Aedes aegypti vector competence studies: A review

Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cel...

Full description

Saved in:
Bibliographic Details
Published inInfection, genetics and evolution Vol. 67; pp. 191 - 209
Main Authors Souza-Neto, Jayme A., Powell, Jeffrey R., Bonizzoni, Mariangela
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cells, many studies have been performed testing the relative competence of different populations of the mosquito to transmit many different strains of viruses. We review here this large literature including studies on the effect of the mosquito microbiota on competence. Because of the heterogeneity of both mosquito populations and virus strains used, as well as methods measuring potential to transmit, it is very difficult to perform detailed meta-analysis of the studies. However, a few conclusions can be drawn: (1) almost no population of Ae. aegypti is 100% naturally refractory to virus infection. Complete susceptibility to infection has been observed for Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV), but not yellow fever viruses (YFV); (2) the dose of virus used is directly correlated to the rate of infection; (3) Brazilian populations of mosquito are particularly susceptible to DENV-2 infections; (4) the Asian lineage of ZIKV is less infective to Ae. aegypti populations from the American continent than is the African ZIKV lineage; (5) virus adaptation to different species of mosquitoes has been demonstrated with CHIKV; (6) co-infection with more than one virus sometimes causes displacement while in other cases has little effect; (7) the microbiota in the mosquito also has important effects on level of susceptibility to arboviral infection; (8) resistance to virus infection due to the microbiota may be direct (e.g., bacteria producing antiviral proteins) or indirect in activating the mosquito host innate immune system; (9) non-pathogenic insect specific viruses (ISVs) are also common in mosquitoes including genome insertions. These too have been shown to have an impact on the susceptibility of mosquitoes to pathogenic viruses. One clear conclusion is that it would be a great advance in this type of research to implement standardized procedures in order to obtain comparable and reproducible results. •Aedes aegypti is easy to rear and manipulate in the laboratory•Variation in vector competence is partly related to the high genetic diversity within and among Ae. aegypti populations•Standardized procedures to assess vector competence would greatly aid in comparable and reproducible findings•Almost no population of Ae. aegypti is 100% naturally refractory to arboviral infection•Virus adaptation to Ae. aegypti mosquitoes is still controversial•Co-infection studies with two or more viruses are still limited•Further investigation is needed to evaluate the role of gut bacterial diversity and the viriome on vector competence
AbstractList Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cells, many studies have been performed testing the relative competence of different populations of the mosquito to transmit many different strains of viruses. We review here this large literature including studies on the effect of the mosquito microbiota on competence. Because of the heterogeneity of both mosquito populations and virus strains used, as well as methods measuring potential to transmit, it is very difficult to perform detailed meta-analysis of the studies. However, a few conclusions can be drawn: (1) almost no population of Ae. aegypti is 100% naturally refractory to virus infection. Complete susceptibility to infection has been observed for Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV), but not yellow fever viruses (YFV); (2) the dose of virus used is directly correlated to the rate of infection; (3) Brazilian populations of mosquito are particularly susceptible to DENV-2 infections; (4) the Asian lineage of ZIKV is less infective to Ae. aegypti populations from the American continent than is the African ZIKV lineage; (5) virus adaptation to different species of mosquitoes has been demonstrated with CHIKV; (6) co-infection with more than one virus sometimes causes displacement while in other cases has little effect; (7) the microbiota in the mosquito also has important effects on level of susceptibility to arboviral infection; (8) resistance to virus infection due to the microbiota may be direct (e.g., bacteria producing antiviral proteins) or indirect in activating the mosquito host innate immune system; (9) non-pathogenic insect specific viruses (ISVs) are also common in mosquitoes including genome insertions. These too have been shown to have an impact on the susceptibility of mosquitoes to pathogenic viruses. One clear conclusion is that it would be a great advance in this type of research to implement standardized procedures in order to obtain comparable and reproducible results.
Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cells, many studies have been performed testing the relative competence of different populations of the mosquito to transmit many different strains of viruses. We review here this large literature including studies on the effect of the mosquito microbiota on competence. Because of the heterogeneity of both mosquito populations and virus strains used, as well as methods measuring potential to transmit, it is very difficult to perform detailed meta-analysis of the studies. However, a few conclusions can be drawn: (1) almost no population of Ae. aegypti is 100% naturally refractory to virus infection. Complete susceptibility to infection has been observed for Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV), but not yellow fever viruses (YFV); (2) the dose of virus used is directly correlated to the rate of infection; (3) Brazilian populations of mosquito are particularly susceptible to DENV-2 infections; (4) the Asian lineage of ZIKV is less infective to Ae. aegypti populations from the American continent than is the African ZIKV lineage; (5) virus adaptation to different species of mosquitoes has been demonstrated with CHIKV; (6) co-infection with more than one virus sometimes causes displacement while in other cases has little effect; (7) the microbiota in the mosquito also has important effects on level of susceptibility to arboviral infection; (8) resistance to virus infection due to the microbiota may be direct (e.g., bacteria producing antiviral proteins) or indirect in activating the mosquito host innate immune system; (9) non-pathogenic insect specific viruses (ISVs) are also common in mosquitoes including genome insertions. These too have been shown to have an impact on the susceptibility of mosquitoes to pathogenic viruses. One clear conclusion is that it would be a great advance in this type of research to implement standardized procedures in order to obtain comparable and reproducible results. •Aedes aegypti is easy to rear and manipulate in the laboratory•Variation in vector competence is partly related to the high genetic diversity within and among Ae. aegypti populations•Standardized procedures to assess vector competence would greatly aid in comparable and reproducible findings•Almost no population of Ae. aegypti is 100% naturally refractory to arboviral infection•Virus adaptation to Ae. aegypti mosquitoes is still controversial•Co-infection studies with two or more viruses are still limited•Further investigation is needed to evaluate the role of gut bacterial diversity and the viriome on vector competence
Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cells, many studies have been performed testing the relative competence of different populations of the mosquito to transmit many different strains of viruses. We review here this large literature including studies on the effect of the mosquito microbiota on competence. Because of the heterogeneity of both mosquito populations and virus strains used, as well as methods measuring potential to transmit, it is very difficult to perform detailed meta-analysis of the studies. However, a few conclusions can be drawn: (1) almost no population of Ae. aegypti is 100% naturally refractory to virus infection. Complete susceptibility to infection has been observed for Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV), but not yellow fever viruses (YFV); (2) the dose of virus used is directly correlated to the rate of infection; (3) Brazilian populations of mosquito are particularly susceptible to DENV-2 infections; (4) the Asian lineage of ZIKV is less infective to Ae. aegypti populations from the American continent than is the African ZIKV lineage; (5) virus adaptation to different species of mosquitoes has been demonstrated with CHIKV; (6) co-infection with more than one virus sometimes causes displacement while in other cases has little effect; (7) the microbiota in the mosquito also has important effects on level of susceptibility to arboviral infection; (8) resistance to virus infection due to the microbiota may be direct (e.g., bacteria producing antiviral proteins) or indirect in activating the mosquito host innate immune system; (9) non-pathogenic insect specific viruses (ISVs) are also common in mosquitoes including genome insertions. These too have been shown to have an impact on the susceptibility of mosquitoes to pathogenic viruses. One clear conclusion is that it would be a great advance in this type of research to implement standardized procedures in order to obtain comparable and reproducible results.
Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cells, many studies have been performed testing the relative competence of different populations of the mosquito to transmit many different strains of viruses. We review here this large literature including studies on the effect of the mosquito microbiota on competence. Because of the heterogeneity of both mosquito populations and virus strains used, as well as methods measuring potential to transmit, it is very difficult to perform detailed meta-analysis of the studies. However, a few conclusions can be drawn: (1) almost no population of Ae. aegypti is 100% naturally refractory to virus infection. Complete susceptibility to infection has been observed for Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV), but not yellow fever viruses (YFV); (2) the dose of virus used is directly correlated to the rate of infection; (3) Brazilian populations of mosquito are particularly susceptible to DENV-2 infections; (4) the Asian lineage of ZIKV is less infective to Ae. aegypti populations from the American continent than is the African ZIKV lineage; (5) virus adaptation to different species of mosquitoes has been demonstrated with CHIKV; (6) co-infection with more than one virus sometimes causes displacement while in other cases has little effect; (7) the microbiota in the mosquito also has important effects on level of susceptibility to arboviral infection; (8) resistance to virus infection due to the microbiota may be direct (e.g., bacteria producing antiviral proteins) or indirect in activating the mosquito host innate immune system; (9) non-pathogenic insect specific viruses (ISVs) are also common in mosquitoes including genome insertions. These too have been shown to have an impact on the susceptibility of mosquitoes to pathogenic viruses. One clear conclusion is that it would be a great advance in this type of research to implement standardized procedures in order to obtain comparable and reproducible results.Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cells, many studies have been performed testing the relative competence of different populations of the mosquito to transmit many different strains of viruses. We review here this large literature including studies on the effect of the mosquito microbiota on competence. Because of the heterogeneity of both mosquito populations and virus strains used, as well as methods measuring potential to transmit, it is very difficult to perform detailed meta-analysis of the studies. However, a few conclusions can be drawn: (1) almost no population of Ae. aegypti is 100% naturally refractory to virus infection. Complete susceptibility to infection has been observed for Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV), but not yellow fever viruses (YFV); (2) the dose of virus used is directly correlated to the rate of infection; (3) Brazilian populations of mosquito are particularly susceptible to DENV-2 infections; (4) the Asian lineage of ZIKV is less infective to Ae. aegypti populations from the American continent than is the African ZIKV lineage; (5) virus adaptation to different species of mosquitoes has been demonstrated with CHIKV; (6) co-infection with more than one virus sometimes causes displacement while in other cases has little effect; (7) the microbiota in the mosquito also has important effects on level of susceptibility to arboviral infection; (8) resistance to virus infection due to the microbiota may be direct (e.g., bacteria producing antiviral proteins) or indirect in activating the mosquito host innate immune system; (9) non-pathogenic insect specific viruses (ISVs) are also common in mosquitoes including genome insertions. These too have been shown to have an impact on the susceptibility of mosquitoes to pathogenic viruses. One clear conclusion is that it would be a great advance in this type of research to implement standardized procedures in order to obtain comparable and reproducible results.
