 876
Main Authors CANIATO, F. F, GUIMARAES, C. T, SCHAFFERT, R. E, ALVES, V. M. C, KOCHIAN, L. V, BOREM, A, KLEIN, P. E, MAGALHAES, J. V
Format Journal Article
LanguageEnglish
Published Heidelberg Springer 01.03.2007
Berlin Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Genetic variation for aluminum (Al) tolerance in plants has allowed the development of cultivars that are high yielding on acidic, Al toxic soils. However, knowledge of intraspecific variation for Al tolerance control is needed in order to assess the potential for further Al tolerance improvement. Here we focused on the major sorghum Al tolerance gene, Alt ( SB ), from the highly Al tolerant standard SC283 to investigate the range of genetic diversity for Al tolerance control in sorghum accessions from diverse origins. Two tightly linked STS markers flanking Alt ( SB ) were used to study the role of this locus in the segregation for Al tolerance in mapping populations derived from different sources of Al tolerance crossed with a common Al sensitive tester, BR012, as well as to isolate the allelic effects of Alt ( SB ) in near-isogenic lines. The results indicated the existence not only of multiple alleles at the Alt ( SB ) locus, which conditioned a wide range of tolerance levels, but also of novel sorghum Al tolerance genes. Transgressive segregation was observed in a highly Al tolerant breeding line, indicating that potential exists to exploit the additive or codominant effects of distinct Al tolerance loci. A global, SSR-based, genetic diversity analysis using a broader sorghum set revealed the presence of both multiple Alt ( SB ) alleles and different Al tolerance genes within highly related accessions. This suggests that efforts toward broadening the genetic basis for Al tolerance in sorghum may benefit from a detailed analysis of Al tolerance gene diversity within subgroups across a target population.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0040-5752
1432-2242
DOI:10.1007/s00122-006-0485-x