Aedes aegypti vector competence studies: A review
Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cel...
Saved in:
Published in | Infection, genetics and evolution Vol. 67; pp. 191 - 209 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cells, many studies have been performed testing the relative competence of different populations of the mosquito to transmit many different strains of viruses. We review here this large literature including studies on the effect of the mosquito microbiota on competence. Because of the heterogeneity of both mosquito populations and virus strains used, as well as methods measuring potential to transmit, it is very difficult to perform detailed meta-analysis of the studies. However, a few conclusions can be drawn: (1) almost no population of Ae. aegypti is 100% naturally refractory to virus infection. Complete susceptibility to infection has been observed for Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV), but not yellow fever viruses (YFV); (2) the dose of virus used is directly correlated to the rate of infection; (3) Brazilian populations of mosquito are particularly susceptible to DENV-2 infections; (4) the Asian lineage of ZIKV is less infective to Ae. aegypti populations from the American continent than is the African ZIKV lineage; (5) virus adaptation to different species of mosquitoes has been demonstrated with CHIKV; (6) co-infection with more than one virus sometimes causes displacement while in other cases has little effect; (7) the microbiota in the mosquito also has important effects on level of susceptibility to arboviral infection; (8) resistance to virus infection due to the microbiota may be direct (e.g., bacteria producing antiviral proteins) or indirect in activating the mosquito host innate immune system; (9) non-pathogenic insect specific viruses (ISVs) are also common in mosquitoes including genome insertions. These too have been shown to have an impact on the susceptibility of mosquitoes to pathogenic viruses.
One clear conclusion is that it would be a great advance in this type of research to implement standardized procedures in order to obtain comparable and reproducible results.
•Aedes aegypti is easy to rear and manipulate in the laboratory•Variation in vector competence is partly related to the high genetic diversity within and among Ae. aegypti populations•Standardized procedures to assess vector competence would greatly aid in comparable and reproducible findings•Almost no population of Ae. aegypti is 100% naturally refractory to arboviral infection•Virus adaptation to Ae. aegypti mosquitoes is still controversial•Co-infection studies with two or more viruses are still limited•Further investigation is needed to evaluate the role of gut bacterial diversity and the viriome on vector competence |
---|---|
AbstractList | Aedes aegypti
is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cells, many studies have been performed testing the relative competence of different populations of the mosquito to transmit many different strains of viruses. We review here this large literature including studies on the effect of the mosquito microbiota on competence. Because of the heterogeneity of both mosquito populations and virus strains used, as well as methods measuring potential to transmit, it is very difficult to perform detailed meta-analysis of the studies. However, a few conclusions can be drawn: (1) almost no population of
Ae. aegypti
is 100% naturally refractory to virus infection. Complete susceptibility to infection has been observed for Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV), but not yellow fever viruses (YFV); (2) the dose of virus used is directly correlated to the rate of infection; (3) Brazilian populations of mosquito are particularly susceptible to DENV-2 infections; (4) the Asian lineage of ZIKV is less infective to
Ae. aegypti
populations from the American continent than is the African ZIKV lineage; (5) virus adaptation to different species of mosquitoes has been demonstrated with CHIKV; (6) co-infection with more than one virus sometimes causes displacement while in other cases has little effect; (7) the microbiota in the mosquito also has important effects on level of susceptibility to arboviral infection; (8) resistance to virus infection due to the microbiota may be direct (e.g., bacteria producing antiviral proteins) or indirect in activating the mosquito host innate immune system; (9) non-pathogenic insect specific viruses (ISVs) are also common in mosquitoes including genome insertions. These too have been shown to have an impact on the susceptibility of mosquitoes to pathogenic viruses.
One clear conclusion is that it would be a great advance in this type of research to implement standardized procedures in order to obtain comparable and reproducible results. Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cells, many studies have been performed testing the relative competence of different populations of the mosquito to transmit many different strains of viruses. We review here this large literature including studies on the effect of the mosquito microbiota on competence. Because of the heterogeneity of both mosquito populations and virus strains used, as well as methods measuring potential to transmit, it is very difficult to perform detailed meta-analysis of the studies. However, a few conclusions can be drawn: (1) almost no population of Ae. aegypti is 100% naturally refractory to virus infection. Complete susceptibility to infection has been observed for Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV), but not yellow fever viruses (YFV); (2) the dose of virus used is directly correlated to the rate of infection; (3) Brazilian populations of mosquito are particularly susceptible to DENV-2 infections; (4) the Asian lineage of ZIKV is less infective to Ae. aegypti populations from the American continent than is the African ZIKV lineage; (5) virus adaptation to different species of mosquitoes has been demonstrated with CHIKV; (6) co-infection with more than one virus sometimes causes displacement while in other cases has little effect; (7) the microbiota in the mosquito also has important effects on level of susceptibility to arboviral infection; (8) resistance to virus infection due to the microbiota may be direct (e.g., bacteria producing antiviral proteins) or indirect in activating the mosquito host innate immune system; (9) non-pathogenic insect specific viruses (ISVs) are also common in mosquitoes including genome insertions. These too have been shown to have an impact on the susceptibility of mosquitoes to pathogenic viruses. One clear conclusion is that it would be a great advance in this type of research to implement standardized procedures in order to obtain comparable and reproducible results. •Aedes aegypti is easy to rear and manipulate in the laboratory•Variation in vector competence is partly related to the high genetic diversity within and among Ae. aegypti populations•Standardized procedures to assess vector competence would greatly aid in comparable and reproducible findings•Almost no population of Ae. aegypti is 100% naturally refractory to arboviral infection•Virus adaptation to Ae. aegypti mosquitoes is still controversial•Co-infection studies with two or more viruses are still limited•Further investigation is needed to evaluate the role of gut bacterial diversity and the viriome on vector competence Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cells, many studies have been performed testing the relative competence of different populations of the mosquito to transmit many different strains of viruses. We review here this large literature including studies on the effect of the mosquito microbiota on competence. Because of the heterogeneity of both mosquito populations and virus strains used, as well as methods measuring potential to transmit, it is very difficult to perform detailed meta-analysis of the studies. However, a few conclusions can be drawn: (1) almost no population of Ae. aegypti is 100% naturally refractory to virus infection. Complete susceptibility to infection has been observed for Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV), but not yellow fever viruses (YFV); (2) the dose of virus used is directly correlated to the rate of infection; (3) Brazilian populations of mosquito are particularly susceptible to DENV-2 infections; (4) the Asian lineage of ZIKV is less infective to Ae. aegypti populations from the American continent than is the African ZIKV lineage; (5) virus adaptation to different species of mosquitoes has been demonstrated with CHIKV; (6) co-infection with more than one virus sometimes causes displacement while in other cases has little effect; (7) the microbiota in the mosquito also has important effects on level of susceptibility to arboviral infection; (8) resistance to virus infection due to the microbiota may be direct (e.g., bacteria producing antiviral proteins) or indirect in activating the mosquito host innate immune system; (9) non-pathogenic insect specific viruses (ISVs) are also common in mosquitoes including genome insertions. These too have been shown to have an impact on the susceptibility of mosquitoes to pathogenic viruses. One clear conclusion is that it would be a great advance in this type of research to implement standardized procedures in order to obtain comparable and reproducible results. Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cells, many studies have been performed testing the relative competence of different populations of the mosquito to transmit many different strains of viruses. We review here this large literature including studies on the effect of the mosquito microbiota on competence. Because of the heterogeneity of both mosquito populations and virus strains used, as well as methods measuring potential to transmit, it is very difficult to perform detailed meta-analysis of the studies. However, a few conclusions can be drawn: (1) almost no population of Ae. aegypti is 100% naturally refractory to virus infection. Complete susceptibility to infection has been observed for Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV), but not yellow fever viruses (YFV); (2) the dose of virus used is directly correlated to the rate of infection; (3) Brazilian populations of mosquito are particularly susceptible to DENV-2 infections; (4) the Asian lineage of ZIKV is less infective to Ae. aegypti populations from the American continent than is the African ZIKV lineage; (5) virus adaptation to different species of mosquitoes has been demonstrated with CHIKV; (6) co-infection with more than one virus sometimes causes displacement while in other cases has little effect; (7) the microbiota in the mosquito also has important effects on level of susceptibility to arboviral infection; (8) resistance to virus infection due to the microbiota may be direct (e.g., bacteria producing antiviral proteins) or indirect in activating the mosquito host innate immune system; (9) non-pathogenic insect specific viruses (ISVs) are also common in mosquitoes including genome insertions. These too have been shown to have an impact on the susceptibility of mosquitoes to pathogenic viruses. One clear conclusion is that it would be a great advance in this type of research to implement standardized procedures in order to obtain comparable and reproducible results.Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cells, many studies have been performed testing the relative competence of different populations of the mosquito to transmit many different strains of viruses. We review here this large literature including studies on the effect of the mosquito microbiota on competence. Because of the heterogeneity of both mosquito populations and virus strains used, as well as methods measuring potential to transmit, it is very difficult to perform detailed meta-analysis of the studies. However, a few conclusions can be drawn: (1) almost no population of Ae. aegypti is 100% naturally refractory to virus infection. Complete susceptibility to infection has been observed for Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV), but not yellow fever viruses (YFV); (2) the dose of virus used is directly correlated to the rate of infection; (3) Brazilian populations of mosquito are particularly susceptible to DENV-2 infections; (4) the Asian lineage of ZIKV is less infective to Ae. aegypti populations from the American continent than is the African ZIKV lineage; (5) virus adaptation to different species of mosquitoes has been demonstrated with CHIKV; (6) co-infection with more than one virus sometimes causes displacement while in other cases has little effect; (7) the microbiota in the mosquito also has important effects on level of susceptibility to arboviral infection; (8) resistance to virus infection due to the microbiota may be direct (e.g., bacteria producing antiviral proteins) or indirect in activating the mosquito host innate immune system; (9) non-pathogenic insect specific viruses (ISVs) are also common in mosquitoes including genome insertions. These too have been shown to have an impact on the susceptibility of mosquitoes to pathogenic viruses. One clear conclusion is that it would be a great advance in this type of research to implement standardized procedures in order to obtain comparable and reproducible results. |
Author | Souza-Neto, Jayme A. Bonizzoni, Mariangela Powell, Jeffrey R. |
AuthorAffiliation | c Yale University, New Haven, CT, USA a São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Multiuser Central Laboratory, Botucatu, Brazil b São Paulo State University (UNESP), Institute of Biotechnology, Botucatu, Brazil d Department of Biology and Biotechnology, University of Pavia, Pavia, Italy |
AuthorAffiliation_xml | – name: c Yale University, New Haven, CT, USA – name: d Department of Biology and Biotechnology, University of Pavia, Pavia, Italy – name: a São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Multiuser Central Laboratory, Botucatu, Brazil – name: b São Paulo State University (UNESP), Institute of Biotechnology, Botucatu, Brazil |