Author Souza-Neto, Jayme A.
Bonizzoni, Mariangela
Powell, Jeffrey R.
AuthorAffiliation c Yale University, New Haven, CT, USA
a São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Multiuser Central Laboratory, Botucatu, Brazil
b São Paulo State University (UNESP), Institute of Biotechnology, Botucatu, Brazil
d Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
AuthorAffiliation_xml – name: c Yale University, New Haven, CT, USA
– name: d Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
– name: a São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Multiuser Central Laboratory, Botucatu, Brazil
– name: b São Paulo State University (UNESP), Institute of Biotechnology, Botucatu, Brazil
Author_xml – sequence: 1
  givenname: Jayme A.
  surname: Souza-Neto
  fullname: Souza-Neto, Jayme A.
  organization: São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Multiuser Central Laboratory, Botucatu, Brazil
– sequence: 2
  givenname: Jeffrey R.
  surname: Powell
  fullname: Powell, Jeffrey R.
  organization: Yale University, New Haven, CT, USA
– sequence: 3
  givenname: Mariangela
  surname: Bonizzoni
  fullname: Bonizzoni, Mariangela
  email: m.bonizzoni@unipv.it
  organization: Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30465912$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rGzEQxUVJaT7a_yCEPebizYy0H9ocAiakbSDQS3sWsjTryuyuHEl2yH8fGbuhzaE5aUDvPd7M75QdTX4ixs4RSgRsrlblSLR0tuSAskQsAboP7ATrpp21vG6PDjOKSh6z0xhXANgCl5_YsYCqqTvkJwznZCkWmpbP6-SKLZnkQ2H8uKZEk6Eipo11FK-LeRFo6-jpM_vY6yHSl8N7xn59vft5-3328OPb_e38YWaqrkkzzXXXS-JUC8n7VvccBaAgIWtsOCchuOYLuwDII6KFBeiOa9tnPcq6FWfsZp-73ixGsoamFPSg1sGNOjwrr53692dyv9XSb5VEUXcgc8DlISD4xw3FpEYXDQ2DnshvouKcI-QyDX9fiqKtGpQVZOnF37Ve-_w5aRZUe4EJPsZA_asEQe3IqZXak1M7cgpRZXLZdv3GZlzSyfndcm54z3y4FWUgGVJQ0bgdPutCJqqsd_8PeAFjnrTy
CitedBy_id crossref_primary_10_1128_mSphere_00271_21
crossref_primary_10_1186_s13568_025_01850_4
crossref_primary_10_3390_v11090867
crossref_primary_10_1093_icb_icad123
crossref_primary_10_3390_microorganisms10071398
crossref_primary_10_1016_j_indcrop_2022_115878
crossref_primary_10_1590_0001_3765202120200058
crossref_primary_10_1186_s12992_021_00760_x
crossref_primary_10_1371_journal_pntd_0008705
crossref_primary_10_3390_insects15060393
crossref_primary_10_3390_v14102088
crossref_primary_10_1371_journal_ppat_1010694
crossref_primary_10_1155_2022_7425322
crossref_primary_10_3390_v13112232
crossref_primary_10_1371_journal_pntd_0007162
crossref_primary_10_1371_journal_pntd_0008250
crossref_primary_10_1016_j_jinsphys_2024_104726
crossref_primary_10_3390_pathogens11030373
crossref_primary_10_1093_pnasnexus_pgac203
crossref_primary_10_1590_0102_311xpt090022
crossref_primary_10_4103_0972_9062_331413
crossref_primary_10_1002_ps_5763
crossref_primary_10_3390_insects11120848
crossref_primary_10_1016_j_celrep_2023_112257
crossref_primary_10_1042_ETLS20180123
crossref_primary_10_1021_acs_jafc_0c07118
crossref_primary_10_1093_jme_tjae092
crossref_primary_10_3390_molecules27175699
crossref_primary_10_1007_s11356_020_09278_y
crossref_primary_10_1007_s10841_022_00431_1
crossref_primary_10_1093_jme_tjaa292
crossref_primary_10_2987_22_7084
crossref_primary_10_1016_j_actatropica_2021_106014
crossref_primary_10_1038_s41598_025_94529_6
crossref_primary_10_3390_microorganisms12091899
crossref_primary_10_3389_fbioe_2022_871703
crossref_primary_10_3390_pathogens12010031
crossref_primary_10_12688_f1000research_125318_2
crossref_primary_10_1038_s41467_024_52566_1
crossref_primary_10_3390_v12070698
crossref_primary_10_1590_0037_8682_0280_2023
crossref_primary_10_3390_microorganisms12102038
crossref_primary_10_1093_infdis_jiaa563
crossref_primary_10_1007_s11356_020_08998_5
crossref_primary_10_1186_s13071_020_04181_4
crossref_primary_10_1016_j_cois_2023_101141
crossref_primary_10_3889_oamjms_2022_7038
crossref_primary_10_3390_insects14040328
crossref_primary_10_1093_jme_tjaf002
crossref_primary_10_3390_v14050880
crossref_primary_10_3390_insects11110735
crossref_primary_10_1186_s13071_022_05473_7
crossref_primary_10_1016_j_ibmb_2022_103815
crossref_primary_10_1016_j_meegid_2024_105647
crossref_primary_10_1186_s13071_020_04054_w
crossref_primary_10_1093_jisesa_ieaa060
crossref_primary_10_1111_febs_15524
crossref_primary_10_1063_5_0204336
crossref_primary_10_1590_0074_02760200271
crossref_primary_10_1016_j_ijbiomac_2022_10_158
crossref_primary_10_1093_jambio_lxae261
crossref_primary_10_3390_v16091387
crossref_primary_10_1016_j_jinsphys_2022_104367
crossref_primary_10_1016_j_pt_2019_09_006
crossref_primary_10_1038_s41437_022_00553_x
crossref_primary_10_1080_23748834_2021_1899486
crossref_primary_10_1093_femsre_fuab045
crossref_primary_10_1371_journal_pntd_0012792
crossref_primary_10_3389_fitd_2023_1035273
crossref_primary_10_3390_v13091822
crossref_primary_10_1186_s13071_021_04816_0
crossref_primary_10_1214_22_EJP739
crossref_primary_10_1186_s13071_020_4002_x
crossref_primary_10_1111_eva_12802
crossref_primary_10_3390_pharmaceutics16101337
crossref_primary_10_1186_s13071_024_06334_1
crossref_primary_10_1007_s10661_023_11174_0
crossref_primary_10_1186_s13071_023_05784_3
crossref_primary_10_3390_v12080823
crossref_primary_10_1101_pdb_top107698
crossref_primary_10_1038_s41597_022_01741_4
crossref_primary_10_1186_s13071_021_04633_5
crossref_primary_10_1371_journal_pntd_0008163
crossref_primary_10_3389_fcimb_2024_1496126
crossref_primary_10_7759_cureus_76401
crossref_primary_10_1038_s41467_022_35407_x
crossref_primary_10_1186_s13071_024_06295_5
crossref_primary_10_1038_s41598_019_52687_4
crossref_primary_10_3389_fmicb_2021_624170
crossref_primary_10_3389_fgene_2022_867231
crossref_primary_10_3390_pathogens11080879
crossref_primary_10_3390_pathogens9050404
crossref_primary_10_1371_journal_pntd_0009815
crossref_primary_10_1016_j_scitotenv_2024_174847
crossref_primary_10_1186_s13071_024_06300_x
crossref_primary_10_1186_s13071_024_06598_7
crossref_primary_10_1371_journal_ppat_1011727
crossref_primary_10_1111_mve_12653
crossref_primary_10_1016_j_cois_2021_10_007
crossref_primary_10_1371_journal_pone_0288994
crossref_primary_10_3389_fgene_2019_01266
crossref_primary_10_1016_j_actatropica_2024_107507
crossref_primary_10_3390_pathogens9100848
crossref_primary_10_1186_s13071_022_05231_9
crossref_primary_10_1186_s13071_022_05401_9
crossref_primary_10_1038_s41597_024_03432_8
crossref_primary_10_1016_j_cris_2022_100047
crossref_primary_10_3389_fvets_2023_1137392
crossref_primary_10_1038_s41598_024_61573_7
crossref_primary_10_3390_insects13040377
crossref_primary_10_1002_vms3_1580
crossref_primary_10_1186_s13690_024_01412_3
crossref_primary_10_1177_1934578X251327827
crossref_primary_10_3390_pathogens12050680
crossref_primary_10_1016_j_isci_2020_101486
crossref_primary_10_15212_ZOONOSES_2021_0017
crossref_primary_10_1155_2022_6371274
crossref_primary_10_1016_j_ijregi_2025_100612
crossref_primary_10_3390_insects16010033
crossref_primary_10_3389_fitd_2024_1416187
crossref_primary_10_1186_s13071_022_05156_3
crossref_primary_10_1007_s13337_022_00795_7
crossref_primary_10_1016_j_ebiom_2023_104660
crossref_primary_10_1186_s13071_023_05724_1
crossref_primary_10_1371_journal_pntd_0007985
crossref_primary_10_1186_s13071_022_05414_4
crossref_primary_10_3233_MGC_220003
crossref_primary_10_3390_pathogens9040265
crossref_primary_10_1166_jnn_2021_19471
crossref_primary_10_1371_journal_pone_0233309
crossref_primary_10_1007_s00248_020_01544_3
crossref_primary_10_1038_s42003_024_07435_4
crossref_primary_10_1016_j_actatropica_2022_106470
crossref_primary_10_3389_fimmu_2024_1434003
crossref_primary_10_1016_j_actatropica_2024_107325
crossref_primary_10_15212_ZOONOSES_2021_0002
crossref_primary_10_1016_j_celrep_2022_110648
crossref_primary_10_3390_molecules27051456
crossref_primary_10_3389_fmicb_2019_02036
crossref_primary_10_1111_mve_12712
crossref_primary_10_1186_s13071_024_06137_4
crossref_primary_10_3390_ijerph17061830
crossref_primary_10_1371_journal_pntd_0008303
crossref_primary_10_3390_v15030779
crossref_primary_10_1007_s12602_024_10430_0
crossref_primary_10_1016_j_jphotobiol_2024_112893
crossref_primary_10_1038_s41467_024_45116_2
crossref_primary_10_1371_journal_pntd_0012110
crossref_primary_10_1002_cbdv_202100145
crossref_primary_10_1016_j_jip_2024_108094
crossref_primary_10_3389_fcimb_2023_1242173
crossref_primary_10_1186_s13071_022_05558_3
crossref_primary_10_1089_vbz_2024_0004
crossref_primary_10_3390_v16121868
crossref_primary_10_1186_s40168_021_01073_2
crossref_primary_10_1186_s13059_020_02141_w
crossref_primary_10_3390_v15030770
crossref_primary_10_1007_s10530_024_03298_2
crossref_primary_10_1093_gbe_evae092
crossref_primary_10_1016_j_onehlt_2025_100991
crossref_primary_10_1186_s13071_020_04218_8
crossref_primary_10_1371_journal_pntd_0011811
crossref_primary_10_1007_s10682_022_10197_2
crossref_primary_10_3390_microorganisms12010004
crossref_primary_10_47352_jmans_2774_3047_225
crossref_primary_10_1101_pdb_top107651
crossref_primary_10_1093_jme_tjad041
crossref_primary_10_1093_ve_vead041
crossref_primary_10_3390_pathogens10010039
crossref_primary_10_1016_j_meegid_2022_105296
crossref_primary_10_1002_cbdv_202200210
crossref_primary_10_1038_s41598_024_60662_x
crossref_primary_10_1002_cbdv_202300823
crossref_primary_10_3390_life11070615
crossref_primary_10_1016_j_actatropica_2023_106832
crossref_primary_10_1007_s11756_024_01852_w
crossref_primary_10_3389_fcimb_2022_1042735
crossref_primary_10_1128_jvi_00695_23
crossref_primary_10_1038_s42003_020_01614_9
crossref_primary_10_3390_insects9040139
crossref_primary_10_1073_pnas_2411758122
crossref_primary_10_3390_molecules27227961
crossref_primary_10_1007_s42690_023_01097_1
crossref_primary_10_1016_j_cois_2022_100920
crossref_primary_10_1080_00222933_2021_1923850
crossref_primary_10_1186_s13071_023_05729_w
crossref_primary_10_1186_s40850_022_00124_x
crossref_primary_10_1371_journal_pone_0310635
crossref_primary_10_3390_v12121349
crossref_primary_10_1155_2024_4123543
crossref_primary_10_1007_s11030_024_10899_5
crossref_primary_10_1186_s13071_021_04726_1
crossref_primary_10_1371_journal_ppat_1010939
crossref_primary_10_1093_infdis_jiab066
crossref_primary_10_1111_mve_12593
crossref_primary_10_1371_journal_pntd_0012280
crossref_primary_10_3390_v14061132
crossref_primary_10_1016_j_ecoinf_2021_101351
crossref_primary_10_1016_j_aspen_2024_102233
crossref_primary_10_7717_peerj_cs_2443
crossref_primary_10_3390_pathogens11030317
crossref_primary_10_1136_bmjopen_2020_040735
crossref_primary_10_1371_journal_pntd_0007930
crossref_primary_10_3390_pathogens10050525
crossref_primary_10_3390_v17020158
crossref_primary_10_1038_s41598_024_71507_y
crossref_primary_10_32712_2446_4775_2024_1619
crossref_primary_10_3390_microorganisms9081653
crossref_primary_10_1016_j_foodres_2019_05_011
crossref_primary_10_3390_tropicalmed6020104
crossref_primary_10_3390_pathogens10010078
crossref_primary_10_1186_s13071_020_04204_0
crossref_primary_10_3389_fmicb_2022_891151
crossref_primary_10_1371_journal_pcbi_1009102
crossref_primary_10_1186_s13071_024_06189_6
crossref_primary_10_1016_j_actatropica_2020_105472
crossref_primary_10_1038_s42003_024_05830_5
crossref_primary_10_3390_ani14142019
crossref_primary_10_1016_j_rsase_2021_100554
crossref_primary_10_1371_journal_pntd_0009548
crossref_primary_10_3389_fitd_2021_708817
crossref_primary_10_3390_ijerph16132399
crossref_primary_10_1371_journal_pntd_0007590
crossref_primary_10_3389_fmicb_2023_1208633
crossref_primary_10_3390_pathogens12050718
crossref_primary_10_1371_journal_pntd_0011616
crossref_primary_10_1093_infdis_jiab049
crossref_primary_10_1016_j_imu_2024_101446
crossref_primary_10_1038_s41467_023_44444_z
crossref_primary_10_1089_vim_2019_0051
crossref_primary_10_1016_j_actatropica_2023_106893
crossref_primary_10_1016_j_jinsphys_2021_104232
crossref_primary_10_1038_s42003_021_02236_5
crossref_primary_10_1186_s12879_024_09878_w
crossref_primary_10_3390_v16040525
crossref_primary_10_3390_pathogens13080691
crossref_primary_10_3390_pathogens10080938
crossref_primary_10_1016_j_jtherbio_2020_102637
crossref_primary_10_3390_pathogens13100909
crossref_primary_10_1038_s41598_024_64221_2
crossref_primary_10_1093_jtm_taae049
crossref_primary_10_1371_journal_pone_0273774
crossref_primary_10_3390_sym15040845
crossref_primary_10_46471_gigabyte_55
crossref_primary_10_12688_wellcomeopenres_18868_2
crossref_primary_10_1186_s13071_020_04497_1
crossref_primary_10_1111_mve_12484
crossref_primary_10_12688_wellcomeopenres_18868_1
crossref_primary_10_1016_j_actatropica_2018_12_013
crossref_primary_10_1016_j_jobb_2023_12_003
crossref_primary_10_1016_j_jtbi_2023_111654
crossref_primary_10_1093_jme_tjac148
crossref_primary_10_1016_j_envres_2021_111718
crossref_primary_10_1371_journal_pntd_0007346
crossref_primary_10_1016_j_jiph_2024_04_026
