Asymmetric pore windows in MOF membranes for natural gas valorization
To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity 1 . In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal 2 . However, the inertness of nitrogen and its s...
Saved in:
Published in | Nature (London) Vol. 606; no. 7915; pp. 706 - 712 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.06.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity
1
. In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal
2
. However, the inertness of nitrogen and its similarities to methane in terms of kinetic size, polarizability and boiling point pose particular challenges for the development of energy-efficient nitrogen-removing processes
3
. Here we report a mixed-linker metal–organic framework (MOF) membrane based on fumarate (
fum
) and mesaconate (
mes
) linkers, Zr-
fum
67
-
mes
33
-
fcu
-MOF, with a pore aperture shape specific for effective nitrogen removal from natural gas. The deliberate introduction of asymmetry in the parent trefoil-shaped pore aperture induces a shape irregularity, blocking the transport of tetrahedral methane while allowing linear nitrogen to permeate. Zr-
fum
67
-
mes
33
-
fcu
-MOF membranes exhibit record-high nitrogen/methane selectivity and nitrogen permeance under practical pressures up to 50 bar, removing both carbon dioxide and nitrogen from natural gas. Techno-economic analysis shows that our membranes offer the potential to reduce methane purification costs by about 66% for nitrogen rejection and about 73% for simultaneous removal of carbon dioxide and nitrogen, relative to cryogenic distillation and amine-based carbon dioxide capture.
A metal–organic framework membrane based on fumarate and mesaconate linkers is shown to have a pore aperture shape that enables efficient and cost-effective removal of nitrogen and carbon dioxide from methane. |
---|---|
AbstractList | To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity
1
. In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal
2
. However, the inertness of nitrogen and its similarities to methane in terms of kinetic size, polarizability and boiling point pose particular challenges for the development of energy-efficient nitrogen-removing processes
3
. Here we report a mixed-linker metal–organic framework (MOF) membrane based on fumarate (
fum
) and mesaconate (
mes
) linkers, Zr-
fum
67
-
mes
33
-
fcu
-MOF, with a pore aperture shape specific for effective nitrogen removal from natural gas. The deliberate introduction of asymmetry in the parent trefoil-shaped pore aperture induces a shape irregularity, blocking the transport of tetrahedral methane while allowing linear nitrogen to permeate. Zr-
fum
67
-
mes
33
-
fcu
-MOF membranes exhibit record-high nitrogen/methane selectivity and nitrogen permeance under practical pressures up to 50 bar, removing both carbon dioxide and nitrogen from natural gas. Techno-economic analysis shows that our membranes offer the potential to reduce methane purification costs by about 66% for nitrogen rejection and about 73% for simultaneous removal of carbon dioxide and nitrogen, relative to cryogenic distillation and amine-based carbon dioxide capture.
A metal–organic framework membrane based on fumarate and mesaconate linkers is shown to have a pore aperture shape that enables efficient and cost-effective removal of nitrogen and carbon dioxide from methane. To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity1. In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal2. However, the inertness of nitrogen and its similarities to methane in terms of kinetic size, polarizability and boiling point pose particular challenges for the development of energy-efficient nitrogen-removing processes3. Here we report a mixed-linker metal-organic framework (MOF) membrane based on fumarate (fum) and mesaconate (mes) linkers, Zr-fum67-mes33-fcu-MOF, with a pore aperture shape specific for effective nitrogen removal from natural gas. The deliberate introduction of asymmetry in the parent trefoil-shaped pore aperture induces a shape irregularity, blocking the transport oftetrahedral methane while allowing linear nitrogen to permeate. Zr-fum67-mes33-fcu-MOF membranes exhibit record-high nitrogen/methane selectivity and nitrogen permeance under practical pressures up to 50bar, removing both carbon dioxide and nitrogen from natural gas. Techno-economic analysis shows that our membranes offer the potential to reduce methane purification costs by about 66% for nitrogen rejection and about 73% for simultaneous removal of carbon dioxide and nitrogen, relative to cryogenic distillation and amine-based carbon dioxide capture. To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity1. In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal2. However, the inertness of nitrogen and its similarities to methane in terms of kinetic size, polarizability and boiling point pose particular challenges for the development of energy-efficient nitrogen-removing processes3. Here we report a mixed-linker metal-organic framework (MOF) membrane based on fumarate (fum) and mesaconate (mes) linkers, Zr-fum67-mes33-fcu-MOF, with a pore aperture shape specific for effective nitrogen removal from natural gas. The deliberate introduction of asymmetry in the parent trefoil-shaped pore aperture induces a shape irregularity, blocking the transport of tetrahedral methane