Author_xml | – sequence: 1 givenname: Jayme A. surname: Souza-Neto fullname: Souza-Neto, Jayme A. organization: São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Multiuser Central Laboratory, Botucatu, Brazil – sequence: 2 givenname: Jeffrey R. surname: Powell fullname: Powell, Jeffrey R. organization: Yale University, New Haven, CT, USA – sequence: 3 givenname: Mariangela surname: Bonizzoni fullname: Bonizzoni, Mariangela email: m.bonizzoni@unipv.it organization: Department of Biology and Biotechnology, University of Pavia, Pavia, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30465912$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rGzEQxUVJaT7a_yCEPebizYy0H9ocAiakbSDQS3sWsjTryuyuHEl2yH8fGbuhzaE5aUDvPd7M75QdTX4ixs4RSgRsrlblSLR0tuSAskQsAboP7ATrpp21vG6PDjOKSh6z0xhXANgCl5_YsYCqqTvkJwznZCkWmpbP6-SKLZnkQ2H8uKZEk6Eipo11FK-LeRFo6-jpM_vY6yHSl8N7xn59vft5-3328OPb_e38YWaqrkkzzXXXS-JUC8n7VvccBaAgIWtsOCchuOYLuwDII6KFBeiOa9tnPcq6FWfsZp-73ixGsoamFPSg1sGNOjwrr53692dyv9XSb5VEUXcgc8DlISD4xw3FpEYXDQ2DnshvouKcI-QyDX9fiqKtGpQVZOnF37Ve-_w5aRZUe4EJPsZA_asEQe3IqZXak1M7cgpRZXLZdv3GZlzSyfndcm54z3y4FWUgGVJQ0bgdPutCJqqsd_8PeAFjnrTy |
CitedBy_id | crossref_primary_10_1128_mSphere_00271_21 crossref_primary_10_1186_s13568_025_01850_4 crossref_primary_10_3390_v11090867 crossref_primary_10_1093_icb_icad123 crossref_primary_10_3390_microorganisms10071398 crossref_primary_10_1016_j_indcrop_2022_115878 crossref_primary_10_1590_0001_3765202120200058 crossref_primary_10_1186_s12992_021_00760_x crossref_primary_10_1371_journal_pntd_0008705 crossref_primary_10_3390_insects15060393 crossref_primary_10_3390_v14102088 crossref_primary_10_1371_journal_ppat_1010694 crossref_primary_10_1155_2022_7425322 crossref_primary_10_3390_v13112232 crossref_primary_10_1371_journal_pntd_0007162 crossref_primary_10_1371_journal_pntd_0008250 crossref_primary_10_1016_j_jinsphys_2024_104726 crossref_primary_10_3390_pathogens11030373 crossref_primary_10_1093_pnasnexus_pgac203 crossref_primary_10_1590_0102_311xpt090022 crossref_primary_10_4103_0972_9062_331413 crossref_primary_10_1002_ps_5763 crossref_primary_10_3390_insects11120848 crossref_primary_10_1016_j_celrep_2023_112257 crossref_primary_10_1042_ETLS20180123 crossref_primary_10_1021_acs_jafc_0c07118 crossref_primary_10_1093_jme_tjae092 crossref_primary_10_3390_molecules27175699 crossref_primary_10_1007_s11356_020_09278_y crossref_primary_10_1007_s10841_022_00431_1 crossref_primary_10_1093_jme_tjaa292 crossref_primary_10_2987_22_7084 crossref_primary_10_1016_j_actatropica_2021_106014 crossref_primary_10_1038_s41598_025_94529_6 crossref_primary_10_3390_microorganisms12091899 crossref_primary_10_3389_fbioe_2022_871703 crossref_primary_10_3390_pathogens12010031 crossref_primary_10_12688_f1000research_125318_2 crossref_primary_10_1038_s41467_024_52566_1 crossref_primary_10_3390_v12070698 crossref_primary_10_1590_0037_8682_0280_2023 crossref_primary_10_3390_microorganisms12102038 crossref_primary_10_1093_infdis_jiaa563 crossref_primary_10_1007_s11356_020_08998_5 crossref_primary_10_1186_s13071_020_04181_4 crossref_primary_10_1016_j_cois_2023_101141 crossref_primary_10_3889_oamjms_2022_7038 crossref_primary_10_3390_insects14040328 crossref_primary_10_1093_jme_tjaf002 crossref_primary_10_3390_v14050880 crossref_primary_10_3390_insects11110735 crossref_primary_10_1186_s13071_022_05473_7 crossref_primary_10_1016_j_ibmb_2022_103815 crossref_primary_10_1016_j_meegid_2024_105647 crossref_primary_10_1186_s13071_020_04054_w crossref_primary_10_1093_jisesa_ieaa060 crossref_primary_10_1111_febs_15524 crossref_primary_10_1063_5_0204336 crossref_primary_10_1590_0074_02760200271 crossref_primary_10_1016_j_ijbiomac_2022_10_158 crossref_primary_10_1093_jambio_lxae261 crossref_primary_10_3390_v16091387 crossref_primary_10_1016_j_jinsphys_2022_104367 crossref_primary_10_1016_j_pt_2019_09_006 crossref_primary_10_1038_s41437_022_00553_x crossref_primary_10_1080_23748834_2021_1899486 crossref_primary_10_1093_femsre_fuab045 crossref_primary_10_1371_journal_pntd_0012792 crossref_primary_10_3389_fitd_2023_1035273 crossref_primary_10_3390_v13091822 crossref_primary_10_1186_s13071_021_04816_0 crossref_primary_10_1214_22_EJP739 crossref_primary_10_1186_s13071_020_4002_x crossref_primary_10_1111_eva_12802 crossref_primary_10_3390_pharmaceutics16101337 crossref_primary_10_1186_s13071_024_06334_1 crossref_primary_10_1007_s10661_023_11174_0 crossref_primary_10_1186_s13071_023_05784_3 crossref_primary_10_3390_v12080823 crossref_primary_10_1101_pdb_top107698 crossref_primary_10_1038_s41597_022_01741_4 crossref_primary_10_1186_s13071_021_04633_5 crossref_primary_10_1371_journal_pntd_0008163 crossref_primary_10_3389_fcimb_2024_1496126 crossref_primary_10_7759_cureus_76401 crossref_primary_10_1038_s41467_022_35407_x crossref_primary_10_1186_s13071_024_06295_5 crossref_primary_10_1038_s41598_019_52687_4 crossref_primary_10_3389_fmicb_2021_624170 crossref_primary_10_3389_fgene_2022_867231 crossref_primary_10_3390_pathogens11080879 crossref_primary_10_3390_pathogens9050404 crossref_primary_10_1371_journal_pntd_0009815 crossref_primary_10_1016_j_scitotenv_2024_174847 crossref_primary_10_1186_s13071_024_06300_x crossref_primary_10_1186_s13071_024_06598_7 crossref_primary_10_1371_journal_ppat_1011727 crossref_primary_10_1111_mve_12653 crossref_primary_10_1016_j_cois_2021_10_007 crossref_primary_10_1371_journal_pone_0288994 crossref_primary_10_3389_fgene_2019_01266 crossref_primary_10_1016_j_actatropica_2024_107507 crossref_primary_10_3390_pathogens9100848 crossref_primary_10_1186_s13071_022_05231_9 crossref_primary_10_1186_s13071_022_05401_9 crossref_primary_10_1038_s41597_024_03432_8 crossref_primary_10_1016_j_cris_2022_100047 crossref_primary_10_3389_fvets_2023_1137392 crossref_primary_10_1038_s41598_024_61573_7 crossref_primary_10_3390_insects13040377 crossref_primary_10_1002_vms3_1580 crossref_primary_10_1186_s13690_024_01412_3 crossref_primary_10_1177_1934578X251327827 crossref_primary_10_3390_pathogens12050680 crossref_primary_10_1016_j_isci_2020_101486 crossref_primary_10_15212_ZOONOSES_2021_0017 crossref_primary_10_1155_2022_6371274 crossref_primary_10_1016_j_ijregi_2025_100612 crossref_primary_10_3390_insects16010033 crossref_primary_10_3389_fitd_2024_1416187 crossref_primary_10_1186_s13071_022_05156_3 crossref_primary_10_1007_s13337_022_00795_7 crossref_primary_10_1016_j_ebiom_2023_104660 crossref_primary_10_1186_s13071_023_05724_1 crossref_primary_10_1371_journal_pntd_0007985 crossref_primary_10_1186_s13071_022_05414_4 crossref_primary_10_3233_MGC_220003 crossref_primary_10_3390_pathogens9040265 crossref_primary_10_1166_jnn_2021_19471 crossref_primary_10_1371_journal_pone_0233309 crossref_primary_10_1007_s00248_020_01544_3 crossref_primary_10_1038_s42003_024_07435_4 crossref_primary_10_1016_j_actatropica_2022_106470 crossref_primary_10_3389_fimmu_2024_1434003 crossref_primary_10_1016_j_actatropica_2024_107325 crossref_primary_10_15212_ZOONOSES_2021_0002 crossref_primary_10_1016_j_celrep_2022_110648 crossref_primary_10_3390_molecules27051456 crossref_primary_10_3389_fmicb_2019_02036 crossref_primary_10_1111_mve_12712 crossref_primary_10_1186_s13071_024_06137_4 crossref_primary_10_3390_ijerph17061830 crossref_primary_10_1371_journal_pntd_0008303 crossref_primary_10_3390_v15030779 crossref_primary_10_1007_s12602_024_10430_0 crossref_primary_10_1016_j_jphotobiol_2024_112893 crossref_primary_10_1038_s41467_024_45116_2 crossref_primary_10_1371_journal_pntd_0012110 crossref_primary_10_1002_cbdv_202100145 crossref_primary_10_1016_j_jip_2024_108094 crossref_primary_10_3389_fcimb_2023_1242173 crossref_primary_10_1186_s13071_022_05558_3 crossref_primary_10_1089_vbz_2024_0004 crossref_primary_10_3390_v16121868 crossref_primary_10_1186_s40168_021_01073_2 crossref_primary_10_1186_s13059_020_02141_w crossref_primary_10_3390_v15030770 crossref_primary_10_1007_s10530_024_03298_2 crossref_primary_10_1093_gbe_evae092 crossref_primary_10_1016_j_onehlt_2025_100991 crossref_primary_10_1186_s13071_020_04218_8 crossref_primary_10_1371_journal_pntd_0011811 crossref_primary_10_1007_s10682_022_10197_2 crossref_primary_10_3390_microorganisms12010004 crossref_primary_10_47352_jmans_2774_3047_225 crossref_primary_10_1101_pdb_top107651 crossref_primary_10_1093_jme_tjad041 crossref_primary_10_1093_ve_vead041 crossref_primary_10_3390_pathogens10010039 crossref_primary_10_1016_j_meegid_2022_105296 crossref_primary_10_1002_cbdv_202200210 crossref_primary_10_1038_s41598_024_60662_x crossref_primary_10_1002_cbdv_202300823 crossref_primary_10_3390_life11070615 crossref_primary_10_1016_j_actatropica_2023_106832 crossref_primary_10_1007_s11756_024_01852_w crossref_primary_10_3389_fcimb_2022_1042735 crossref_primary_10_1128_jvi_00695_23 crossref_primary_10_1038_s42003_020_01614_9 crossref_primary_10_3390_insects9040139 crossref_primary_10_1073_pnas_2411758122 crossref_primary_10_3390_molecules27227961 crossref_primary_10_1007_s42690_023_01097_1 crossref_primary_10_1016_j_cois_2022_100920 crossref_primary_10_1080_00222933_2021_1923850 crossref_primary_10_1186_s13071_023_05729_w crossref_primary_10_1186_s40850_022_00124_x crossref_primary_10_1371_journal_pone_0310635 crossref_primary_10_3390_v12121349 crossref_primary_10_1155_2024_4123543 crossref_primary_10_1007_s11030_024_10899_5 crossref_primary_10_1186_s13071_021_04726_1 crossref_primary_10_1371_journal_ppat_1010939 crossref_primary_10_1093_infdis_jiab066 crossref_primary_10_1111_mve_12593 crossref_primary_10_1371_journal_pntd_0012280 crossref_primary_10_3390_v14061132 crossref_primary_10_1016_j_ecoinf_2021_101351 crossref_primary_10_1016_j_aspen_2024_102233 crossref_primary_10_7717_peerj_cs_2443 crossref_primary_10_3390_pathogens11030317 crossref_primary_10_1136_bmjopen_2020_040735 crossref_primary_10_1371_journal_pntd_0007930 crossref_primary_10_3390_pathogens10050525 crossref_primary_10_3390_v17020158 crossref_primary_10_1038_s41598_024_71507_y crossref_primary_10_32712_2446_4775_2024_1619 crossref_primary_10_3390_microorganisms9081653 crossref_primary_10_1016_j_foodres_2019_05_011 crossref_primary_10_3390_tropicalmed6020104 crossref_primary_10_3390_pathogens10010078 crossref_primary_10_1186_s13071_020_04204_0 crossref_primary_10_3389_fmicb_2022_891151 crossref_primary_10_1371_journal_pcbi_1009102 crossref_primary_10_1186_s13071_024_06189_6 crossref_primary_10_1016_j_actatropica_2020_105472 crossref_primary_10_1038_s42003_024_05830_5 crossref_primary_10_3390_ani14142019 crossref_primary_10_1016_j_rsase_2021_100554 crossref_primary_10_1371_journal_pntd_0009548 crossref_primary_10_3389_fitd_2021_708817 crossref_primary_10_3390_ijerph16132399 crossref_primary_10_1371_journal_pntd_0007590 crossref_primary_10_3389_fmicb_2023_1208633 crossref_primary_10_3390_pathogens12050718 crossref_primary_10_1371_journal_pntd_0011616 crossref_primary_10_1093_infdis_jiab049 crossref_primary_10_1016_j_imu_2024_101446 crossref_primary_10_1038_s41467_023_44444_z crossref_primary_10_1089_vim_2019_0051 crossref_primary_10_1016_j_actatropica_2023_106893 crossref_primary_10_1016_j_jinsphys_2021_104232 crossref_primary_10_1038_s42003_021_02236_5 crossref_primary_10_1186_s12879_024_09878_w crossref_primary_10_3390_v16040525 crossref_primary_10_3390_pathogens13080691 crossref_primary_10_3390_pathogens10080938 crossref_primary_10_1016_j_jtherbio_2020_102637 crossref_primary_10_3390_pathogens13100909 crossref_primary_10_1038_s41598_024_64221_2 crossref_primary_10_1093_jtm_taae049 crossref_primary_10_1371_journal_pone_0273774 crossref_primary_10_3390_sym15040845 crossref_primary_10_46471_gigabyte_55 crossref_primary_10_12688_wellcomeopenres_18868_2 crossref_primary_10_1186_s13071_020_04497_1 crossref_primary_10_1111_mve_12484 crossref_primary_10_12688_wellcomeopenres_18868_1 crossref_primary_10_1016_j_actatropica_2018_12_013 crossref_primary_10_1016_j_jobb_2023_12_003 crossref_primary_10_1016_j_jtbi_2023_111654 crossref_primary_10_1093_jme_tjac148 crossref_primary_10_1016_j_envres_2021_111718 crossref_primary_10_1371_journal_pntd_0007346 crossref_primary_10_1016_j_jiph_2024_04_026 |
Cites_doi | 10.1186/s12864-017-3903-3 10.1093/jmedent/36.4.508 10.1590/S0074-02762002000300031 10.4269/ajtmh.1985.34.603 10.1371/journal.pntd.0005860 10.1186/s13071-015-0706-8 10.1186/s40168-018-0435-2 10.1016/j.meegid.2014.09.029 10.1186/s13071-014-0595-2 10.7717/peerj.4324 10.1603/ME11293 10.3390/v10030118 10.1128/JVI.00370-14 10.1111/mec.13866 10.1126/science.aak9691 10.1111/mve.12322 10.1586/14760584.2015.1083430 10.1371/journal.pntd.0001792 10.1073/pnas.1502036112 10.3389/fmicb.2015.00970 10.4269/ajtmh.12-0488 10.4269/ajtmh.1985.34.1219 10.4269/ajtmh.2011.11-0061 10.1371/journal.pone.0092971 10.1371/journal.ppat.1006391 10.1126/science.1184008 10.1099/vir.0.81475-0 10.1371/journal.pone.0190352 10.1590/0074-02760150363 10.1111/mec.12771 10.1016/S0035-9203(99)90056-1 10.4269/ajtmh.1998.58.578 10.1093/jmedent/30.3.524 10.1186/s12879-015-1231-2 10.1016/S0035-9203(03)00006-3 10.1371/journal.pntd.0006443 10.1371/journal.pone.0194108 10.1186/s13071-017-2319-x 10.1126/sciadv.1700585 10.1371/journal.pntd.0005101 10.1371/journal.ppat.1001320 10.1371/journal.pntd.0005654 10.1186/s12879-016-1666-0 10.1186/1471-2148-9-160 10.1016/0035-9203(56)90029-3 10.1016/j.jcv.2012.07.004 10.1371/journal.pntd.0002208 10.1371/journal.ppat.1002588 10.1016/j.coviro.2015.08.011 10.1371/journal.pntd.0001561 10.1371/journal.pntd.0005724 10.1371/journal.pntd.0003153 10.4269/ajtmh.1998.59.965 10.3201/eid2304.161484 10.1371/journal.pntd.0002295 10.1016/j.coviro.2016.09.008 10.3390/v4010062 10.1111/tmi.12846 10.1016/j.pt.2017.12.004 10.4269/ajtmh.2011.11-0359 10.1016/j.coviro.2011.07.004 10.1017/S0016672303006463 10.1371/journal.pntd.0006599 10.1111/mec.13877 10.1016/j.coviro.2015.08.007 10.1016/j.ijid.2014.03.413 10.1371/journal.pone.0005895 10.1016/j.cois.2017.05.010 10.1016/j.trstmh.2008.07.025 10.1111/jvec.12116 10.1016/j.actatropica.2012.07.006 10.1111/eva.12360 10.1016/j.pt.2017.11.011 10.1111/mve.12237 10.2807/1560-7917.ES.2016.21.35.30328 10.3390/v7092851 10.1038/s41598-017-05186-3 10.1007/s00436-013-3428-x 10.1016/S0035-9203(02)90326-3 10.1016/j.trstmh.2012.02.007 10.1073/pnas.1516410112 10.2807/1560-7917.ES.2017.22.2.30437 10.1016/j.cub.2017.09.067 10.1038/emi.2017.8 10.4269/ajtmh.13-0186 10.4269/ajtmh.17-0866 10.1016/j.cois.2014.07.004 10.3390/v7072795 10.4269/ajtmh.1985.34.1225 10.1016/j.actatropica.2013.08.006 10.1603/033.046.0228 10.1016/j.trstmh.2008.02.010 10.1371/journal.pntd.0006637 10.1371/journal.pntd.0003462 10.1016/j.dci.2016.11.022 10.2807/1560-7917.ES.2016.21.18.30223 10.3390/ijms18112384 10.1186/s12985-016-0566-7 10.1016/j.dci.2016.01.015 10.1093/jmedent/16.1.59 10.1371/journal.pntd.0004543 10.1128/JVI.00009-17 10.1016/j.virol.2015.05.009 10.1371/journal.ppat.1000098 10.1371/journal.pntd.0006524 10.1038/s41598-018-26680-2 10.1186/1756-3305-7-320 10.1603/0022-2585-38.2.130 10.1111/j.1365-2915.2007.00699.x 10.1186/s13071-017-2422-z 10.1016/j.chom.2016.04.021 10.4269/ajtmh.1976.25.336 10.1186/1471-2334-13-610 10.4269/ajtmh.16-0865 10.1371/journal.ppat.1004398 10.1371/journal.pntd.0000408 10.1371/journal.pntd.0004959 10.7774/cevr.2017.6.2.104 10.1089/vbz.2011.0660 10.1590/0074-02760180290 10.4269/ajtmh.2001.65.491 10.1186/s12866-015-0475-8 10.4269/ajtmh.2002.67.85 10.3201/eid2307.161633 10.1590/0074-02760170145 10.1089/vbz.2016.2040 10.1093/infdis/jix405 10.1603/0022-2585-40.6.950 10.1186/s13071-017-2101-0 10.2987/5645.1 10.1016/0035-9203(93)90271-Q 10.1089/vbz.2011.0937 10.1111/tmi.12373 10.1111/j.1365-3156.2010.02613.x |