Cites_doi 10.1186/s12864-017-3903-3
10.1093/jmedent/36.4.508
10.1590/S0074-02762002000300031
10.4269/ajtmh.1985.34.603
10.1371/journal.pntd.0005860
10.1186/s13071-015-0706-8
10.1186/s40168-018-0435-2
10.1016/j.meegid.2014.09.029
10.1186/s13071-014-0595-2
10.7717/peerj.4324
10.1603/ME11293
10.3390/v10030118
10.1128/JVI.00370-14
10.1111/mec.13866
10.1126/science.aak9691
10.1111/mve.12322
10.1586/14760584.2015.1083430
10.1371/journal.pntd.0001792
10.1073/pnas.1502036112
10.3389/fmicb.2015.00970
10.4269/ajtmh.12-0488
10.4269/ajtmh.1985.34.1219
10.4269/ajtmh.2011.11-0061
10.1371/journal.pone.0092971
10.1371/journal.ppat.1006391
10.1126/science.1184008
10.1099/vir.0.81475-0
10.1371/journal.pone.0190352
10.1590/0074-02760150363
10.1111/mec.12771
10.1016/S0035-9203(99)90056-1
10.4269/ajtmh.1998.58.578
10.1093/jmedent/30.3.524
10.1186/s12879-015-1231-2
10.1016/S0035-9203(03)00006-3
10.1371/journal.pntd.0006443
10.1371/journal.pone.0194108
10.1186/s13071-017-2319-x
10.1126/sciadv.1700585
10.1371/journal.pntd.0005101
10.1371/journal.ppat.1001320
10.1371/journal.pntd.0005654
10.1186/s12879-016-1666-0
10.1186/1471-2148-9-160
10.1016/0035-9203(56)90029-3
10.1016/j.jcv.2012.07.004
10.1371/journal.pntd.0002208
10.1371/journal.ppat.1002588
10.1016/j.coviro.2015.08.011
10.1371/journal.pntd.0001561
10.1371/journal.pntd.0005724
10.1371/journal.pntd.0003153
10.4269/ajtmh.1998.59.965
10.3201/eid2304.161484
10.1371/journal.pntd.0002295
10.1016/j.coviro.2016.09.008
10.3390/v4010062
10.1111/tmi.12846
10.1016/j.pt.2017.12.004
10.4269/ajtmh.2011.11-0359
10.1016/j.coviro.2011.07.004
10.1017/S0016672303006463
10.1371/journal.pntd.0006599
10.1111/mec.13877
10.1016/j.coviro.2015.08.007
10.1016/j.ijid.2014.03.413
10.1371/journal.pone.0005895
10.1016/j.cois.2017.05.010
10.1016/j.trstmh.2008.07.025
10.1111/jvec.12116
10.1016/j.actatropica.2012.07.006
10.1111/eva.12360
10.1016/j.pt.2017.11.011
10.1111/mve.12237
10.2807/1560-7917.ES.2016.21.35.30328
10.3390/v7092851
10.1038/s41598-017-05186-3
10.1007/s00436-013-3428-x
10.1016/S0035-9203(02)90326-3
10.1016/j.trstmh.2012.02.007
10.1073/pnas.1516410112
10.2807/1560-7917.ES.2017.22.2.30437
10.1016/j.cub.2017.09.067
10.1038/emi.2017.8
10.4269/ajtmh.13-0186
10.4269/ajtmh.17-0866
10.1016/j.cois.2014.07.004
10.3390/v7072795
10.4269/ajtmh.1985.34.1225
10.1016/j.actatropica.2013.08.006
10.1603/033.046.0228
10.1016/j.trstmh.2008.02.010
10.1371/journal.pntd.0006637
10.1371/journal.pntd.0003462
10.1016/j.dci.2016.11.022
10.2807/1560-7917.ES.2016.21.18.30223
10.3390/ijms18112384
10.1186/s12985-016-0566-7
10.1016/j.dci.2016.01.015
10.1093/jmedent/16.1.59
10.1371/journal.pntd.0004543
10.1128/JVI.00009-17
10.1016/j.virol.2015.05.009
10.1371/journal.ppat.1000098
10.1371/journal.pntd.0006524
10.1038/s41598-018-26680-2
10.1186/1756-3305-7-320
10.1603/0022-2585-38.2.130
10.1111/j.1365-2915.2007.00699.x
10.1186/s13071-017-2422-z
10.1016/j.chom.2016.04.021
10.4269/ajtmh.1976.25.336
10.1186/1471-2334-13-610
10.4269/ajtmh.16-0865
10.1371/journal.ppat.1004398
10.1371/journal.pntd.0000408
10.1371/journal.pntd.0004959
10.7774/cevr.2017.6.2.104
10.1089/vbz.2011.0660
10.1590/0074-02760180290
10.4269/ajtmh.2001.65.491
10.1186/s12866-015-0475-8
10.4269/ajtmh.2002.67.85
10.3201/eid2307.161633
10.1590/0074-02760170145
10.1089/vbz.2016.2040
10.1093/infdis/jix405
10.1603/0022-2585-40.6.950
10.1186/s13071-017-2101-0
10.2987/5645.1
10.1016/0035-9203(93)90271-Q
10.1089/vbz.2011.0937
10.1111/tmi.12373
10.1111/j.1365-3156.2010.02613.x
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.meegid.2018.11.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1567-7257
EndPage 209
ExternalDocumentID PMC8135908
30465912
10_1016_j_meegid_2018_11_009
S1567134818307159
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U01 AI115595
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AAAJQ
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATLK
AAXUO
ABBQC
ABFNM
ABFRF
ABGRD
ABGSF
ABLVK
ABMAC
ABMZM
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFPKN
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSH
SSI
SSU
SSZ
T5K
UHS
UNMZH
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
EFKBS
ID FETCH-LOGICAL-c496t-a2a9f8e2e5382f7af213013e3851622e332a2bdb00e3311d0b0a92adf53818573
IEDL.DBID .~1
ISSN 1567-1348
1567-7257
IngestDate Thu Aug 21 18:21:43 EDT 2025
Fri Jul 11 09:10:12 EDT 2025
Fri Jul 11 10:55:32 EDT 2025
Thu Apr 03 07:00:56 EDT 2025
Thu Apr 24 23:06:13 EDT 2025
Tue Jul 01 03:46:18 EDT 2025
Fri Feb 23 02:41:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-a2a9f8e2e5382f7af213013e3851622e332a2bdb00e3311d0b0a92adf53818573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1567134818307159
PMID 30465912
PQID 2137461840
PQPubID 23479
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8135908
proquest_miscellaneous_2221051662
proquest_miscellaneous_2137461840
pubmed_primary_30465912
crossref_primary_10_1016_j_meegid_2018_11_009
crossref_citationtrail_10_1016_j_meegid_2018_11_009
elsevier_sciencedirect_doi_10_1016_j_meegid_2018_11_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Infection, genetics and evolution
PublicationTitleAlternate Infect Genet Evol
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ye, Ng, Frentiu, Walker, Van Den Hurk (bb0740) 2014; 90
Guedes, Paiva, Donato (bb0280) 2017
Wang, Chang, Wang, Zheng, Zou (bb0710) 2017
Xi, Ramirez, Dimopoulos (bb0735) 2008; 4
Rückert, Ebel (bb0580) 2018; 34
Beck, Barrett (bb0025) 2015; 14
Dubrulle, Mousson, Moutailler, Vazeille, Failloux (bb0190) 2009; 4
Franz, Kantor, Passarelli, Clem (bb0230) 2015; 7
Knox, Kay, Hall, Ryan (bb0345) 2003; 40
Vazeille, Gaborit, Mousson, Girod, Failloux (bb0685) 2016; 16
Coon, Brown, Strand (bb0130) 2016; 25
Chouin-Carneiro, Vega-Rua, Vazeille (bb0100) 2016; 10
Hall-Mendelin, Pyke, Moore (bb0300) 2016; 10
Fansiri, Pongsiri, Klungthong, Ponlawat, Thaisomboonsuk, Jarman (bb0215) 2016; 9
Gimonneau, Tchioffo, Abate, Boissière, Awono-Ambene, Nsango, Christen, Morlais (bb0245) 2014; 28
Lourenco-De-Oliveira, Vazeille, Bispo De Filippis, Failloux (bb0385) 2002; 97
Kauffman, Kramer (bb0330) 2017; 216
Dodson, Pujhari, Rasgon (bb0185) 2018; 6
Richard, Paoaafaite, Cao-Lormeau (bb0545) 2016; 10
Bosio, Beaty, Black (bb0050) 1998; 59
Dennison, Jupatanakul, Dimopoulos (bb0155) 2014; 3
Ngoagouni, Kamgang, Kazanji, Paupy, Nakouné (bb0455) 2017; 10
Calvez, Mousson, Vazeille, O'Connor, Cao-Lormeau, Mathieu-Daudé, Pocquet, Failloux, Dupont-Rouzeyrol (bb0065) 2018; 12
Van Den Hurk, McElroy, Pyke, McGee, Hall-Mendelin (bb0670) 2011; 85
Na, Yeom, Choi, Yook, Song (bb0440) 2017; 6
Boccolini, Toma, Luca, Severini, Romi, Remoli, Sabbatucci, Venturi, Rezza, Fortuna (bb2555) 2016; 21
Vasilakis, Tesh (bb0675) 2015; 15
Serrato, Caicedo, Orobio, Lowenberger, Ocampo (bb0610) 2017; 31
Rosen, Roseboom, Gubler, Lien, Chaniotis (bb0565) 1985; 34
Short, van Tol, MacLeod, Dimopoulos (bb0615) 2018; 8
Dutra, Rocha, Dias, Mansur, Caragata (bb0205) 2016; 19
Mitchell, Miller, Gubler (bb0425) 1987; 3
Kenney, Romo, Duggal (bb0340) 2017; 96
Nasar, Erasmus, Haddow, Tesh, Weaver (bb0450) 2015; 484
Gonçalves, Melo, Bezerra, Chaves, Silva, Silva (bb0270) 2014; 7
Guégan, Zouache, Démichel, Minard, Potier, Mavingui, Moro (bb0285) 2018; 6
Ryckebusch, Berthet, Missé, Choumet (bb0590) 2017; 18
Sim, Jupatanakul, Ramirez, Kang, Romero-Vivas (bb0620) 2013; 7
Tsetsarkin, Chen, Sherman, Weaver (bb0655) 2011; 1
Bancroft (bb0020) 1906; 25
Lourenço-De-Oliveira, Rua, Vezzani, Willat, Vazeille (bb0395) 2013; 13
Diallo, Ba, Faye, Soumare, Dia, Sall (bb0170) 2008; 102
da Moura, De Melo Santos, Oliveira, Guedes, De Carvalho-Leandro (bb0150) 2015; 8
Dickson, Jiolle, Minard, Moltini-Conclois, Volant, Ghozlane, Bouchier, Ayala, Paupy, Valiente Moro, Lambrechts (bb0180) 2017; 3
Weger-Lucarelli, Rückert, Chotiwan, Nguyen, Garcia Luna, Fauver, Foy, Perera, Black, Kading, Ebel (bb0725) 2016; 10
Lambrechts, Chevillon, Albright, Thaisomboonsuk, Richardson (bb0360) 2009; 9
Minard, Tran, Van, Goubert, Bellet, Lambert, Kim, Thuy, Mavingui, Valiente Moro (bb0420) 2015; 6
Bolling, Weaver, Tesh, Vasilakis (bb0035) 2015; 7
Li, Guo, Deng, Xing, Sun, Liu, Wu, Dong, Zhang, Zhang, Cao, Qin, Zhao (bb0375) 2017; 6
Poole-Smith, Hemme, Delorey, Felix, Gonzalez (bb0515) 2015; 9
Costa-Da-Silva, Ioshino, De Araújo, Kojin, De Andrade Zanotto (bb0140) 2017; 12
Ritchie, van den Hurk, Smout, Staunton, Hoffmann (bb0555) 2018; 34
Calvez, Guillaumot, Girault, Richard, O'Connor, Paoaafaite (bb0060) 2017; 10
Watson, Kay (bb0715) 1999; 36
Saraiva, Kang, Simões, Angleró-Rodríguez, Dimopoulos (bb0595) 2016; 64
Palmer, Varghese, van Rij (bb0475) 2018; 10
Charan, Pawar, Severson, Patole, Shouche (bb0080) 2013; 112
Coon, Vogel, Brown, Strand (bb0125) 2014; 23
Diagne, Diallo, Faye (bb0165) 2015; 15
Lourenco-De-Oliveira, Vazeille, de Filippis, Failloux (bb0390) 2004; 98
Tran, Vazeille-Falcoz, Mousson, Tran, Rodhain (bb0650) 1999; 93
Richards, Anderson, Alto (bb0550) 2012; 49
Göertz, Vogels, Geertsema, Koenraadt, Pijlman (bb0265) 2017; 11
Gould, Higgs (bb0275) 2009; 103
Palatini, Miesen, Carballar-Lejarazu, Ometto, Rizzo, Tu, van Rij, Bonizzoni (bb0470) 2017; 18
Marklewitz, Zirkel, Kurth, Drosten, Junglen (bb0405) 2015; 112
Vega-Rua, Zouache, Girod, Failloux, Lourenco-De-Oliveira (bb0690) 2014; 88
Boromisa, Rai, Grimstad (bb0045) 1987; 3
Cleton, Koopmans, Reimerink, Godeke, Reusken (bb0115) 2012; 55
Gaye, Faye, Diagne, Faye, Diallo, Weaver (bb0240) 2014; 19
Jupp, Kemp (bb0325) 1993; 87
Gloria-Soria, Armstrong, Powell, Turner (bb0260) 2017; 284
Pérez-Castro, Castellanos, Olano, Matiz, Jaramillo, Vargas, Sarmiento, Stenstrom, Overgaard (bb0490) 2016; 111
Richard, Paoaafaite, Cao-Lormeau (bb0540) 2016; 10
Whitfield, Dolan, Kunitomi, Tassetto, Seetin, Oh, Heiner, Paxinos, Andino (bb0730) 2017; 27
Bennett, Olson, Muno, Fernandez-Salas, Farfan (bb0030) 2002; 67
Li, Wong, Ng, Tan (bb0370) 2012; 6
Smith, Battle, Hay, Barker, Scott, McKenzie (bb0625) 2012; 8
Fish (bb0225) 2008; 2008
Cornet, Robin (bb0135) 1979; 17
Reed, Carroll (bb0535) 1901; 27
Ramirez, Souza-Neto, Torres Cosme, Rovira, Ortiz, Pascale, Dimopoulos (bb0525) 2012; 6
Turell, Lee, Richardson, Sang, Kioko, Agawo, Pecor, O'Guinn (bb0665) 2007; 23
Alto, Smartt, Shin, Bettinardi, Malicoate, Anderson (bb0010) 2014; 39
Tabachnick (bb0635) 2016; 21
Powell (bb0520) 2018; 98
Paupy, Chantha, Vazeille, Reynes, Rodhain (bb0485) 2003; 82
Buckner, Alto, Lounibus (bb0055) 2013; 31
Chen, Jiang, Gu, Xu, Wu, Deng, Zhang, Bonizzoni, Dermauw, Vontas, Armbruster, Huang, Yang, Zhang, He, Peng, Liu, Wu, Chen, Liraki, Topalis, Van Leeuwen, Hall, Jiang, Thorpe, Mueller, Sun, Waterhouse, Yan, Tu, Fang, James (bb0090) 2015; 112
Rodgers, Gendrin, Wyer, Christophides (bb0560) 2017; 13
Wiggins, Eastmond, Alto (bb3555) 2018; 32
Dupont-Rouzeyrol, Caro, Guillaumot, Vazeille, D'Ortenzio (bb0200) 2012; 12
Roundy, Azar, Rossi, Huang, Leal, Yun, Fernandez-Salas, Vitek, Paploski, Kitron, Ribeiro, Hanley, Weaver, Vasilakis (bb0575) 2017; 23
Ellis, Sang, Horne, Higgs, Wesso (bb0210) 2012; 106
Vazeille, Mousson, Rakatoarivony, Villeret, Rodhain (bb0680) 2001; 65
Hedge, Rasgon, Huges (bb0305) 2015; 15
Rückert, Weger-Lucarelli, Garcia-Luna, Young, Byas (bb0585) 2017; 8
Kumar, Molina-Cruz, Gupta, Rodrigues, Barillas-Mury (bb0355) 2010; 327
Muturi, Buckner, Bara (bb0435) 2017; 22
Garcia-Luna, Weger-Lucarelli, Rückert, Murrieta, Young, Byas, Fauver, Perera, Flores-Suarez, Ponce-Garcia, Rodriguez, Ebel, Black (bb0235) 2018; 12
Pham Thi, Briant, Gavotte, Labbe, Perriat-Sanguinet (bb0500) 2017; 10
Johnson, Chambers, Crabtree, Filippis, Vilarinhos (bb0320) 2002
Ramirez, Short, Bahia, Saraiva, Dong, Kang, Tripathi, Mlambo, Dimopoulos (bb0530) 2014; 10
Pesko, Westbrook, Mores, Lounibos, Reiskin (bb0495) 2009; 46
Long, Ziegler, Thangamani, Hausser, Kochel (bb0380) 2011; 85
Kay, Carley, Fanning, Fillipic (bb0335) 1979; 16
Di Luca, Severini, Toma (bb0160) 2016; 21
Hall, Bielefeldt-Ohmann, McLean, O'Brien, Colmant, Piyasena, Harrison, Newton, Barnard, Prow, Deerain, Mah, Hobson-Peters (bb0295) 2017; 12
Villegas, Campolina, Barnabe, Orfanó, Chaves, Norris (bb0695) 2018; 13
Carvalho-Leandro, Ayres, Guedes, Suesdek, Melo-Santos, Oliveira (bb0075) 2012; 124
Sylla, Bosio, Urdaneta-Marquez, Ndiaye, Black (bb0630) 2009; 3
Tabachnick, Wallis, Aitken, Miller, Amato (bb0640) 1985; 34
Chow, Chan, Yong, Lee, Lim, Chung, Lam-Phua, Tan (bb0105) 1998; 58
Girod, Gaborit, Marrama, Etienne, Ramdini (bb0250) 2011; 16
Boorman, Porterfield (bb0040) 1956; 50
Padilha, Resck, Cunha, Teles-de-Freitas, Campos, Sorgine, Lourenco-de-Oliveira, Farnesi L.C., Bruno (bb4555) 2018; 113
Guo, Zhu, Li, Dong, De Zhang, Xing (bb0290) 2013; 128
Gloria-Soria, A., Ayala, D., Bheecarry, A., Calderon-Arguedas, O., Chadee, D.D., Chiappero, M., Coetzee, M., Bin Elahee, K.B., Fernandez-Salas, I., Kamal, H.A., Kamgang, B., Khater, E. I., Kramer, L.D., Kramer, V., Lopez-Solis, A., Lutomiah, J., Martins, A. Jr., Micieli, M.V., Paupy, C., Ponlawat, A., Rahola, N., Rasheed, S. B., Richardson, J. B., Saleh, A. A., Sanchez-Casas, R.M., Seixas, G., Sousa, C. A., Tabachnick, W.J., Troyo, A., Powell, J.R., 2016. Global genetic diversity of Aedes aegypti. Mol. Ecol. 25:5377–5395.