while allowing linear nitrogen to permeate. Zr-fum67-mes33-fcu-MOF membranes exhibit record-high nitrogen/methane selectivity and nitrogen permeance under practical pressures up to 50 bar, removing both carbon dioxide and nitrogen from natural gas. Techno-economic analysis shows that our membranes offer the potential to reduce methane purification costs by about 66% for nitrogen rejection and about 73% for simultaneous removal of carbon dioxide and nitrogen, relative to cryogenic distillation and amine-based carbon dioxide capture.To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity1. In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal2. However, the inertness of nitrogen and its similarities to methane in terms of kinetic size, polarizability and boiling point pose particular challenges for the development of energy-efficient nitrogen-removing processes3. Here we report a mixed-linker metal-organic framework (MOF) membrane based on fumarate (fum) and mesaconate (mes) linkers, Zr-fum67-mes33-fcu-MOF, with a pore aperture shape specific for effective nitrogen removal from natural gas. The deliberate introduction of asymmetry in the parent trefoil-shaped pore aperture induces a shape irregularity, blocking the transport of tetrahedral methane while allowing linear nitrogen to permeate. Zr-fum67-mes33-fcu-MOF membranes exhibit record-high nitrogen/methane selectivity and nitrogen permeance under practical pressures up to 50 bar, removing both carbon dioxide and nitrogen from natural gas. Techno-economic analysis shows that our membranes offer the potential to reduce methane purification costs by about 66% for nitrogen rejection and about 73% for simultaneous removal of carbon dioxide and nitrogen, relative to cryogenic distillation and amine-based carbon dioxide capture. |
Author | Zhou, Sheng Shekhah, Osama Li, Jiantang Bhatt, Prashant M. Gascon, Jorge Jia, Jiangtao Eddaoudi, Mohamed Maurin, Guillaume Jiang, Hao Ramírez, Adrian Lyu, Pengbo Jin, Tian Abou-Hamad, Edy Huang, Zhiyuan |
Author_xml | – sequence: 1 givenname: Sheng orcidid: 0000-0002-8465-1227 surname: Zhou fullname: Zhou, Sheng organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3) – sequence: 2 givenname: Osama orcidid: 0000-0003-1861-9226 surname: Shekhah fullname: Shekhah, Osama organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3) – sequence: 3 givenname: Adrian surname: Ramírez fullname: Ramírez, Adrian organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Advanced Catalytic Materials (ACM), King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Pengbo surname: Lyu fullname: Lyu, Pengbo organization: Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM – sequence: 5 givenname: Edy surname: Abou-Hamad fullname: Abou-Hamad, Edy organization: Core Labs, King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Jiangtao surname: Jia fullname: Jia, Jiangtao organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3) – sequence: 7 givenname: Jiantang surname: Li fullname: Li, Jiantang organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3) – sequence: 8 givenname: Prashant M. orcidid: 0000-0002-9944-1062 surname: Bhatt fullname: Bhatt, Prashant M. organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3) – sequence: 9 givenname: Zhiyuan surname: Huang fullname: Huang, Zhiyuan organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3) – sequence: 10 givenname: Hao orcidid: 0000-0002-1234-624X surname: Jiang fullname: Jiang, Hao organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3) – sequence: 11 givenname: Tian surname: Jin fullname: Jin, Tian organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3) – sequence: 12 givenname: Guillaume surname: Maurin fullname: Maurin, Guillaume organization: Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM – sequence: 13 givenname: Jorge orcidid: 0000-0001-7558-7123 surname: Gascon fullname: Gascon, Jorge organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Advanced Catalytic Materials (ACM), King Abdullah University of Science and Technology (KAUST) – sequence: 14 givenname: Mohamed orcidid: 0000-0003-1916-9837 surname: Eddaoudi fullname: Eddaoudi, Mohamed email: mohamed.eddaoudi@kaust.edu.sa organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3) |
BackLink | https://hal.umontpellier.fr/hal-03752951$$DView record in HAL |
BookMark | eNp9kctKAzEUhoNUsF5ewFXAjS5GT66TWZbiDSpudB3SNKORmaQm0xZ9eqcdRXDhKsnh-8L5-Q_RKMTgEDolcEmAqavMiVCyAEoL4KVkhdhDY9LfCi5VOUJjAKoKUEweoMOc3wBAkJKP0fUkf7St65K3eBmTwxsfFnGTsQ_44fEGt66dJxNcxnVMOJhulUyDX0zGa9PE5D9N52M4Rvu1abI7-T6P0PPN9dP0rpg93t5PJ7PC8kp2hQHlrKlKMa8JVZWaG6soF4rNARasrozjlNqaKw7OCtq_mATGarkoF5SCYUfoYvj31TR6mXxr0oeOxuu7yUxvZ8BKQStB1qRnzwd2meL7yuVOtz5b1zR9mrjKmkoFlPGKix49-4O-xVUKfZIdJRmUckupgbIp5pxcra3vdvG7ZHyjCehtF3roQvdd6F0XeqvSP-rP8v9KbJByD4cXl363-sf6AoTdm_M |