ContentType | Journal Article |
Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.meegid.2018.11.009 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1567-7257 |
EndPage | 209 |
ExternalDocumentID | PMC8135908 30465912 10_1016_j_meegid_2018_11_009 S1567134818307159 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: U01 AI115595 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AAAJQ AABVA AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARKO AATLK AAXUO ABBQC ABFNM ABFRF ABGRD ABGSF ABLVK ABMAC ABMZM ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFPKN AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM LCYCR LUGTX M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPCBC SSA SSH SSI SSU SSZ T5K UHS UNMZH ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM EFKBS |
ID | FETCH-LOGICAL-c496t-a2a9f8e2e5382f7af213013e3851622e332a2bdb00e3311d0b0a92adf53818573 |
IEDL.DBID | .~1 |
ISSN | 1567-1348 1567-7257 |
IngestDate | Thu Aug 21 18:21:43 EDT 2025 Fri Jul 11 09:10:12 EDT 2025 Fri Jul 11 10:55:32 EDT 2025 Thu Apr 03 07:00:56 EDT 2025 Thu Apr 24 23:06:13 EDT 2025 Tue Jul 01 03:46:18 EDT 2025 Fri Feb 23 02:41:37 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-a2a9f8e2e5382f7af213013e3851622e332a2bdb00e3311d0b0a92adf53818573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1567134818307159 |
PMID | 30465912 |
PQID | 2137461840 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8135908 proquest_miscellaneous_2221051662 proquest_miscellaneous_2137461840 pubmed_primary_30465912 crossref_primary_10_1016_j_meegid_2018_11_009 crossref_citationtrail_10_1016_j_meegid_2018_11_009 elsevier_sciencedirect_doi_10_1016_j_meegid_2018_11_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Infection, genetics and evolution |
PublicationTitleAlternate | Infect Genet Evol |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ye, Ng, Frentiu, Walker, Van Den Hurk (bb0740) 2014; 90 Guedes, Paiva, Donato (bb0280) 2017 Wang, Chang, Wang, Zheng, Zou (bb0710) 2017 Xi, Ramirez, Dimopoulos (bb0735) 2008; 4 Rückert, Ebel (bb0580) 2018; 34 Beck, Barrett (bb0025) 2015; 14 Dubrulle, Mousson, Moutailler, Vazeille, Failloux (bb0190) 2009; 4 Franz, Kantor, Passarelli, Clem (bb0230) 2015; 7 Knox, Kay, Hall, Ryan (bb0345) 2003; 40 Vazeille, Gaborit, Mousson, Girod, Failloux (bb0685) 2016; 16 Coon, Brown, Strand (bb0130) 2016; 25 Chouin-Carneiro, Vega-Rua, Vazeille (bb0100) 2016; 10 Hall-Mendelin, Pyke, Moore (bb0300) 2016; 10 Fansiri, Pongsiri, Klungthong, Ponlawat, Thaisomboonsuk, Jarman (bb0215) 2016; 9 Gimonneau, Tchioffo, Abate, Boissière, Awono-Ambene, Nsango, Christen, Morlais (bb0245) 2014; 28 Lourenco-De-Oliveira, Vazeille, Bispo De Filippis, Failloux (bb0385) 2002; 97 Kauffman, Kramer (bb0330) 2017; 216 Dodson, Pujhari, Rasgon (bb0185) 2018; 6 Richard, Paoaafaite, Cao-Lormeau (bb0545) 2016; 10 Bosio, Beaty, Black (bb0050) 1998; 59 Dennison, Jupatanakul, Dimopoulos (bb0155) 2014; 3 Ngoagouni, Kamgang, Kazanji, Paupy, Nakouné (bb0455) 2017; 10 Calvez, Mousson, Vazeille, O'Connor, Cao-Lormeau, Mathieu-Daudé, Pocquet, Failloux, Dupont-Rouzeyrol (bb0065) 2018; 12 Van Den Hurk, McElroy, Pyke, McGee, Hall-Mendelin (bb0670) 2011; 85 Na, Yeom, Choi, Yook, Song (bb0440) 2017; 6 Boccolini, Toma, Luca, Severini, Romi, Remoli, Sabbatucci, Venturi, Rezza, Fortuna (bb2555) 2016; 21 Vasilakis, Tesh (bb0675) 2015; 15 Serrato, Caicedo, Orobio, Lowenberger, Ocampo (bb0610) 2017; 31 Rosen, Roseboom, Gubler, Lien, Chaniotis (bb0565) 1985; 34 Short, van Tol, MacLeod, Dimopoulos (bb0615) 2018; 8 Dutra, Rocha, Dias, Mansur, Caragata (bb0205) 2016; 19 Mitchell, Miller, Gubler (bb0425) 1987; 3 Kenney, Romo, Duggal (bb0340) 2017; 96 Nasar, Erasmus, Haddow, Tesh, Weaver (bb0450) 2015; 484 Gonçalves, Melo, Bezerra, Chaves, Silva, Silva (bb0270) 2014; 7 Guégan, Zouache, Démichel, Minard, Potier, Mavingui, Moro (bb0285) 2018; 6 Ryckebusch, Berthet, Missé, Choumet (bb0590) 2017; 18 Sim, Jupatanakul, Ramirez, Kang, Romero-Vivas (bb0620) 2013; 7 Tsetsarkin, Chen, Sherman, Weaver (bb0655) 2011; 1 Bancroft (bb0020) 1906; 25 Lourenço-De-Oliveira, Rua, Vezzani, Willat, Vazeille (bb0395) 2013; 13 Diallo, Ba, Faye, Soumare, Dia, Sall (bb0170) 2008; 102 da Moura, De Melo Santos, Oliveira, Guedes, De Carvalho-Leandro (bb0150) 2015; 8 Dickson, Jiolle, Minard, Moltini-Conclois, Volant, Ghozlane, Bouchier, Ayala, Paupy, Valiente Moro, Lambrechts (bb0180) 2017; 3 Weger-Lucarelli, Rückert, Chotiwan, Nguyen, Garcia Luna, Fauver, Foy, Perera, Black, Kading, Ebel (bb0725) 2016; 10 Lambrechts, Chevillon, Albright, Thaisomboonsuk, Richardson (bb0360) 2009; 9 Minard, Tran, Van, Goubert, Bellet, Lambert, Kim, Thuy, Mavingui, Valiente Moro (bb0420) 2015; 6 Bolling, Weaver, Tesh, Vasilakis (bb0035) 2015; 7 Li, Guo, Deng, Xing, Sun, Liu, Wu, Dong, Zhang, Zhang, Cao, Qin, Zhao (bb0375) 2017; 6 Poole-Smith, Hemme, Delorey, Felix, Gonzalez (bb0515) 2015; 9 Costa-Da-Silva, Ioshino, De Araújo, Kojin, De Andrade Zanotto (bb0140) 2017; 12 Ritchie, van den Hurk, Smout, Staunton, Hoffmann (bb0555) 2018; 34 Calvez, Guillaumot, Girault, Richard, O'Connor, Paoaafaite (bb0060) 2017; 10 Watson, Kay (bb0715) 1999; 36 Saraiva, Kang, Simões, Angleró-Rodríguez, Dimopoulos (bb0595) 2016; 64 Palmer, Varghese, van Rij (bb0475) 2018; 10 Charan, Pawar, Severson, Patole, Shouche (bb0080) 2013; 112 Coon, Vogel, Brown, Strand (bb0125) 2014; 23 Diagne, Diallo, Faye (bb0165) 2015; 15 Lourenco-De-Oliveira, Vazeille, de Filippis, Failloux (bb0390) 2004; 98 Tran, Vazeille-Falcoz, Mousson, Tran, Rodhain (bb0650) 1999; 93 Richards, Anderson, Alto (bb0550) 2012; 49 Göertz, Vogels, Geertsema, Koenraadt, Pijlman (bb0265) 2017; 11 Gould, Higgs (bb0275) 2009; 103 Palatini, Miesen, Carballar-Lejarazu, Ometto, Rizzo, Tu, van Rij, Bonizzoni (bb0470) 2017; 18 Marklewitz, Zirkel, Kurth, Drosten, Junglen (bb0405) 2015; 112 Vega-Rua, Zouache, Girod, Failloux, Lourenco-De-Oliveira (bb0690) 2014; 88 Boromisa, Rai, Grimstad (bb0045) 1987; 3 Cleton, Koopmans, Reimerink, Godeke, Reusken (bb0115) 2012; 55 Gaye, Faye, Diagne, Faye, Diallo, Weaver (bb0240) 2014; 19 Jupp, Kemp (bb0325) 1993; 87 Gloria-Soria, Armstrong, Powell, Turner (bb0260) 2017; 284 Pérez-Castro, Castellanos, Olano, Matiz, Jaramillo, Vargas, Sarmiento, Stenstrom, Overgaard (bb0490) 2016; 111 Richard, Paoaafaite, Cao-Lormeau (bb0540) 2016; 10 Whitfield, Dolan, Kunitomi, Tassetto, Seetin, Oh, Heiner, Paxinos, Andino (bb0730) 2017; 27 Bennett, Olson, Muno, Fernandez-Salas, Farfan (bb0030) 2002; 67 Li, Wong, Ng, Tan (bb0370) 2012; 6 Smith, Battle, Hay, Barker, Scott, McKenzie (bb0625) 2012; 8 Fish (bb0225) 2008; 2008 Cornet, Robin (bb0135) 1979; 17 Reed, Carroll (bb0535) 1901; 27 Ramirez, Souza-Neto, Torres Cosme, Rovira, Ortiz, Pascale, Dimopoulos (bb0525) 2012; 6 Turell, Lee, Richardson, Sang, Kioko, Agawo, Pecor, O'Guinn (bb0665) 2007; 23 Alto, Smartt, Shin, Bettinardi, Malicoate, Anderson (bb0010) 2014; 39 Tabachnick (bb0635) 2016; 21 Powell (bb0520) 2018; 98 Paupy, Chantha, Vazeille, Reynes, Rodhain (bb0485) 2003; 82 Buckner, Alto, Lounibus (bb0055) 2013; 31 Chen, Jiang, Gu, Xu, Wu, Deng, Zhang, Bonizzoni, Dermauw, Vontas, Armbruster, Huang, Yang, Zhang, He, Peng, Liu, Wu, Chen, Liraki, Topalis, Van Leeuwen, Hall, Jiang, Thorpe, Mueller, Sun, Waterhouse, Yan, Tu, Fang, James (bb0090) 2015; 112 Rodgers, Gendrin, Wyer, Christophides (bb0560) 2017; 13 Wiggins, Eastmond, Alto (bb3555) 2018; 32 Dupont-Rouzeyrol, Caro, Guillaumot, Vazeille, D'Ortenzio (bb0200) 2012; 12 Roundy, Azar, Rossi, Huang, Leal, Yun, Fernandez-Salas, Vitek, Paploski, Kitron, Ribeiro, Hanley, Weaver, Vasilakis (bb0575) 2017; 23 Ellis, Sang, Horne, Higgs, Wesso (bb0210) 2012; 106 Vazeille, Mousson, Rakatoarivony, Villeret, Rodhain (bb0680) 2001; 65 Hedge, Rasgon, Huges (bb0305) 2015; 15 Rückert, Weger-Lucarelli, Garcia-Luna, Young, Byas (bb0585) 2017; 8 Kumar, Molina-Cruz, Gupta, Rodrigues, Barillas-Mury (bb0355) 2010; 327 Muturi, Buckner, Bara (bb0435) 2017; 22 Garcia-Luna, Weger-Lucarelli, Rückert, Murrieta, Young, Byas, Fauver, Perera, Flores-Suarez, Ponce-Garcia, Rodriguez, Ebel, Black (bb0235) 2018; 12 Pham Thi, Briant, Gavotte, Labbe, Perriat-Sanguinet (bb0500) 2017; 10 Johnson, Chambers, Crabtree, Filippis, Vilarinhos (bb0320) 2002 Ramirez, Short, Bahia, Saraiva, Dong, Kang, Tripathi, Mlambo, Dimopoulos (bb0530) 2014; 10 Pesko, Westbrook, Mores, Lounibos, Reiskin (bb0495) 2009; 46 Long, Ziegler, Thangamani, Hausser, Kochel (bb0380) 2011; 85 Kay, Carley, Fanning, Fillipic (bb0335) 1979; 16 Di Luca, Severini, Toma (bb0160) 2016; 21 Hall, Bielefeldt-Ohmann, McLean, O'Brien, Colmant, Piyasena, Harrison, Newton, Barnard, Prow, Deerain, Mah, Hobson-Peters (bb0295) 2017; 12 Villegas, Campolina, Barnabe, Orfanó, Chaves, Norris (bb0695) 2018; 13 Carvalho-Leandro, Ayres, Guedes, Suesdek, Melo-Santos, Oliveira (bb0075) 2012; 124 Sylla, Bosio, Urdaneta-Marquez, Ndiaye, Black (bb0630) 2009; 3 Tabachnick, Wallis, Aitken, Miller, Amato (bb0640) 1985; 34 Chow, Chan, Yong, Lee, Lim, Chung, Lam-Phua, Tan (bb0105) 1998; 58 Girod, Gaborit, Marrama, Etienne, Ramdini (bb0250) 2011; 16 Boorman, Porterfield (bb0040) 1956; 50 Padilha, Resck, Cunha, Teles-de-Freitas, Campos, Sorgine, Lourenco-de-Oliveira, Farnesi L.C., Bruno (bb4555) 2018; 113 Guo, Zhu, Li, Dong, De Zhang, Xing (bb0290) 2013; 128 Gloria-Soria, A., Ayala, D., Bheecarry, A., Calderon-Arguedas, O., Chadee, D.D., Chiappero, M., Coetzee, M., Bin Elahee, K.B., Fernandez-Salas, I., Kamal, H.A., Kamgang, B., Khater, E. I., Kramer, L.D., Kramer, V., Lopez-Solis, A., Lutomiah, J., Martins, A. Jr., Micieli, M.V., Paupy, C., Ponlawat, A., Rahola, N., Rasheed, S. B., Richardson, J. B., Saleh, A. A., Sanchez-Casas, R.M., Seixas, G., Sousa, C. A., Tabachnick, W.J., Troyo, A., Powell, J.R., 2016. Global genetic diversity of Aedes aegypti. Mol. Ecol. 25:5377–5395. Agha, Chepkorir, Mulwa, Tigoi, Arum, Guarido (bb0005) 2017; 11 Thongrungkiat, Jirakanjanaki, Apiwathnasorn, Prummongkol, Samung (bb0645) 2003; 28 Cook, Bennett, Holmes, De Chesse, Moureau, de Lamballeri (bb0120) 2006; 87 Alto, Wiggins, Eastmond, Velez, Lounibos (bb0015) 2017; 11 Oliveira, Gonçalves, Lara, Dias, Gandara, Menna-Barreto, Edwards, Laurindo, Silva-Neto, Sorgine, Oliveira (bb0460) 2011; 7 Schneider, Mori, Romero-Severson, Chadee, Severson (bb0605) 2007; 21 Morrison, Diamond (bb0430) 2017; 91 Duguma, Hall, Rugman-Jones, Stouthamer, Terenius, Neufeld, Walton (bb0195) 2015; 15 Chepkorir, Lutomiah, Mutisya, Mulwa, Orindi (bb0095) 2014; 21 Couto-Lima, Madec, Bersot, Campos, Motta, Dos Santos (bb0145) 2017; 7 Zompi, Harris (bb0745) 2012; 4 Turell, Guinn, Dohm, Jones (bb0660) 2001; 38 Chen, Wei, Hsu, Chen (bb0085) 1993; 30 Saraiva, Fang, Kang, Angleró-Rodríguez, Dong, Dimopoulos (bb0600) 2018; 12 Heitmann, Jansen, Luhken (bb0310) 2017; 22 Mbaika, Lutomiah, Chepkorir, Mulwa, Khayeka-Wandabwa (bb0410) 2016; 13 Ciota, Bialosuknia, Zink (bb0110) 2017; 23 Fernandes, Campos, Ribeiro, Raphael, Bonaldo, Lourenço-De-Oliveira (bb0220) 2017; 112 Huber, Le Loan, Hoang, Tien, Rodhain, Failloux (bb0315) 2003; 34 Nasar, Haddow, Tesh, Weaver (bb0445) 2014; 7 Olson, Bonizzoni (bb0465) 2017; 22 Pike, Dong, Dizaji, Gacita, Mongodin, Dimopoulos (bb0505) 2017; 357 Main, Nicholson, Winokur, Steiner, Riemersma, Stuart, Takeshita, Krasnec, Barker, Coffey (bb0400) 2018; 12 Wang, Zhang, Zhang, Xing, Wu (bb0705) 2012; 12 Kramer, Scherer (bb0350) 1976; 25 Le Flohic, Porphyre, Barbazan, Gonzalez (bb0365) 2013; 7 Carrington, Seifert, Armijos, Lambrechts, Scott (bb0070) 2013; 88 Dickson, Sanchez-Vargas, Sylla, Fleming, Black (bb0175) 2014; 8 Pando-Robles, Batista (bb0480) 2017; 17 Pongsiri, Ponlawat, Thaisomboonsuk, Jarman, Scott (bb0510) 2014; 9 Wallis, Aitken, Beaty, Lorenz, Amato (bb0700) 1985; 34 Weaver (bb0720) 2006; 299 Medeiros, Costa, Branco, Sousa, Monteiro, Galvao, Azevedo, Fernandes, Araujo (bb0415) 2018; 13 Dennison (10.1016/j.meegid.2018.11.009_bb0155) 2014; 3 Fansiri (10.1016/j.meegid.2018.11.009_bb0215) 2016; 9 Marklewitz (10.1016/j.meegid.2018.11.009_bb0405) 2015; 112 Boromisa (10.1016/j.meegid.2018.11.009_bb0045) 1987; 3 Zompi (10.1016/j.meegid.2018.11.009_bb0745) 2012; 4 Richards (10.1016/j.meegid.2018.11.009_bb0550) 2012; 49 Lambrechts (10.1016/j.meegid.2018.11.009_bb0360) 2009; 9 Duguma (10.1016/j.meegid.2018.11.009_bb0195) 2015; 15 Tabachnick (10.1016/j.meegid.2018.11.009_bb0640) 1985; 34 Wiggins (10.1016/j.meegid.2018.11.009_bb3555) 2018; 32 Lourenco-De-Oliveira (10.1016/j.meegid.2018.11.009_bb0390) 2004; 98 Oliveira (10.1016/j.meegid.2018.11.009_bb0460) 2011; 7 Pando-Robles (10.1016/j.meegid.2018.11.009_bb0480) 2017; 17 Pérez-Castro (10.1016/j.meegid.2018.11.009_bb0490) 2016; 111 Guégan (10.1016/j.meegid.2018.11.009_bb0285) 2018; 6 Reed (10.1016/j.meegid.2018.11.009_bb0535) 1901; 27 Chen (10.1016/j.meegid.2018.11.009_bb0090) 2015; 112 Gonçalves (10.1016/j.meegid.2018.11.009_bb0270) 2014; 7 Jupp (10.1016/j.meegid.2018.11.009_bb0325) 1993; 87 Morrison (10.1016/j.meegid.2018.11.009_bb0430) 2017; 91 Van Den Hurk (10.1016/j.meegid.2018.11.009_bb0670) 2011; 85 Gloria-Soria (10.1016/j.meegid.2018.11.009_bb0260) 2017; 284 Bennett (10.1016/j.meegid.2018.11.009_bb0030) 2002; 67 Pongsiri (10.1016/j.meegid.2018.11.009_bb0510) 2014; 9 Turell (10.1016/j.meegid.2018.11.009_bb0660) 2001; 38 Whitfield (10.1016/j.meegid.2018.11.009_bb0730) 2017; 27 Hall-Mendelin (10.1016/j.meegid.2018.11.009_bb0300) 2016; 10 Li (10.1016/j.meegid.2018.11.009_bb0375) 2017; 6 Couto-Lima (10.1016/j.meegid.2018.11.009_bb0145) 2017; 7 Na (10.1016/j.meegid.2018.11.009_bb0440) 2017; 6 Diallo (10.1016/j.meegid.2018.11.009_bb0170) 2008; 102 