Agha, Chepkorir, Mulwa, Tigoi, Arum, Guarido (bb0005) 2017; 11
Thongrungkiat, Jirakanjanaki, Apiwathnasorn, Prummongkol, Samung (bb0645) 2003; 28
Cook, Bennett, Holmes, De Chesse, Moureau, de Lamballeri (bb0120) 2006; 87
Alto, Wiggins, Eastmond, Velez, Lounibos (bb0015) 2017; 11
Oliveira, Gonçalves, Lara, Dias, Gandara, Menna-Barreto, Edwards, Laurindo, Silva-Neto, Sorgine, Oliveira (bb0460) 2011; 7
Schneider, Mori, Romero-Severson, Chadee, Severson (bb0605) 2007; 21
Morrison, Diamond (bb0430) 2017; 91
Duguma, Hall, Rugman-Jones, Stouthamer, Terenius, Neufeld, Walton (bb0195) 2015; 15
Chepkorir, Lutomiah, Mutisya, Mulwa, Orindi (bb0095) 2014; 21
Couto-Lima, Madec, Bersot, Campos, Motta, Dos Santos (bb0145) 2017; 7
Zompi, Harris (bb0745) 2012; 4
Turell, Guinn, Dohm, Jones (bb0660) 2001; 38
Chen, Wei, Hsu, Chen (bb0085) 1993; 30
Saraiva, Fang, Kang, Angleró-Rodríguez, Dong, Dimopoulos (bb0600) 2018; 12
Heitmann, Jansen, Luhken (bb0310) 2017; 22
Mbaika, Lutomiah, Chepkorir, Mulwa, Khayeka-Wandabwa (bb0410) 2016; 13
Ciota, Bialosuknia, Zink (bb0110) 2017; 23
Fernandes, Campos, Ribeiro, Raphael, Bonaldo, Lourenço-De-Oliveira (bb0220) 2017; 112
Huber, Le Loan, Hoang, Tien, Rodhain, Failloux (bb0315) 2003; 34
Nasar, Haddow, Tesh, Weaver (bb0445) 2014; 7
Olson, Bonizzoni (bb0465) 2017; 22
Pike, Dong, Dizaji, Gacita, Mongodin, Dimopoulos (bb0505) 2017; 357
Main, Nicholson, Winokur, Steiner, Riemersma, Stuart, Takeshita, Krasnec, Barker, Coffey (bb0400) 2018; 12
Wang, Zhang, Zhang, Xing, Wu (bb0705) 2012; 12
Kramer, Scherer (bb0350) 1976; 25
Le Flohic, Porphyre, Barbazan, Gonzalez (bb0365) 2013; 7
Carrington, Seifert, Armijos, Lambrechts, Scott (bb0070) 2013; 88
Dickson, Sanchez-Vargas, Sylla, Fleming, Black (bb0175) 2014; 8
Pando-Robles, Batista (bb0480) 2017; 17
Pongsiri, Ponlawat, Thaisomboonsuk, Jarman, Scott (bb0510) 2014; 9
Wallis, Aitken, Beaty, Lorenz, Amato (bb0700) 1985; 34
Weaver (bb0720) 2006; 299
Medeiros, Costa, Branco, Sousa, Monteiro, Galvao, Azevedo, Fernandes, Araujo (bb0415) 2018; 13
Dennison (10.1016/j.meegid.2018.11.009_bb0155) 2014; 3
Fansiri (10.1016/j.meegid.2018.11.009_bb0215) 2016; 9
Marklewitz (10.1016/j.meegid.2018.11.009_bb0405) 2015; 112
Boromisa (10.1016/j.meegid.2018.11.009_bb0045) 1987; 3
Zompi (10.1016/j.meegid.2018.11.009_bb0745) 2012; 4
Richards (10.1016/j.meegid.2018.11.009_bb0550) 2012; 49
Lambrechts (10.1016/j.meegid.2018.11.009_bb0360) 2009; 9
Duguma (10.1016/j.meegid.2018.11.009_bb0195) 2015; 15
Tabachnick (10.1016/j.meegid.2018.11.009_bb0640) 1985; 34
Wiggins (10.1016/j.meegid.2018.11.009_bb3555) 2018; 32
Lourenco-De-Oliveira (10.1016/j.meegid.2018.11.009_bb0390) 2004; 98
Oliveira (10.1016/j.meegid.2018.11.009_bb0460) 2011; 7
Pando-Robles (10.1016/j.meegid.2018.11.009_bb0480) 2017; 17
Pérez-Castro (10.1016/j.meegid.2018.11.009_bb0490) 2016; 111
Guégan (10.1016/j.meegid.2018.11.009_bb0285) 2018; 6
Reed (10.1016/j.meegid.2018.11.009_bb0535) 1901; 27
Chen (10.1016/j.meegid.2018.11.009_bb0090) 2015; 112
Gonçalves (10.1016/j.meegid.2018.11.009_bb0270) 2014; 7
Jupp (10.1016/j.meegid.2018.11.009_bb0325) 1993; 87
Morrison (10.1016/j.meegid.2018.11.009_bb0430) 2017; 91
Van Den Hurk (10.1016/j.meegid.2018.11.009_bb0670) 2011; 85
Gloria-Soria (10.1016/j.meegid.2018.11.009_bb0260) 2017; 284
Bennett (10.1016/j.meegid.2018.11.009_bb0030) 2002; 67
Pongsiri (10.1016/j.meegid.2018.11.009_bb0510) 2014; 9
Turell (10.1016/j.meegid.2018.11.009_bb0660) 2001; 38
Whitfield (10.1016/j.meegid.2018.11.009_bb0730) 2017; 27
Hall-Mendelin (10.1016/j.meegid.2018.11.009_bb0300) 2016; 10
Li (10.1016/j.meegid.2018.11.009_bb0375) 2017; 6
Couto-Lima (10.1016/j.meegid.2018.11.009_bb0145) 2017; 7
Na (10.1016/j.meegid.2018.11.009_bb0440) 2017; 6
Diallo (10.1016/j.meegid.2018.11.009_bb0170) 2008; 102
Villegas (10.1016/j.meegid.2018.11.009_bb0695) 2018; 13
Gould (10.1016/j.meegid.2018.11.009_bb0275) 2009; 103
Ramirez (10.1016/j.meegid.2018.11.009_bb0530) 2014; 10
Ye (10.1016/j.meegid.2018.11.009_bb0740) 2014; 90
Chow (10.1016/j.meegid.2018.11.009_bb0105) 1998; 58
Chen (10.1016/j.meegid.2018.11.009_bb0085) 1993; 30
Vazeille (10.1016/j.meegid.2018.11.009_bb0680) 2001; 65
Boccolini (10.1016/j.meegid.2018.11.009_bb2555) 2016; 21
Buckner (10.1016/j.meegid.2018.11.009_bb0055) 2013; 31
Ciota (10.1016/j.meegid.2018.11.009_bb0110) 2017; 23
Kramer (10.1016/j.meegid.2018.11.009_bb0350) 1976; 25
Franz (10.1016/j.meegid.2018.11.009_bb0230) 2015; 7
Johnson (10.1016/j.meegid.2018.11.009_bb0320) 2002
Göertz (10.1016/j.meegid.2018.11.009_bb0265) 2017; 11
Palatini (10.1016/j.meegid.2018.11.009_bb0470) 2017; 18
Tsetsarkin (10.1016/j.meegid.2018.11.009_bb0655) 2011; 1
Paupy (10.1016/j.meegid.2018.11.009_bb0485) 2003; 82
Xi (10.1016/j.meegid.2018.11.009_bb0735) 2008; 4
Ritchie (10.1016/j.meegid.2018.11.009_bb0555) 2018; 34
Li (10.1016/j.meegid.2018.11.009_bb0370) 2012; 6
Cornet (10.1016/j.meegid.2018.11.009_bb0135) 1979; 17
Dodson (10.1016/j.meegid.2018.11.009_bb0185) 2018; 6
Charan (10.1016/j.meegid.2018.11.009_bb0080) 2013; 112
Weaver (10.1016/j.meegid.2018.11.009_bb0720) 2006; 299
Costa-Da-Silva (10.1016/j.meegid.2018.11.009_bb0140) 2017; 12
Powell (10.1016/j.meegid.2018.11.009_bb0520) 2018; 98
Lourenco-De-Oliveira (10.1016/j.meegid.2018.11.009_bb0385) 2002; 97
Padilha (10.1016/j.meegid.2018.11.009_bb4555) 2018; 113
Agha (10.1016/j.meegid.2018.11.009_bb0005) 2017; 11
Heitmann (10.1016/j.meegid.2018.11.009_bb0310) 2017; 22
Rodgers (10.1016/j.meegid.2018.11.009_bb0560) 2017; 13
Pesko (10.1016/j.meegid.2018.11.009_bb0495) 2009; 46
Richard (10.1016/j.meegid.2018.11.009_bb0540) 2016; 10
Cook (10.1016/j.meegid.2018.11.009_bb0120) 2006; 87
Poole-Smith (10.1016/j.meegid.2018.11.009_bb0515) 2015; 9
Short (10.1016/j.meegid.2018.11.009_bb0615) 2018; 8
Hedge (10.1016/j.meegid.2018.11.009_bb0305) 2015; 15
Thongrungkiat (10.1016/j.meegid.2018.11.009_bb0645) 2003; 28
Kenney (10.1016/j.meegid.2018.11.009_bb0340) 2017; 96
Rückert (10.1016/j.meegid.2018.11.009_bb0580) 2018; 34
Alto (10.1016/j.meegid.2018.11.009_bb0010) 2014; 39
Kauffman (10.1016/j.meegid.2018.11.009_bb0330) 2017; 216
Serrato (10.1016/j.meegid.2018.11.009_bb0610) 2017; 31
Schneider (10.1016/j.meegid.2018.11.009_bb0605) 2007; 21
Minard (10.1016/j.meegid.2018.11.009_bb0420) 2015; 6
Muturi (10.1016/j.meegid.2018.11.009_bb0435) 2017; 22
Ryckebusch (10.1016/j.meegid.2018.11.009_bb0590) 2017; 18
Weger-Lucarelli (10.1016/j.meegid.2018.11.009_bb0725) 2016; 10
Dubrulle (10.1016/j.meegid.2018.11.009_bb0190) 2009; 4
Dickson (10.1016/j.meegid.2018.11.009_bb0180) 2017; 3
Bancroft (10.1016/j.meegid.2018.11.009_bb0020) 1906; 25
Girod (10.1016/j.meegid.2018.11.009_bb0250) 2011; 16
da Moura (10.1016/j.meegid.2018.11.009_bb0150) 2015; 8
Calvez (10.1016/j.meegid.2018.11.009_bb0060) 2017; 10
Sylla (10.1016/j.meegid.2018.11.009_bb0630) 2009; 3
Lourenço-De-Oliveira (10.1016/j.meegid.2018.11.009_bb0395) 2013; 13
Guo (10.1016/j.meegid.2018.11.009_bb0290) 2013; 128
Alto (10.1016/j.meegid.2018.11.009_bb0015) 2017; 11
Hall (10.1016/j.meegid.2018.11.009_bb0295) 2017; 12
Saraiva (10.1016/j.meegid.2018.11.009_bb0595) 2016; 64
Wallis (10.1016/j.meegid.2018.11.009_bb0700) 1985; 34
Fish (10.1016/j.meegid.2018.11.009_bb0225) 2008; 2008
Kay (10.1016/j.meegid.2018.11.009_bb0335) 1979; 16
Olson (10.1016/j.meegid.2018.11.009_bb0465) 2017; 22
Nasar (10.1016/j.meegid.2018.11.009_bb0445) 2014; 7
Carrington (10.1016/j.meegid.2018.11.009_bb0070) 2013; 88
Chepkorir (10.1016/j.meegid.2018.11.009_bb0095) 2014; 21
Fernandes (10.1016/j.meegid.2018.11.009_bb0220) 2017; 112
Mbaika (10.1016/j.meegid.2018.11.009_bb0410) 2016; 13
Palmer (10.1016/j.meegid.2018.11.009_bb0475) 2018; 10
Richard (10.1016/j.meegid.2018.11.009_bb0545) 2016; 10
Vazeille (10.1016/j.meegid.2018.11.009_bb0685) 2016; 16
Coon (10.1016/j.meegid.2018.11.009_bb0130) 2016; 25
Diagne (10.1016/j.meegid.2018.11.009_bb0165) 2015; 15
Gimonneau (10.1016/j.meegid.2018.11.009_bb0245) 2014; 28
Dutra (10.1016/j.meegid.2018.11.009_bb0205) 2016; 19
Gaye (10.1016/j.meegid.2018.11.009_bb0240) 2014; 19
Coon (10.1016/j.meegid.2018.11.009_bb0125) 2014; 23
Sim (10.1016/j.meegid.2018.11.009_bb0620) 2013; 7
Pham Thi (10.1016/j.meegid.2018.11.009_bb0500) 2017; 10
Bolling (10.1016/j.meegid.2018.11.009_bb0035) 2015; 7
Calvez (10.1016/j.meegid.2018.11.009_bb0065) 2018; 12
Tabachnick (10.1016/j.meegid.2018.11.009_bb0635) 2016; 21
Wang (10.1016/j.meegid.2018.11.009_bb0705) 2012; 12
Guedes (10.1016/j.meegid.2018.11.009_bb0280) 2017
Dickson (10.1016/j.meegid.2018.11.009_bb0175) 2014; 8
Rückert (10.1016/j.meegid.2018.11.009_bb0585) 2017; 8
Saraiva (10.1016/j.meegid.2018.11.009_bb0600) 2018; 12
Main (10.1016/j.meegid.2018.11.009_bb0400) 2018; 12
Rosen (10.1016/j.meegid.2018.11.009_bb0565) 1985; 34
Cleton (10.1016/j.meegid.2018.11.009_bb0115) 2012; 55
Le Flohic (10.1016/j.meegid.2018.11.009_bb0365) 2013; 7
Chouin-Carneiro (10.1016/j.meegid.2018.11.009_bb0100) 2016; 10
Medeiros (10.1016/j.meegid.2018.11.009_bb0415) 2018; 13
10.1016/j.meegid.2018.11.009_bb0255
Wang (10.1016/j.meegid.2018.11.009_bb0710) 2017
Nasar (10.1016/j.meegid.2018.11.009_bb0450) 2015; 484
Ellis (10.1016/j.meegid.2018.11.009_bb0210) 2012; 106
Garcia-Luna (10.1016/j.meegid.2018.11.009_bb0235) 2018; 12
Pike (10.1016/j.meegid.2018.11.009_bb0505) 2017; 357
Carvalho-Leandro (10.1016/j.meegid.2018.11.009_bb0075) 2012; 124
Di Luca (10.1016/j.meegid.2018.11.009_bb0160) 2016; 21
Turell (10.1016/j.meegid.2018.11.009_bb0665) 2007; 23
Ramirez (10.1016/j.meegid.2018.11.009_bb0525) 2012; 6
Knox (10.1016/j.meegid.2018.11.009_bb0345) 2003; 40
Tran (10.1016/j.meegid.2018.11.009_bb0650) 1999; 93
Ngoagouni (10.1016/j.meegid.2018.11.009_bb0455) 2017; 10
Bosio (10.1016/j.meegid.2018.11.009_bb0050) 1998; 59
Vasilakis (10.1016/j.meegid.2018.11.009_bb0675) 2015; 15
Smith (10.1016/j.meegid.2018.11.009_bb0625) 2012; 8
Boorman (10.1016/j.meegid.2018.11.009_bb0040) 1956; 50
Beck (10.1016/j.meegid.2018.11.009_bb0025) 2015; 14
Mitchell (10.1016/j.meegid.2018.11.009_bb0425) 1987; 3
Kumar (10.1016/j.meegid.2018.11.009_bb0355) 2010; 327
Roundy (10.1016/j.meegid.2018.11.009_bb0575) 2017; 23
Watson (10.1016/j.meegid.2018.11.009_bb0715) 1999; 36
Huber (10.1016/j.meegid.2018.11.009_bb0315) 2003; 34
Dupont-Rouzeyrol (10.1016/j.meegid.2018.11.009_bb0200) 2012; 12
Vega-Rua (10.1016/j.meegid.2018.11.009_bb0690) 2014; 88
Long (10.1016/j.meegid.2018.11.009_bb0380) 2011; 85
References_xml – volume: 22
  start-page: 399
  year: 2017
  end-page: 406
  ident: bb0435
  article-title: Superinfection interference between dengue-2 and dengue-4 viruses in
  publication-title: Tropical Med. Int. Health
– volume: 103
  start-page: 109
  year: 2009
  end-page: 121
  ident: bb0275
  article-title: Impact of climate change and other factors on emerging arbovirus diseases
  publication-title: Trans. R. Soc. Trop. Med. Hyg.
– volume: 7
  year: 2011
  ident: bb0460
  article-title: Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota
  publication-title: PLoS Pathog.
– volume: 15
  start-page: 492
  year: 2015
  ident: bb0165
  article-title: Potential of selected Senegalese
  publication-title: BMC Infect. Dis.
– volume: 59
  start-page: 965
  year: 1998
  end-page: 970
  ident: bb0050
  article-title: Quantitative genetics of vector competence for dengue-2 virus in
  publication-title: Am. J. Trop. Med. Hyg.
– volume: 30
  start-page: 524
  year: 1993
  end-page: 530
  ident: bb0085
  article-title: Vector competence of
  publication-title: J. Med. Entomol.
– volume: 8
  start-page: 1
  year: 2015
  end-page: 9
  ident: bb0150
  article-title: Vector competence of the
  publication-title: Parasit. Vectors
– volume: 21
  start-page: 30328
  year: 2016
  ident: bb2555
  publication-title: Euro. Surveill.
– start-page: 69
  year: 2017
  ident: bb0280
  article-title: Zika virus replication in the mosquito
  publication-title: Emerg Microbes Infect
– volume: 31
  start-page: 312
  year: 2017
  end-page: 319
  ident: bb0610
  article-title: Vector competence and innate immune responses to dengue virus infection in selected laboratory and field-collected Stegomyia aegypti (=
  publication-title: Med. Vet. Entomol.
– volume: 10
  year: 2016
  ident: bb0725
  article-title: Vector Competence of American Mosquitoes for three Strains of Zika Virus
  publication-title: PLoS Negl. Trop. Dis.
– volume: 4
  start-page: 62
  year: 2012
  end-page: 82
  ident: bb0745
  article-title: Animal models of dengue virus infection
  publication-title: Viruses
– volume: 21
  year: 2016
  ident: bb0160
  article-title: Experimental studies of susceptibility of Italian
  publication-title: Euro Surveill.
– volume: 12
  start-page: 1036
  year: 2012
  end-page: 1041
  ident: bb0200
  article-title: Chikungunya Virus and the Mosquito Vector
  publication-title: Vector-Borne Zoon Dis
– volume: 102
  start-page: 493
  year: 2008
  end-page: 498
  ident: bb0170
  article-title: Vector competence of
  publication-title: Trans of Royal Soc Trop Med Hyg
– volume: 11
  year: 2017
  ident: bb0015
  article-title: Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic
  publication-title: PLoS Neg. Trop. Dis.
– volume: 58
  start-page: 578
  year: 1998
  end-page: 586
  ident: bb0105
  article-title: Monitoring of dengue viruses in field-caught
  publication-title: Am J Trop Med Hyg
– volume: 49
  start-page: 942
  year: 2012
  end-page: 946
  ident: bb0550
  article-title: Vector competence of
  publication-title: J. Med. Entomol.
– volume: 17
  start-page: 361
  year: 2017
  end-page: 375
  ident: bb0480
  article-title: -borne virus-mosquito interactions: mass spectrometry strategies and findings
  publication-title: Vector-borne Zoon Dis
– volume: 9
  start-page: 1
  year: 2015
  end-page: 11
  ident: bb0515
  article-title: Comparison of Vector Competence of
  publication-title: PLoS Negl. Trop. Dis.
– volume: 38
  start-page: 130
  year: 2001
  end-page: 134
  ident: bb0660
  article-title: Vector Competence of north American Mosquitoes (Diptera : Culicidae) for West Nile Virus
  publication-title: J. Med. Entomol.
– volume: 10
  start-page: 118
  year: 2018
  ident: bb0475
  article-title: Natural variation in resistance to virus infection in Dipteran insects
  publication-title: Viruses
– volume: 13
  start-page: e0190352
  year: 2018
  end-page: e0190366
  ident: bb0695
  article-title: Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis
  publication-title: PLoS One
– volume: 39
  start-page: 406
  year: 2014
  end-page: 413
  ident: bb0010
  article-title: Susceptibility of Florida
  publication-title: J. Vec. Ecol.
– volume: 284
  year: 2017
  ident: bb0260
  article-title: Infection rate of
  publication-title: Proc. Biol. Sci.