CitedBy_id | crossref_primary_10_1016_j_seppur_2023_125957 crossref_primary_10_1039_D3CE00370A crossref_primary_10_1016_j_apsusc_2023_158730 crossref_primary_10_1039_D3MH00257H crossref_primary_10_1039_D4SC02550D crossref_primary_10_1016_j_memsci_2024_123612 crossref_primary_10_1002_asia_202200985 crossref_primary_10_1016_j_memsci_2023_121950 crossref_primary_10_1021_acs_energyfuels_4c03162 crossref_primary_10_1126_sciadv_adq5024 crossref_primary_10_1002_adma_202309572 crossref_primary_10_1016_j_cclet_2024_109729 crossref_primary_10_1016_j_apsusc_2022_155613 crossref_primary_10_1016_j_esci_2023_100189 crossref_primary_10_1002_anie_202215234 crossref_primary_10_1039_D3CP02368K crossref_primary_10_1016_j_seppur_2024_127736 crossref_primary_10_1016_j_ccr_2024_216229 crossref_primary_10_1002_anie_202417209 crossref_primary_10_1021_acsami_5c00733 crossref_primary_10_3390_molecules29163885 crossref_primary_10_1021_jacs_4c14130 crossref_primary_10_1360_TB_2023_0412 crossref_primary_10_1016_j_seppur_2025_132246 crossref_primary_10_1002_chem_202301279 crossref_primary_10_1021_acs_iecr_4c03122 crossref_primary_10_1021_acs_iecr_4c04571 crossref_primary_10_1016_j_memsci_2023_122258 crossref_primary_10_1002_asia_202300699 crossref_primary_10_1016_j_cej_2024_158973 crossref_primary_10_1002_anie_202405676 crossref_primary_10_1016_j_pmatsci_2025_101432 crossref_primary_10_1002_ange_202413701 crossref_primary_10_3390_pharmaceutics16030414 crossref_primary_10_1002_anie_202216697 crossref_primary_10_1016_j_cclet_2024_110284 crossref_primary_10_1016_j_inoche_2023_110789 crossref_primary_10_1002_aic_18426 crossref_primary_10_1007_s40820_023_01180_9 crossref_primary_10_1039_D3NR00841J crossref_primary_10_1016_j_cej_2023_142891 crossref_primary_10_1016_j_nantod_2024_102227 crossref_primary_10_1016_j_memsci_2024_123635 crossref_primary_10_1016_j_seppur_2025_132358 crossref_primary_10_1038_s44286_024_00096_4 crossref_primary_10_1002_smll_202409988 crossref_primary_10_1039_D3DT04009G crossref_primary_10_1016_j_seppur_2023_125178 crossref_primary_10_1126_science_ads7866 crossref_primary_10_1002_anie_202218842 crossref_primary_10_1039_D4EE04085F crossref_primary_10_1002_sstr_202300002 crossref_primary_10_1016_j_memsci_2024_123080 crossref_primary_10_1038_s41563_023_01541_0 crossref_primary_10_1002_ange_202401817 crossref_primary_10_1002_smll_202201550 crossref_primary_10_1016_j_cej_2023_143056 crossref_primary_10_1016_j_memsci_2023_121829 crossref_primary_10_1038_s41467_023_42863_6 crossref_primary_10_1002_anie_202311075 crossref_primary_10_1016_j_memsci_2024_122536 crossref_primary_10_1021_jacs_4c04125 crossref_primary_10_1038_s41467_024_54663_7 crossref_primary_10_1039_D3NA00807J crossref_primary_10_1002_anie_202401770 crossref_primary_10_1002_zaac_202200248 crossref_primary_10_1039_D4CE00041B crossref_primary_10_1007_s11426_024_2458_3 crossref_primary_10_1016_j_scitotenv_2024_174992 crossref_primary_10_1002_smll_202205542 crossref_primary_10_1039_D3IM00110E crossref_primary_10_1002_adfm_202421346 crossref_primary_10_1016_j_jece_2022_109243 crossref_primary_10_1515_znb_2022_0139 crossref_primary_10_1002_ange_202405676 crossref_primary_10_1002_chem_202401868 crossref_primary_10_1016_j_seppur_2024_129792 crossref_primary_10_1016_j_memsci_2023_122171 crossref_primary_10_1021_acs_cgd_3c00181 crossref_primary_10_1016_j_materresbull_2023_112462 crossref_primary_10_1016_j_cjsc_2023_100034 crossref_primary_10_1016_j_seppur_2024_126601 crossref_primary_10_1016_j_matchemphys_2024_129142 crossref_primary_10_1002_mba2_57 crossref_primary_10_1063_5_0169507 crossref_primary_10_1016_j_matt_2024_11_030 crossref_primary_10_1016_j_micromeso_2022_112396 crossref_primary_10_1002_anie_202215296 crossref_primary_10_1021_jacs_3c04831 crossref_primary_10_1039_D3DT00979C crossref_primary_10_1038_s44221_023_00184_4 crossref_primary_10_1016_j_ccr_2024_215690 crossref_primary_10_1002_adfm_202421913 crossref_primary_10_1021_acsami_4c12329 crossref_primary_10_1016_j_mser_2024_100785 crossref_primary_10_1002_adfm_202306202 crossref_primary_10_1016_j_jece_2023_109656 crossref_primary_10_1002_ange_202215296 crossref_primary_10_1007_s11705_024_2504_3 crossref_primary_10_1002_adfm_202404681 crossref_primary_10_1016_j_apmt_2025_102676 crossref_primary_10_1002_aenm_202303971 crossref_primary_10_1002_ange_202311336 crossref_primary_10_1021_acs_inorgchem_2c04447 crossref_primary_10_1021_jacs_3c01113 crossref_primary_10_1002_ange_202302181 crossref_primary_10_1039_D2CS00031H crossref_primary_10_1016_j_memsci_2023_121854 crossref_primary_10_1021_acs_chemmater_3c03282 crossref_primary_10_1016_j_ccst_2025_100362 crossref_primary_10_1002_adma_202413506 crossref_primary_10_1002_smll_202500937 crossref_primary_10_1360_TB_2023_0696 crossref_primary_10_1016_j_chempr_2023_01_008 crossref_primary_10_1021_acsmaterialslett_3c00096 crossref_primary_10_1039_D4GC03991B crossref_primary_10_1002_advs_202303217 crossref_primary_10_1039_D3CS00131H crossref_primary_10_1002_adma_202414153 crossref_primary_10_1038_s41467_024_51540_1 crossref_primary_10_1002_anie_202302181 crossref_primary_10_1039_D3CP01063E crossref_primary_10_1016_j_memsci_2023_121626 crossref_primary_10_1002_anie_202413701 crossref_primary_10_1002_smsc_202200042 crossref_primary_10_1021_acsami_3c02414 crossref_primary_10_1039_D3CP01834B crossref_primary_10_1016_j_memsci_2023_121984 crossref_primary_10_1039_D3GC01996A crossref_primary_10_1016_j_cej_2025_160858 crossref_primary_10_1016_j_mtener_2024_101771 crossref_primary_10_1016_j_seppur_2025_132308 crossref_primary_10_1038_s41467_024_55390_9 crossref_primary_10_1038_s41467_025_57242_6 crossref_primary_10_1016_j_seppur_2024_129883 crossref_primary_10_1016_j_cej_2024_157949 crossref_primary_10_1016_j_memsci_2025_123729 crossref_primary_10_1039_D3SC06076D crossref_primary_10_1016_j_jcis_2024_03_181 crossref_primary_10_1038_s41467_023_40590_6 crossref_primary_10_1016_j_carbon_2024_119922 crossref_primary_10_1002_anie_202502862 crossref_primary_10_1016_j_memsci_2023_121557 