Villegas (10.1016/j.meegid.2018.11.009_bb0695) 2018; 13 Gould (10.1016/j.meegid.2018.11.009_bb0275) 2009; 103 Ramirez (10.1016/j.meegid.2018.11.009_bb0530) 2014; 10 Ye (10.1016/j.meegid.2018.11.009_bb0740) 2014; 90 Chow (10.1016/j.meegid.2018.11.009_bb0105) 1998; 58 Chen (10.1016/j.meegid.2018.11.009_bb0085) 1993; 30 Vazeille (10.1016/j.meegid.2018.11.009_bb0680) 2001; 65 Boccolini (10.1016/j.meegid.2018.11.009_bb2555) 2016; 21 Buckner (10.1016/j.meegid.2018.11.009_bb0055) 2013; 31 Ciota (10.1016/j.meegid.2018.11.009_bb0110) 2017; 23 Kramer (10.1016/j.meegid.2018.11.009_bb0350) 1976; 25 Franz (10.1016/j.meegid.2018.11.009_bb0230) 2015; 7 Johnson (10.1016/j.meegid.2018.11.009_bb0320) 2002 Göertz (10.1016/j.meegid.2018.11.009_bb0265) 2017; 11 Palatini (10.1016/j.meegid.2018.11.009_bb0470) 2017; 18 Tsetsarkin (10.1016/j.meegid.2018.11.009_bb0655) 2011; 1 Paupy (10.1016/j.meegid.2018.11.009_bb0485) 2003; 82 Xi (10.1016/j.meegid.2018.11.009_bb0735) 2008; 4 Ritchie (10.1016/j.meegid.2018.11.009_bb0555) 2018; 34 Li (10.1016/j.meegid.2018.11.009_bb0370) 2012; 6 Cornet (10.1016/j.meegid.2018.11.009_bb0135) 1979; 17 Dodson (10.1016/j.meegid.2018.11.009_bb0185) 2018; 6 Charan (10.1016/j.meegid.2018.11.009_bb0080) 2013; 112 Weaver (10.1016/j.meegid.2018.11.009_bb0720) 2006; 299 Costa-Da-Silva (10.1016/j.meegid.2018.11.009_bb0140) 2017; 12 Powell (10.1016/j.meegid.2018.11.009_bb0520) 2018; 98 Lourenco-De-Oliveira (10.1016/j.meegid.2018.11.009_bb0385) 2002; 97 Padilha (10.1016/j.meegid.2018.11.009_bb4555) 2018; 113 Agha (10.1016/j.meegid.2018.11.009_bb0005) 2017; 11 Heitmann (10.1016/j.meegid.2018.11.009_bb0310) 2017; 22 Rodgers (10.1016/j.meegid.2018.11.009_bb0560) 2017; 13 Pesko (10.1016/j.meegid.2018.11.009_bb0495) 2009; 46 Richard (10.1016/j.meegid.2018.11.009_bb0540) 2016; 10 Cook (10.1016/j.meegid.2018.11.009_bb0120) 2006; 87 Poole-Smith (10.1016/j.meegid.2018.11.009_bb0515) 2015; 9 Short (10.1016/j.meegid.2018.11.009_bb0615) 2018; 8 Hedge (10.1016/j.meegid.2018.11.009_bb0305) 2015; 15 Thongrungkiat (10.1016/j.meegid.2018.11.009_bb0645) 2003; 28 Kenney (10.1016/j.meegid.2018.11.009_bb0340) 2017; 96 Rückert (10.1016/j.meegid.2018.11.009_bb0580) 2018; 34 Alto (10.1016/j.meegid.2018.11.009_bb0010) 2014; 39 Kauffman (10.1016/j.meegid.2018.11.009_bb0330) 2017; 216 Serrato (10.1016/j.meegid.2018.11.009_bb0610) 2017; 31 Schneider (10.1016/j.meegid.2018.11.009_bb0605) 2007; 21 Minard (10.1016/j.meegid.2018.11.009_bb0420) 2015; 6 Muturi (10.1016/j.meegid.2018.11.009_bb0435) 2017; 22 Ryckebusch (10.1016/j.meegid.2018.11.009_bb0590) 2017; 18 Weger-Lucarelli (10.1016/j.meegid.2018.11.009_bb0725) 2016; 10 Dubrulle (10.1016/j.meegid.2018.11.009_bb0190) 2009; 4 Dickson (10.1016/j.meegid.2018.11.009_bb0180) 2017; 3 Bancroft (10.1016/j.meegid.2018.11.009_bb0020) 1906; 25 Girod (10.1016/j.meegid.2018.11.009_bb0250) 2011; 16 da Moura (10.1016/j.meegid.2018.11.009_bb0150) 2015; 8 Calvez (10.1016/j.meegid.2018.11.009_bb0060) 2017; 10 Sylla (10.1016/j.meegid.2018.11.009_bb0630) 2009; 3 Lourenço-De-Oliveira (10.1016/j.meegid.2018.11.009_bb0395) 2013; 13 Guo (10.1016/j.meegid.2018.11.009_bb0290) 2013; 128 Alto (10.1016/j.meegid.2018.11.009_bb0015) 2017; 11 Hall (10.1016/j.meegid.2018.11.009_bb0295) 2017; 12 Saraiva (10.1016/j.meegid.2018.11.009_bb0595) 2016; 64 Wallis (10.1016/j.meegid.2018.11.009_bb0700) 1985; 34 Fish (10.1016/j.meegid.2018.11.009_bb0225) 2008; 2008 Kay (10.1016/j.meegid.2018.11.009_bb0335) 1979; 16 Olson (10.1016/j.meegid.2018.11.009_bb0465) 2017; 22 Nasar (10.1016/j.meegid.2018.11.009_bb0445) 2014; 7 Carrington (10.1016/j.meegid.2018.11.009_bb0070) 2013; 88 Chepkorir (10.1016/j.meegid.2018.11.009_bb0095) 2014; 21 Fernandes (10.1016/j.meegid.2018.11.009_bb0220) 2017; 112 Mbaika (10.1016/j.meegid.2018.11.009_bb0410) 2016; 13 Palmer (10.1016/j.meegid.2018.11.009_bb0475) 2018; 10 Richard (10.1016/j.meegid.2018.11.009_bb0545) 2016; 10 Vazeille (10.1016/j.meegid.2018.11.009_bb0685) 2016; 16 Coon (10.1016/j.meegid.2018.11.009_bb0130) 2016; 25 Diagne (10.1016/j.meegid.2018.11.009_bb0165) 2015; 15 Gimonneau (10.1016/j.meegid.2018.11.009_bb0245) 2014; 28 Dutra (10.1016/j.meegid.2018.11.009_bb0205) 2016; 19 Gaye (10.1016/j.meegid.2018.11.009_bb0240) 2014; 19 Coon (10.1016/j.meegid.2018.11.009_bb0125) 2014; 23 Sim (10.1016/j.meegid.2018.11.009_bb0620) 2013; 7 Pham Thi (10.1016/j.meegid.2018.11.009_bb0500) 2017; 10 Bolling (10.1016/j.meegid.2018.11.009_bb0035) 2015; 7 Calvez (10.1016/j.meegid.2018.11.009_bb0065) 2018; 12 Tabachnick (10.1016/j.meegid.2018.11.009_bb0635) 2016; 21 Wang (10.1016/j.meegid.2018.11.009_bb0705) 2012; 12 Guedes (10.1016/j.meegid.2018.11.009_bb0280) 2017 Dickson (10.1016/j.meegid.2018.11.009_bb0175) 2014; 8 Rückert (10.1016/j.meegid.2018.11.009_bb0585) 2017; 8 Saraiva (10.1016/j.meegid.2018.11.009_bb0600) 2018; 12 Main (10.1016/j.meegid.2018.11.009_bb0400) 2018; 12 Rosen (10.1016/j.meegid.2018.11.009_bb0565) 1985; 34 Cleton (10.1016/j.meegid.2018.11.009_bb0115) 2012; 55 Le Flohic (10.1016/j.meegid.2018.11.009_bb0365) 2013; 7 Chouin-Carneiro (10.1016/j.meegid.2018.11.009_bb0100) 2016; 10 Medeiros (10.1016/j.meegid.2018.11.009_bb0415) 2018; 13 10.1016/j.meegid.2018.11.009_bb0255 Wang (10.1016/j.meegid.2018.11.009_bb0710) 2017 Nasar (10.1016/j.meegid.2018.11.009_bb0450) 2015; 484 Ellis (10.1016/j.meegid.2018.11.009_bb0210) 2012; 106 Garcia-Luna (10.1016/j.meegid.2018.11.009_bb0235) 2018; 12 Pike (10.1016/j.meegid.2018.11.009_bb0505) 2017; 357 Carvalho-Leandro (10.1016/j.meegid.2018.11.009_bb0075) 2012; 124 Di Luca (10.1016/j.meegid.2018.11.009_bb0160) 2016; 21 Turell (10.1016/j.meegid.2018.11.009_bb0665) 2007; 23 Ramirez (10.1016/j.meegid.2018.11.009_bb0525) 2012; 6 Knox (10.1016/j.meegid.2018.11.009_bb0345) 2003; 40 Tran (10.1016/j.meegid.2018.11.009_bb0650) 1999; 93 Ngoagouni (10.1016/j.meegid.2018.11.009_bb0455) 2017; 10 Bosio (10.1016/j.meegid.2018.11.009_bb0050) 1998; 59 Vasilakis (10.1016/j.meegid.2018.11.009_bb0675) 2015; 15 Smith (10.1016/j.meegid.2018.11.009_bb0625) 2012; 8 Boorman (10.1016/j.meegid.2018.11.009_bb0040) 1956; 50 Beck (10.1016/j.meegid.2018.11.009_bb0025) 2015; 14 Mitchell (10.1016/j.meegid.2018.11.009_bb0425) 1987; 3 Kumar (10.1016/j.meegid.2018.11.009_bb0355) 2010; 327 Roundy (10.1016/j.meegid.2018.11.009_bb0575) 2017; 23 Watson (10.1016/j.meegid.2018.11.009_bb0715) 1999; 36 Huber (10.1016/j.meegid.2018.11.009_bb0315) 2003; 34 Dupont-Rouzeyrol (10.1016/j.meegid.2018.11.009_bb0200) 2012; 12 Vega-Rua (10.1016/j.meegid.2018.11.009_bb0690) 2014; 88 Long (10.1016/j.meegid.2018.11.009_bb0380) 2011; 85 |
References_xml | – volume: 22 start-page: 399 year: 2017 end-page: 406 ident: bb0435 article-title: Superinfection interference between dengue-2 and dengue-4 viruses in publication-title: Tropical Med. Int. Health – volume: 103 start-page: 109 year: 2009 end-page: 121 ident: bb0275 article-title: Impact of climate change and other factors on emerging arbovirus diseases publication-title: Trans. R. Soc. Trop. Med. Hyg. – volume: 7 year: 2011 ident: bb0460 article-title: Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota publication-title: PLoS Pathog. – volume: 15 start-page: 492 year: 2015 ident: bb0165 article-title: Potential of selected Senegalese publication-title: BMC Infect. Dis. – volume: 59 start-page: 965 year: 1998 end-page: 970 ident: bb0050 article-title: Quantitative genetics of vector competence for dengue-2 virus in publication-title: Am. J. Trop. Med. Hyg. – volume: 30 start-page: 524 year: 1993 end-page: 530 ident: bb0085 article-title: Vector competence of publication-title: J. Med. Entomol. – volume: 8 start-page: 1 year: 2015 end-page: 9 ident: bb0150 article-title: Vector competence of the publication-title: Parasit. Vectors – volume: 21 start-page: 30328 year: 2016 ident: bb2555 publication-title: Euro. Surveill. – start-page: 69 year: 2017 ident: bb0280 article-title: Zika virus replication in the mosquito publication-title: Emerg Microbes Infect – volume: 31 start-page: 312 year: 2017 end-page: 319 ident: bb0610 article-title: Vector competence and innate immune responses to dengue virus infection in selected laboratory and field-collected Stegomyia aegypti (= publication-title: Med. Vet. Entomol. – volume: 10 year: 2016 ident: bb0725 article-title: Vector Competence of American Mosquitoes for three Strains of Zika Virus publication-title: PLoS Negl. Trop. Dis. – volume: 4 start-page: 62 year: 2012 end-page: 82 ident: bb0745 article-title: Animal models of dengue virus infection publication-title: Viruses – volume: 21 year: 2016 ident: bb0160 article-title: Experimental studies of susceptibility of Italian publication-title: Euro Surveill. – volume: 12 start-page: 1036 year: 2012 end-page: 1041 ident: bb0200 article-title: Chikungunya Virus and the Mosquito Vector publication-title: Vector-Borne Zoon Dis – volume: 102 start-page: 493 year: 2008 end-page: 498 ident: bb0170 article-title: Vector competence of publication-title: Trans of Royal Soc Trop Med Hyg – volume: 11 year: 2017 ident: bb0015 article-title: Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic publication-title: PLoS Neg. Trop. Dis. – volume: 58 start-page: 578 year: 1998 end-page: 586 ident: bb0105 article-title: Monitoring of dengue viruses in field-caught publication-title: Am J Trop Med Hyg – volume: 49 start-page: 942 year: 2012 end-page: 946 ident: bb0550 article-title: Vector competence of publication-title: J. Med. Entomol. – volume: 17 start-page: 361 year: 2017 end-page: 375 ident: bb0480 article-title: -borne virus-mosquito interactions: mass spectrometry strategies and findings publication-title: Vector-borne Zoon Dis – volume: 9 start-page: 1 year: 2015 end-page: 11 ident: bb0515 article-title: Comparison of Vector Competence of publication-title: PLoS Negl. Trop. Dis. – volume: 38 start-page: 130 year: 2001 end-page: 134 ident: bb0660 article-title: Vector Competence of north American Mosquitoes (Diptera : Culicidae) for West Nile Virus publication-title: J. Med. Entomol. – volume: 10 start-page: 118 year: 2018 ident: bb0475 article-title: Natural variation in resistance to virus infection in Dipteran insects publication-title: Viruses – volume: 13 start-page: e0190352 year: 2018 end-page: e0190366 ident: bb0695 article-title: Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis publication-title: PLoS One – volume: 39 start-page: 406 year: 2014 end-page: 413 ident: bb0010 article-title: Susceptibility of Florida publication-title: J. Vec. Ecol. – volume: 284 year: 2017 ident: bb0260 article-title: Infection rate of publication-title: Proc. Biol. Sci. – volume: 12 start-page: 605 year: 2012 end-page: 608 ident: bb0705 article-title: Vector Competence of five Common Mosquito Species in the People's Republic of China for Western Equine Encephalitis Virus publication-title: Vector-Borne Zoonotic Dis – volume: 11 start-page: 1 year: 2017 end-page: 22 ident: bb0265 article-title: Mosquito co-infection with Zika and chikungunya virus allows simultaneous transmission without affecting vector competence of publication-title: PLoS Negl Trop Dis – volume: 12 year: 2018 ident: bb0600 article-title: Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein publication-title: PLoS Negl. Trop. Dis. – volume: 112 start-page: E5907 year: 2015 end-page: E5915 ident: bb0090 article-title: Genome sequence of the Asian Tiger mosquito, publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 112 start-page: 2627 year: 2013 end-page: 2637 ident: bb0080 article-title: Comparative analysis of midgut bacterial communities of publication-title: Parasitol. Res. – volume: 91 start-page: e00009 year: 2017 end-page: e00017 ident: bb0430 article-title: Animal models of Zika virus infection pathogenesis and immunity publication-title: J Virol – volume: 67 start-page: 84 year: 2002 end-page: 92 ident: bb0030 article-title: Variation in vector competence for dengue-2 virus among 24 collections of publication-title: Am. J. Trop. Med. Hyg. – volume: 97 start-page: 437 year: 2002 end-page: 439 ident: bb0385 article-title: Oral susceptibility to yellow fever virus of publication-title: Mem. Inst. Oswaldo Cruz – volume: 93 start-page: 581 year: 1999 end-page: 586 ident: bb0650 article-title: in Ho Chi Minh City (Viet Nam): susceptibility to dengue 2 virus and genetic differentiation publication-title: Trans Royal Soc Trop Med Hyg. – volume: 8 start-page: 8358 year: 2018 ident: bb0615 article-title: Hydrogen cyanide produced by the soil bacterium Chromobacterium sp. Panama contributes to mortality in publication-title: Sci. Rep. – volume: 23 start-page: 1110 year: 2017 end-page: 1117 ident: bb0110 article-title: Effects of Zika virus strain and publication-title: Emerg. Infect. Dis. – volume: 9 start-page: 160 year: 2009 ident: bb0360 article-title: Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors publication-title: BMC Evol. Biol. – volume: 484 start-page: 51 year: 2015 end-page: 58 ident: bb0450 article-title: Eilat virus induces both homologous and heterologous interference publication-title: Virology – volume: 98 start-page: 43 year: 2004 end-page: 44 ident: bb0390 article-title: in Brazil: genetically differentiated populations with highsusceptibility to dengue and yellow fever viruses publication-title: Trans Royal Soc Trop Med Hyg. – volume: 27 start-page: 113 year: 1901 end-page: 129 ident: bb0535 article-title: The prevention of yellow fever publication-title: Public Health Pap Rep – volume: 10 year: 2016 ident: bb0300 article-title: Assessment of local mosquito species incriminates publication-title: PLoS Negl. Trop. Dis. – volume: 18 start-page: 2384 year: 2017 ident: bb0590 article-title: Infection of a French Population of publication-title: J Mol Sci – volume: 3 start-page: 460 year: 1987 end-page: 465 ident: bb0425 article-title: Vector competence of publication-title: J Am Mosquito Cont Ass – volume: 216 start-page: 976 year: 2017 end-page: 990 ident: bb0330 article-title: Zika Virus Mosquito Vectors: Competence, Biology, and Vector Control publication-title: J. Infect. Dis. – volume: 34 start-page: 310 year: 2018 end-page: 321 ident: bb0580 article-title: How do Virus-Mosquito Interactions Lead to Viral Emergence? publication-title: Trends Parasitol. – volume: 4 year: 2008 ident: bb0735 article-title: The publication-title: PLoS Pathog. – volume: 14 start-page: 1479 year: 2015 end-page: 1492 ident: bb0025 article-title: Current status and future prospects of