– volume: 12
  start-page: 605
  year: 2012
  end-page: 608
  ident: bb0705
  article-title: Vector Competence of five Common Mosquito Species in the People's Republic of China for Western Equine Encephalitis Virus
  publication-title: Vector-Borne Zoonotic Dis
– volume: 11
  start-page: 1
  year: 2017
  end-page: 22
  ident: bb0265
  article-title: Mosquito co-infection with Zika and chikungunya virus allows simultaneous transmission without affecting vector competence of
  publication-title: PLoS Negl Trop Dis
– volume: 12
  year: 2018
  ident: bb0600
  article-title: Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein
  publication-title: PLoS Negl. Trop. Dis.
– volume: 112
  start-page: E5907
  year: 2015
  end-page: E5915
  ident: bb0090
  article-title: Genome sequence of the Asian Tiger mosquito,
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 112
  start-page: 2627
  year: 2013
  end-page: 2637
  ident: bb0080
  article-title: Comparative analysis of midgut bacterial communities of
  publication-title: Parasitol. Res.
– volume: 91
  start-page: e00009
  year: 2017
  end-page: e00017
  ident: bb0430
  article-title: Animal models of Zika virus infection pathogenesis and immunity
  publication-title: J Virol
– volume: 67
  start-page: 84
  year: 2002
  end-page: 92
  ident: bb0030
  article-title: Variation in vector competence for dengue-2 virus among 24 collections of
  publication-title: Am. J. Trop. Med. Hyg.
– volume: 97
  start-page: 437
  year: 2002
  end-page: 439
  ident: bb0385
  article-title: Oral susceptibility to yellow fever virus of
  publication-title: Mem. Inst. Oswaldo Cruz
– volume: 93
  start-page: 581
  year: 1999
  end-page: 586
  ident: bb0650
  article-title: in Ho Chi Minh City (Viet Nam): susceptibility to dengue 2 virus and genetic differentiation
  publication-title: Trans Royal Soc Trop Med Hyg.
– volume: 8
  start-page: 8358
  year: 2018
  ident: bb0615
  article-title: Hydrogen cyanide produced by the soil bacterium Chromobacterium sp. Panama contributes to mortality in
  publication-title: Sci. Rep.
– volume: 23
  start-page: 1110
  year: 2017
  end-page: 1117
  ident: bb0110
  article-title: Effects of Zika virus strain and
  publication-title: Emerg. Infect. Dis.
– volume: 9
  start-page: 160
  year: 2009
  ident: bb0360
  article-title: Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors
  publication-title: BMC Evol. Biol.
– volume: 484
  start-page: 51
  year: 2015
  end-page: 58
  ident: bb0450
  article-title: Eilat virus induces both homologous and heterologous interference
  publication-title: Virology
– volume: 98
  start-page: 43
  year: 2004
  end-page: 44
  ident: bb0390
  article-title: in Brazil: genetically differentiated populations with highsusceptibility to dengue and yellow fever viruses
  publication-title: Trans Royal Soc Trop Med Hyg.
– volume: 27
  start-page: 113
  year: 1901
  end-page: 129
  ident: bb0535
  article-title: The prevention of yellow fever
  publication-title: Public Health Pap Rep
– volume: 10
  year: 2016
  ident: bb0300
  article-title: Assessment of local mosquito species incriminates
  publication-title: PLoS Negl. Trop. Dis.
– volume: 18
  start-page: 2384
  year: 2017
  ident: bb0590
  article-title: Infection of a French Population of
  publication-title: J Mol Sci
– volume: 3
  start-page: 460
  year: 1987
  end-page: 465
  ident: bb0425
  article-title: Vector competence of
  publication-title: J Am Mosquito Cont Ass
– volume: 216
  start-page: 976
  year: 2017
  end-page: 990
  ident: bb0330
  article-title: Zika Virus Mosquito Vectors: Competence, Biology, and Vector Control
  publication-title: J. Infect. Dis.
– volume: 34
  start-page: 310
  year: 2018
  end-page: 321
  ident: bb0580
  article-title: How do Virus-Mosquito Interactions Lead to Viral Emergence?
  publication-title: Trends Parasitol.
– volume: 4
  year: 2008
  ident: bb0735
  article-title: The
  publication-title: PLoS Pathog.
– volume: 14
  start-page: 1479
  year: 2015
  end-page: 1492
  ident: bb0025
  article-title: Current status and future prospects of yellow fever vaccines
  publication-title: Expert Rev. Vaccines
– volume: 7
  start-page: 1
  year: 2017
  end-page: 12
  ident: bb0145
  article-title: Potential risk of re-emergence of urban transmission of Yellow fever virus in Brazil facilitated by competent
  publication-title: Sci. Rep.
– volume: 82
  start-page: 171
  year: 2003
  end-page: 182
  ident: bb0485
  article-title: Variation over space and time of
  publication-title: Gen Res
– volume: 6
  year: 2012
  ident: bb0525
  article-title: Reciprocal tripartite interactions between the
  publication-title: PLoS Negl. Trop. Dis.
– volume: 87
  start-page: 639
  year: 1993
  end-page: 643
  ident: bb0325
  article-title: The potential for dengue in South Africa: Vector competence tests with dengue 1 and 2 viruses and 6 mosquito species
  publication-title: Trans Royal Soc Trop Med Hyg
– volume: 13
  year: 2018
  ident: bb0415
  article-title: Dengue virus in
  publication-title: PLoS One
– volume: 10
  year: 2016
  ident: bb0540
  article-title: Vector Competence of French Polynesian
  publication-title: PLoS Negl. Trop. Dis.
– volume: 1
  start-page: 310
  year: 2011
  end-page: 317
  ident: bb0655
  article-title: Chikungunya virus: evolution and genetic determinants of emergence
  publication-title: Curr Opin Virol
– volume: 65
  start-page: 491
  year: 2001
  end-page: 497
  ident: bb0680
  article-title: Population genetic structure and competence as a vector for dengue type 2 virus of
  publication-title: Am J Trop Med Hyg
– volume: 12
  year: 2018
  ident: bb0065
  article-title: Zika virus outbreak in the Pacific: Vector competence of regional vectors
  publication-title: PLoS Negl. Trop. Dis.
– volume: 10
  year: 2016
  ident: bb0100
  article-title: Differential susceptibilities of
  publication-title: PLoS Negl. Trop. Dis.
– volume: 34
  start-page: 603
  year: 1985
  end-page: 615
  ident: bb0565
  article-title: Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses
  publication-title: Am. J. Trop. Med. Hyg.
– volume: 34
  start-page: 1219
  year: 1985
  end-page: 1224
  ident: bb0640
  article-title: Oral infection of
  publication-title: Am J Trop Med Hyg
– volume: 113
  start-page: e180290
  year: 2018
  ident: bb4555
  article-title: Zika infection decreases Aedes aegypti locomotor activity but does not influence egg production or viability
  publication-title: Mem. Inst. Oswaldo Cruz.
– volume: 25
  start-page: 5806
  year: 2016
  end-page: 5826
  ident: bb0130
  article-title: Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats
  publication-title: Mol. Ecol.
– volume: 34
  start-page: 1225
  year: 1985
  end-page: 1231
  ident: bb0700
  article-title: Selection for susceptibility and refractoriness of
  publication-title: Am J Trop Med Hyg
– volume: 88
  start-page: 689
  year: 2013
  end-page: 697
  ident: bb0070
  article-title: Reduction of
  publication-title: Am J Trop Med Hyg
– volume: 36
  start-page: 508
  year: 1999
  end-page: 514
  ident: bb0715
  article-title: Vector competence of
  publication-title: J. Med. Entomol.
– volume: 15
  start-page: 140
  year: 2015
  ident: bb0195
  article-title: Developmental succession of the microbiome of Culex mosquitoes
  publication-title: BMC Microbiol.
– volume: 96
  start-page: 1235
  year: 2017
  end-page: 1240
  ident: bb0340
  article-title: Transmission incompetence of
  publication-title: Am J Trop Med Hyg.
– volume: 6
  year: 2018
  ident: bb0185
  article-title: Vector competence of selected north American
  publication-title: PeerJ
– volume: 10
  year: 2014
  ident: bb0530
  article-title: Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities
  publication-title: PLoS Pathog.
– volume: 3
  start-page: 6
  year: 2014
  end-page: 13
  ident: bb0155
  article-title: The mosquito microbiota influences vector competence for human pathogens
  publication-title: Curr Opin Insect Sci
– volume: 23
  start-page: 625
  year: 2017
  end-page: 632
  ident: bb0575
  article-title: Variation in
  publication-title: Emerg. Infect. Dis.
– volume: 50
  start-page: 238
  year: 1956
  end-page: 242
  ident: bb0040
  article-title: A simple technique for infection of mosquitoes with viruses; transmission of Zika virus
  publication-title: Trans. R. Soc. Trop. Med. Hyg.
– volume: 10
  start-page: 381
  year: 2017
  ident: bb0060
  article-title: Dengue-1 virus and vector competence of
  publication-title: Parasit. Vectors
– volume: 55
  start-page: 191
  year: 2012
  end-page: 203
  ident: bb0115
  article-title: Come fly with me: review of clinically important arboviruses for global travelers
  publication-title: J. Clin. Virol.
– volume: 22
  start-page: 45
  year: 2017
  end-page: 53
  ident: bb0465
  article-title: Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or something more?
  publication-title: Curr Opin Insect Sci.
– volume: 11
  year: 2017
  ident: bb0005
  article-title: Vector competence of populations of
  publication-title: PLoS Negl. Trop. Dis.
– start-page: 1
  year: 2017
  end-page: 10
  ident: bb0710
  article-title: The immune strategies of mosquito
  publication-title: Dev. Comp. Immunol.
– volume: 7
  start-page: 3741
  year: 2015
  end-page: 3767
  ident: bb0230
  article-title: Tissues barriers to arbovirus infection in mosquitoes
  publication-title: Viruses
– volume: 8
  year: 2012
  ident: bb0625
  article-title: Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens
  publication-title: PLoS Pathog.
– volume: 12
  year: 2018
  ident: bb0235
  article-title: Variation in competence for ZIKV transmission by
  publication-title: PLoS Negl. Trop. Dis.
– volume: 16
  start-page: 134
  year: 2011
  end-page: 139
  ident: bb0250
  article-title: Viewpoint: High susceptibility to Chikungunya virus of
  publication-title: Tropical Med. Int. Health
– volume: 112
  start-page: 7536
  year: 2015
  end-page: 7541
  ident: bb0405
  article-title: Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 12
  year: 2018
  ident: bb0400
  article-title: Vector competence of
  publication-title: PLoS Negl. Trop. Dis.
– volume: 9
  start-page: 608
  year: 2016
  end-page: 618
  ident: bb0215
  article-title: No evidence for local adaptation of dengue viruses to mosquito vector populations in Thailand
  publication-title: Evol. Appl.
– reference: Gloria-Soria, A., Ayala, D., Bheecarry, A., Calderon-Arguedas, O., Chadee, D.D., Chiappero, M., Coetzee, M., Bin Elahee, K.B., Fernandez-Salas, I., Kamal, H.A., Kamgang, B., Khater, E. I., Kramer, L.D., Kramer, V., Lopez-Solis, A., Lutomiah, J., Martins, A. Jr., Micieli, M.V., Paupy, C., Ponlawat, A., Rahola, N., Rasheed, S. B., Richardson, J. B., Saleh, A. A., Sanchez-Casas, R.M., Seixas, G., Sousa, C. A., Tabachnick, W.J., Troyo, A., Powell, J.R., 2016. Global genetic diversity of Aedes aegypti. Mol. Ecol. 25:5377–5395.
– volume: 98
  start-page: 1563
  year: 2018
  end-page: 1565
  ident: bb0520
  article-title: Mosquito-Borne Human Viral Diseases: why
  publication-title: Am J Trop Med Hyg.
– volume: 8
  year: 2014
  ident: bb0175
  article-title: Vector Competence in West African
  publication-title: PLoS Negl. Trop. Dis.
– volume: 18
  start-page: 512
  year: 2017
  ident: bb0470
  article-title: Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors
  publication-title: BMC Genomics
– volume: 7
  year: 2013
  ident: bb0620
  article-title: Transcriptomic Profiling of Diverse
  publication-title: PLoS Negl. Trop. Dis.
– volume: 25
  start-page: 17
  year: 1906
  end-page: 18
  ident: bb0020
  article-title: On the aetiology of dengue fever
  publication-title: Aust. Med. Gaz.
– volume: 7
  start-page: 1
  year: 2014
  end-page: 8
  ident: bb0270
  article-title: Distinct variation in vector competence among nine field populations of
  publication-title: Parasit. Vectors
– volume: 25
  start-page: 336
  year: 1976
  end-page: 346
  ident: bb0350
  article-title: Vector competence of mosquitoes as a marker to distinguish central American and Mexican epizootic from enzootic strains of Venezuelan enceph
  publication-title: Am J Trop Med Hyg.
– volume: 106
  start-page: 387
  year: 2012
  end-page: 389
  ident: bb0210
  article-title: Yellow fever virus susceptibility of two mosquito vectors from Kenya, East Africa
  publication-title: Trans Royal Soc Trop Med Hyg
– volume: 28
  start-page: 715
  year: 2014
  end-page: 724
  ident: bb0245
  article-title: Composition of
  publication-title: Infect. Genet. Evol.
– volume: 16
  start-page: 59
  year: 1979
  end-page: 60
  ident: bb0335
  article-title: Quantitative studies of the vector competence of
  publication-title: J. Med. Entomol.
– volume: 357
  start-page: 1396
  year: 2017
  end-page: 1399
  ident: bb0505
  article-title: Changes in the microbiota cause genetically modified Anopheles to spread in a population
  publication-title: Science
– volume: 6
  start-page: 49
  year: 2018
  ident: bb0285
  article-title: The mosquito holobiont: fresh insight into mosquito-microbiota interactions
  publication-title: Microbiome
– volume: 6
  year: 2012
  ident: bb0370
  article-title: Oral susceptibility of Singapore
  publication-title: PLoS Negl. Trop. Dis.
– volume: 90
  start-page: 422
  year: 2014
  end-page: 430
  ident: bb0740
  article-title: Comparative susceptibility of mosquito populations in North Queensland, Australia to oral infection with dengue virus
  publication-title: Am J Trop Med Hyg.
– volume: 10
  start-page: 556
  year: 2017
  ident: bb0500
  article-title: Incidence of dengue and chikungunya viruses in mosquitoes and human patients in border provinces of Vientnam
  publication-title: Parasit. Vectors
– volume: 34
  start-page: 217
  year: 2018
  end-page: 226
  ident: bb0555
  article-title: Mission Accomplished? We need a Guide to the 'Post Release' World of Wolbachia for
  publication-title: Trends Parasitol.
– volume: 327
  start-page: 1644
  year: 2010
  end-page: 1648
  ident: bb0355
  article-title: A peroxidase/dual oxidase system modulates midgut epithelial immunity in
  publication-title: Science
– start-page: 611
  year: 2002
  end-page: 613
  ident: bb0320
  article-title: Vector competence of Brazilian yellow fever virus isolate
  publication-title: Trans Royal Soc Trop Med Hyg
– volume: 46
  start-page: 395
  year: 2009
  end-page: 399
  ident: bb0495
  article-title: Effects of Infectious Virus Dose and Bloodmeal delivery Method on Susceptibility of
  publication-title: J. Med. Entomol.
– volume: 10
  year: 2016
  ident: bb0545
  article-title: Vector Competence of
  publication-title: PLoS Negl. Trop. Dis.
– volume: 21
  start-page: 124
  year: 2016
  end-page: 131
  ident: bb0635
  article-title: Ecological effects on arbovirus-mosquito cycles of transmission
  publication-title: Curr Opin Virol.
– volume: 124
  start-page: 113
  year: 2012
  end-page: 119
  ident: bb0075
  article-title: Immune transcript variations among
  publication-title: Acta Trop.
– volume: 4
  year: 2009
  ident: bb0190
  article-title: Chikungunya Virus and
  publication-title: PLoS One
– volume: 85
  start-page: 750
  year: 2011
  end-page: 757
  ident: bb0380
  article-title: Experimental transmission of Mayaro virus by
  publication-title: Am J Trop Med Hyg.
– volume: 128
  start-page: 566
  year: 2013
  end-page: 570
  ident: bb0290
  article-title: Vector competence of
  publication-title: Acta Trop.
– volume: 21
  start-page: 3
  year: 2014
  end-page: 4
  ident: bb0095
  article-title: The vector competence of
  publication-title: Inter J Infect Dis
– volume: 32
  start-page: 436
  year: 2018
  end-page: 442
  ident: bb3555
  article-title: Transmission potential of Mayaro virus in Florida Aedes aegypti and Aedes albopictus mosquitoes
  publication-title: Med. Vet. Entomol.