crossref_primary_10_1016_j_xcrp_2024_102035 crossref_primary_10_1016_j_ces_2024_119781 crossref_primary_10_1002_ange_202311075 crossref_primary_10_1021_acs_inorgchem_3c02851 crossref_primary_10_1002_adma_202204553 crossref_primary_10_1007_s40242_023_3058_5 crossref_primary_10_1016_j_seppur_2023_123493 crossref_primary_10_1002_ange_202414503 crossref_primary_10_1016_j_memsci_2022_121282 crossref_primary_10_1021_acs_chemmater_4c03231 crossref_primary_10_3390_nano14030298 crossref_primary_10_1002_anie_202311336 crossref_primary_10_1016_j_seppur_2022_122312 crossref_primary_10_1016_j_aca_2024_343303 crossref_primary_10_1021_acs_chemmater_3c01777 crossref_primary_10_1038_s41467_023_44626_9 crossref_primary_10_1016_j_jssc_2023_124213 crossref_primary_10_1016_j_cej_2025_159847 crossref_primary_10_1021_acsapm_4c03207 crossref_primary_10_1002_smll_202308739 crossref_primary_10_1002_adfm_202410751 crossref_primary_10_1002_adfm_202308946 crossref_primary_10_1016_j_seppur_2024_131382 crossref_primary_10_1002_anie_202401118 crossref_primary_10_1002_adfm_202500210 crossref_primary_10_1016_j_micromeso_2023_112443 crossref_primary_10_1016_j_seppur_2022_122678 crossref_primary_10_1016_j_ccr_2023_215364 crossref_primary_10_1002_ange_202401770 crossref_primary_10_1016_j_catcom_2022_106592 crossref_primary_10_1002_ange_202216697 crossref_primary_10_1016_j_memsci_2024_123244 crossref_primary_10_1039_D4CS00432A crossref_primary_10_1002_advs_202413942 crossref_primary_10_1016_j_pmatsci_2024_101324 crossref_primary_10_1038_s41467_023_43104_6 crossref_primary_10_1007_s10934_022_01409_9 crossref_primary_10_1016_j_seppur_2023_124003 crossref_primary_10_1021_acsami_2c20141 crossref_primary_10_1002_cplu_202200462 crossref_primary_10_1016_j_ccst_2024_100316 crossref_primary_10_1016_j_seppur_2024_128403 crossref_primary_10_1007_s42114_024_01022_1 crossref_primary_10_1021_acs_inorgchem_2c03151 crossref_primary_10_1038_s41467_024_47083_0 crossref_primary_10_1016_j_seppur_2024_127318 crossref_primary_10_1016_j_jcis_2023_12_026 crossref_primary_10_1021_acs_accounts_4c00469 crossref_primary_10_1021_acsami_3c05285 crossref_primary_10_1002_adma_202416669 crossref_primary_10_1039_D3TA01241G crossref_primary_10_1021_acs_iecr_4c01362 crossref_primary_10_1021_acs_inorgchem_2c02978 crossref_primary_10_1002_ange_202215234 crossref_primary_10_1016_j_memsci_2023_121430 crossref_primary_10_3390_molecules28041893 crossref_primary_10_1016_j_seppur_2022_121808 crossref_primary_10_1039_D3CS00285C crossref_primary_10_1039_D3CS00370A crossref_primary_10_1002_ange_202417209 crossref_primary_10_1002_aic_18368 crossref_primary_10_1002_anie_202401817 crossref_primary_10_1016_j_cej_2023_147498 crossref_primary_10_1021_acsmaterialslett_2c01107 crossref_primary_10_1002_ange_202401118 crossref_primary_10_1016_j_gee_2024_03_002 crossref_primary_10_1016_j_memsci_2023_122201 crossref_primary_10_1038_s41598_023_39507_6 crossref_primary_10_1038_s41467_023_37739_8 crossref_primary_10_1002_cssc_202300434 crossref_primary_10_1016_j_memsci_2024_123025 crossref_primary_10_1002_adma_202305171 crossref_primary_10_1002_anie_202213015 crossref_primary_10_1016_j_memsci_2024_123387 crossref_primary_10_1039_D4EE03753G crossref_primary_10_1039_D2SC04345A crossref_primary_10_1002_anie_202218027 crossref_primary_10_1002_sstr_202300346 crossref_primary_10_1002_ange_202502862 crossref_primary_10_1016_j_ces_2023_119293 crossref_primary_10_1016_j_cjche_2024_02_001 crossref_primary_10_1016_j_jgsce_2025_205604 crossref_primary_10_1038_s41563_023_01738_3 crossref_primary_10_1002_adfm_202304790 crossref_primary_10_1002_ange_202218842 crossref_primary_10_1016_j_cej_2024_154851 crossref_primary_10_1007_s11426_023_1809_8 crossref_primary_10_6023_A23030095 crossref_primary_10_1016_j_cej_2024_154615 crossref_primary_10_1039_D4DT02318H crossref_primary_10_1021_acs_cgd_3c01443 crossref_primary_10_1016_j_seppur_2023_123987 crossref_primary_10_1021_acsami_4c06737 crossref_primary_10_1002_ece2_15 crossref_primary_10_1016_j_rineng_2023_101398 crossref_primary_10_1002_anie_202414503 crossref_primary_10_1016_j_ccr_2025_216574 crossref_primary_10_1021_acsnano_3c08028 crossref_primary_10_1016_j_cej_2024_153630 crossref_primary_10_1016_j_seppur_2024_131332 crossref_primary_10_1002_adfm_202303447 crossref_primary_10_1016_j_chphi_2025_100864 crossref_primary_10_1016_j_seppur_2023_125256 crossref_primary_10_1021_acsami_2c12842 crossref_primary_10_1039_D3CS01163A crossref_primary_10_1016_j_seppur_2024_126302 crossref_primary_10_1039_D3MH01396K crossref_primary_10_1002_chem_202301132 crossref_primary_10_1038_s41563_023_01545_w crossref_primary_10_1016_j_ijheatmasstransfer_2024_126588 crossref_primary_10_1021_jacs_3c02711 crossref_primary_10_1021_acs_iecr_4c02414 crossref_primary_10_1021_acsmaterialslett_5c00361 crossref_primary_10_1002_adma_202412708 crossref_primary_10_1016_j_jcis_2024_04_130 crossref_primary_10_1039_D4CE00167B crossref_primary_10_1360_SSC_2024_0144 crossref_primary_10_1002_ange_202213015 crossref_primary_10_1002_ange_202218027 crossref_primary_10_1021_acsanm_3c04508 crossref_primary_10_1021_acs_inorgchem_3c04380 crossref_primary_10_1016_j_seppur_2024_126534 crossref_primary_10_1002_chem_202402444 crossref_primary_10_1016_j_jconrel_2024_05_010 crossref_primary_10_1021_jacs_3c03362 |