yellow fever vaccines publication-title: Expert Rev. Vaccines – volume: 7 start-page: 1 year: 2017 end-page: 12 ident: bb0145 article-title: Potential risk of re-emergence of urban transmission of Yellow fever virus in Brazil facilitated by competent publication-title: Sci. Rep. – volume: 82 start-page: 171 year: 2003 end-page: 182 ident: bb0485 article-title: Variation over space and time of publication-title: Gen Res – volume: 6 year: 2012 ident: bb0525 article-title: Reciprocal tripartite interactions between the publication-title: PLoS Negl. Trop. Dis. – volume: 87 start-page: 639 year: 1993 end-page: 643 ident: bb0325 article-title: The potential for dengue in South Africa: Vector competence tests with dengue 1 and 2 viruses and 6 mosquito species publication-title: Trans Royal Soc Trop Med Hyg – volume: 13 year: 2018 ident: bb0415 article-title: Dengue virus in publication-title: PLoS One – volume: 10 year: 2016 ident: bb0540 article-title: Vector Competence of French Polynesian publication-title: PLoS Negl. Trop. Dis. – volume: 1 start-page: 310 year: 2011 end-page: 317 ident: bb0655 article-title: Chikungunya virus: evolution and genetic determinants of emergence publication-title: Curr Opin Virol – volume: 65 start-page: 491 year: 2001 end-page: 497 ident: bb0680 article-title: Population genetic structure and competence as a vector for dengue type 2 virus of publication-title: Am J Trop Med Hyg – volume: 12 year: 2018 ident: bb0065 article-title: Zika virus outbreak in the Pacific: Vector competence of regional vectors publication-title: PLoS Negl. Trop. Dis. – volume: 10 year: 2016 ident: bb0100 article-title: Differential susceptibilities of publication-title: PLoS Negl. Trop. Dis. – volume: 34 start-page: 603 year: 1985 end-page: 615 ident: bb0565 article-title: Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses publication-title: Am. J. Trop. Med. Hyg. – volume: 34 start-page: 1219 year: 1985 end-page: 1224 ident: bb0640 article-title: Oral infection of publication-title: Am J Trop Med Hyg – volume: 113 start-page: e180290 year: 2018 ident: bb4555 article-title: Zika infection decreases Aedes aegypti locomotor activity but does not influence egg production or viability publication-title: Mem. Inst. Oswaldo Cruz. – volume: 25 start-page: 5806 year: 2016 end-page: 5826 ident: bb0130 article-title: Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats publication-title: Mol. Ecol. – volume: 34 start-page: 1225 year: 1985 end-page: 1231 ident: bb0700 article-title: Selection for susceptibility and refractoriness of publication-title: Am J Trop Med Hyg – volume: 88 start-page: 689 year: 2013 end-page: 697 ident: bb0070 article-title: Reduction of publication-title: Am J Trop Med Hyg – volume: 36 start-page: 508 year: 1999 end-page: 514 ident: bb0715 article-title: Vector competence of publication-title: J. Med. Entomol. – volume: 15 start-page: 140 year: 2015 ident: bb0195 article-title: Developmental succession of the microbiome of Culex mosquitoes publication-title: BMC Microbiol. – volume: 96 start-page: 1235 year: 2017 end-page: 1240 ident: bb0340 article-title: Transmission incompetence of publication-title: Am J Trop Med Hyg. – volume: 6 year: 2018 ident: bb0185 article-title: Vector competence of selected north American publication-title: PeerJ – volume: 10 year: 2014 ident: bb0530 article-title: Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities publication-title: PLoS Pathog. – volume: 3 start-page: 6 year: 2014 end-page: 13 ident: bb0155 article-title: The mosquito microbiota influences vector competence for human pathogens publication-title: Curr Opin Insect Sci – volume: 23 start-page: 625 year: 2017 end-page: 632 ident: bb0575 article-title: Variation in publication-title: Emerg. Infect. Dis. – volume: 50 start-page: 238 year: 1956 end-page: 242 ident: bb0040 article-title: A simple technique for infection of mosquitoes with viruses; transmission of Zika virus publication-title: Trans. R. Soc. Trop. Med. Hyg. – volume: 10 start-page: 381 year: 2017 ident: bb0060 article-title: Dengue-1 virus and vector competence of publication-title: Parasit. Vectors – volume: 55 start-page: 191 year: 2012 end-page: 203 ident: bb0115 article-title: Come fly with me: review of clinically important arboviruses for global travelers publication-title: J. Clin. Virol. – volume: 22 start-page: 45 year: 2017 end-page: 53 ident: bb0465 article-title: Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or something more? publication-title: Curr Opin Insect Sci. – volume: 11 year: 2017 ident: bb0005 article-title: Vector competence of populations of publication-title: PLoS Negl. Trop. Dis. – start-page: 1 year: 2017 end-page: 10 ident: bb0710 article-title: The immune strategies of mosquito publication-title: Dev. Comp. Immunol. – volume: 7 start-page: 3741 year: 2015 end-page: 3767 ident: bb0230 article-title: Tissues barriers to arbovirus infection in mosquitoes publication-title: Viruses – volume: 8 year: 2012 ident: bb0625 article-title: Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens publication-title: PLoS Pathog. – volume: 12 year: 2018 ident: bb0235 article-title: Variation in competence for ZIKV transmission by publication-title: PLoS Negl. Trop. Dis. – volume: 16 start-page: 134 year: 2011 end-page: 139 ident: bb0250 article-title: Viewpoint: High susceptibility to Chikungunya virus of publication-title: Tropical Med. Int. Health – volume: 112 start-page: 7536 year: 2015 end-page: 7541 ident: bb0405 article-title: Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 year: 2018 ident: bb0400 article-title: Vector competence of publication-title: PLoS Negl. Trop. Dis. – volume: 9 start-page: 608 year: 2016 end-page: 618 ident: bb0215 article-title: No evidence for local adaptation of dengue viruses to mosquito vector populations in Thailand publication-title: Evol. Appl. – reference: Gloria-Soria, A., Ayala, D., Bheecarry, A., Calderon-Arguedas, O., Chadee, D.D., Chiappero, M., Coetzee, M., Bin Elahee, K.B., Fernandez-Salas, I., Kamal, H.A., Kamgang, B., Khater, E. I., Kramer, L.D., Kramer, V., Lopez-Solis, A., Lutomiah, J., Martins, A. Jr., Micieli, M.V., Paupy, C., Ponlawat, A., Rahola, N., Rasheed, S. B., Richardson, J. B., Saleh, A. A., Sanchez-Casas, R.M., Seixas, G., Sousa, C. A., Tabachnick, W.J., Troyo, A., Powell, J.R., 2016. Global genetic diversity of Aedes aegypti. Mol. Ecol. 25:5377–5395. – volume: 98 start-page: 1563 year: 2018 end-page: 1565 ident: bb0520 article-title: Mosquito-Borne Human Viral Diseases: why publication-title: Am J Trop Med Hyg. – volume: 8 year: 2014 ident: bb0175 article-title: Vector Competence in West African publication-title: PLoS Negl. Trop. Dis. – volume: 18 start-page: 512 year: 2017 ident: bb0470 article-title: Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors publication-title: BMC Genomics – volume: 7 year: 2013 ident: bb0620 article-title: Transcriptomic Profiling of Diverse publication-title: PLoS Negl. Trop. Dis. – volume: 25 start-page: 17 year: 1906 end-page: 18 ident: bb0020 article-title: On the aetiology of dengue fever publication-title: Aust. Med. Gaz. – volume: 7 start-page: 1 year: 2014 end-page: 8 ident: bb0270 article-title: Distinct variation in vector competence among nine field populations of publication-title: Parasit. Vectors – volume: 25 start-page: 336 year: 1976 end-page: 346 ident: bb0350 article-title: Vector competence of mosquitoes as a marker to distinguish central American and Mexican epizootic from enzootic strains of Venezuelan enceph publication-title: Am J Trop Med Hyg. – volume: 106 start-page: 387 year: 2012 end-page: 389 ident: bb0210 article-title: Yellow fever virus susceptibility of two mosquito vectors from Kenya, East Africa publication-title: Trans Royal Soc Trop Med Hyg – volume: 28 start-page: 715 year: 2014 end-page: 724 ident: bb0245 article-title: Composition of publication-title: Infect. Genet. Evol. – volume: 16 start-page: 59 year: 1979 end-page: 60 ident: bb0335 article-title: Quantitative studies of the vector competence of publication-title: J. Med. Entomol. – volume: 357 start-page: 1396 year: 2017 end-page: 1399 ident: bb0505 article-title: Changes in the microbiota cause genetically modified Anopheles to spread in a population publication-title: Science – volume: 6 start-page: 49 year: 2018 ident: bb0285 article-title: The mosquito holobiont: fresh insight into mosquito-microbiota interactions publication-title: Microbiome – volume: 6 year: 2012 ident: bb0370 article-title: Oral susceptibility of Singapore publication-title: PLoS Negl. Trop. Dis. – volume: 90 start-page: 422 year: 2014 end-page: 430 ident: bb0740 article-title: Comparative susceptibility of mosquito populations in North Queensland, Australia to oral infection with dengue virus publication-title: Am J Trop Med Hyg. – volume: 10 start-page: 556 year: 2017 ident: bb0500 article-title: Incidence of dengue and chikungunya viruses in mosquitoes and human patients in border provinces of Vientnam publication-title: Parasit. Vectors – volume: 34 start-page: 217 year: 2018 end-page: 226 ident: bb0555 article-title: Mission Accomplished? We need a Guide to the 'Post Release' World of Wolbachia for publication-title: Trends Parasitol. – volume: 327 start-page: 1644 year: 2010 end-page: 1648 ident: bb0355 article-title: A peroxidase/dual oxidase system modulates midgut epithelial immunity in publication-title: Science – start-page: 611 year: 2002 end-page: 613 ident: bb0320 article-title: Vector competence of Brazilian yellow fever virus isolate publication-title: Trans Royal Soc Trop Med Hyg – volume: 46 start-page: 395 year: 2009 end-page: 399 ident: bb0495 article-title: Effects of Infectious Virus Dose and Bloodmeal delivery Method on Susceptibility of publication-title: J. Med. Entomol. – volume: 10 year: 2016 ident: bb0545 article-title: Vector Competence of publication-title: PLoS Negl. Trop. Dis. – volume: 21 start-page: 124 year: 2016 end-page: 131 ident: bb0635 article-title: Ecological effects on arbovirus-mosquito cycles of transmission publication-title: Curr Opin Virol. – volume: 124 start-page: 113 year: 2012 end-page: 119 ident: bb0075 article-title: Immune transcript variations among publication-title: Acta Trop. – volume: 4 year: 2009 ident: bb0190 article-title: Chikungunya Virus and publication-title: PLoS One – volume: 85 start-page: 750 year: 2011 end-page: 757 ident: bb0380 article-title: Experimental transmission of Mayaro virus by publication-title: Am J Trop Med Hyg. – volume: 128 start-page: 566 year: 2013 end-page: 570 ident: bb0290 article-title: Vector competence of publication-title: Acta Trop. – volume: 21 start-page: 3 year: 2014 end-page: 4 ident: bb0095 article-title: The vector competence of publication-title: Inter J Infect Dis – volume: 32 start-page: 436 year: 2018 end-page: 442 ident: bb3555 article-title: Transmission potential of Mayaro virus in Florida Aedes aegypti and Aedes albopictus mosquitoes publication-title: Med. Vet. Entomol. – volume: 12 start-page: 1 year: 2017 end-page: 13 ident: bb0140 article-title: Laboratory strains of publication-title: PLoS One – volume: 19 start-page: 1355 year: 2014 end-page: 1359 ident: bb0240 article-title: Oral susceptibility of publication-title: Tropical Med. Int. Health – volume: 7 start-page: 4911 year: 2015 end-page: 4928 ident: bb0035 article-title: Insect-specific Virus Discovery: significance for the Arbovirus Community publication-title: Viruses – volume: 6 start-page: e2836 year: 2015 end-page: e2845 ident: bb0420 article-title: French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives publication-title: Front. Microbiol. – volume: 3 start-page: e408 year: 2009 ident: bb0630 article-title: Gene flow, subspecies composition, and dengue virus-2 susceptibility among publication-title: PLoS Negl. Trop. Dis. – volume: 3 start-page: 378 year: 1987 end-page: 386 ident: bb0045 article-title: Variation in the vector competence of geographic strains of the publication-title: J. Am. Mos. Cont. Ass. – volume: 10 start-page: 164 year: 2017 ident: bb0455 article-title: Potential of publication-title: Parasit. Vectors – volume: 13 start-page: e1006391 year: 2017 end-page: e1006392 ident: bb0560 article-title: Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes publication-title: PLoS Pathog. – volume: 31 start-page: 1713 year: 2013 end-page: 1723 ident: bb0055 article-title: Vertical Transmission of Key West Dengue-1 Virus by publication-title: J. Med. Entomol. – volume: 17 start-page: 47 year: 1979 end-page: 53 ident: bb0135 article-title: Transmission experimentale comparee du virus Zika chez publication-title: Ent Med Parasitol – volume: 2008 start-page: 65 year: 2008 end-page: 69 ident: bb0225 article-title: Why we do not understand the ecological connections between the environment and human health: the case for vector-borne disease publication-title: Vector Borne Dis – volume: 111 start-page: 233 year: 2016 end-page: 240 ident: bb0490 article-title: Detection of all four dengue serotypes in publication-title: Mem. Inst. Oswaldo Cruz – volume: 23 start-page: 378 year: 2007 end-page: 382 ident: bb0665 article-title: Vector competence of Kenyan publication-title: J. Am. Mosq. Control Assoc. – volume: 15 start-page: 97 year: 2015 end-page: 102 ident: bb0305 article-title: The microbiome modulates arbovirus transmission in mosquitoes publication-title: Curr Opin Virol – volume: 13 start-page: 1 year: 2013 end-page: 8 ident: bb0395 article-title: from temperate regions of South America are highly competent to transmit dengue virus publication-title: BMC Infect. Dis. – volume: 27 start-page: 3511 year: 2017 end-page: 3519 ident: bb0730 article-title: The diversity, structure, and function of heritable adaptive immunity sequences in the Aedes aegypti genome publication-title: Curr Biol – volume: 34 start-page: 81 year: 2003 end-page: 86 ident: bb0315 article-title: in South Vietnam: Ecology, genetic structure, vectorial competence and resistance to insecticides publication-title: Southeast Asian J Trop Med Public Health – volume: 9 start-page: 3 year: 2014 end-page: 8 ident: bb0510 article-title: Differential susceptibility of two field publication-title: PLoS One – volume: 7 start-page: 595 year: 2014 ident: bb0445 article-title: Eilat virus displays a narrow mosquito vector range publication-title: Parasit. Vectors – volume: 15 start-page: 69 year: 2015 end-page: 74 ident: bb0675 article-title: Insect-specific viruses and their potential impact on arbovirus transmission publication-title: Curr Opin Virol – volume: 7 year: 2013 ident: bb0365 article-title: Review of climate, landscape, and viral genetics as drivers of the Japanese encephalitis virus, ecology publication-title: PLoS Negl. Trop. Dis. – volume: 87 start-page: 735 year: 2006 end-page: 748 ident: bb0120 article-title: Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico publication-title: J Gen Virol – volume: 40 start-page: 950 year: 2003 end-page: 956 ident: bb0345 article-title: Enhanced vector competence of publication-title: J. Med. Entomol. – volume: 6 start-page: 104 year: 2017 end-page: 110 ident: bb0440 article-title: Animal models for dengue vaccine development and testing publication-title: Clin Exp Vaccine Res – volume: 28 start-page: 166 year: 2003 end-page: 170 ident: bb0645 article-title: Comparative susceptibility to oral infection with dengue viruses among local strains of publication-title: J Vector Ecol – volume: 19 start-page: 771 year: 2016 end-page: 774 ident: bb0205 article-title: Wolbachia blocks currently circulating Zika virus isolates in Brazilian publication-title: Cell Host Microbe – volume: 112 start-page: 577 year: 2017 end-page: 579 ident: bb0220 article-title: from areas with the highest incidence of microcephaly associated with Zika virus infections in the Northeast Region of Brazil are refractory to the virus publication-title: Mem. Inst. Oswaldo Cruz – volume: 88 start-page: 6294 year: 2014 end-page: 6306 ident: bb0690 article-title: High Level of Vector Competence of publication-title: J. Virol. – volume: 8 start-page: 1 year: 2017 end-page: 9 ident: bb0585 article-title: Impact of simultaneous exposure to arboviruses on infection and transmission by publication-title: Nature Com – volume: 23 start-page: 2727 year: 2014 end-page: 2739 ident: bb0125 article-title: Mosquitoes rely on their gut microbiota for development publication-title: Mol. Ecol. – volume: 13 start-page: 1 year: 2016 end-page: 9 ident: bb0410 article-title: Vector competence of publication-title: Virol. J. – volume: 21 start-page: 370 year: 2007 end-page: 376 ident: bb0605 article-title: Investigations of dengue-2 susceptibility and body size among publication-title: Med. Vet. Entomol. – volume: 6 start-page: e23 year: 2017 ident: bb0375 article-title: Vector competence and transovarial transmission of two publication-title: Emerg Microbes Infect – volume: 3 year: 2017 ident: bb0180 article-title: Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector publication-title: Sci. Adv. – volume: 64 start-page: 53 year: 2016 end-page: 64 ident: bb0595 article-title: Mosquito gut antiparasitic and antiviral immunity publication-title: Dev. Comp. Immunol. – volume: 12 start-page: 35 year: 2017 end-page: 44 ident: bb0295 article-title: Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction with Arboviral Pathogens publication-title: Evol. Bioinformatics Online – volume: 22 year: 2017 ident: bb0310 article-title: Experimental transmission of Zika virus by mosquitoes from Central Europe publication-title: Euro Surveill. – volume: 299 start-page: 285 year: 2006 end-page: 314 ident: bb0720 article-title: Evolutionary influences in arboviral disease publication-title: Curr Topics Microbiol Immunol – volume: 85 start-page: 446 year: 2011 end-page: 451 ident: bb0670 article-title: Vector competence of Australian mosquitoes for yellow fever virus publication-title: Am J Trop Med Hyg – volume: 16 start-page: 1 year: 2016 end-page: 7 ident: bb0685 article-title: Competitive advantage of a dengue 4 virus when co-infecting the mosquito publication-title: BMC Infect. Dis. – volume: 18 start-page: 512 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0470 article-title: Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus publication-title: BMC Genomics doi: 10.1186/s12864-017-3903-3 – volume: 36 start-page: 508 year: 1999 ident: 10.1016/j.meegid.2018.11.009_bb0715 article-title: Vector competence of Aedes notoscriptus (Diptera: Culicidae) for Barmah Forest virus and of this species and Aedes aegypti (Diptera: Culicidae) for dengue 1-4 viruses in Queensland, Australia publication-title: J. Med. Entomol. doi: 10.1093/jmedent/36.4.508 – volume: 17 start-page: 47 year: 1979 ident: 10.1016/j.meegid.2018.11.009_bb0135 article-title: Transmission experimentale comparee du virus Zika chez Aedes aegypti publication-title: Ent Med Parasitol – volume: 27 start-page: 113 year: 1901 ident: 10.1016/j.meegid.2018.11.009_bb0535 article-title: The prevention of yellow fever publication-title: Public Health Pap Rep – volume: 97 start-page: 437 year: 2002 ident: 10.1016/j.meegid.2018.11.009_bb0385 article-title: Oral susceptibility to yellow fever virus of Aedes aegypti from Brazil publication-title: Mem. Inst. Oswaldo Cruz doi: 10.1590/S0074-02762002000300031 – volume: 34 start-page: 603 year: 1985 ident: 10.1016/j.meegid.2018.11.009_bb0565 article-title: Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.1985.34.603 – volume: 11 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0005 article-title: Vector competence of populations of Aedes aegypti from three distinct cities in Kenya for chikungunya virus publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0005860 – volume: 34 start-page: 81 year: 2003 ident: 10.1016/j.meegid.2018.11.009_bb0315 article-title: Aedes aegypti in South Vietnam: Ecology, genetic structure, vectorial competence and resistance to insecticides publication-title: Southeast Asian J Trop Med Public Health – volume: 8 start-page: 1 year: 2015 ident: 10.1016/j.meegid.2018.11.009_bb0150 article-title: Vector competence of the Aedes aegypti population from Santiago island, Cape Verde, to different serotypes of dengue virus publication-title: Parasit. Vectors doi: 10.1186/s13071-015-0706-8 – volume: 6 start-page: 49 year: 2018 ident: 10.1016/j.meegid.2018.11.009_bb0285 article-title: The mosquito holobiont: fresh insight into mosquito-microbiota interactions publication-title: Microbiome doi: 10.1186/s40168-018-0435-2 – volume: 28 start-page: 715 year: 2014 ident: 10.1016/j.meegid.2018.11.009_bb0245 article-title: Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2014.09.029 – volume: 7 start-page: 595 year: 2014 ident: 10.1016/j.meegid.2018.11.009_bb0445 article-title: Eilat virus displays a narrow mosquito vector range publication-title: Parasit. Vectors doi: 10.1186/s13071-014-0595-2 – volume: 6 year: 2018 ident: 10.1016/j.meegid.2018.11.009_bb0185 article-title: Vector competence of selected north American Anopheles and Culex mosquitoes for Zika virus publication-title: PeerJ doi: 10.7717/peerj.4324 – volume: 49 start-page: 942 year: 2012 ident: 10.1016/j.meegid.2018.11.009_bb0550 article-title: Vector competence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) fordengue virus in the Florida Keys publication-title: J. Med. Entomol. doi: 10.1603/ME11293 – volume: 10 start-page: 118 year: 2018 ident: 10.1016/j.meegid.2018.11.009_bb0475 article-title: Natural variation in resistance to virus infection in Dipteran insects publication-title: Viruses doi: 10.3390/v10030118 – volume: 88 start-page: 6294 year: 2014 ident: 10.1016/j.meegid.2018.11.009_bb0690 article-title: High Level of Vector Competence of Aedes aegypti and Aedes albopictus from ten American Countries as a crucial factor in the Spread of Chikungunya Virus publication-title: J. Virol. doi: 10.1128/JVI.00370-14 – ident: 10.1016/j.meegid.2018.11.009_bb0255 doi: 10.1111/mec.13866 – volume: 25 start-page: 17 year: 1906 ident: 10.1016/j.meegid.2018.11.009_bb0020 article-title: On the aetiology of dengue fever publication-title: Aust. Med. Gaz. – volume: 357 start-page: 1396 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0505 article-title: Changes in the microbiota cause genetically modified Anopheles to spread in a population publication-title: Science doi: 10.1126/science.aak9691 – volume: 32 start-page: 436 year: 2018 ident: 10.1016/j.meegid.2018.11.009_bb3555 article-title: Transmission potential of Mayaro virus in Florida Aedes aegypti and Aedes albopictus mosquitoes publication-title: Med. Vet. Entomol. doi: 10.1111/mve.12322 – volume: 14 start-page: 1479 year: 2015 ident: 10.1016/j.meegid.2018.11.009_bb0025 article-title: Current status and future prospects of yellow fever vaccines publication-title: Expert Rev. Vaccines doi: 10.1586/14760584.2015.1083430 – volume: 6 year: 2012 ident: 10.1016/j.meegid.2018.11.009_bb0370 article-title: Oral susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika virus publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0001792 – volume: 112 start-page: 7536 year: 2015 ident: 10.1016/j.meegid.2018.11.009_bb0405 article-title: Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1502036112 – volume: 6 start-page: e2836 year: 2015 ident: 10.1016/j.meegid.2018.11.009_bb0420 article-title: French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00970 – volume: 88 start-page: 689 year: 2013 ident: 10.1016/j.meegid.2018.11.009_bb0070 article-title: Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.12-0488 – volume: 34 start-page: 1219 year: 1985 ident: 10.1016/j.meegid.2018.11.009_bb0640 article-title: Oral infection of Aedes aegypti with yellow fever virus: geographic variation andgenetic considerations publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.1985.34.1219 – volume: 85 start-page: 446 year: 2011 ident: 10.1016/j.meegid.2018.11.009_bb0670 article-title: Vector competence of Australian mosquitoes for yellow fever virus publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2011.11-0061 – volume: 9 start-page: 3 year: 2014 ident: 10.1016/j.meegid.2018.11.009_bb0510 article-title: Differential susceptibility of two field Aedes aegypti populations to a low infectious dose of dengue virus publication-title: PLoS One doi: 10.1371/journal.pone.0092971 – volume: 13 start-page: e1006391 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0560 article-title: Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006391 – volume: 327 start-page: 1644 year: 2010 ident: 10.1016/j.meegid.2018.11.009_bb0355 article-title: A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae publication-title: Science doi: 10.1126/science.1184008 – volume: 87 start-page: 735 year: 2006 ident: 10.1016/j.meegid.2018.11.009_bb0120 article-title: Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico publication-title: J Gen Virol doi: 10.1099/vir.0.81475-0 – volume: 13 start-page: e0190352 year: 2018 ident: 10.1016/j.meegid.2018.11.009_bb0695 article-title: Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis publication-title: PLoS One doi: 10.1371/journal.pone.0190352 – volume: 111 start-page: 233 year: 2016 ident: 10.1016/j.meegid.2018.11.009_bb0490 article-title: Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia publication-title: Mem. Inst. Oswaldo Cruz doi: 10.1590/0074-02760150363 – volume: 23 start-page: 2727 year: 2014 ident: 10.1016/j.meegid.2018.11.009_bb0125 article-title: Mosquitoes rely on their gut microbiota for development publication-title: Mol. Ecol. doi: 10.1111/mec.12771 – volume: 93 start-page: 581 year: 1999 ident: 10.1016/j.meegid.2018.11.009_bb0650 article-title: Aedes aegypti in Ho Chi Minh City (Viet Nam): susceptibility to dengue 2 virus and genetic differentiation publication-title: Trans Royal Soc Trop Med Hyg. doi: 10.1016/S0035-9203(99)90056-1 – volume: 58 start-page: 578 year: 1998 ident: 10.1016/j.meegid.2018.11.009_bb0105 article-title: Monitoring of dengue viruses in field-caught Aedes aegypti and Aedes albopictus mosquitoes by a type-specific polymerase chain reaction and cycle sequencing publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.1998.58.578 – volume: 30 start-page: 524 year: 1993 ident: 10.1016/j.meegid.2018.11.009_bb0085 article-title: Vector competence of Aedes albopictus and Ae. aegypti (Diptera: Culicidae) to dengue 1 virus on Taiwan: development of the virus in orally and parenterally infected mosquitoes publication-title: J. Med. Entomol. doi: 10.1093/jmedent/30.3.524 – start-page: 69 issue: 6 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0280 article-title: Zika virus replication in the mosquito Culex quinquefasciatus in Brazil publication-title: Emerg Microbes Infect – volume: 15 start-page: 492 year: 2015 ident: 10.1016/j.meegid.2018.11.009_bb0165 article-title: Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus publication-title: BMC Infect. Dis. doi: 10.1186/s12879-015-1231-2 – volume: 98 start-page: 43 year: 2004 ident: 10.1016/j.meegid.2018.11.009_bb0390 article-title: Aedes aegypti in Brazil: genetically differentiated populations with highsusceptibility to dengue and yellow fever viruses publication-title: Trans Royal Soc Trop Med Hyg. doi: 10.1016/S0035-9203(03)00006-3 – volume: 12 year: 2018 ident: 10.1016/j.meegid.2018.11.009_bb0600 article-title: Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0006443 – volume: 13 year: 2018 ident: 10.1016/j.meegid.2018.11.009_bb0415 article-title: Dengue virus in Aedes aegypti and Aedes albopictus in urban areas in the state of Rio Granse do Norte, Brazil: Importance of virological and entomological surveillance publication-title: PLoS One doi: 10.1371/journal.pone.0194108 – volume: 10 start-page: 381 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0060 article-title: Dengue-1 virus and vector competence of Aedes aegypti (Diptera: Culicidae) populations from New Caledonia publication-title: Parasit. Vectors doi: 10.1186/s13071-017-2319-x – volume: 3 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0180 article-title: Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector publication-title: Sci. Adv. doi: 10.1126/sciadv.1700585 – volume: 10 year: 2016 ident: 10.1016/j.meegid.2018.11.009_bb0725 article-title: Vector Competence of American Mosquitoes for three Strains of Zika Virus publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0005101 – volume: 7 year: 2011 ident: 10.1016/j.meegid.2018.11.009_bb0460 article-title: Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1001320 – volume: 12 start-page: 1 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0140 article-title: Laboratory strains of Aedes aegypti are competent to Brazilian Zika virus publication-title: PLoS One – volume: 11 start-page: 1 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0265 article-title: Mosquito co-infection with Zika and chikungunya virus allows simultaneous transmission without affecting vector competence of Aedes aegypti publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0005654 – volume: 3 start-page: 460 year: 1987 ident: 10.1016/j.meegid.2018.11.009_bb0425 article-title: Vector competence of Aedes albopictus from Houston, Texas, for dengue serotypes 1to 4, yellow fever and Ross River viruses publication-title: J Am Mosquito Cont Ass – volume: 28 start-page: 166 year: 2003 ident: 10.1016/j.meegid.2018.11.009_bb0645 article-title: Comparative susceptibility to oral infection with dengue viruses among local strains of Aedes aegypti (Diptera: Culicidae) collected at different seasons of the year publication-title: J Vector Ecol – volume: 16 start-page: 1 year: 2016 ident: 10.1016/j.meegid.2018.11.009_bb0685 article-title: Competitive advantage of a dengue 4 virus when co-infecting the mosquito Aedes aegypti with a dengue 1 virus publication-title: BMC Infect. Dis. doi: 10.1186/s12879-016-1666-0 – volume: 9 start-page: 160 year: 2009 ident: 10.1016/j.meegid.2018.11.009_bb0360 article-title: Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-9-160 – volume: 50 start-page: 238 year: 1956 ident: 10.1016/j.meegid.2018.11.009_bb0040 article-title: A simple technique for infection of mosquitoes with viruses; transmission of Zika virus publication-title: Trans. R. Soc. Trop. Med. Hyg. doi: 10.1016/0035-9203(56)90029-3 – volume: 55 start-page: 191 year: 2012 ident: 10.1016/j.meegid.2018.11.009_bb0115 article-title: Come fly with me: review of clinically important arboviruses for global travelers publication-title: J. Clin. Virol. doi: 10.1016/j.jcv.2012.07.004 – volume: 7 year: 2013 ident: 10.1016/j.meegid.2018.11.009_bb0365 article-title: Review of climate, landscape, and viral genetics as drivers of the Japanese encephalitis virus, ecology publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0002208 – volume: 8 year: 2012 ident: 10.1016/j.meegid.2018.11.009_bb0625 article-title: Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002588 – volume: 15 start-page: 97 year: 2015 ident: 10.1016/j.meegid.2018.11.009_bb0305 article-title: The microbiome modulates arbovirus transmission in mosquitoes publication-title: Curr Opin Virol doi: 10.1016/j.coviro.2015.08.011 – volume: 6 year: 2012 ident: 10.1016/j.meegid.2018.11.009_bb0525 article-title: Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0001561 – volume: 11 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0015 article-title: Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic publication-title: PLoS Neg. Trop. Dis. doi: 10.1371/journal.pntd.0005724 – volume: 284 issue: 1864 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0260 article-title: Infection rate of Aedes aegypti mosquitoes with dengue virus depends on the interaction between temperature and mosquito genotype publication-title: Proc. Biol. Sci. – volume: 8 year: 2014 ident: 10.1016/j.meegid.2018.11.009_bb0175 article-title: Vector Competence in West African Aedes aegypti is Flavivirus Species and Genotype Dependent publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0003153 – volume: 59 start-page: 965 year: 1998 ident: 10.1016/j.meegid.2018.11.009_bb0050 article-title: Quantitative genetics of vector competence for dengue-2 virus in Aedes aegypti publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.1998.59.965 – volume: 31 start-page: 1713 year: 2013 ident: 10.1016/j.meegid.2018.11.009_bb0055 article-title: Vertical Transmission of Key West Dengue-1 Virus by Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Mosquitoes from Florida publication-title: J. Med. Entomol. – volume: 23 start-page: 625 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0575 article-title: Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2304.161484 – volume: 7 year: 2013 ident: 10.1016/j.meegid.2018.11.009_bb0620 article-title: Transcriptomic Profiling of Diverse Aedes aegypti Strains reveals increased Basal-level Immune Activation in Dengue Virus-refractory Populations and Identifies Novel Virus-vector Molecular Interactions publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0002295 – volume: 21 start-page: 124 year: 2016 ident: 10.1016/j.meegid.2018.11.009_bb0635 article-title: Ecological effects on arbovirus-mosquito cycles of transmission publication-title: Curr Opin Virol. doi: 10.1016/j.coviro.2016.09.008 – volume: 4 start-page: 62 year: 2012 ident: 10.1016/j.meegid.2018.11.009_bb0745 article-title: Animal models of dengue virus infection publication-title: Viruses doi: 10.3390/v4010062 – volume: 22 start-page: 399 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0435 article-title: Superinfection interference between dengue-2 and dengue-4 viruses in Aedes aegypti mosquitoes publication-title: Tropical Med. Int. Health doi: 10.1111/tmi.12846 – volume: 34 start-page: 310 year: 2018 ident: 10.1016/j.meegid.2018.11.009_bb0580 article-title: How do Virus-Mosquito Interactions Lead to Viral Emergence? publication-title: Trends Parasitol. doi: 10.1016/j.pt.2017.12.004 – volume: 85 start-page: 750 year: 2011 ident: 10.1016/j.meegid.2018.11.009_bb0380 article-title: Experimental transmission of Mayaro virus by Aedes aegypti publication-title: Am J Trop Med Hyg. doi: 10.4269/ajtmh.2011.11-0359 – volume: 1 start-page: 310 year: 2011 ident: 10.1016/j.meegid.2018.11.009_bb0655 article-title: Chikungunya virus: evolution and genetic determinants of emergence publication-title: Curr Opin Virol doi: 10.1016/j.coviro.2011.07.004 – volume: 82 start-page: 171 year: 2003 ident: 10.1016/j.meegid.2018.11.009_bb0485 article-title: Variation over space and time of Aedes aegypti in Phnom Penh (Cambodia): genetic structure and oral susceptibility to a dengue virus publication-title: Gen Res doi: 10.1017/S0016672303006463 – volume: 10 year: 2016 ident: 10.1016/j.meegid.2018.11.009_bb0545 article-title: Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus publication-title: PLoS Negl. Trop. Dis. – volume: 12 year: 2018 ident: 10.1016/j.meegid.2018.11.009_bb0235 article-title: Variation in competence for ZIKV transmission by Aedes aegypti and Aedes albopictus in Mexico publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0006599 – volume: 10 year: 2016 ident: 10.1016/j.meegid.2018.11.009_bb0540 article-title: Vector Competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus publication-title: PLoS Negl. Trop. Dis. – volume: 25 start-page: 5806 year: 2016 ident: 10.1016/j.meegid.2018.11.009_bb0130 article-title: Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats publication-title: Mol. Ecol. doi: 10.1111/mec.13877 – volume: 2008 start-page: 65 year: 2008 ident: 10.1016/j.meegid.2018.11.009_bb0225 article-title: Why we do not understand the ecological connections between the environment and human health: the case for vector-borne disease publication-title: Vector Borne Dis – volume: 15 start-page: 69 year: 2015 ident: 10.1016/j.meegid.2018.11.009_bb0675 article-title: Insect-specific viruses and their potential impact on arbovirus transmission publication-title: Curr Opin Virol doi: 10.1016/j.coviro.2015.08.007 – volume: 21 start-page: 3 year: 2014 ident: 10.1016/j.meegid.2018.11.009_bb0095 article-title: The vector competence of Ae. aegypti mosquito populations from Kilifi and Nairobi for dengue-2 virus and the effect of temperature publication-title: Inter J Infect Dis doi: 10.1016/j.ijid.2014.03.413 – volume: 4 year: 2009 ident: 10.1016/j.meegid.2018.11.009_bb0190 article-title: Chikungunya Virus and Aedes Mosquitoes: Saliva is Infectious as soon as two days after Oral Infection publication-title: PLoS One doi: 10.1371/journal.pone.0005895 – volume: 22 start-page: 45 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0465 article-title: Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or something more? publication-title: Curr Opin Insect Sci. doi: 10.1016/j.cois.2017.05.010 – volume: 103 start-page: 109 year: 2009 ident: 10.1016/j.meegid.2018.11.009_bb0275 article-title: Impact of climate change and other factors on emerging arbovirus diseases publication-title: Trans. R. Soc. Trop. Med. Hyg. doi: 10.1016/j.trstmh.2008.07.025 – volume: 39 start-page: 406 year: 2014 ident: 10.1016/j.meegid.2018.11.009_bb0010 article-title: Susceptibility of Florida Aedes aegypti and Aedes albopictus to dengue viruses from Puerto Rico publication-title: J. Vec. Ecol. doi: 10.1111/jvec.12116 – volume: 124 start-page: 113 year: 2012 ident: 10.1016/j.meegid.2018.11.009_bb0075 article-title: Immune transcript variations among Aedes aegypti populations with distinct susceptibility to dengue virus serotype 2 publication-title: Acta Trop. doi: 10.1016/j.actatropica.2012.07.006 – volume: 9 start-page: 608 year: 2016 ident: 10.1016/j.meegid.2018.11.009_bb0215 article-title: No evidence for local adaptation of dengue viruses to mosquito vector populations in Thailand publication-title: Evol. Appl. doi: 10.1111/eva.12360 – volume: 34 start-page: 217 year: 2018 ident: 10.1016/j.meegid.2018.11.009_bb0555 article-title: Mission Accomplished? We need a Guide to the 'Post Release' World of Wolbachia for Aedes-borne Disease Control publication-title: Trends Parasitol. doi: 10.1016/j.pt.2017.11.011 – volume: 3 start-page: 378 year: 1987 ident: 10.1016/j.meegid.2018.11.009_bb0045 article-title: Variation in the vector competence of geographic strains of the Aedes albopictus for Dengue 1 virus publication-title: J. Am. Mos. Cont. Ass. – volume: 31 start-page: 312 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0610 article-title: Vector competence and innate immune responses to dengue virus infection in selected laboratory and field-collected Stegomyia aegypti (= Aedes aegypti) publication-title: Med. Vet. Entomol. doi: 10.1111/mve.12237 – volume: 21 start-page: 30328 year: 2016 ident: 10.1016/j.meegid.2018.11.009_bb2555 publication-title: Euro. Surveill. doi: 10.2807/1560-7917.ES.2016.21.35.30328 – volume: 7 start-page: 4911 year: 2015 ident: 10.1016/j.meegid.2018.11.009_bb0035 article-title: Insect-specific Virus Discovery: significance for the Arbovirus Community publication-title: Viruses doi: 10.3390/v7092851 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0145 article-title: Potential risk of re-emergence of urban transmission of Yellow fever virus in Brazil facilitated by competent Aedes populations publication-title: Sci. Rep. doi: 10.1038/s41598-017-05186-3 – volume: 112 start-page: 2627 year: 2013 ident: 10.1016/j.meegid.2018.11.009_bb0080 article-title: Comparative analysis of midgut bacterial communities of Aedes aegypti mosquito strains varying in vector competence to dengue virus publication-title: Parasitol. Res. doi: 10.1007/s00436-013-3428-x – volume: 299 start-page: 285 year: 2006 ident: 10.1016/j.meegid.2018.11.009_bb0720 article-title: Evolutionary influences in arboviral disease publication-title: Curr Topics Microbiol Immunol – start-page: 611 year: 2002 ident: 10.1016/j.meegid.2018.11.009_bb0320 article-title: Vector competence of Brazilian yellow fever virus isolate Aedes aegypti and Ae. abopictus for a Brazilian yellow fever virus isolate publication-title: Trans Royal Soc Trop Med Hyg doi: 10.1016/S0035-9203(02)90326-3 – volume: 106 start-page: 387 year: 2012 ident: 10.1016/j.meegid.2018.11.009_bb0210 article-title: Yellow fever virus susceptibility of two mosquito vectors from Kenya, East Africa publication-title: Trans Royal Soc Trop Med Hyg doi: 10.1016/j.trstmh.2012.02.007 – volume: 112 start-page: E5907 year: 2015 ident: 10.1016/j.meegid.2018.11.009_bb0090 article-title: Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1516410112 – volume: 22 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0310 article-title: Experimental transmission of Zika virus by mosquitoes from Central Europe publication-title: Euro Surveill. doi: 10.2807/1560-7917.ES.2017.22.2.30437 – volume: 27 start-page: 3511 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0730 article-title: The diversity, structure, and function of heritable adaptive immunity sequences in the Aedes aegypti genome publication-title: Curr Biol doi: 10.1016/j.cub.2017.09.067 – volume: 6 start-page: e23 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0375 article-title: Vector competence and transovarial transmission of two Aedes aegypti strains to Zika virus publication-title: Emerg Microbes Infect doi: 10.1038/emi.2017.8 – volume: 90 start-page: 422 year: 2014 ident: 10.1016/j.meegid.2018.11.009_bb0740 article-title: Comparative susceptibility of mosquito populations in North Queensland, Australia to oral infection with dengue virus publication-title: Am J Trop Med Hyg. doi: 10.4269/ajtmh.13-0186 – volume: 98 start-page: 1563 year: 2018 ident: 10.1016/j.meegid.2018.11.009_bb0520 article-title: Mosquito-Borne Human Viral Diseases: why Aedes aegypti? publication-title: Am J Trop Med Hyg. doi: 10.4269/ajtmh.17-0866 – volume: 3 start-page: 6 year: 2014 ident: 10.1016/j.meegid.2018.11.009_bb0155 article-title: The mosquito microbiota influences vector competence for human pathogens publication-title: Curr Opin Insect Sci doi: 10.1016/j.cois.2014.07.004 – volume: 7 start-page: 3741 year: 2015 ident: 10.1016/j.meegid.2018.11.009_bb0230 article-title: Tissues barriers to arbovirus infection in mosquitoes publication-title: Viruses doi: 10.3390/v7072795 – volume: 34 start-page: 1225 year: 1985 ident: 10.1016/j.meegid.2018.11.009_bb0700 article-title: Selection for susceptibility and refractoriness of Aedes aegypti to oralinfection with yellow fever virus publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.1985.34.1225 – volume: 128 start-page: 566 year: 2013 ident: 10.1016/j.meegid.2018.11.009_bb0290 article-title: Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for DEN2-43 and New Guinea C virus strains of dengue 2 virus publication-title: Acta Trop. doi: 10.1016/j.actatropica.2013.08.006 – volume: 46 start-page: 395 year: 2009 ident: 10.1016/j.meegid.2018.11.009_bb0495 article-title: Effects of Infectious Virus Dose and Bloodmeal delivery Method on Susceptibility of Aedes aegypti and Aedes albopictus to Chikungunya Virus publication-title: J. Med. Entomol. doi: 10.1603/033.046.0228 – volume: 102 start-page: 493 year: 2008 ident: 10.1016/j.meegid.2018.11.009_bb0170 article-title: Vector competence of Aedes aegypti populations from Senegal for sylvatic and epidemic dengue 2 virus isolated in West Africa publication-title: Trans of Royal Soc Trop Med Hyg doi: 10.1016/j.trstmh.2008.02.010 – volume: 12 year: 2018 ident: 10.1016/j.meegid.2018.11.009_bb0065 article-title: Zika virus outbreak in the Pacific: Vector competence of regional vectors publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0006637 – volume: 9 start-page: 1 year: 2015 ident: 10.1016/j.meegid.2018.11.009_bb0515 article-title: Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0003462 – start-page: 1 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0710 article-title: The immune strategies of mosquito Aedes aegypti against microbial infection publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2016.11.022 – volume: 21 year: 2016 ident: 10.1016/j.meegid.2018.11.009_bb0160 article-title: Experimental studies of susceptibility of Italian Aedes albopictus to Zika virus publication-title: Euro Surveill. doi: 10.2807/1560-7917.ES.2016.21.18.30223 – volume: 18 start-page: 2384 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0590 article-title: Infection of a French Population of Aedes albopictus and of Aedes aegypti (Paea Strain) with Zika Virus reveals Low Transmission rates to these Vectors' Saliva publication-title: J Mol Sci doi: 10.3390/ijms18112384 – volume: 13 start-page: 1 year: 2016 ident: 10.1016/j.meegid.2018.11.009_bb0410 article-title: Vector competence of Aedes aegypti in transmitting Chikungunya virus: Effects and implications of extrinsic incubation temperature on dissemination and infection rates publication-title: Virol. J. doi: 10.1186/s12985-016-0566-7 – volume: 64 start-page: 53 year: 2016 ident: 10.1016/j.meegid.2018.11.009_bb0595 article-title: Mosquito gut antiparasitic and antiviral immunity publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2016.01.015 – volume: 16 start-page: 59 year: 1979 ident: 10.1016/j.meegid.2018.11.009_bb0335 article-title: Quantitative studies of the vector competence of Aedes aegypti, Culex annulirostris and other mosquitoes (Diptera: Culicidae) with Murray Valley publication-title: J. Med. Entomol. doi: 10.1093/jmedent/16.1.59 – volume: 10 year: 2016 ident: 10.1016/j.meegid.2018.11.009_bb0100 article-title: Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0004543 – volume: 91 start-page: e00009 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0430 article-title: Animal models of Zika virus infection pathogenesis and immunity publication-title: J Virol doi: 10.1128/JVI.00009-17 – volume: 484 start-page: 51 year: 2015 ident: 10.1016/j.meegid.2018.11.009_bb0450 article-title: Eilat virus induces both homologous and heterologous interference publication-title: Virology doi: 10.1016/j.virol.2015.05.009 – volume: 4 year: 2008 ident: 10.1016/j.meegid.2018.11.009_bb0735 article-title: The Aedes aegypti toll pathway controls dengue virus infection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000098 – volume: 12 year: 2018 ident: 10.1016/j.meegid.2018.11.009_bb0400 article-title: Vector competence of Aedes aegypti, Culex tarsalis, and Culex quinquefasciatus from California for Zika virus publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0006524 – volume: 8 start-page: 8358 year: 2018 ident: 10.1016/j.meegid.2018.11.009_bb0615 article-title: Hydrogen cyanide produced by the soil bacterium Chromobacterium sp. Panama contributes to mortality in Anopheles gambiae mosquito larvae publication-title: Sci. Rep. doi: 10.1038/s41598-018-26680-2 – volume: 7 start-page: 1 year: 2014 ident: 10.1016/j.meegid.2018.11.009_bb0270 article-title: Distinct variation in vector competence among nine field populations of Aedes aegypti from a Brazilian dengue-endemic risk city publication-title: Parasit. Vectors doi: 10.1186/1756-3305-7-320 – volume: 38 start-page: 130 year: 2001 ident: 10.1016/j.meegid.2018.11.009_bb0660 article-title: Vector Competence of north American Mosquitoes (Diptera : Culicidae) for West Nile Virus publication-title: J. Med. Entomol. doi: 10.1603/0022-2585-38.2.130 – volume: 21 start-page: 370 year: 2007 ident: 10.1016/j.meegid.2018.11.009_bb0605 article-title: Investigations of dengue-2 susceptibility and body size among Aedes aegypti populations publication-title: Med. Vet. Entomol. doi: 10.1111/j.1365-2915.2007.00699.x – volume: 10 start-page: 556 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0500 article-title: Incidence of dengue and chikungunya viruses in mosquitoes and human patients in border provinces of Vientnam publication-title: Parasit. Vectors doi: 10.1186/s13071-017-2422-z – volume: 19 start-page: 771 year: 2016 ident: 10.1016/j.meegid.2018.11.009_bb0205 article-title: Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.04.021 – volume: 25 start-page: 336 year: 1976 ident: 10.1016/j.meegid.2018.11.009_bb0350 article-title: Vector competence of mosquitoes as a marker to distinguish central American and Mexican epizootic from enzootic strains of Venezuelan enceph publication-title: Am J Trop Med Hyg. doi: 10.4269/ajtmh.1976.25.336 – volume: 13 start-page: 1 year: 2013 ident: 10.1016/j.meegid.2018.11.009_bb0395 article-title: Aedes aegypti from temperate regions of South America are highly competent to transmit dengue virus publication-title: BMC Infect. Dis. doi: 10.1186/1471-2334-13-610 – volume: 96 start-page: 1235 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0340 article-title: Transmission incompetence of Culex quinquefasciatus and Culex pipiens pipiens from North America for Zika virus publication-title: Am J Trop Med Hyg. doi: 10.4269/ajtmh.16-0865 – volume: 10 year: 2014 ident: 10.1016/j.meegid.2018.11.009_bb0530 article-title: Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004398 – volume: 3 start-page: e408 year: 2009 ident: 10.1016/j.meegid.2018.11.009_bb0630 article-title: Gene flow, subspecies composition, and dengue virus-2 susceptibility among Aedes aegypti collections in Senegal publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0000408 – volume: 10 year: 2016 ident: 10.1016/j.meegid.2018.11.009_bb0300 article-title: Assessment of local mosquito species incriminates Aedes aegypti as the potential vector of Zika virus in Australia publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0004959 – volume: 6 start-page: 104 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0440 article-title: Animal models for dengue vaccine development and testing publication-title: Clin Exp Vaccine Res doi: 10.7774/cevr.2017.6.2.104 – volume: 12 start-page: 605 year: 2012 ident: 10.1016/j.meegid.2018.11.009_bb0705 article-title: Vector Competence of five Common Mosquito Species in the People's Republic of China for Western Equine Encephalitis Virus publication-title: Vector-Borne Zoonotic Dis doi: 10.1089/vbz.2011.0660 – volume: 113 start-page: e180290 year: 2018 ident: 10.1016/j.meegid.2018.11.009_bb4555 article-title: Zika infection decreases Aedes aegypti locomotor activity but does not influence egg production or viability publication-title: Mem. Inst. Oswaldo Cruz. doi: 10.1590/0074-02760180290 – volume: 65 start-page: 491 year: 2001 ident: 10.1016/j.meegid.2018.11.009_bb0680 article-title: Population genetic structure and competence as a vector for dengue type 2 virus of Aedes aegypti and Aedes albopictus from Madagascar publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2001.65.491 – volume: 15 start-page: 140 year: 2015 ident: 10.1016/j.meegid.2018.11.009_bb0195 article-title: Developmental succession of the microbiome of Culex mosquitoes publication-title: BMC Microbiol. doi: 10.1186/s12866-015-0475-8 – volume: 67 start-page: 84 year: 2002 ident: 10.1016/j.meegid.2018.11.009_bb0030 article-title: Variation in vector competence for dengue-2 virus among 24 collections of Aedes aegypti from Mexico and the United States publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.2002.67.85 – volume: 23 start-page: 1110 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0110 article-title: Effects of Zika virus strain and Aedes mosquito species on vector competence publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2307.161633 – volume: 12 start-page: 35 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0295 article-title: Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction with Arboviral Pathogens publication-title: Evol. Bioinformatics Online – volume: 112 start-page: 577 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0220 article-title: Culex quinquefasciatus from areas with the highest incidence of microcephaly associated with Zika virus infections in the Northeast Region of Brazil are refractory to the virus publication-title: Mem. Inst. Oswaldo Cruz doi: 10.1590/0074-02760170145 – volume: 17 start-page: 361 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0480 article-title: Aedes-borne virus-mosquito interactions: mass spectrometry strategies and findings publication-title: Vector-borne Zoon Dis doi: 10.1089/vbz.2016.2040 – volume: 216 start-page: 976 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0330 article-title: Zika Virus Mosquito Vectors: Competence, Biology, and Vector Control publication-title: J. Infect. Dis. doi: 10.1093/infdis/jix405 – volume: 40 start-page: 950 year: 2003 ident: 10.1016/j.meegid.2018.11.009_bb0345 article-title: Enhanced vector competence of Aedes aegypti (Diptera: Culicidae) from the Torres Strait compared with mainland Australia for dengue 2 and 4 viruses publication-title: J. Med. Entomol. doi: 10.1603/0022-2585-40.6.950 – volume: 10 start-page: 164 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0455 article-title: Potential of Aedes aegypti and Aedes albopictus populations in the Central African Republic to transmit enzootic chikungunya virus strains publication-title: Parasit. Vectors doi: 10.1186/s13071-017-2101-0 – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.meegid.2018.11.009_bb0585 article-title: Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes publication-title: Nature Com – volume: 23 start-page: 378 year: 2007 ident: 10.1016/j.meegid.2018.11.009_bb0665 article-title: Vector competence of Kenyan Culex zombaensis and Culex quinquefasciatus mosquitoes for Rift Valley fever virus publication-title: J. Am. Mosq. Control Assoc. doi: 10.2987/5645.1 – volume: 87 start-page: 639 year: 1993 ident: 10.1016/j.meegid.2018.11.009_bb0325 article-title: The potential for dengue in South Africa: Vector competence tests with dengue 1 and 2 viruses and 6 mosquito species publication-title: Trans Royal Soc Trop Med Hyg doi: 10.1016/0035-9203(93)90271-Q – volume: 12 start-page: 1036 year: 2012 ident: 10.1016/j.meegid.2018.11.009_bb0200 article-title: Chikungunya Virus and the Mosquito Vector Aedes aegypti in New Caledonia (South Pacific Region) publication-title: Vector-Borne Zoon Dis doi: 10.1089/vbz.2011.0937 – volume: 19 start-page: 1355 year: 2014 ident: 10.1016/j.meegid.2018.11.009_bb0240 article-title: Oral susceptibility of Aedes aegypti (Diptera: Culicidae) from Senegal for dengue serotypes 1 and 3 viruses publication-title: Tropical Med. Int. Health doi: 10.1111/tmi.12373 – volume: 16 start-page: 134 year: 2011 ident: 10.1016/j.meegid.2018.11.009_bb0250 article-title: Viewpoint: High susceptibility to Chikungunya virus of Aedes aegypti from the French West Indies and French Guiana publication-title: Tropical Med. Int. Health doi: 10.1111/j.1365-3156.2010.02613.x |
SSID | ssj0017028 |
Score | 2.6172602 |
SecondaryResourceType | review_article |
Snippet | Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever,... Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever,... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 191 |
SubjectTerms | Aedes - genetics Aedes - virology Aedes aegypti Animals antiviral proteins bacteria dengue fever Genetic Variation genome Host-Pathogen Interactions human health Humans innate immunity insects meta-analysis Microbiota mixed infection Mosquito Vectors - genetics Mosquito Vectors - virology rearing tissue culture vector competence Virus Diseases - transmission Virus Diseases - virology viruses Yellow fever virus |
Title | Aedes aegypti vector competence studies: A review |
URI | https://dx.doi.org/10.1016/j.meegid.2018.11.009 https://www.ncbi.nlm.nih.gov/pubmed/30465912 https://www.proquest.com/docview/2137461840 https://www.proquest.com/docview/2221051662 https://pubmed.ncbi.nlm.nih.gov/PMC8135908 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dT9wwLELwMmmaBoPtNkCZxGu4Jk2blrfTCXR8DCEYEm9R0iajCAraHTzy27GbtuIYAmlP_YgrpbZjO44_CNmSqbQy4RkreJYyaUrFcrCLWSKF8sJ5IAzmDv86Tifn8uAiuVgg4y4XBsMqW9kfZHojrds3wxabw7uqGp7BzgMTIUHjAJ-CVsYMdqmQy7cf-zAPrqKmvyoCM4Tu0ueaGK8b5_5UWC-UZ9tYyxPDEl9XT_-any-jKJ-ppb3P5FNrT9JRmPIyWXD1CvkYnHE05Bh9IXzkSjelpuk5VtGHxlNPi95kptMQTbhDRzTksqyS873d3-MJa3slsELm6YwZYXKfOeFAgAmvjBegnNDDCRZVKoSLY2GELWGRwS3nZWQjkwtT-qRR2SpeI4v1be2-ESpKYb0oEh8ZI3OTgUVjsySxLi2sLX08IHGHIl20hcSxn8W17iLGrnRArEbEwh5DA2IHhPVf3YVCGu_Aqw77eo4hNMj6d7782RFLw1rBAxBTu9v7qQacKIkdbqI3YARsggFnqRiQr4HA_XzxFDnJOYyoOdL3AFire36kri6bmt0Zj7G7_Pf__qsf5AM85cH7s04WZ3_v3QbYQzO72TD8JlkajU-PTvC6fzg5fgIUCgrt |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dBKqCp9wEJLXYmru4lj59HbChUtBfZSkLhZdmK3QRBQd-nvZyZOIrZUReotisdS8o09Mx7PA2BfptJKFee8jPOUS1NlvEC7mCspMi-cR8ZQ7vDpPJ2dy28X6mINDvpcGAqr7GR_kOmttO7eTDo0J7d1PfmOJw9KhESNg-sUtfIzWKfqVGoE69Oj49l8uEzIorbFKtFzmtBn0LVhXtfO_aipZGicf6ZynhSZ-HcN9dgC_TOQ8oFmOnwFLzuTkk3DV2_Cmmtew0bwx7GQZvQG4qmr3IKZtu1YzX63znpWDlYzW4SAwi9sykI6y1s4P_x6djDjXbsEXsoiXXIjTOFzJxzKMOEz4wXqJ3JyolGVCuGSRBhhK9xn-BjHVWQjUwhTedVq7Sx5B6PmpnHbwEQlrBel8pExsjA5GjU2V8q6tLS28skYkh4iXXa1xKmlxZXug8YudQBWE7B4zNAI7Bj4MOs21NJ4gj7r0dcra0KjuH9i5qeeWRq3C92BmMbd3C00YpJJanIT_YNG4DkYMUvFGLYCg4fvpYtkVcQ4kq2wfiCgct2rI039sy3bnccJNZjf-e-_-gjPZ2enJ_rkaH68Cy9wpAjOoPcwWv66cx_QPFravW753wPRigwJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aedes+aegypti+vector+competence+studies%3A+A+review&rft.jtitle=Infection%2C+genetics+and+evolution&rft.au=Souza-Neto%2C+Jayme+A&rft.au=Powell%2C+Jeffrey+R&rft.au=Bonizzoni%2C+Mariangela&rft.date=2019-01-01&rft.issn=1567-7257&rft.eissn=1567-7257&rft.volume=67&rft.spage=191&rft_id=info:doi/10.1016%2Fj.meegid.2018.11.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1348&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1348&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1348&client=summon |