– volume: 12
  start-page: 1
  year: 2017
  end-page: 13
  ident: bb0140
  article-title: Laboratory strains of
  publication-title: PLoS One
– volume: 19
  start-page: 1355
  year: 2014
  end-page: 1359
  ident: bb0240
  article-title: Oral susceptibility of
  publication-title: Tropical Med. Int. Health
– volume: 7
  start-page: 4911
  year: 2015
  end-page: 4928
  ident: bb0035
  article-title: Insect-specific Virus Discovery: significance for the Arbovirus Community
  publication-title: Viruses
– volume: 6
  start-page: e2836
  year: 2015
  end-page: e2845
  ident: bb0420
  article-title: French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives
  publication-title: Front. Microbiol.
– volume: 3
  start-page: e408
  year: 2009
  ident: bb0630
  article-title: Gene flow, subspecies composition, and dengue virus-2 susceptibility among
  publication-title: PLoS Negl. Trop. Dis.
– volume: 3
  start-page: 378
  year: 1987
  end-page: 386
  ident: bb0045
  article-title: Variation in the vector competence of geographic strains of the
  publication-title: J. Am. Mos. Cont. Ass.
– volume: 10
  start-page: 164
  year: 2017
  ident: bb0455
  article-title: Potential of
  publication-title: Parasit. Vectors
– volume: 13
  start-page: e1006391
  year: 2017
  end-page: e1006392
  ident: bb0560
  article-title: Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes
  publication-title: PLoS Pathog.
– volume: 31
  start-page: 1713
  year: 2013
  end-page: 1723
  ident: bb0055
  article-title: Vertical Transmission of Key West Dengue-1 Virus by
  publication-title: J. Med. Entomol.
– volume: 17
  start-page: 47
  year: 1979
  end-page: 53
  ident: bb0135
  article-title: Transmission experimentale comparee du virus Zika chez
  publication-title: Ent Med Parasitol
– volume: 2008
  start-page: 65
  year: 2008
  end-page: 69
  ident: bb0225
  article-title: Why we do not understand the ecological connections between the environment and human health: the case for vector-borne disease
  publication-title: Vector Borne Dis
– volume: 111
  start-page: 233
  year: 2016
  end-page: 240
  ident: bb0490
  article-title: Detection of all four dengue serotypes in
  publication-title: Mem. Inst. Oswaldo Cruz
– volume: 23
  start-page: 378
  year: 2007
  end-page: 382
  ident: bb0665
  article-title: Vector competence of Kenyan
  publication-title: J. Am. Mosq. Control Assoc.
– volume: 15
  start-page: 97
  year: 2015
  end-page: 102
  ident: bb0305
  article-title: The microbiome modulates arbovirus transmission in mosquitoes
  publication-title: Curr Opin Virol
– volume: 13
  start-page: 1
  year: 2013
  end-page: 8
  ident: bb0395
  article-title: from temperate regions of South America are highly competent to transmit dengue virus
  publication-title: BMC Infect. Dis.
– volume: 27
  start-page: 3511
  year: 2017
  end-page: 3519
  ident: bb0730
  article-title: The diversity, structure, and function of heritable adaptive immunity sequences in the Aedes aegypti genome
  publication-title: Curr Biol
– volume: 34
  start-page: 81
  year: 2003
  end-page: 86
  ident: bb0315
  article-title: in South Vietnam: Ecology, genetic structure, vectorial competence and resistance to insecticides
  publication-title: Southeast Asian J Trop Med Public Health
– volume: 9
  start-page: 3
  year: 2014
  end-page: 8
  ident: bb0510
  article-title: Differential susceptibility of two field
  publication-title: PLoS One
– volume: 7
  start-page: 595
  year: 2014
  ident: bb0445
  article-title: Eilat virus displays a narrow mosquito vector range
  publication-title: Parasit. Vectors
– volume: 15
  start-page: 69
  year: 2015
  end-page: 74
  ident: bb0675
  article-title: Insect-specific viruses and their potential impact on arbovirus transmission
  publication-title: Curr Opin Virol
– volume: 7
  year: 2013
  ident: bb0365
  article-title: Review of climate, landscape, and viral genetics as drivers of the Japanese encephalitis virus, ecology
  publication-title: PLoS Negl. Trop. Dis.
– volume: 87
  start-page: 735
  year: 2006
  end-page: 748
  ident: bb0120
  article-title: Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico
  publication-title: J Gen Virol
– volume: 40
  start-page: 950
  year: 2003
  end-page: 956
  ident: bb0345
  article-title: Enhanced vector competence of
  publication-title: J. Med. Entomol.
– volume: 6
  start-page: 104
  year: 2017
  end-page: 110
  ident: bb0440
  article-title: Animal models for dengue vaccine development and testing
  publication-title: Clin Exp Vaccine Res
– volume: 28
  start-page: 166
  year: 2003
  end-page: 170
  ident: bb0645
  article-title: Comparative susceptibility to oral infection with dengue viruses among local strains of
  publication-title: J Vector Ecol
– volume: 19
  start-page: 771
  year: 2016
  end-page: 774
  ident: bb0205
  article-title: Wolbachia blocks currently circulating Zika virus isolates in Brazilian
  publication-title: Cell Host Microbe
– volume: 112
  start-page: 577
  year: 2017
  end-page: 579
  ident: bb0220
  article-title: from areas with the highest incidence of microcephaly associated with Zika virus infections in the Northeast Region of Brazil are refractory to the virus
  publication-title: Mem. Inst. Oswaldo Cruz
– volume: 88
  start-page: 6294
  year: 2014
  end-page: 6306
  ident: bb0690
  article-title: High Level of Vector Competence of
  publication-title: J. Virol.
– volume: 8
  start-page: 1
  year: 2017
  end-page: 9
  ident: bb0585
  article-title: Impact of simultaneous exposure to arboviruses on infection and transmission by
  publication-title: Nature Com
– volume: 23
  start-page: 2727
  year: 2014
  end-page: 2739
  ident: bb0125
  article-title: Mosquitoes rely on their gut microbiota for development
  publication-title: Mol. Ecol.
– volume: 13
  start-page: 1
  year: 2016
  end-page: 9
  ident: bb0410
  article-title: Vector competence of
  publication-title: Virol. J.
– volume: 21
  start-page: 370
  year: 2007
  end-page: 376
  ident: bb0605
  article-title: Investigations of dengue-2 susceptibility and body size among
  publication-title: Med. Vet. Entomol.
– volume: 6
  start-page: e23
  year: 2017
  ident: bb0375
  article-title: Vector competence and transovarial transmission of two
  publication-title: Emerg Microbes Infect
– volume: 3
  year: 2017
  ident: bb0180
  article-title: Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector
  publication-title: Sci. Adv.
– volume: 64
  start-page: 53
  year: 2016
  end-page: 64
  ident: bb0595
  article-title: Mosquito gut antiparasitic and antiviral immunity
  publication-title: Dev. Comp. Immunol.
– volume: 12
  start-page: 35
  year: 2017
  end-page: 44
  ident: bb0295
  article-title: Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction with Arboviral Pathogens
  publication-title: Evol. Bioinformatics Online
– volume: 22
  year: 2017
  ident: bb0310
  article-title: Experimental transmission of Zika virus by mosquitoes from Central Europe
  publication-title: Euro Surveill.
– volume: 299
  start-page: 285
  year: 2006
  end-page: 314
  ident: bb0720
  article-title: Evolutionary influences in arboviral disease
  publication-title: Curr Topics Microbiol Immunol
– volume: 85
  start-page: 446
  year: 2011
  end-page: 451
  ident: bb0670
  article-title: Vector competence of Australian mosquitoes for yellow fever virus
  publication-title: Am J Trop Med Hyg
– volume: 16
  start-page: 1
  year: 2016
  end-page: 7
  ident: bb0685
  article-title: Competitive advantage of a dengue 4 virus when co-infecting the mosquito
  publication-title: BMC Infect. Dis.
– volume: 18
  start-page: 512
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0470
  article-title: Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3903-3
– volume: 36
  start-page: 508
  year: 1999
  ident: 10.1016/j.meegid.2018.11.009_bb0715
  article-title: Vector competence of Aedes notoscriptus (Diptera: Culicidae) for Barmah Forest virus and of this species and Aedes aegypti (Diptera: Culicidae) for dengue 1-4 viruses in Queensland, Australia
  publication-title: J. Med. Entomol.
  doi: 10.1093/jmedent/36.4.508
– volume: 17
  start-page: 47
  year: 1979
  ident: 10.1016/j.meegid.2018.11.009_bb0135
  article-title: Transmission experimentale comparee du virus Zika chez Aedes aegypti
  publication-title: Ent Med Parasitol
– volume: 27
  start-page: 113
  year: 1901
  ident: 10.1016/j.meegid.2018.11.009_bb0535
  article-title: The prevention of yellow fever
  publication-title: Public Health Pap Rep
– volume: 97
  start-page: 437
  year: 2002
  ident: 10.1016/j.meegid.2018.11.009_bb0385
  article-title: Oral susceptibility to yellow fever virus of Aedes aegypti from Brazil
  publication-title: Mem. Inst. Oswaldo Cruz
  doi: 10.1590/S0074-02762002000300031
– volume: 34
  start-page: 603
  year: 1985
  ident: 10.1016/j.meegid.2018.11.009_bb0565
  article-title: Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.1985.34.603
– volume: 11
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0005
  article-title: Vector competence of populations of Aedes aegypti from three distinct cities in Kenya for chikungunya virus
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0005860
– volume: 34
  start-page: 81
  year: 2003
  ident: 10.1016/j.meegid.2018.11.009_bb0315
  article-title: Aedes aegypti in South Vietnam: Ecology, genetic structure, vectorial competence and resistance to insecticides
  publication-title: Southeast Asian J Trop Med Public Health
– volume: 8
  start-page: 1
  year: 2015
  ident: 10.1016/j.meegid.2018.11.009_bb0150
  article-title: Vector competence of the Aedes aegypti population from Santiago island, Cape Verde, to different serotypes of dengue virus
  publication-title: Parasit. Vectors
  doi: 10.1186/s13071-015-0706-8
– volume: 6
  start-page: 49
  year: 2018
  ident: 10.1016/j.meegid.2018.11.009_bb0285
  article-title: The mosquito holobiont: fresh insight into mosquito-microbiota interactions
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0435-2
– volume: 28
  start-page: 715
  year: 2014
  ident: 10.1016/j.meegid.2018.11.009_bb0245
  article-title: Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2014.09.029
– volume: 7
  start-page: 595
  year: 2014
  ident: 10.1016/j.meegid.2018.11.009_bb0445
  article-title: Eilat virus displays a narrow mosquito vector range
  publication-title: Parasit. Vectors
  doi: 10.1186/s13071-014-0595-2
– volume: 6
  year: 2018
  ident: 10.1016/j.meegid.2018.11.009_bb0185
  article-title: Vector competence of selected north American Anopheles and Culex mosquitoes for Zika virus
  publication-title: PeerJ
  doi: 10.7717/peerj.4324
– volume: 49
  start-page: 942
  year: 2012
  ident: 10.1016/j.meegid.2018.11.009_bb0550
  article-title: Vector competence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) fordengue virus in the Florida Keys
  publication-title: J. Med. Entomol.
  doi: 10.1603/ME11293
– volume: 10
  start-page: 118
  year: 2018
  ident: 10.1016/j.meegid.2018.11.009_bb0475
  article-title: Natural variation in resistance to virus infection in Dipteran insects
  publication-title: Viruses
  doi: 10.3390/v10030118
– volume: 88
  start-page: 6294
  year: 2014
  ident: 10.1016/j.meegid.2018.11.009_bb0690
  article-title: High Level of Vector Competence of Aedes aegypti and Aedes albopictus from ten American Countries as a crucial factor in the Spread of Chikungunya Virus
  publication-title: J. Virol.
  doi: 10.1128/JVI.00370-14
– ident: 10.1016/j.meegid.2018.11.009_bb0255
  doi: 10.1111/mec.13866
– volume: 25
  start-page: 17
  year: 1906
  ident: 10.1016/j.meegid.2018.11.009_bb0020
  article-title: On the aetiology of dengue fever
  publication-title: Aust. Med. Gaz.
– volume: 357
  start-page: 1396
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0505
  article-title: Changes in the microbiota cause genetically modified Anopheles to spread in a population
  publication-title: Science
  doi: 10.1126/science.aak9691
– volume: 32
  start-page: 436
  year: 2018
  ident: 10.1016/j.meegid.2018.11.009_bb3555
  article-title: Transmission potential of Mayaro virus in Florida Aedes aegypti and Aedes albopictus mosquitoes
  publication-title: Med. Vet. Entomol.
  doi: 10.1111/mve.12322
– volume: 14
  start-page: 1479
  year: 2015
  ident: 10.1016/j.meegid.2018.11.009_bb0025
  article-title: Current status and future prospects of yellow fever vaccines
  publication-title: Expert Rev. Vaccines
  doi: 10.1586/14760584.2015.1083430
– volume: 6
  year: 2012
  ident: 10.1016/j.meegid.2018.11.009_bb0370
  article-title: Oral susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika virus
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0001792
– volume: 112
  start-page: 7536
  year: 2015
  ident: 10.1016/j.meegid.2018.11.009_bb0405
  article-title: Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1502036112
– volume: 6
  start-page: e2836
  year: 2015
  ident: 10.1016/j.meegid.2018.11.009_bb0420
  article-title: French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00970
– volume: 88
  start-page: 689
  year: 2013
  ident: 10.1016/j.meegid.2018.11.009_bb0070
  article-title: Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.12-0488
– volume: 34
  start-page: 1219
  year: 1985
  ident: 10.1016/j.meegid.2018.11.009_bb0640
  article-title: Oral infection of Aedes aegypti with yellow fever virus: geographic variation andgenetic considerations
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1985.34.1219
– volume: 85
  start-page: 446
  year: 2011
  ident: 10.1016/j.meegid.2018.11.009_bb0670
  article-title: Vector competence of Australian mosquitoes for yellow fever virus
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2011.11-0061
– volume: 9
  start-page: 3
  year: 2014
  ident: 10.1016/j.meegid.2018.11.009_bb0510
  article-title: Differential susceptibility of two field Aedes aegypti populations to a low infectious dose of dengue virus
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092971
– volume: 13
  start-page: e1006391
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0560
  article-title: Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006391
– volume: 327
  start-page: 1644
  year: 2010
  ident: 10.1016/j.meegid.2018.11.009_bb0355
  article-title: A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae
  publication-title: Science
  doi: 10.1126/science.1184008
– volume: 87
  start-page: 735
  year: 2006
  ident: 10.1016/j.meegid.2018.11.009_bb0120
  article-title: Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.81475-0
– volume: 13
  start-page: e0190352
  year: 2018
  ident: 10.1016/j.meegid.2018.11.009_bb0695
  article-title: Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0190352
– volume: 111
  start-page: 233
  year: 2016
  ident: 10.1016/j.meegid.2018.11.009_bb0490
  article-title: Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia
  publication-title: Mem. Inst. Oswaldo Cruz
  doi: 10.1590/0074-02760150363
– volume: 23
  start-page: 2727
  year: 2014
  ident: 10.1016/j.meegid.2018.11.009_bb0125
  article-title: Mosquitoes rely on their gut microbiota for development
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.12771
– volume: 93
  start-page: 581
  year: 1999
  ident: 10.1016/j.meegid.2018.11.009_bb0650
  article-title: Aedes aegypti in Ho Chi Minh City (Viet Nam): susceptibility to dengue 2 virus and genetic differentiation
  publication-title: Trans Royal Soc Trop Med Hyg.
  doi: 10.1016/S0035-9203(99)90056-1
– volume: 58
  start-page: 578
  year: 1998
  ident: 10.1016/j.meegid.2018.11.009_bb0105
  article-title: Monitoring of dengue viruses in field-caught Aedes aegypti and Aedes albopictus mosquitoes by a type-specific polymerase chain reaction and cycle sequencing
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1998.58.578
– volume: 30
  start-page: 524
  year: 1993
  ident: 10.1016/j.meegid.2018.11.009_bb0085
  article-title: Vector competence of Aedes albopictus and Ae. aegypti (Diptera: Culicidae) to dengue 1 virus on Taiwan: development of the virus in orally and parenterally infected mosquitoes
  publication-title: J. Med. Entomol.