Cites_doi | 10.1002/anie.202104318 10.1016/j.memsci.2021.119349 10.1063/1.3382344 10.1038/s41560-021-00881-y 10.1126/sciadv.aau1393 10.1038/nmat4621 10.1557/jmr.2017.297 10.1021/acs.iecr.7b00853 10.1016/0927-0256(96)00008-0 10.1126/science.abb3976 10.1002/ange.202007283 10.1002/anie.201503782 10.1016/j.jclepro.2009.12.006 10.1038/s41578-021-00287-y 10.1007/s11814-010-0446-6 10.1002/anie.201811638 10.4209/aaqr.2012.05.0132 10.1016/j.petrol.2012.06.016 10.1021/jacs.6b05345 10.1201/9781420014044 10.1002/anie.201803279 10.1016/j.jngse.2012.02.004 10.1021/acs.iecr.0c06189 10.1103/PhysRevB.50.17953 10.1038/35089052 10.1103/PhysRevB.59.1758 10.1016/B978-0-12-802961-9.00001-2 10.1038/s41563-021-01054-8 10.1007/s10450-020-00262-z 10.1103/PhysRevLett.77.3865 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022 Copyright Nature Publishing Group Jun 23, 2022 2022. The Author(s), under exclusive licence to Springer Nature Limited. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022 – notice: Copyright Nature Publishing Group Jun 23, 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 1XC VOOES |
DOI | 10.1038/s41586-022-04763-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 712 |
ExternalDocumentID | oai_HAL_hal_03752951v1 10_1038_s41586_022_04763_5 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FAC FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U RC3 SOI 7X8 1XC UMC VOOES |
ID | FETCH-LOGICAL-c496t-a08eca975bf12898bac824583b00d3f9ae422cf4840ec52e4236033f6d7d220a3 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Fri May 09 12:12:35 EDT 2025 Thu Jul 10 17:58:25 EDT 2025 Wed Aug 13 09:05:57 EDT 2025 Thu Apr 24 23:11:33 EDT 2025 Tue Jul 01 02:32:38 EDT 2025 Fri Feb 21 02:39:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7915 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-a08eca975bf12898bac824583b00d3f9ae422cf4840ec52e4236033f6d7d220a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1861-9226 0000-0002-1234-624X 0000-0002-9944-1062 0000-0003-1916-9837 0000-0002-8465-1227 0000-0001-7558-7123 |
OpenAccessLink | https://hal.umontpellier.fr/hal-03752951 |
PQID | 2680630765 |
PQPubID | 40569 |
PageCount | 7 |
ParticipantIDs | hal_primary_oai_HAL_hal_03752951v1 proquest_miscellaneous_2680234945 proquest_journals_2680630765 crossref_citationtrail_10_1038_s41586_022_04763_5 crossref_primary_10_1038_s41586_022_04763_5 springer_journals_10_1038_s41586_022_04763_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-23 |
PublicationDateYYYYMMDD | 2022-06-23 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | ÇağlayanMInitial carbon–carbon bond formation during the early stages of methane dehydroaromatizationAngew. Chem.20201321688416889 KimEJCooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworksScience20203693923962020Sci...369..392K1:CAS:528:DC%2BB3cXhsVCmtL%2FF10.1126/science.abb3976 Rivera-TinocoRBouallouCComparison of absorption rates and absorption capacity of ammonia solvents with MEA and MDEA aqueous blends for CO2 captureJ. Clean. Prod.2010188758801:CAS:528:DC%2BC3cXos1Sjsro%3D10.1016/j.jclepro.2009.12.006 ZongZElsaidiSKThallapallyPKCarreonMAHighly permeable AlPO-18 membranes for N2/CH4 separationInd. Eng. Chem. Res.201756411341181:CAS:528:DC%2BC2sXkvVSisrY%3D10.1021/acs.iecr.7b00853 BachmanJESmithZPLiTXuTLongJREnhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystalsNat. Mater.2016158458492016NatMa..15..845B1:CAS:528:DC%2BC28XmtVShsLk%3D10.1038/nmat4621 Kidnay, A. J. & Parrish, W. Fundamentals of Natural Gas Processing (CRC, 2006). BhattPMA fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorptionJ. Am. Chem. Soc.2016138930193071:CAS:528:DC%2BC28XhtFersrfO10.1021/jacs.6b05345 PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.199677386538681996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865 SpatolisanoEPellegriniLACO2-tolerant cryogenic nitrogen rejection schemes: analysis of their performancesInd. Eng. Chem. Res.202160442044291:CAS:528:DC%2BB3MXlvVKktLw%3D10.1021/acs.iecr.0c06189 WuYWeckhuysenBMSeparation and purification of hydrocarbons with porous materialsAngew. Chem. Int. Edn20216018930189491:CAS:528:DC%2BB3MXhtVCrtb%2FM10.1002/anie.202104318 CarreonMAMolecular sieve membranes for N2/CH4 separationJ. Mater. Res.20183332432018JMatR..33...32C1:CAS:528:DC%2BC1cXosVCitg%3D%3D10.1557/jmr.2017.297 SiegelmanRLKimEJLongJRPorous materials for carbon dioxide separationsNat. Mater.202120106010722021NatMa..20.1060S1:CAS:528:DC%2BB3MXhs1GqsrzI10.1038/s41563-021-01054-8 RuffordTEThe removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologiesJ. Pet. Sci. Eng.20129412315410.1016/j.petrol.2012.06.016 HouQZhouSWeiYCaroJWangHBalancing the grain boundary structure and the framework flexibility through bimetallic metal–organic framework (MOF) membranes for gas separationJ. Am. Chem. Soc.2020142958295861:CAS:528:DC%2BB3cXnsVyku74%3D32306728 BaeHKKimSYLeeBSimulation of CO2 removal in a split-flow gas sweetening processKorean. J. Chem. Eng.2011286436481:CAS:528:DC%2BC3MXkvVOltb4%3D10.1007/s11814-010-0446-6 ChowdhuryADBridging the gap between the direct and hydrocarbon pool mechanisms of the methanol-to-hydrocarbons processAngew. Chem. Int. Edn201857809580991:CAS:528:DC%2BC1cXhtVCgu7rP10.1002/anie.201803279 U.S. Energy Information Administration. International Energy Outlook 2021 (Narrative) (U.S. Energy Information Administration, 2021). Henkelman, G. Vasp TST tools. http://theory.cm.utexas.edu/vtsttools/. Poe, W. A. & Mokhatab, S. Modeling, Control, and Optimization of Natural Gas Processing Plants (Gulf Professional Publishing, 2016). JiangHAleziDEddaoudiMA reticular chemistry guide for the design of periodic solidsNat. Rev. Mater.202164664872021NatRM...6..466J1:CAS:528:DC%2BB3MXhsFegurvL10.1038/s41578-021-00287-y ZhouSElectrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbonsNat. Energy202168828912021NatEn...6..882Z1:CAS:528:DC%2BB3MXhvFOqu7nJ10.1038/s41560-021-00881-y KresseGJoubertDFrom ultrasoft pseudopotentials to the projector augmented-wave methodPhys. Rev. B199959175817751999PhRvB..59.1758K1:CAS:528:DyaK1MXkt12nug%3D%3D10.1103/PhysRevB.59.1758 HouQUltra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separationAngew. Chem. Int. Edn2019583273311:CAS:528:DC%2BC1cXisVWks7%2FN10.1002/anie.201811638 BlöchlPEProjector augmented-wave methodPhys. Rev. B19945017953179791994PhRvB..5017953B10.1103/PhysRevB.50.17953 YuCHuangCTanCA review of CO2 capture by absorption and adsorptionAerosol Air Qual. Res.2012574574910.4209/aaqr.2012.05.0132 GrimmeSAntonyJEhrlichSKriegHA consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PuJ. Chem. Phys.20101321541042010JChPh.132o4104G10.1063/1.3382344 KuoJWangKChenCPros and cons of different Nitrogen Removal Unit (NRU) technologyJ. Nat. Gas Sci. Eng.2012752591:CAS:528:DC%2BC38XnvFOrtrY%3D10.1016/j.jngse.2012.02.004 KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0 HuangYWangLSongZLiSYuMGrowth of high-quality, thickness-reduced zeolite membranes towards N2/CH4 separation using high-aspect-ratio seedsAngew. Chem. Int. Edn20155410843108471:CAS:528:DC%2BC2MXht1yqu7rJ10.1002/anie.201503782 LiYA facile approach to synthesize SSZ-13 membranes with ultrahigh N2 permeances for efficient N2/CH4 separationsJ. Membr. Sci.20216321193491:CAS:528:DC%2BB3MXhtVWqsbzE10.1016/j.memsci.2021.119349 KuznickiSMA titanosilicate molecular sieve with adjustable pores for size-selective adsorption of moleculesNature20014127207242001Natur.412..720K1:CAS:528:DC%2BD3MXmt1Ort7Y%3D10.1038/35089052 CaroJDiffusion coefficients in nanoporous solids derived from membrane permeation measurementsAdsorption2021272832931:CAS:528:DC%2BB3cXhvVaiur%2FJ10.1007/s10450-020-00262-z ZhouSParalyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separationSci. Adv.20184eaau13932018SciA....4.1393Z1:CAS:528:DC%2BC1MXhs1ShurrF10.1126/sciadv.aau1393 S Zhou (4763_CR15) 2018; 4 Q Hou (4763_CR16) 2020; 142 JE Bachman (4763_CR19) 2016; 15 JP Perdew (4763_CR28) 1996; 77 G Kresse (4763_CR31) 1999; 59 AD Chowdhury (4763_CR18) 2018; 57 Q Hou (4763_CR7) 2019; 58 Y Wu (4763_CR3) 2021; 60 M Çağlayan (4763_CR17) 2020; 132 Y Li (4763_CR9) 2021; 632 J Kuo (4763_CR21) 2012; 7 EJ Kim (4763_CR6) 2020; 369 H Jiang (4763_CR13) 2021; 6 4763_CR33 C Yu (4763_CR24) 2012; 5 HK Bae (4763_CR26) 2011; 28 S Zhou (4763_CR14) 2021; 6 Y Huang (4763_CR10) 2015; 54 PE Blöchl (4763_CR29) 1994; 50 G Kresse (4763_CR30) 1996; 6 S Grimme (4763_CR32) 2010; 132 MA Carreon (4763_CR8) 2018; 33 TE Rufford (4763_CR2) 2012; 94 4763_CR27 Z Zong (4763_CR11) 2017; 56 J Caro (4763_CR20) 2021; 27 RL Siegelman (4763_CR4) 2021; 20 SM Kuznicki (4763_CR12) 2001; 412 4763_CR23 4763_CR1 PM Bhatt (4763_CR5) 2016; 138 R Rivera-Tinoco (4763_CR25) 2010; 18 E Spatolisano (4763_CR22) 2021; 60 |
References_xml | – reference: ZhouSParalyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separationSci. Adv.20184eaau13932018SciA....4.1393Z1:CAS:528:DC%2BC1MXhs1ShurrF10.1126/sciadv.aau1393 – reference: RuffordTEThe removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologiesJ. Pet. Sci. Eng.20129412315410.1016/j.petrol.2012.06.016 – reference: BlöchlPEProjector augmented-wave methodPhys. Rev. B19945017953179791994PhRvB..5017953B10.1103/PhysRevB.50.17953 – reference: ÇağlayanMInitial carbon–carbon bond formation during the early stages of methane dehydroaromatizationAngew. Chem.20201321688416889 – reference: PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.199677386538681996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865 – reference: BaeHKKimSYLeeBSimulation of CO2 removal in a split-flow gas sweetening processKorean. J. Chem. Eng.2011286436481:CAS:528:DC%2BC3MXkvVOltb4%3D10.1007/s11814-010-0446-6 – reference: WuYWeckhuysenBMSeparation and purification of hydrocarbons with porous materialsAngew. Chem. Int. Edn20216018930189491:CAS:528:DC%2BB3MXhtVCrtb%2FM10.1002/anie.202104318 – reference: ChowdhuryADBridging the gap between the direct and hydrocarbon pool mechanisms of the methanol-to-hydrocarbons processAngew. Chem. Int. Edn201857809580991:CAS:528:DC%2BC1cXhtVCgu7rP10.1002/anie.201803279 – reference: HouQUltra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separationAngew. Chem. Int. Edn2019583273311:CAS:528:DC%2BC1cXisVWks7%2FN10.1002/anie.201811638 – reference: GrimmeSAntonyJEhrlichSKriegHA consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PuJ. Chem. Phys.20101321541042010JChPh.132o4104G10.1063/1.3382344 – reference: LiYA facile approach to synthesize SSZ-13 membranes with ultrahigh N2 permeances for efficient N2/CH4 separationsJ. Membr. Sci.20216321193491:CAS:528:DC%2BB3MXhtVWqsbzE10.1016/j.memsci.2021.119349 – reference: Kidnay, A. J. & Parrish, W. Fundamentals of Natural Gas Processing (CRC, 2006). – reference: KuznickiSMA titanosilicate molecular sieve with adjustable pores for size-selective adsorption of moleculesNature20014127207242001Natur.412..720K1:CAS:528:DC%2BD3MXmt1Ort7Y%3D10.1038/35089052 – reference: KresseGJoubertDFrom ultrasoft