  doi: 10.1093/jmedent/30.3.524
– start-page: 69
  issue: 6
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0280
  article-title: Zika virus replication in the mosquito Culex quinquefasciatus in Brazil
  publication-title: Emerg Microbes Infect
– volume: 15
  start-page: 492
  year: 2015
  ident: 10.1016/j.meegid.2018.11.009_bb0165
  article-title: Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-015-1231-2
– volume: 98
  start-page: 43
  year: 2004
  ident: 10.1016/j.meegid.2018.11.009_bb0390
  article-title: Aedes aegypti in Brazil: genetically differentiated populations with highsusceptibility to dengue and yellow fever viruses
  publication-title: Trans Royal Soc Trop Med Hyg.
  doi: 10.1016/S0035-9203(03)00006-3
– volume: 12
  year: 2018
  ident: 10.1016/j.meegid.2018.11.009_bb0600
  article-title: Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0006443
– volume: 13
  year: 2018
  ident: 10.1016/j.meegid.2018.11.009_bb0415
  article-title: Dengue virus in Aedes aegypti and Aedes albopictus in urban areas in the state of Rio Granse do Norte, Brazil: Importance of virological and entomological surveillance
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0194108
– volume: 10
  start-page: 381
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0060
  article-title: Dengue-1 virus and vector competence of Aedes aegypti (Diptera: Culicidae) populations from New Caledonia
  publication-title: Parasit. Vectors
  doi: 10.1186/s13071-017-2319-x
– volume: 3
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0180
  article-title: Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700585
– volume: 10
  year: 2016
  ident: 10.1016/j.meegid.2018.11.009_bb0725
  article-title: Vector Competence of American Mosquitoes for three Strains of Zika Virus
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0005101
– volume: 7
  year: 2011
  ident: 10.1016/j.meegid.2018.11.009_bb0460
  article-title: Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1001320
– volume: 12
  start-page: 1
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0140
  article-title: Laboratory strains of Aedes aegypti are competent to Brazilian Zika virus
  publication-title: PLoS One
– volume: 11
  start-page: 1
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0265
  article-title: Mosquito co-infection with Zika and chikungunya virus allows simultaneous transmission without affecting vector competence of Aedes aegypti
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0005654
– volume: 3
  start-page: 460
  year: 1987
  ident: 10.1016/j.meegid.2018.11.009_bb0425
  article-title: Vector competence of Aedes albopictus from Houston, Texas, for dengue serotypes 1to 4, yellow fever and Ross River viruses
  publication-title: J Am Mosquito Cont Ass
– volume: 28
  start-page: 166
  year: 2003
  ident: 10.1016/j.meegid.2018.11.009_bb0645
  article-title: Comparative susceptibility to oral infection with dengue viruses among local strains of Aedes aegypti (Diptera: Culicidae) collected at different seasons of the year
  publication-title: J Vector Ecol
– volume: 16
  start-page: 1
  year: 2016
  ident: 10.1016/j.meegid.2018.11.009_bb0685
  article-title: Competitive advantage of a dengue 4 virus when co-infecting the mosquito Aedes aegypti with a dengue 1 virus
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-016-1666-0
– volume: 9
  start-page: 160
  year: 2009
  ident: 10.1016/j.meegid.2018.11.009_bb0360
  article-title: Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-9-160
– volume: 50
  start-page: 238
  year: 1956
  ident: 10.1016/j.meegid.2018.11.009_bb0040
  article-title: A simple technique for infection of mosquitoes with viruses; transmission of Zika virus
  publication-title: Trans. R. Soc. Trop. Med. Hyg.
  doi: 10.1016/0035-9203(56)90029-3
– volume: 55
  start-page: 191
  year: 2012
  ident: 10.1016/j.meegid.2018.11.009_bb0115
  article-title: Come fly with me: review of clinically important arboviruses for global travelers
  publication-title: J. Clin. Virol.
  doi: 10.1016/j.jcv.2012.07.004
– volume: 7
  year: 2013
  ident: 10.1016/j.meegid.2018.11.009_bb0365
  article-title: Review of climate, landscape, and viral genetics as drivers of the Japanese encephalitis virus, ecology
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0002208
– volume: 8
  year: 2012
  ident: 10.1016/j.meegid.2018.11.009_bb0625
  article-title: Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002588
– volume: 15
  start-page: 97
  year: 2015
  ident: 10.1016/j.meegid.2018.11.009_bb0305
  article-title: The microbiome modulates arbovirus transmission in mosquitoes
  publication-title: Curr Opin Virol
  doi: 10.1016/j.coviro.2015.08.011
– volume: 6
  year: 2012
  ident: 10.1016/j.meegid.2018.11.009_bb0525
  article-title: Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0001561
– volume: 11
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0015
  article-title: Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic
  publication-title: PLoS Neg. Trop. Dis.
  doi: 10.1371/journal.pntd.0005724
– volume: 284
  issue: 1864
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0260
  article-title: Infection rate of Aedes aegypti mosquitoes with dengue virus depends on the interaction between temperature and mosquito genotype
  publication-title: Proc. Biol. Sci.
– volume: 8
  year: 2014
  ident: 10.1016/j.meegid.2018.11.009_bb0175
  article-title: Vector Competence in West African Aedes aegypti is Flavivirus Species and Genotype Dependent
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0003153
– volume: 59
  start-page: 965
  year: 1998
  ident: 10.1016/j.meegid.2018.11.009_bb0050
  article-title: Quantitative genetics of vector competence for dengue-2 virus in Aedes aegypti
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.1998.59.965
– volume: 31
  start-page: 1713
  year: 2013
  ident: 10.1016/j.meegid.2018.11.009_bb0055
  article-title: Vertical Transmission of Key West Dengue-1 Virus by Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Mosquitoes from Florida
  publication-title: J. Med. Entomol.
– volume: 23
  start-page: 625
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0575
  article-title: Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2304.161484
– volume: 7
  year: 2013
  ident: 10.1016/j.meegid.2018.11.009_bb0620
  article-title: Transcriptomic Profiling of Diverse Aedes aegypti Strains reveals increased Basal-level Immune Activation in Dengue Virus-refractory Populations and Identifies Novel Virus-vector Molecular Interactions
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0002295
– volume: 21
  start-page: 124
  year: 2016
  ident: 10.1016/j.meegid.2018.11.009_bb0635
  article-title: Ecological effects on arbovirus-mosquito cycles of transmission
  publication-title: Curr Opin Virol.
  doi: 10.1016/j.coviro.2016.09.008
– volume: 4
  start-page: 62
  year: 2012
  ident: 10.1016/j.meegid.2018.11.009_bb0745
  article-title: Animal models of dengue virus infection
  publication-title: Viruses
  doi: 10.3390/v4010062
– volume: 22
  start-page: 399
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0435
  article-title: Superinfection interference between dengue-2 and dengue-4 viruses in Aedes aegypti mosquitoes
  publication-title: Tropical Med. Int. Health
  doi: 10.1111/tmi.12846
– volume: 34
  start-page: 310
  year: 2018
  ident: 10.1016/j.meegid.2018.11.009_bb0580
  article-title: How do Virus-Mosquito Interactions Lead to Viral Emergence?
  publication-title: Trends Parasitol.
  doi: 10.1016/j.pt.2017.12.004
– volume: 85
  start-page: 750
  year: 2011
  ident: 10.1016/j.meegid.2018.11.009_bb0380
  article-title: Experimental transmission of Mayaro virus by Aedes aegypti
  publication-title: Am J Trop Med Hyg.
  doi: 10.4269/ajtmh.2011.11-0359
– volume: 1
  start-page: 310
  year: 2011
  ident: 10.1016/j.meegid.2018.11.009_bb0655
  article-title: Chikungunya virus: evolution and genetic determinants of emergence
  publication-title: Curr Opin Virol
  doi: 10.1016/j.coviro.2011.07.004
– volume: 82
  start-page: 171
  year: 2003
  ident: 10.1016/j.meegid.2018.11.009_bb0485
  article-title: Variation over space and time of Aedes aegypti in Phnom Penh (Cambodia): genetic structure and oral susceptibility to a dengue virus
  publication-title: Gen Res
  doi: 10.1017/S0016672303006463
– volume: 10
  year: 2016
  ident: 10.1016/j.meegid.2018.11.009_bb0545
  article-title: Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus
  publication-title: PLoS Negl. Trop. Dis.
– volume: 12
  year: 2018
  ident: 10.1016/j.meegid.2018.11.009_bb0235
  article-title: Variation in competence for ZIKV transmission by Aedes aegypti and Aedes albopictus in Mexico
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0006599
– volume: 10
  year: 2016
  ident: 10.1016/j.meegid.2018.11.009_bb0540
  article-title: Vector Competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus
  publication-title: PLoS Negl. Trop. Dis.
– volume: 25
  start-page: 5806
  year: 2016
  ident: 10.1016/j.meegid.2018.11.009_bb0130
  article-title: Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.13877
– volume: 2008
  start-page: 65
  year: 2008
  ident: 10.1016/j.meegid.2018.11.009_bb0225
  article-title: Why we do not understand the ecological connections between the environment and human health: the case for vector-borne disease
  publication-title: Vector Borne Dis
– volume: 15
  start-page: 69
  year: 2015
  ident: 10.1016/j.meegid.2018.11.009_bb0675
  article-title: Insect-specific viruses and their potential impact on arbovirus transmission
  publication-title: Curr Opin Virol
  doi: 10.1016/j.coviro.2015.08.007
– volume: 21
  start-page: 3
  year: 2014
  ident: 10.1016/j.meegid.2018.11.009_bb0095
  article-title: The vector competence of Ae. aegypti mosquito populations from Kilifi and Nairobi for dengue-2 virus and the effect of temperature
  publication-title: Inter J Infect Dis
  doi: 10.1016/j.ijid.2014.03.413
– volume: 4
  year: 2009
  ident: 10.1016/j.meegid.2018.11.009_bb0190
  article-title: Chikungunya Virus and Aedes Mosquitoes: Saliva is Infectious as soon as two days after Oral Infection
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005895
– volume: 22
  start-page: 45
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0465
  article-title: Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or something more?
  publication-title: Curr Opin Insect Sci.
  doi: 10.1016/j.cois.2017.05.010
– volume: 103
  start-page: 109
  year: 2009
  ident: 10.1016/j.meegid.2018.11.009_bb0275
  article-title: Impact of climate change and other factors on emerging arbovirus diseases
  publication-title: Trans. R. Soc. Trop. Med. Hyg.
  doi: 10.1016/j.trstmh.2008.07.025
– volume: 39
  start-page: 406
  year: 2014
  ident: 10.1016/j.meegid.2018.11.009_bb0010
  article-title: Susceptibility of Florida Aedes aegypti and Aedes albopictus to dengue viruses from Puerto Rico
  publication-title: J. Vec. Ecol.
  doi: 10.1111/jvec.12116
– volume: 124
  start-page: 113
  year: 2012
  ident: 10.1016/j.meegid.2018.11.009_bb0075
  article-title: Immune transcript variations among Aedes aegypti populations with distinct susceptibility to dengue virus serotype 2
  publication-title: Acta Trop.
  doi: 10.1016/j.actatropica.2012.07.006
– volume: 9
  start-page: 608
  year: 2016
  ident: 10.1016/j.meegid.2018.11.009_bb0215
  article-title: No evidence for local adaptation of dengue viruses to mosquito vector populations in Thailand
  publication-title: Evol. Appl.
  doi: 10.1111/eva.12360
– volume: 34
  start-page: 217
  year: 2018
  ident: 10.1016/j.meegid.2018.11.009_bb0555
  article-title: Mission Accomplished? We need a Guide to the 'Post Release' World of Wolbachia for Aedes-borne Disease Control
  publication-title: Trends Parasitol.
  doi: 10.1016/j.pt.2017.11.011
– volume: 3
  start-page: 378
  year: 1987
  ident: 10.1016/j.meegid.2018.11.009_bb0045
  article-title: Variation in the vector competence of geographic strains of the Aedes albopictus for Dengue 1 virus
  publication-title: J. Am. Mos. Cont. Ass.
– volume: 31
  start-page: 312
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0610
  article-title: Vector competence and innate immune responses to dengue virus infection in selected laboratory and field-collected Stegomyia aegypti (= Aedes aegypti)
  publication-title: Med. Vet. Entomol.
  doi: 10.1111/mve.12237
– volume: 21
  start-page: 30328
  year: 2016
  ident: 10.1016/j.meegid.2018.11.009_bb2555
  publication-title: Euro. Surveill.
  doi: 10.2807/1560-7917.ES.2016.21.35.30328
– volume: 7
  start-page: 4911
  year: 2015
  ident: 10.1016/j.meegid.2018.11.009_bb0035
  article-title: Insect-specific Virus Discovery: significance for the Arbovirus Community
  publication-title: Viruses
  doi: 10.3390/v7092851
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0145
  article-title: Potential risk of re-emergence of urban transmission of Yellow fever virus in Brazil facilitated by competent Aedes populations
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05186-3
– volume: 112
  start-page: 2627
  year: 2013
  ident: 10.1016/j.meegid.2018.11.009_bb0080
  article-title: Comparative analysis of midgut bacterial communities of Aedes aegypti mosquito strains varying in vector competence to dengue virus
  publication-title: Parasitol. Res.
  doi: 10.1007/s00436-013-3428-x
– volume: 299
  start-page: 285
  year: 2006
  ident: 10.1016/j.meegid.2018.11.009_bb0720
  article-title: Evolutionary influences in arboviral disease
  publication-title: Curr Topics Microbiol Immunol
– start-page: 611
  year: 2002
  ident: 10.1016/j.meegid.2018.11.009_bb0320
  article-title: Vector competence of Brazilian yellow fever virus isolate Aedes aegypti and Ae. abopictus for a Brazilian yellow fever virus isolate
  publication-title: Trans Royal Soc Trop Med Hyg
  doi: 10.1016/S0035-9203(02)90326-3
– volume: 106
  start-page: 387
  year: 2012
  ident: 10.1016/j.meegid.2018.11.009_bb0210
  article-title: Yellow fever virus susceptibility of two mosquito vectors from Kenya, East Africa
  publication-title: Trans Royal Soc Trop Med Hyg
  doi: 10.1016/j.trstmh.2012.02.007
– volume: 112
  start-page: E5907
  year: 2015
  ident: 10.1016/j.meegid.2018.11.009_bb0090
  article-title: Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1516410112
– volume: 22
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0310
  article-title: Experimental transmission of Zika virus by mosquitoes from Central Europe
  publication-title: Euro Surveill.
  doi: 10.2807/1560-7917.ES.2017.22.2.30437
– volume: 27
  start-page: 3511
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0730
  article-title: The diversity, structure, and function of heritable adaptive immunity sequences in the Aedes aegypti genome
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2017.09.067
– volume: 6
  start-page: e23
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0375
  article-title: Vector competence and transovarial transmission of two Aedes aegypti strains to Zika virus
  publication-title: Emerg Microbes Infect
  doi: 10.1038/emi.2017.8
– volume: 90
  start-page: 422
  year: 2014
  ident: 10.1016/j.meegid.2018.11.009_bb0740
  article-title: Comparative susceptibility of mosquito populations in North Queensland, Australia to oral infection with dengue virus
  publication-title: Am J Trop Med Hyg.
  doi: 10.4269/ajtmh.13-0186
– volume: 98
  start-page: 1563
  year: 2018
  ident: 10.1016/j.meegid.2018.11.009_bb0520
  article-title: Mosquito-Borne Human Viral Diseases: why Aedes aegypti?
  publication-title: Am J Trop Med Hyg.
  doi: 10.4269/ajtmh.17-0866
– volume: 3
  start-page: 6
  year: 2014
  ident: 10.1016/j.meegid.2018.11.009_bb0155
  article-title: The mosquito microbiota influences vector competence for human pathogens
  publication-title: Curr Opin Insect Sci
  doi: 10.1016/j.cois.2014.07.004
– volume: 7
  start-page: 3741
  year: 2015
  ident: 10.1016/j.meegid.2018.11.009_bb0230
  article-title: Tissues barriers to arbovirus infection in mosquitoes
  publication-title: Viruses
  doi: 10.3390/v7072795
– volume: 34
  start-page: 1225
  year: 1985
  ident: 10.1016/j.meegid.2018.11.009_bb0700
  article-title: Selection for susceptibility and refractoriness of Aedes aegypti to oralinfection with yellow fever virus
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1985.34.1225
– volume: 128
  start-page: 566
  year: 2013
  ident: 10.1016/j.meegid.2018.11.009_bb0290
  article-title: Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for DEN2-43 and New Guinea C virus strains of dengue 2 virus
  publication-title: Acta Trop.
  doi: 10.1016/j.actatropica.2013.08.006
– volume: 46
  start-page: 395
  year: 2009
  ident: 10.1016/j.meegid.2018.11.009_bb0495
  article-title: Effects of Infectious Virus Dose and Bloodmeal delivery Method on Susceptibility of Aedes aegypti and Aedes albopictus to Chikungunya Virus
  publication-title: J. Med. Entomol.
  doi: 10.1603/033.046.0228
– volume: 102
  start-page: 493
  year: 2008
  ident: 10.1016/j.meegid.2018.11.009_bb0170
  article-title: Vector competence of Aedes aegypti populations from Senegal for sylvatic and epidemic dengue 2 virus isolated in West Africa
  publication-title: Trans of Royal Soc Trop Med Hyg
  doi: 10.1016/j.trstmh.2008.02.010
– volume: 12
  year: 2018
  ident: 10.1016/j.meegid.2018.11.009_bb0065
  article-title: Zika virus outbreak in the Pacific: Vector competence of regional vectors
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0006637
– volume: 9
  start-page: 1
  year: 2015
  ident: 10.1016/j.meegid.2018.11.009_bb0515
  article-title: Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0003462
– start-page: 1
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0710
  article-title: The immune strategies of mosquito Aedes aegypti against microbial infection
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2016.11.022
– volume: 21
  year: 2016
  ident: 10.1016/j.meegid.2018.11.009_bb0160
  article-title: Experimental studies of susceptibility of Italian Aedes albopictus to Zika virus
  publication-title: Euro Surveill.
  doi: 10.2807/1560-7917.ES.2016.21.18.30223
– volume: 18
  start-page: 2384
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0590
  article-title: Infection of a French Population of Aedes albopictus and of Aedes aegypti (Paea Strain) with Zika Virus reveals Low Transmission rates to these Vectors' Saliva
  publication-title: J Mol Sci
  doi: 10.3390/ijms18112384
– volume: 13
  start-page: 1
  year: 2016
  ident: 10.1016/j.meegid.2018.11.009_bb0410
  article-title: Vector competence of Aedes aegypti in transmitting Chikungunya virus: Effects and implications of extrinsic incubation temperature on dissemination and infection rates
  publication-title: Virol. J.
  doi: 10.1186/s12985-016-0566-7
– volume: 64
  start-page: 53
  year: 2016
  ident: 10.1016/j.meegid.2018.11.009_bb0595
  article-title: Mosquito gut antiparasitic and antiviral immunity
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2016.01.015
– volume: 16
  start-page: 59
  year: 1979
  ident: 10.1016/j.meegid.2018.11.009_bb0335
  article-title: Quantitative studies of the vector competence of Aedes aegypti, Culex annulirostris and other mosquitoes (Diptera: Culicidae) with Murray Valley
  publication-title: J. Med. Entomol.
  doi: 10.1093/jmedent/16.1.59
– volume: 10
  year: 2016
  ident: 10.1016/j.meegid.2018.11.009_bb0100
  article-title: Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0004543
– volume: 91
  start-page: e00009
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0430
  article-title: Animal models of Zika virus infection pathogenesis and immunity
  publication-title: J Virol
  doi: 10.1128/JVI.00009-17
– volume: 484
  start-page: 51
  year: 2015
  ident: 10.1016/j.meegid.2018.11.009_bb0450
  article-title: Eilat virus induces both homologous and heterologous interference
  publication-title: Virology
  doi: 10.1016/j.virol.2015.05.009
– volume: 4
  year: 2008
  ident: 10.1016/j.meegid.2018.11.009_bb0735
  article-title: The Aedes aegypti toll pathway controls dengue virus infection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000098
– volume: 12
  year: 2018
  ident: 10.1016/j.meegid.2018.11.009_bb0400
  article-title: Vector competence of Aedes aegypti, Culex tarsalis, and Culex quinquefasciatus from California for Zika virus
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0006524
– volume: 8
  start-page: 8358
  year: 2018
  ident: 10.1016/j.meegid.2018.11.009_bb0615
  article-title: Hydrogen cyanide produced by the soil bacterium Chromobacterium sp. Panama contributes to mortality in Anopheles gambiae mosquito larvae
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-26680-2
– volume: 7
  start-page: 1
  year: 2014
  ident: 10.1016/j.meegid.2018.11.009_bb0270
  article-title: Distinct variation in vector competence among nine field populations of Aedes aegypti from a Brazilian dengue-endemic risk city
  publication-title: Parasit. Vectors
  doi: 10.1186/1756-3305-7-320
– volume: 38
  start-page: 130
  year: 2001
  ident: 10.1016/j.meegid.2018.11.009_bb0660
  article-title: Vector Competence of north American Mosquitoes (Diptera : Culicidae) for West Nile Virus
  publication-title: J. Med. Entomol.
  doi: 10.1603/0022-2585-38.2.130
– volume: 21
  start-page: 370
  year: 2007
  ident: 10.1016/j.meegid.2018.11.009_bb0605
  article-title: Investigations of dengue-2 susceptibility and body size among Aedes aegypti populations
  publication-title: Med. Vet. Entomol.
  doi: 10.1111/j.1365-2915.2007.00699.x
– volume: 10
  start-page: 556
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0500
  article-title: Incidence of dengue and chikungunya viruses in mosquitoes and human patients in border provinces of Vientnam
  publication-title: Parasit. Vectors
  doi: 10.1186/s13071-017-2422-z
– volume: 19
  start-page: 771
  year: 2016
  ident: 10.1016/j.meegid.2018.11.009_bb0205
  article-title: Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.04.021
– volume: 25
  start-page: 336
  year: 1976
  ident: 10.1016/j.meegid.2018.11.009_bb0350
  article-title: Vector competence of mosquitoes as a marker to distinguish central American and Mexican epizootic from enzootic strains of Venezuelan enceph
  publication-title: Am J Trop Med Hyg.
  doi: 10.4269/ajtmh.1976.25.336
– volume: 13
  start-page: 1
  year: 2013
  ident: 10.1016/j.meegid.2018.11.009_bb0395
  article-title: Aedes aegypti from temperate regions of South America are highly competent to transmit dengue virus
  publication-title: BMC Infect. Dis.
  doi: 10.1186/1471-2334-13-610
– volume: 96
  start-page: 1235
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0340
  article-title: Transmission incompetence of Culex quinquefasciatus and Culex pipiens pipiens from North America for Zika virus
  publication-title: Am J Trop Med Hyg.
  doi: 10.4269/ajtmh.16-0865
– volume: 10
  year: 2014
  ident: 10.1016/j.meegid.2018.11.009_bb0530
  article-title: Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004398
– volume: 3
  start-page: e408
  year: 2009
  ident: 10.1016/j.meegid.2018.11.009_bb0630
  article-title: Gene flow, subspecies composition, and dengue virus-2 susceptibility among Aedes aegypti collections in Senegal
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0000408
– volume: 10
  year: 2016
  ident: 10.1016/j.meegid.2018.11.009_bb0300
  article-title: Assessment of local mosquito species incriminates Aedes aegypti as the potential vector of Zika virus in Australia
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0004959
– volume: 6
  start-page: 104
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0440
  article-title: Animal models for dengue vaccine development and testing
  publication-title: Clin Exp Vaccine Res
  doi: 10.7774/cevr.2017.6.2.104
– volume: 12
  start-page: 605
  year: 2012
  ident: 10.1016/j.meegid.2018.11.009_bb0705
  article-title: Vector Competence of five Common Mosquito Species in the People's Republic of China for Western Equine Encephalitis Virus
  publication-title: Vector-Borne Zoonotic Dis
  doi: 10.1089/vbz.2011.0660
– volume: 113
  start-page: e180290
  year: 2018
  ident: 10.1016/j.meegid.2018.11.009_bb4555
  article-title: Zika infection decreases Aedes aegypti locomotor activity but does not influence egg production or viability
  publication-title: Mem. Inst. Oswaldo Cruz.
  doi: 10.1590/0074-02760180290
– volume: 65
  start-page: 491
  year: 2001
  ident: 10.1016/j.meegid.2018.11.009_bb0680
  article-title: Population genetic structure and competence as a vector for dengue type 2 virus of Aedes aegypti and Aedes albopictus from Madagascar
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2001.65.491
– volume: 15
  start-page: 140
  year: 2015
  ident: 10.1016/j.meegid.2018.11.009_bb0195
  article-title: Developmental succession of the microbiome of Culex mosquitoes
  publication-title: BMC Microbiol.
  doi: 10.1186/s12866-015-0475-8
– volume: 67
  start-page: 84
  year: 2002
  ident: 10.1016/j.meegid.2018.11.009_bb0030
  article-title: Variation in vector competence for dengue-2 virus among 24 collections of Aedes aegypti from Mexico and the United States
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.2002.67.85
– volume: 23
  start-page: 1110
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0110
  article-title: Effects of Zika virus strain and Aedes mosquito species on vector competence
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2307.161633
– volume: 12
  start-page: 35
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0295
  article-title: Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction with Arboviral Pathogens
  publication-title: Evol. Bioinformatics Online
– volume: 112
  start-page: 577
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0220
  article-title: Culex quinquefasciatus from areas with the highest incidence of microcephaly associated with Zika virus infections in the Northeast Region of Brazil are refractory to the virus
  publication-title: Mem. Inst. Oswaldo Cruz
  doi: 10.1590/0074-02760170145
– volume: 17
  start-page: 361
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0480
  article-title: Aedes-borne virus-mosquito interactions: mass spectrometry strategies and findings
  publication-title: Vector-borne Zoon Dis
  doi: 10.1089/vbz.2016.2040
– volume: 216
  start-page: 976
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0330
  article-title: Zika Virus Mosquito Vectors: Competence, Biology, and Vector Control
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jix405
– volume: 40
  start-page: 950
  year: 2003
  ident: 10.1016/j.meegid.2018.11.009_bb0345
  article-title: Enhanced vector competence of Aedes aegypti (Diptera: Culicidae) from the Torres Strait compared with mainland Australia for dengue 2 and 4 viruses
  publication-title: J. Med. Entomol.
  doi: 10.1603/0022-2585-40.6.950
– volume: 10
  start-page: 164
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0455
  article-title: Potential of Aedes aegypti and Aedes albopictus populations in the Central African Republic to transmit enzootic chikungunya virus strains
  publication-title: Parasit. Vectors
  doi: 10.1186/s13071-017-2101-0
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.meegid.2018.11.009_bb0585
  article-title: Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes
  publication-title: Nature Com
– volume: 23
  start-page: 378
  year: 2007
  ident: 10.1016/j.meegid.2018.11.009_bb0665
  article-title: Vector competence of Kenyan Culex zombaensis and Culex quinquefasciatus mosquitoes for Rift Valley fever virus
  publication-title: J. Am. Mosq. Control Assoc.
  doi: 10.2987/5645.1
– volume: 87
  start-page: 639
  year: 1993
  ident: 10.1016/j.meegid.2018.11.009_bb0325
  article-title: The potential for dengue in South Africa: Vector competence tests with dengue 1 and 2 viruses and 6 mosquito species
  publication-title: Trans Royal Soc Trop Med Hyg
  doi: 10.1016/0035-9203(93)90271-Q
– volume: 12
  start-page: 1036
  year: 2012
  ident: 10.1016/j.meegid.2018.11.009_bb0200
  article-title: Chikungunya Virus and the Mosquito Vector Aedes aegypti in New Caledonia (South Pacific Region)
  publication-title: Vector-Borne Zoon Dis
  doi: 10.1089/vbz.2011.0937
– volume: 19
  start-page: 1355
  year: 2014
  ident: 10.1016/j.meegid.2018.11.009_bb0240
  article-title: Oral susceptibility of Aedes aegypti (Diptera: Culicidae) from Senegal for dengue serotypes 1 and 3 viruses
  publication-title: Tropical Med. Int. Health
  doi: 10.1111/tmi.12373
– volume: 16
  start-page: 134
  year: 2011
  ident: 10.1016/j.meegid.2018.11.009_bb0250
  article-title: Viewpoint: High susceptibility to Chikungunya virus of Aedes aegypti from the French West Indies and French Guiana
  publication-title: Tropical Med. Int. Health
  doi: 10.1111/j.1365-3156.2010.02613.x
SSID ssj0017028
Score 2.6172602
SecondaryResourceType review_article
Snippet Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever,...
Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever,...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 191
SubjectTerms Aedes - genetics
Aedes - virology
Aedes aegypti
Animals
antiviral proteins
bacteria
dengue
fever
Genetic Variation
genome
Host-Pathogen Interactions
human health
Humans
innate immunity
insects
meta-analysis
Microbiota
mixed infection
Mosquito Vectors - genetics
Mosquito Vectors - virology
rearing
tissue culture
vector competence
Virus Diseases - transmission
Virus Diseases - virology
viruses
Yellow fever virus
Title Aedes aegypti vector competence studies: A review
URI https://dx.doi.org/10.1016/j.meegid.2018.11.009
https://www.ncbi.nlm.nih.gov/pubmed/30465912
https://www.proquest.com/docview/2137461840
https://www.proquest.com/docview/2221051662
https://pubmed.ncbi.nlm.nih.gov/PMC8135908
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dT9wwLELwMmmaBoPtNkCZxGu4Jk2blrfTCXR8DCEYEm9R0iajCAraHTzy27GbtuIYAmlP_YgrpbZjO44_CNmSqbQy4RkreJYyaUrFcrCLWSKF8sJ5IAzmDv86Tifn8uAiuVgg4y4XBsMqW9kfZHojrds3wxabw7uqGp7BzgMTIUHjAJ-CVsYMdqmQy7cf-zAPrqKmvyoCM4Tu0ueaGK8b5_5UWC-UZ9tYyxPDEl9XT_-any-jKJ-ppb3P5FNrT9JRmPIyWXD1CvkYnHE05Bh9IXzkSjelpuk5VtGHxlNPi95kptMQTbhDRzTksqyS873d3-MJa3slsELm6YwZYXKfOeFAgAmvjBegnNDDCRZVKoSLY2GELWGRwS3nZWQjkwtT-qRR2SpeI4v1be2-ESpKYb0oEh8ZI3OTgUVjsySxLi2sLX08IHGHIl20hcSxn8W17iLGrnRArEbEwh5DA2IHhPVf3YVCGu_Aqw77eo4hNMj6d7782RFLw1rBAxBTu9v7qQacKIkdbqI3YARsggFnqRiQr4HA_XzxFDnJOYyoOdL3AFire36kri6bmt0Zj7G7_Pf__qsf5AM85cH7s04WZ3_v3QbYQzO72TD8JlkajU-PTvC6fzg5fgIUCgrt
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dBKqCp9wEJLXYmru4lj59HbChUtBfZSkLhZdmK3QRBQd-nvZyZOIrZUReotisdS8o09Mx7PA2BfptJKFee8jPOUS1NlvEC7mCspMi-cR8ZQ7vDpPJ2dy28X6mINDvpcGAqr7GR_kOmttO7eTDo0J7d1PfmOJw9KhESNg-sUtfIzWKfqVGoE69Oj49l8uEzIorbFKtFzmtBn0LVhXtfO_aipZGicf6ZynhSZ-HcN9dgC_TOQ8oFmOnwFLzuTkk3DV2_Cmmtew0bwx7GQZvQG4qmr3IKZtu1YzX63znpWDlYzW4SAwi9sykI6y1s4P_x6djDjXbsEXsoiXXIjTOFzJxzKMOEz4wXqJ3JyolGVCuGSRBhhK9xn-BjHVWQjUwhTedVq7Sx5B6PmpnHbwEQlrBel8pExsjA5GjU2V8q6tLS28skYkh4iXXa1xKmlxZXug8YudQBWE7B4zNAI7Bj4MOs21NJ4gj7r0dcra0KjuH9i5qeeWRq3C92BmMbd3C00YpJJanIT_YNG4DkYMUvFGLYCg4fvpYtkVcQ4kq2wfiCgct2rI039sy3bnccJNZjf-e-_-gjPZ2enJ_rkaH68Cy9wpAjOoPcwWv66cx_QPFravW753wPRigwJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aedes+aegypti+vector+competence+studies%3A+A+review&rft.jtitle=Infection%2C+genetics+and+evolution&rft.au=Souza-Neto%2C+Jayme+A&rft.au=Powell%2C+Jeffrey+R&rft.au=Bonizzoni%2C+Mariangela&rft.date=2019-01-01&rft.issn=1567-7257&rft.eissn=1567-7257&rft.volume=67&rft.spage=191&rft_id=info:doi/10.1016%2Fj.meegid.2018.11.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1348&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1348&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1348&client=summon