pseudopotentials to the projector augmented-wave methodPhys. Rev. B199959175817751999PhRvB..59.1758K1:CAS:528:DyaK1MXkt12nug%3D%3D10.1103/PhysRevB.59.1758 – reference: HuangYWangLSongZLiSYuMGrowth of high-quality, thickness-reduced zeolite membranes towards N2/CH4 separation using high-aspect-ratio seedsAngew. Chem. Int. Edn20155410843108471:CAS:528:DC%2BC2MXht1yqu7rJ10.1002/anie.201503782 – reference: YuCHuangCTanCA review of CO2 capture by absorption and adsorptionAerosol Air Qual. Res.2012574574910.4209/aaqr.2012.05.0132 – reference: ZhouSElectrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbonsNat. Energy202168828912021NatEn...6..882Z1:CAS:528:DC%2BB3MXhvFOqu7nJ10.1038/s41560-021-00881-y – reference: KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0 – reference: Henkelman, G. Vasp TST tools. http://theory.cm.utexas.edu/vtsttools/. – reference: U.S. Energy Information Administration. International Energy Outlook 2021 (Narrative) (U.S. Energy Information Administration, 2021). – reference: SpatolisanoEPellegriniLACO2-tolerant cryogenic nitrogen rejection schemes: analysis of their performancesInd. Eng. Chem. Res.202160442044291:CAS:528:DC%2BB3MXlvVKktLw%3D10.1021/acs.iecr.0c06189 – reference: JiangHAleziDEddaoudiMA reticular chemistry guide for the design of periodic solidsNat. Rev. Mater.202164664872021NatRM...6..466J1:CAS:528:DC%2BB3MXhsFegurvL10.1038/s41578-021-00287-y – reference: CarreonMAMolecular sieve membranes for N2/CH4 separationJ. Mater. Res.20183332432018JMatR..33...32C1:CAS:528:DC%2BC1cXosVCitg%3D%3D10.1557/jmr.2017.297 – reference: Poe, W. A. & Mokhatab, S. Modeling, Control, and Optimization of Natural Gas Processing Plants (Gulf Professional Publishing, 2016). – reference: BhattPMA fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorptionJ. Am. Chem. Soc.2016138930193071:CAS:528:DC%2BC28XhtFersrfO10.1021/jacs.6b05345 – reference: CaroJDiffusion coefficients in nanoporous solids derived from membrane permeation measurementsAdsorption2021272832931:CAS:528:DC%2BB3cXhvVaiur%2FJ10.1007/s10450-020-00262-z – reference: KuoJWangKChenCPros and cons of different Nitrogen Removal Unit (NRU) technologyJ. Nat. Gas Sci. Eng.2012752591:CAS:528:DC%2BC38XnvFOrtrY%3D10.1016/j.jngse.2012.02.004 – reference: ZongZElsaidiSKThallapallyPKCarreonMAHighly permeable AlPO-18 membranes for N2/CH4 separationInd. Eng. Chem. Res.201756411341181:CAS:528:DC%2BC2sXkvVSisrY%3D10.1021/acs.iecr.7b00853 – reference: Rivera-TinocoRBouallouCComparison of absorption rates and absorption capacity of ammonia solvents with MEA and MDEA aqueous blends for CO2 captureJ. Clean. Prod.2010188758801:CAS:528:DC%2BC3cXos1Sjsro%3D10.1016/j.jclepro.2009.12.006 – reference: SiegelmanRLKimEJLongJRPorous materials for carbon dioxide separationsNat. Mater.202120106010722021NatMa..20.1060S1:CAS:528:DC%2BB3MXhs1GqsrzI10.1038/s41563-021-01054-8 – reference: KimEJCooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworksScience20203693923962020Sci...369..392K1:CAS:528:DC%2BB3cXhsVCmtL%2FF10.1126/science.abb3976 – reference: HouQZhouSWeiYCaroJWangHBalancing the grain boundary structure and the framework flexibility through bimetallic metal–organic framework (MOF) membranes for gas separationJ. Am. Chem. Soc.2020142958295861:CAS:528:DC%2BB3cXnsVyku74%3D32306728 – reference: BachmanJESmithZPLiTXuTLongJREnhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystalsNat. Mater.2016158458492016NatMa..15..845B1:CAS:528:DC%2BC28XmtVShsLk%3D10.1038/nmat4621 – volume: 60 start-page: 18930 year: 2021 ident: 4763_CR3 publication-title: Angew. Chem. Int. Edn doi: 10.1002/anie.202104318 – volume: 632 start-page: 119349 year: 2021 ident: 4763_CR9 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119349 – volume: 132 start-page: 154104 year: 2010 ident: 4763_CR32 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – ident: 4763_CR33 – volume: 6 start-page: 882 year: 2021 ident: 4763_CR14 publication-title: Nat. Energy doi: 10.1038/s41560-021-00881-y – volume: 4 start-page: eaau1393 year: 2018 ident: 4763_CR15 publication-title: Sci. Adv. doi: 10.1126/sciadv.aau1393 – volume: 15 start-page: 845 year: 2016 ident: 4763_CR19 publication-title: Nat. Mater. doi: 10.1038/nmat4621 – volume: 33 start-page: 32 year: 2018 ident: 4763_CR8 publication-title: J. Mater. Res. doi: 10.1557/jmr.2017.297 – volume: 56 start-page: 4113 year: 2017 ident: 4763_CR11 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b00853 – volume: 6 start-page: 15 year: 1996 ident: 4763_CR30 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 142 start-page: 9582 year: 2020 ident: 4763_CR16 publication-title: J. Am. Chem. Soc. – ident: 4763_CR1 – volume: 369 start-page: 392 year: 2020 ident: 4763_CR6 publication-title: Science doi: 10.1126/science.abb3976 – volume: 132 start-page: 16884 year: 2020 ident: 4763_CR17 publication-title: Angew. Chem. doi: 10.1002/ange.202007283 – volume: 54 start-page: 10843 year: 2015 ident: 4763_CR10 publication-title: Angew. Chem. Int. Edn doi: 10.1002/anie.201503782 – volume: 18 start-page: 875 year: 2010 ident: 4763_CR25 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2009.12.006 – volume: 6 start-page: 466 year: 2021 ident: 4763_CR13 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00287-y – volume: 28 start-page: 643 year: 2011 ident: 4763_CR26 publication-title: Korean. J. Chem. Eng. doi: 10.1007/s11814-010-0446-6 – volume: 58 start-page: 327 year: 2019 ident: 4763_CR7 publication-title: Angew. Chem. Int. Edn doi: 10.1002/anie.201811638 – volume: 5 start-page: 745 year: 2012 ident: 4763_CR24 publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2012.05.0132 – volume: 94 start-page: 123 year: 2012 ident: 4763_CR2 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2012.06.016 – volume: 138 start-page: 9301 year: 2016 ident: 4763_CR5 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05345 – ident: 4763_CR23 doi: 10.1201/9781420014044 – volume: 57 start-page: 8095 year: 2018 ident: 4763_CR18 publication-title: Angew. Chem. Int. Edn doi: 10.1002/anie.201803279 – volume: 7 start-page: 52 year: 2012 ident: 4763_CR21 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2012.02.004 – volume: 60 start-page: 4420 year: 2021 ident: 4763_CR22 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c06189 – volume: 50 start-page: 17953 year: 1994 ident: 4763_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 412 start-page: 720 year: 2001 ident: 4763_CR12 publication-title: Nature doi: 10.1038/35089052 – volume: 59 start-page: 1758 year: 1999 ident: 4763_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – ident: 4763_CR27 doi: 10.1016/B978-0-12-802961-9.00001-2 – volume: 20 start-page: 1060 year: 2021 ident: 4763_CR4 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01054-8 – volume: 27 start-page: 283 year: 2021 ident: 4763_CR20 publication-title: Adsorption doi: 10.1007/s10450-020-00262-z – volume: 77 start-page: 3865 year: 1996 ident: 4763_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 |
SSID | ssj0005174 |
Score | 2.7113981 |
Snippet | To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity
1
. In particular, nitrogen... To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity1. In particular, nitrogen... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 706 |
SubjectTerms | 639/301/299/1013 639/638/298/921 Apertures Asymmetry Atoms & subatomic particles Boiling points Calorific value Carbon dioxide Carbon dioxide removal Carbon sequestration Chemical Sciences Distillation Economic analysis Editing Energy efficiency Humanities and Social Sciences Ligands Membranes Metal-organic frameworks Methane multidisciplinary Natural gas Natural gas reserves Nitrogen Nitrogen removal NMR Nuclear magnetic resonance Polarizability Science Science (multidisciplinary) Selectivity Zirconium |
Title | Asymmetric pore windows in MOF membranes for natural gas valorization |
URI | https://link.springer.com/article/10.1038/s41586-022-04763-5 https://www.proquest.com/docview/2680630765 https://www.proquest.com/docview/2680234945 https://hal.umontpellier.fr/hal-03752951 |
Volume | 606 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9Mw8EQ3IfEysQGiY1QG8QACa_FHHOdp6qaWCrGBEJP6FtmODUi0HaRj4t9zTtx2m8ReIiW5xMl923e-A3glfGAsCEstKwsqa9SD1kgRtz4FY1ihsrbd2-mZmpzLD9N8mhbcmpRWudKJraKuFy6ukR9ypWN5qELlRxe_aOwaFaOrqYVGD7YZWpqY0qXH7zcpHreqMKdNM5nQhw0aLh3TbznNJMoYzW8Ypt73mBZ5zee8FSZtrc_4Iewkt5EMOzrvwj0_34P7bfqma_ZgN4loQ16nOtJvHsFo2PydzWLHLEfQy_bkCuffi6uG_JiT009jMvMznCqjqiPouJK2wicO8c00BLkPf73boPkYzsejrycTmromUCdLtaQm096ZsshtQNtTamuc5jE6igJWi1AaLzl3QeLMzruc45lQmRBB1UXNeWbEE9iaL-b-KRCmQmFqzZnIrbScW5RWFZRHJ8B6WZs-sBXKKpdKisfOFj-rNrQtdNWhuUI0Vy2aq7wPb9fPXHQFNe6EfomUWAPGWtiT4ccqXovNezn6h39YHw5WhKqSBDbVhl_68GJ9G2UnBkQQt4vLDobH-jwI825F4M0r_v9Z-3eP-Awe8JazFOXiALaWvy_9c_RdlnYAvWJa4FGfsEHLrAPYPh6dff7yD5vZ6Uo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8LQNIXhBbIAoDDAIJBBYS2zHSR4QqmClY-142aS9ebZjAxJtB-mo9qf4jZydpIVJ7G2PSS52dF--y30BPOfOp6nnhpq0zKmoUA8aLXgoffJap7lM4ri38YEcHolPx9nxGvzuamFCWmWnE6OirmY2_CPfYbII7aFymb07_UHD1KgQXe1GaDRsse_OF-iy1W_3PiB9XzA22D18P6TtVAFqRSnnVCeFs7rMM-NRN5eF0bZgIXqIDFhxX2onGLNeoOfjbMbwisuEcy-rvGIs0RzXXYdrguNJHirTBx9XKSUXuj63RToJL3ZqPCiLkO7LaCJQpmn2z0G4_jWkYf5l414Iy8bTbnAbbrVmKuk3fLUJa266Bddjuqitt2CzVQk1edn2rX51B3b79flkEiZ0WYJWvSML9Pdni5p8m5Lx5wGZuAm65qhaCRrKJHYUxS2-6JogtyOqm4LQu3B0Jfi8BxvT2dTdB5JKn-uqYCnPjDCMGdQO0kuHRodxotI9SDuUKdu2MA-TNL6rGErnhWrQrBDNKqJZZT14vXzntGngcSn0M6TEEjD03h72RyrcC8OCGdqjv9IebHeEUq3E12rFnz14unyMshoCMIjb2VkDw0I_IIR50xF4tcT_P-vB5Ts-gRvDw_FIjfYO9h_CTRa5TFLGt2Fj_vPMPUK7aW4eR2YlcHLV0vEHN8YiSQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcNQWgbggWkAsFDAIJBBYm9iO4xwQWrVdbekDDlTqzbUTm1ZidwvZsuqv8XWMnWRbKtFbj0kmdjQvz2ReAK-582nquaU2LXIqKtSD1ggeSp-8MWkukzjubW9fjg7E58PscAn-dLUwIa2y04lRUVfTMvwj7zOpQnuoXGZ936ZFfN0cfjr9ScMEqRBp7cZpNCyy487n6L7VH7c3kdZvGBtufdsY0XbCAC1FIWfUJMqVpsgz61FPF8qaUrEQSURmrLgvjBOMlV6gF-TKjOEVlwnnXlZ5xVhiOK67DLdynqsgY2rjUnrJlQ7QbcFOwlW_xkNThdRfRhOB8k2zfw7F5eOQknnJ3r0Soo0n3_A-3GtNVjJoeGwVltxkDW7H1NGyXoPVVj3U5G3bw_rdA9ga1OfjcZjWVRK08B2Zo-8_ndfkZEL2vgzJ2I3RTUc1S9BoJrG7KG7x3dQEOR9R3RSHPoSDG8HnI1iZTCfuMZBU-txUiqU8s8IyZlFTSC8dGiDWicr0IO1Qpsu2nXmYqvFDx7A6V7pBs0Y064hmnfXg_eKd06aZx7XQr5ASC8DQh3s02NXhXhgczNA2_Z32YL0jlG6lv9YXvNqDl4vHKLchGIO4nZ41MCz0BkKYDx2BL5b4_2c9uX7HF3AH5ULvbu_vPIW7LDKZpIyvw8rs15l7hibUzD6PvErg6KaF4y-gxCZK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymmetric+pore+windows+in+MOF+membranes+for+natural+gas+valorization&rft.jtitle=Nature+%28London%29&rft.au=Zhou%2C+Sheng&rft.au=Shekhah%2C+Osama&rft.au=Ram%C3%ADrez%2C+Adrian&rft.au=Lyu%2C+Pengbo&rft.date=2022-06-23&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=606&rft.issue=7915&rft.spage=706&rft.epage=712&rft_id=info:doi/10.1038%2Fs41586-022-04763-5&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03752951v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |