Asymmetric pore windows in MOF membranes for natural gas valorization

To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity 1 . In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal 2 . However, the inertness of nitrogen and its s...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 606; no. 7915; pp. 706 - 712
Main Authors Zhou, Sheng, Shekhah, Osama, Ramírez, Adrian, Lyu, Pengbo, Abou-Hamad, Edy, Jia, Jiangtao, Li, Jiantang, Bhatt, Prashant M., Huang, Zhiyuan, Jiang, Hao, Jin, Tian, Maurin, Guillaume, Gascon, Jorge, Eddaoudi, Mohamed
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.06.2022
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity 1 . In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal 2 . However, the inertness of nitrogen and its similarities to methane in terms of kinetic size, polarizability and boiling point pose particular challenges for the development of energy-efficient nitrogen-removing processes 3 . Here we report a mixed-linker metal–organic framework (MOF) membrane based on fumarate ( fum ) and mesaconate ( mes ) linkers, Zr- fum 67 - mes 33 - fcu -MOF, with a pore aperture shape specific for effective nitrogen removal from natural gas. The deliberate introduction of asymmetry in the parent trefoil-shaped pore aperture induces a shape irregularity, blocking the transport of tetrahedral methane while allowing linear nitrogen to permeate. Zr- fum 67 - mes 33 - fcu -MOF membranes exhibit record-high nitrogen/methane selectivity and nitrogen permeance under practical pressures up to 50 bar, removing both carbon dioxide and nitrogen from natural gas. Techno-economic analysis shows that our membranes offer the potential to reduce methane purification costs by about 66% for nitrogen rejection and about 73% for simultaneous removal of carbon dioxide and nitrogen, relative to cryogenic distillation and amine-based carbon dioxide capture. A metal–organic framework membrane based on fumarate and mesaconate linkers is shown to have a pore aperture shape that enables efficient and cost-effective removal of nitrogen and carbon dioxide from methane.
AbstractList To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity 1 . In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal 2 . However, the inertness of nitrogen and its similarities to methane in terms of kinetic size, polarizability and boiling point pose particular challenges for the development of energy-efficient nitrogen-removing processes 3 . Here we report a mixed-linker metal–organic framework (MOF) membrane based on fumarate ( fum ) and mesaconate ( mes ) linkers, Zr- fum 67 - mes 33 - fcu -MOF, with a pore aperture shape specific for effective nitrogen removal from natural gas. The deliberate introduction of asymmetry in the parent trefoil-shaped pore aperture induces a shape irregularity, blocking the transport of tetrahedral methane while allowing linear nitrogen to permeate. Zr- fum 67 - mes 33 - fcu -MOF membranes exhibit record-high nitrogen/methane selectivity and nitrogen permeance under practical pressures up to 50 bar, removing both carbon dioxide and nitrogen from natural gas. Techno-economic analysis shows that our membranes offer the potential to reduce methane purification costs by about 66% for nitrogen rejection and about 73% for simultaneous removal of carbon dioxide and nitrogen, relative to cryogenic distillation and amine-based carbon dioxide capture. A metal–organic framework membrane based on fumarate and mesaconate linkers is shown to have a pore aperture shape that enables efficient and cost-effective removal of nitrogen and carbon dioxide from methane.
To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity1. In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal2. However, the inertness of nitrogen and its similarities to methane in terms of kinetic size, polarizability and boiling point pose particular challenges for the development of energy-efficient nitrogen-removing processes3. Here we report a mixed-linker metal-organic framework (MOF) membrane based on fumarate (fum) and mesaconate (mes) linkers, Zr-fum67-mes33-fcu-MOF, with a pore aperture shape specific for effective nitrogen removal from natural gas. The deliberate introduction of asymmetry in the parent trefoil-shaped pore aperture induces a shape irregularity, blocking the transport oftetrahedral methane while allowing linear nitrogen to permeate. Zr-fum67-mes33-fcu-MOF membranes exhibit record-high nitrogen/methane selectivity and nitrogen permeance under practical pressures up to 50bar, removing both carbon dioxide and nitrogen from natural gas. Techno-economic analysis shows that our membranes offer the potential to reduce methane purification costs by about 66% for nitrogen rejection and about 73% for simultaneous removal of carbon dioxide and nitrogen, relative to cryogenic distillation and amine-based carbon dioxide capture.
To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity1. In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal2. However, the inertness of nitrogen and its similarities to methane in terms of kinetic size, polarizability and boiling point pose particular challenges for the development of energy-efficient nitrogen-removing processes3. Here we report a mixed-linker metal-organic framework (MOF) membrane based on fumarate (fum) and mesaconate (mes) linkers, Zr-fum67-mes33-fcu-MOF, with a pore aperture shape specific for effective nitrogen removal from natural gas. The deliberate introduction of asymmetry in the parent trefoil-shaped pore aperture induces a shape irregularity, blocking the transport of tetrahedral methane while allowing linear nitrogen to permeate. Zr-fum67-mes33-fcu-MOF membranes exhibit record-high nitrogen/methane selectivity and nitrogen permeance under practical pressures up to 50 bar, removing both carbon dioxide and nitrogen from natural gas. Techno-economic analysis shows that our membranes offer the potential to reduce methane purification costs by about 66% for nitrogen rejection and about 73% for simultaneous removal of carbon dioxide and nitrogen, relative to cryogenic distillation and amine-based carbon dioxide capture.To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity1. In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal2. However, the inertness of nitrogen and its similarities to methane in terms of kinetic size, polarizability and boiling point pose particular challenges for the development of energy-efficient nitrogen-removing processes3. Here we report a mixed-linker metal-organic framework (MOF) membrane based on fumarate (fum) and mesaconate (mes) linkers, Zr-fum67-mes33-fcu-MOF, with a pore aperture shape specific for effective nitrogen removal from natural gas. The deliberate introduction of asymmetry in the parent trefoil-shaped pore aperture induces a shape irregularity, blocking the transport of tetrahedral methane while allowing linear nitrogen to permeate. Zr-fum67-mes33-fcu-MOF membranes exhibit record-high nitrogen/methane selectivity and nitrogen permeance under practical pressures up to 50 bar, removing both carbon dioxide and nitrogen from natural gas. Techno-economic analysis shows that our membranes offer the potential to reduce methane purification costs by about 66% for nitrogen rejection and about 73% for simultaneous removal of carbon dioxide and nitrogen, relative to cryogenic distillation and amine-based carbon dioxide capture.
Author Zhou, Sheng
Shekhah, Osama
Li, Jiantang
Bhatt, Prashant M.
Gascon, Jorge
Jia, Jiangtao
Eddaoudi, Mohamed
Maurin, Guillaume
Jiang, Hao
Ramírez, Adrian
Lyu, Pengbo
Jin, Tian
Abou-Hamad, Edy
Huang, Zhiyuan
Author_xml – sequence: 1
  givenname: Sheng
  orcidid: 0000-0002-8465-1227
  surname: Zhou
  fullname: Zhou, Sheng
  organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3)
– sequence: 2
  givenname: Osama
  orcidid: 0000-0003-1861-9226
  surname: Shekhah
  fullname: Shekhah, Osama
  organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3)
– sequence: 3
  givenname: Adrian
  surname: Ramírez
  fullname: Ramírez, Adrian
  organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Advanced Catalytic Materials (ACM), King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Pengbo
  surname: Lyu
  fullname: Lyu, Pengbo
  organization: Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM
– sequence: 5
  givenname: Edy
  surname: Abou-Hamad
  fullname: Abou-Hamad, Edy
  organization: Core Labs, King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Jiangtao
  surname: Jia
  fullname: Jia, Jiangtao
  organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3)
– sequence: 7
  givenname: Jiantang
  surname: Li
  fullname: Li, Jiantang
  organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3)
– sequence: 8
  givenname: Prashant M.
  orcidid: 0000-0002-9944-1062
  surname: Bhatt
  fullname: Bhatt, Prashant M.
  organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3)
– sequence: 9
  givenname: Zhiyuan
  surname: Huang
  fullname: Huang, Zhiyuan
  organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3)
– sequence: 10
  givenname: Hao
  orcidid: 0000-0002-1234-624X
  surname: Jiang
  fullname: Jiang, Hao
  organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3)
– sequence: 11
  givenname: Tian
  surname: Jin
  fullname: Jin, Tian
  organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3)
– sequence: 12
  givenname: Guillaume
  surname: Maurin
  fullname: Maurin, Guillaume
  organization: Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM
– sequence: 13
  givenname: Jorge
  orcidid: 0000-0001-7558-7123
  surname: Gascon
  fullname: Gascon, Jorge
  organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Advanced Catalytic Materials (ACM), King Abdullah University of Science and Technology (KAUST)
– sequence: 14
  givenname: Mohamed
  orcidid: 0000-0003-1916-9837
  surname: Eddaoudi
  fullname: Eddaoudi, Mohamed
  email: mohamed.eddaoudi@kaust.edu.sa
  organization: Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Functional Materials Design, Discovery and Development (FMD3)
BackLink https://hal.umontpellier.fr/hal-03752951$$DView record in HAL
BookMark eNp9kctKAzEUhoNUsF5ewFXAjS5GT66TWZbiDSpudB3SNKORmaQm0xZ9eqcdRXDhKsnh-8L5-Q_RKMTgEDolcEmAqavMiVCyAEoL4KVkhdhDY9LfCi5VOUJjAKoKUEweoMOc3wBAkJKP0fUkf7St65K3eBmTwxsfFnGTsQ_44fEGt66dJxNcxnVMOJhulUyDX0zGa9PE5D9N52M4Rvu1abI7-T6P0PPN9dP0rpg93t5PJ7PC8kp2hQHlrKlKMa8JVZWaG6soF4rNARasrozjlNqaKw7OCtq_mATGarkoF5SCYUfoYvj31TR6mXxr0oeOxuu7yUxvZ8BKQStB1qRnzwd2meL7yuVOtz5b1zR9mrjKmkoFlPGKix49-4O-xVUKfZIdJRmUckupgbIp5pxcra3vdvG7ZHyjCehtF3roQvdd6F0XeqvSP-rP8v9KbJByD4cXl363-sf6AoTdm_M
CitedBy_id crossref_primary_10_1016_j_seppur_2023_125957
crossref_primary_10_1039_D3CE00370A
crossref_primary_10_1016_j_apsusc_2023_158730
crossref_primary_10_1039_D3MH00257H
crossref_primary_10_1039_D4SC02550D
crossref_primary_10_1016_j_memsci_2024_123612
crossref_primary_10_1002_asia_202200985
crossref_primary_10_1016_j_memsci_2023_121950
crossref_primary_10_1021_acs_energyfuels_4c03162
crossref_primary_10_1126_sciadv_adq5024
crossref_primary_10_1002_adma_202309572
crossref_primary_10_1016_j_cclet_2024_109729
crossref_primary_10_1016_j_apsusc_2022_155613
crossref_primary_10_1016_j_esci_2023_100189
crossref_primary_10_1002_anie_202215234
crossref_primary_10_1039_D3CP02368K
crossref_primary_10_1016_j_seppur_2024_127736
crossref_primary_10_1016_j_ccr_2024_216229
crossref_primary_10_1002_anie_202417209
crossref_primary_10_1021_acsami_5c00733
crossref_primary_10_3390_molecules29163885
crossref_primary_10_1021_jacs_4c14130
crossref_primary_10_1360_TB_2023_0412
crossref_primary_10_1016_j_seppur_2025_132246
crossref_primary_10_1002_chem_202301279
crossref_primary_10_1021_acs_iecr_4c03122
crossref_primary_10_1021_acs_iecr_4c04571
crossref_primary_10_1016_j_memsci_2023_122258
crossref_primary_10_1002_asia_202300699
crossref_primary_10_1016_j_cej_2024_158973
crossref_primary_10_1002_anie_202405676
crossref_primary_10_1016_j_pmatsci_2025_101432
crossref_primary_10_1002_ange_202413701
crossref_primary_10_3390_pharmaceutics16030414
crossref_primary_10_1002_anie_202216697
crossref_primary_10_1016_j_cclet_2024_110284
crossref_primary_10_1016_j_inoche_2023_110789
crossref_primary_10_1002_aic_18426
crossref_primary_10_1007_s40820_023_01180_9
crossref_primary_10_1039_D3NR00841J
crossref_primary_10_1016_j_cej_2023_142891
crossref_primary_10_1016_j_nantod_2024_102227
crossref_primary_10_1016_j_memsci_2024_123635
crossref_primary_10_1016_j_seppur_2025_132358
crossref_primary_10_1038_s44286_024_00096_4
crossref_primary_10_1002_smll_202409988
crossref_primary_10_1039_D3DT04009G
crossref_primary_10_1016_j_seppur_2023_125178
crossref_primary_10_1126_science_ads7866
crossref_primary_10_1002_anie_202218842
crossref_primary_10_1039_D4EE04085F
crossref_primary_10_1002_sstr_202300002
crossref_primary_10_1016_j_memsci_2024_123080
crossref_primary_10_1038_s41563_023_01541_0
crossref_primary_10_1002_ange_202401817
crossref_primary_10_1002_smll_202201550
crossref_primary_10_1016_j_cej_2023_143056
crossref_primary_10_1016_j_memsci_2023_121829
crossref_primary_10_1038_s41467_023_42863_6
crossref_primary_10_1002_anie_202311075
crossref_primary_10_1016_j_memsci_2024_122536
crossref_primary_10_1021_jacs_4c04125
crossref_primary_10_1038_s41467_024_54663_7
crossref_primary_10_1039_D3NA00807J
crossref_primary_10_1002_anie_202401770
crossref_primary_10_1002_zaac_202200248
crossref_primary_10_1039_D4CE00041B
crossref_primary_10_1007_s11426_024_2458_3
crossref_primary_10_1016_j_scitotenv_2024_174992
crossref_primary_10_1002_smll_202205542
crossref_primary_10_1039_D3IM00110E
crossref_primary_10_1002_adfm_202421346
crossref_primary_10_1016_j_jece_2022_109243
crossref_primary_10_1515_znb_2022_0139
crossref_primary_10_1002_ange_202405676
crossref_primary_10_1002_chem_202401868
crossref_primary_10_1016_j_seppur_2024_129792
crossref_primary_10_1016_j_memsci_2023_122171
crossref_primary_10_1021_acs_cgd_3c00181
crossref_primary_10_1016_j_materresbull_2023_112462
crossref_primary_10_1016_j_cjsc_2023_100034
crossref_primary_10_1016_j_seppur_2024_126601
crossref_primary_10_1016_j_matchemphys_2024_129142
crossref_primary_10_1002_mba2_57
crossref_primary_10_1063_5_0169507
crossref_primary_10_1016_j_matt_2024_11_030
crossref_primary_10_1016_j_micromeso_2022_112396
crossref_primary_10_1002_anie_202215296
crossref_primary_10_1021_jacs_3c04831
crossref_primary_10_1039_D3DT00979C
crossref_primary_10_1038_s44221_023_00184_4
crossref_primary_10_1016_j_ccr_2024_215690
crossref_primary_10_1002_adfm_202421913
crossref_primary_10_1021_acsami_4c12329
crossref_primary_10_1016_j_mser_2024_100785
crossref_primary_10_1002_adfm_202306202
crossref_primary_10_1016_j_jece_2023_109656
crossref_primary_10_1002_ange_202215296
crossref_primary_10_1007_s11705_024_2504_3
crossref_primary_10_1002_adfm_202404681
crossref_primary_10_1016_j_apmt_2025_102676
crossref_primary_10_1002_aenm_202303971
crossref_primary_10_1002_ange_202311336
crossref_primary_10_1021_acs_inorgchem_2c04447
crossref_primary_10_1021_jacs_3c01113
crossref_primary_10_1002_ange_202302181
crossref_primary_10_1039_D2CS00031H
crossref_primary_10_1016_j_memsci_2023_121854
crossref_primary_10_1021_acs_chemmater_3c03282
crossref_primary_10_1016_j_ccst_2025_100362
crossref_primary_10_1002_adma_202413506
crossref_primary_10_1002_smll_202500937
crossref_primary_10_1360_TB_2023_0696
crossref_primary_10_1016_j_chempr_2023_01_008
crossref_primary_10_1021_acsmaterialslett_3c00096
crossref_primary_10_1039_D4GC03991B
crossref_primary_10_1002_advs_202303217
crossref_primary_10_1039_D3CS00131H
crossref_primary_10_1002_adma_202414153
crossref_primary_10_1038_s41467_024_51540_1
crossref_primary_10_1002_anie_202302181
crossref_primary_10_1039_D3CP01063E
crossref_primary_10_1016_j_memsci_2023_121626
crossref_primary_10_1002_anie_202413701
crossref_primary_10_1002_smsc_202200042
crossref_primary_10_1021_acsami_3c02414
crossref_primary_10_1039_D3CP01834B
crossref_primary_10_1016_j_memsci_2023_121984
crossref_primary_10_1039_D3GC01996A
crossref_primary_10_1016_j_cej_2025_160858
crossref_primary_10_1016_j_mtener_2024_101771
crossref_primary_10_1016_j_seppur_2025_132308
crossref_primary_10_1038_s41467_024_55390_9
crossref_primary_10_1038_s41467_025_57242_6
crossref_primary_10_1016_j_seppur_2024_129883
crossref_primary_10_1016_j_cej_2024_157949
crossref_primary_10_1016_j_memsci_2025_123729
crossref_primary_10_1039_D3SC06076D
crossref_primary_10_1016_j_jcis_2024_03_181
crossref_primary_10_1038_s41467_023_40590_6
crossref_primary_10_1016_j_carbon_2024_119922
crossref_primary_10_1002_anie_202502862
crossref_primary_10_1016_j_memsci_2023_121557
crossref_primary_10_1016_j_xcrp_2024_102035
crossref_primary_10_1016_j_ces_2024_119781
crossref_primary_10_1002_ange_202311075
crossref_primary_10_1021_acs_inorgchem_3c02851
crossref_primary_10_1002_adma_202204553
crossref_primary_10_1007_s40242_023_3058_5
crossref_primary_10_1016_j_seppur_2023_123493
crossref_primary_10_1002_ange_202414503
crossref_primary_10_1016_j_memsci_2022_121282
crossref_primary_10_1021_acs_chemmater_4c03231
crossref_primary_10_3390_nano14030298
crossref_primary_10_1002_anie_202311336
crossref_primary_10_1016_j_seppur_2022_122312
crossref_primary_10_1016_j_aca_2024_343303
crossref_primary_10_1021_acs_chemmater_3c01777
crossref_primary_10_1038_s41467_023_44626_9
crossref_primary_10_1016_j_jssc_2023_124213
crossref_primary_10_1016_j_cej_2025_159847
crossref_primary_10_1021_acsapm_4c03207
crossref_primary_10_1002_smll_202308739
crossref_primary_10_1002_adfm_202410751
crossref_primary_10_1002_adfm_202308946
crossref_primary_10_1016_j_seppur_2024_131382
crossref_primary_10_1002_anie_202401118
crossref_primary_10_1002_adfm_202500210
crossref_primary_10_1016_j_micromeso_2023_112443
crossref_primary_10_1016_j_seppur_2022_122678
crossref_primary_10_1016_j_ccr_2023_215364
crossref_primary_10_1002_ange_202401770
crossref_primary_10_1016_j_catcom_2022_106592
crossref_primary_10_1002_ange_202216697
crossref_primary_10_1016_j_memsci_2024_123244
crossref_primary_10_1039_D4CS00432A
crossref_primary_10_1002_advs_202413942
crossref_primary_10_1016_j_pmatsci_2024_101324
crossref_primary_10_1038_s41467_023_43104_6
crossref_primary_10_1007_s10934_022_01409_9
crossref_primary_10_1016_j_seppur_2023_124003
crossref_primary_10_1021_acsami_2c20141
crossref_primary_10_1002_cplu_202200462
crossref_primary_10_1016_j_ccst_2024_100316
crossref_primary_10_1016_j_seppur_2024_128403
crossref_primary_10_1007_s42114_024_01022_1
crossref_primary_10_1021_acs_inorgchem_2c03151
crossref_primary_10_1038_s41467_024_47083_0
crossref_primary_10_1016_j_seppur_2024_127318
crossref_primary_10_1016_j_jcis_2023_12_026
crossref_primary_10_1021_acs_accounts_4c00469
crossref_primary_10_1021_acsami_3c05285
crossref_primary_10_1002_adma_202416669
crossref_primary_10_1039_D3TA01241G
crossref_primary_10_1021_acs_iecr_4c01362
crossref_primary_10_1021_acs_inorgchem_2c02978
crossref_primary_10_1002_ange_202215234
crossref_primary_10_1016_j_memsci_2023_121430
crossref_primary_10_3390_molecules28041893
crossref_primary_10_1016_j_seppur_2022_121808
crossref_primary_10_1039_D3CS00285C
crossref_primary_10_1039_D3CS00370A
crossref_primary_10_1002_ange_202417209
crossref_primary_10_1002_aic_18368
crossref_primary_10_1002_anie_202401817
crossref_primary_10_1016_j_cej_2023_147498
crossref_primary_10_1021_acsmaterialslett_2c01107
crossref_primary_10_1002_ange_202401118
crossref_primary_10_1016_j_gee_2024_03_002
crossref_primary_10_1016_j_memsci_2023_122201
crossref_primary_10_1038_s41598_023_39507_6
crossref_primary_10_1038_s41467_023_37739_8
crossref_primary_10_1002_cssc_202300434
crossref_primary_10_1016_j_memsci_2024_123025
crossref_primary_10_1002_adma_202305171
crossref_primary_10_1002_anie_202213015
crossref_primary_10_1016_j_memsci_2024_123387
crossref_primary_10_1039_D4EE03753G
crossref_primary_10_1039_D2SC04345A
crossref_primary_10_1002_anie_202218027
crossref_primary_10_1002_sstr_202300346
crossref_primary_10_1002_ange_202502862
crossref_primary_10_1016_j_ces_2023_119293
crossref_primary_10_1016_j_cjche_2024_02_001
crossref_primary_10_1016_j_jgsce_2025_205604
crossref_primary_10_1038_s41563_023_01738_3
crossref_primary_10_1002_adfm_202304790
crossref_primary_10_1002_ange_202218842
crossref_primary_10_1016_j_cej_2024_154851
crossref_primary_10_1007_s11426_023_1809_8
crossref_primary_10_6023_A23030095
crossref_primary_10_1016_j_cej_2024_154615
crossref_primary_10_1039_D4DT02318H
crossref_primary_10_1021_acs_cgd_3c01443
crossref_primary_10_1016_j_seppur_2023_123987
crossref_primary_10_1021_acsami_4c06737
crossref_primary_10_1002_ece2_15
crossref_primary_10_1016_j_rineng_2023_101398
crossref_primary_10_1002_anie_202414503
crossref_primary_10_1016_j_ccr_2025_216574
crossref_primary_10_1021_acsnano_3c08028
crossref_primary_10_1016_j_cej_2024_153630
crossref_primary_10_1016_j_seppur_2024_131332
crossref_primary_10_1002_adfm_202303447
crossref_primary_10_1016_j_chphi_2025_100864
crossref_primary_10_1016_j_seppur_2023_125256
crossref_primary_10_1021_acsami_2c12842
crossref_primary_10_1039_D3CS01163A
crossref_primary_10_1016_j_seppur_2024_126302
crossref_primary_10_1039_D3MH01396K
crossref_primary_10_1002_chem_202301132
crossref_primary_10_1038_s41563_023_01545_w
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126588
crossref_primary_10_1021_jacs_3c02711
crossref_primary_10_1021_acs_iecr_4c02414
crossref_primary_10_1021_acsmaterialslett_5c00361
crossref_primary_10_1002_adma_202412708
crossref_primary_10_1016_j_jcis_2024_04_130
crossref_primary_10_1039_D4CE00167B
crossref_primary_10_1360_SSC_2024_0144
crossref_primary_10_1002_ange_202213015
crossref_primary_10_1002_ange_202218027
crossref_primary_10_1021_acsanm_3c04508
crossref_primary_10_1021_acs_inorgchem_3c04380
crossref_primary_10_1016_j_seppur_2024_126534
crossref_primary_10_1002_chem_202402444
crossref_primary_10_1016_j_jconrel_2024_05_010
crossref_primary_10_1021_jacs_3c03362
Cites_doi 10.1002/anie.202104318
10.1016/j.memsci.2021.119349
10.1063/1.3382344
10.1038/s41560-021-00881-y
10.1126/sciadv.aau1393
10.1038/nmat4621
10.1557/jmr.2017.297
10.1021/acs.iecr.7b00853
10.1016/0927-0256(96)00008-0
10.1126/science.abb3976
10.1002/ange.202007283
10.1002/anie.201503782
10.1016/j.jclepro.2009.12.006
10.1038/s41578-021-00287-y
10.1007/s11814-010-0446-6
10.1002/anie.201811638
10.4209/aaqr.2012.05.0132
10.1016/j.petrol.2012.06.016
10.1021/jacs.6b05345
10.1201/9781420014044
10.1002/anie.201803279
10.1016/j.jngse.2012.02.004
10.1021/acs.iecr.0c06189
10.1103/PhysRevB.50.17953
10.1038/35089052
10.1103/PhysRevB.59.1758
10.1016/B978-0-12-802961-9.00001-2
10.1038/s41563-021-01054-8
10.1007/s10450-020-00262-z
10.1103/PhysRevLett.77.3865
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2022
Copyright Nature Publishing Group Jun 23, 2022
2022. The Author(s), under exclusive licence to Springer Nature Limited.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022
– notice: Copyright Nature Publishing Group Jun 23, 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
1XC
VOOES
DOI 10.1038/s41586-022-04763-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 712
ExternalDocumentID oai_HAL_hal_03752951v1
10_1038_s41586_022_04763_5
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
SOI
7X8
1XC
UMC
VOOES
ID FETCH-LOGICAL-c496t-a08eca975bf12898bac824583b00d3f9ae422cf4840ec52e4236033f6d7d220a3
IEDL.DBID 8FG
ISSN 0028-0836
1476-4687
IngestDate Fri May 09 12:12:35 EDT 2025
Thu Jul 10 17:58:25 EDT 2025
Wed Aug 13 09:05:57 EDT 2025
Thu Apr 24 23:11:33 EDT 2025
Tue Jul 01 02:32:38 EDT 2025
Fri Feb 21 02:39:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7915
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-a08eca975bf12898bac824583b00d3f9ae422cf4840ec52e4236033f6d7d220a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1861-9226
0000-0002-1234-624X
0000-0002-9944-1062
0000-0003-1916-9837
0000-0002-8465-1227
0000-0001-7558-7123
OpenAccessLink https://hal.umontpellier.fr/hal-03752951
PQID 2680630765
PQPubID 40569
PageCount 7
ParticipantIDs hal_primary_oai_HAL_hal_03752951v1
proquest_miscellaneous_2680234945
proquest_journals_2680630765
crossref_citationtrail_10_1038_s41586_022_04763_5
crossref_primary_10_1038_s41586_022_04763_5
springer_journals_10_1038_s41586_022_04763_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-23
PublicationDateYYYYMMDD 2022-06-23
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References ÇağlayanMInitial carbon–carbon bond formation during the early stages of methane dehydroaromatizationAngew. Chem.20201321688416889
KimEJCooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworksScience20203693923962020Sci...369..392K1:CAS:528:DC%2BB3cXhsVCmtL%2FF10.1126/science.abb3976
Rivera-TinocoRBouallouCComparison of absorption rates and absorption capacity of ammonia solvents with MEA and MDEA aqueous blends for CO2 captureJ. Clean. Prod.2010188758801:CAS:528:DC%2BC3cXos1Sjsro%3D10.1016/j.jclepro.2009.12.006
ZongZElsaidiSKThallapallyPKCarreonMAHighly permeable AlPO-18 membranes for N2/CH4 separationInd. Eng. Chem. Res.201756411341181:CAS:528:DC%2BC2sXkvVSisrY%3D10.1021/acs.iecr.7b00853
BachmanJESmithZPLiTXuTLongJREnhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystalsNat. Mater.2016158458492016NatMa..15..845B1:CAS:528:DC%2BC28XmtVShsLk%3D10.1038/nmat4621
Kidnay, A. J. & Parrish, W. Fundamentals of Natural Gas Processing (CRC, 2006).
BhattPMA fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorptionJ. Am. Chem. Soc.2016138930193071:CAS:528:DC%2BC28XhtFersrfO10.1021/jacs.6b05345
PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.199677386538681996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865
SpatolisanoEPellegriniLACO2-tolerant cryogenic nitrogen rejection schemes: analysis of their performancesInd. Eng. Chem. Res.202160442044291:CAS:528:DC%2BB3MXlvVKktLw%3D10.1021/acs.iecr.0c06189
WuYWeckhuysenBMSeparation and purification of hydrocarbons with porous materialsAngew. Chem. Int. Edn20216018930189491:CAS:528:DC%2BB3MXhtVCrtb%2FM10.1002/anie.202104318
CarreonMAMolecular sieve membranes for N2/CH4 separationJ. Mater. Res.20183332432018JMatR..33...32C1:CAS:528:DC%2BC1cXosVCitg%3D%3D10.1557/jmr.2017.297
SiegelmanRLKimEJLongJRPorous materials for carbon dioxide separationsNat. Mater.202120106010722021NatMa..20.1060S1:CAS:528:DC%2BB3MXhs1GqsrzI10.1038/s41563-021-01054-8
RuffordTEThe removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologiesJ. Pet. Sci. Eng.20129412315410.1016/j.petrol.2012.06.016
HouQZhouSWeiYCaroJWangHBalancing the grain boundary structure and the framework flexibility through bimetallic metal–organic framework (MOF) membranes for gas separationJ. Am. Chem. Soc.2020142958295861:CAS:528:DC%2BB3cXnsVyku74%3D32306728
BaeHKKimSYLeeBSimulation of CO2 removal in a split-flow gas sweetening processKorean. J. Chem. Eng.2011286436481:CAS:528:DC%2BC3MXkvVOltb4%3D10.1007/s11814-010-0446-6
ChowdhuryADBridging the gap between the direct and hydrocarbon pool mechanisms of the methanol-to-hydrocarbons processAngew. Chem. Int. Edn201857809580991:CAS:528:DC%2BC1cXhtVCgu7rP10.1002/anie.201803279
U.S. Energy Information Administration. International Energy Outlook 2021 (Narrative) (U.S. Energy Information Administration, 2021).
Henkelman, G. Vasp TST tools. http://theory.cm.utexas.edu/vtsttools/.
Poe, W. A. & Mokhatab, S. Modeling, Control, and Optimization of Natural Gas Processing Plants (Gulf Professional Publishing, 2016).
JiangHAleziDEddaoudiMA reticular chemistry guide for the design of periodic solidsNat. Rev. Mater.202164664872021NatRM...6..466J1:CAS:528:DC%2BB3MXhsFegurvL10.1038/s41578-021-00287-y
ZhouSElectrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbonsNat. Energy202168828912021NatEn...6..882Z1:CAS:528:DC%2BB3MXhvFOqu7nJ10.1038/s41560-021-00881-y
KresseGJoubertDFrom ultrasoft pseudopotentials to the projector augmented-wave methodPhys. Rev. B199959175817751999PhRvB..59.1758K1:CAS:528:DyaK1MXkt12nug%3D%3D10.1103/PhysRevB.59.1758
HouQUltra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separationAngew. Chem. Int. Edn2019583273311:CAS:528:DC%2BC1cXisVWks7%2FN10.1002/anie.201811638
BlöchlPEProjector augmented-wave methodPhys. Rev. B19945017953179791994PhRvB..5017953B10.1103/PhysRevB.50.17953
YuCHuangCTanCA review of CO2 capture by absorption and adsorptionAerosol Air Qual. Res.2012574574910.4209/aaqr.2012.05.0132
GrimmeSAntonyJEhrlichSKriegHA consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PuJ. Chem. Phys.20101321541042010JChPh.132o4104G10.1063/1.3382344
KuoJWangKChenCPros and cons of different Nitrogen Removal Unit (NRU) technologyJ. Nat. Gas Sci. Eng.2012752591:CAS:528:DC%2BC38XnvFOrtrY%3D10.1016/j.jngse.2012.02.004
KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0
HuangYWangLSongZLiSYuMGrowth of high-quality, thickness-reduced zeolite membranes towards N2/CH4 separation using high-aspect-ratio seedsAngew. Chem. Int. Edn20155410843108471:CAS:528:DC%2BC2MXht1yqu7rJ10.1002/anie.201503782
LiYA facile approach to synthesize SSZ-13 membranes with ultrahigh N2 permeances for efficient N2/CH4 separationsJ. Membr. Sci.20216321193491:CAS:528:DC%2BB3MXhtVWqsbzE10.1016/j.memsci.2021.119349
KuznickiSMA titanosilicate molecular sieve with adjustable pores for size-selective adsorption of moleculesNature20014127207242001Natur.412..720K1:CAS:528:DC%2BD3MXmt1Ort7Y%3D10.1038/35089052
CaroJDiffusion coefficients in nanoporous solids derived from membrane permeation measurementsAdsorption2021272832931:CAS:528:DC%2BB3cXhvVaiur%2FJ10.1007/s10450-020-00262-z
ZhouSParalyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separationSci. Adv.20184eaau13932018SciA....4.1393Z1:CAS:528:DC%2BC1MXhs1ShurrF10.1126/sciadv.aau1393
S Zhou (4763_CR15) 2018; 4
Q Hou (4763_CR16) 2020; 142
JE Bachman (4763_CR19) 2016; 15
JP Perdew (4763_CR28) 1996; 77
G Kresse (4763_CR31) 1999; 59
AD Chowdhury (4763_CR18) 2018; 57
Q Hou (4763_CR7) 2019; 58
Y Wu (4763_CR3) 2021; 60
M Çağlayan (4763_CR17) 2020; 132
Y Li (4763_CR9) 2021; 632
J Kuo (4763_CR21) 2012; 7
EJ Kim (4763_CR6) 2020; 369
H Jiang (4763_CR13) 2021; 6
4763_CR33
C Yu (4763_CR24) 2012; 5
HK Bae (4763_CR26) 2011; 28
S Zhou (4763_CR14) 2021; 6
Y Huang (4763_CR10) 2015; 54
PE Blöchl (4763_CR29) 1994; 50
G Kresse (4763_CR30) 1996; 6
S Grimme (4763_CR32) 2010; 132
MA Carreon (4763_CR8) 2018; 33
TE Rufford (4763_CR2) 2012; 94
4763_CR27
Z Zong (4763_CR11) 2017; 56
J Caro (4763_CR20) 2021; 27
RL Siegelman (4763_CR4) 2021; 20
SM Kuznicki (4763_CR12) 2001; 412
4763_CR23
4763_CR1
PM Bhatt (4763_CR5) 2016; 138
R Rivera-Tinoco (4763_CR25) 2010; 18
E Spatolisano (4763_CR22) 2021; 60
References_xml – reference: ZhouSParalyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separationSci. Adv.20184eaau13932018SciA....4.1393Z1:CAS:528:DC%2BC1MXhs1ShurrF10.1126/sciadv.aau1393
– reference: RuffordTEThe removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologiesJ. Pet. Sci. Eng.20129412315410.1016/j.petrol.2012.06.016
– reference: BlöchlPEProjector augmented-wave methodPhys. Rev. B19945017953179791994PhRvB..5017953B10.1103/PhysRevB.50.17953
– reference: ÇağlayanMInitial carbon–carbon bond formation during the early stages of methane dehydroaromatizationAngew. Chem.20201321688416889
– reference: PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.199677386538681996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865
– reference: BaeHKKimSYLeeBSimulation of CO2 removal in a split-flow gas sweetening processKorean. J. Chem. Eng.2011286436481:CAS:528:DC%2BC3MXkvVOltb4%3D10.1007/s11814-010-0446-6
– reference: WuYWeckhuysenBMSeparation and purification of hydrocarbons with porous materialsAngew. Chem. Int. Edn20216018930189491:CAS:528:DC%2BB3MXhtVCrtb%2FM10.1002/anie.202104318
– reference: ChowdhuryADBridging the gap between the direct and hydrocarbon pool mechanisms of the methanol-to-hydrocarbons processAngew. Chem. Int. Edn201857809580991:CAS:528:DC%2BC1cXhtVCgu7rP10.1002/anie.201803279
– reference: HouQUltra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separationAngew. Chem. Int. Edn2019583273311:CAS:528:DC%2BC1cXisVWks7%2FN10.1002/anie.201811638
– reference: GrimmeSAntonyJEhrlichSKriegHA consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PuJ. Chem. Phys.20101321541042010JChPh.132o4104G10.1063/1.3382344
– reference: LiYA facile approach to synthesize SSZ-13 membranes with ultrahigh N2 permeances for efficient N2/CH4 separationsJ. Membr. Sci.20216321193491:CAS:528:DC%2BB3MXhtVWqsbzE10.1016/j.memsci.2021.119349
– reference: Kidnay, A. J. & Parrish, W. Fundamentals of Natural Gas Processing (CRC, 2006).
– reference: KuznickiSMA titanosilicate molecular sieve with adjustable pores for size-selective adsorption of moleculesNature20014127207242001Natur.412..720K1:CAS:528:DC%2BD3MXmt1Ort7Y%3D10.1038/35089052
– reference: KresseGJoubertDFrom ultrasoft pseudopotentials to the projector augmented-wave methodPhys. Rev. B199959175817751999PhRvB..59.1758K1:CAS:528:DyaK1MXkt12nug%3D%3D10.1103/PhysRevB.59.1758
– reference: HuangYWangLSongZLiSYuMGrowth of high-quality, thickness-reduced zeolite membranes towards N2/CH4 separation using high-aspect-ratio seedsAngew. Chem. Int. Edn20155410843108471:CAS:528:DC%2BC2MXht1yqu7rJ10.1002/anie.201503782
– reference: YuCHuangCTanCA review of CO2 capture by absorption and adsorptionAerosol Air Qual. Res.2012574574910.4209/aaqr.2012.05.0132
– reference: ZhouSElectrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbonsNat. Energy202168828912021NatEn...6..882Z1:CAS:528:DC%2BB3MXhvFOqu7nJ10.1038/s41560-021-00881-y
– reference: KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0
– reference: Henkelman, G. Vasp TST tools. http://theory.cm.utexas.edu/vtsttools/.
– reference: U.S. Energy Information Administration. International Energy Outlook 2021 (Narrative) (U.S. Energy Information Administration, 2021).
– reference: SpatolisanoEPellegriniLACO2-tolerant cryogenic nitrogen rejection schemes: analysis of their performancesInd. Eng. Chem. Res.202160442044291:CAS:528:DC%2BB3MXlvVKktLw%3D10.1021/acs.iecr.0c06189
– reference: JiangHAleziDEddaoudiMA reticular chemistry guide for the design of periodic solidsNat. Rev. Mater.202164664872021NatRM...6..466J1:CAS:528:DC%2BB3MXhsFegurvL10.1038/s41578-021-00287-y
– reference: CarreonMAMolecular sieve membranes for N2/CH4 separationJ. Mater. Res.20183332432018JMatR..33...32C1:CAS:528:DC%2BC1cXosVCitg%3D%3D10.1557/jmr.2017.297
– reference: Poe, W. A. & Mokhatab, S. Modeling, Control, and Optimization of Natural Gas Processing Plants (Gulf Professional Publishing, 2016).
– reference: BhattPMA fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorptionJ. Am. Chem. Soc.2016138930193071:CAS:528:DC%2BC28XhtFersrfO10.1021/jacs.6b05345
– reference: CaroJDiffusion coefficients in nanoporous solids derived from membrane permeation measurementsAdsorption2021272832931:CAS:528:DC%2BB3cXhvVaiur%2FJ10.1007/s10450-020-00262-z
– reference: KuoJWangKChenCPros and cons of different Nitrogen Removal Unit (NRU) technologyJ. Nat. Gas Sci. Eng.2012752591:CAS:528:DC%2BC38XnvFOrtrY%3D10.1016/j.jngse.2012.02.004
– reference: ZongZElsaidiSKThallapallyPKCarreonMAHighly permeable AlPO-18 membranes for N2/CH4 separationInd. Eng. Chem. Res.201756411341181:CAS:528:DC%2BC2sXkvVSisrY%3D10.1021/acs.iecr.7b00853
– reference: Rivera-TinocoRBouallouCComparison of absorption rates and absorption capacity of ammonia solvents with MEA and MDEA aqueous blends for CO2 captureJ. Clean. Prod.2010188758801:CAS:528:DC%2BC3cXos1Sjsro%3D10.1016/j.jclepro.2009.12.006
– reference: SiegelmanRLKimEJLongJRPorous materials for carbon dioxide separationsNat. Mater.202120106010722021NatMa..20.1060S1:CAS:528:DC%2BB3MXhs1GqsrzI10.1038/s41563-021-01054-8
– reference: KimEJCooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworksScience20203693923962020Sci...369..392K1:CAS:528:DC%2BB3cXhsVCmtL%2FF10.1126/science.abb3976
– reference: HouQZhouSWeiYCaroJWangHBalancing the grain boundary structure and the framework flexibility through bimetallic metal–organic framework (MOF) membranes for gas separationJ. Am. Chem. Soc.2020142958295861:CAS:528:DC%2BB3cXnsVyku74%3D32306728
– reference: BachmanJESmithZPLiTXuTLongJREnhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystalsNat. Mater.2016158458492016NatMa..15..845B1:CAS:528:DC%2BC28XmtVShsLk%3D10.1038/nmat4621
– volume: 60
  start-page: 18930
  year: 2021
  ident: 4763_CR3
  publication-title: Angew. Chem. Int. Edn
  doi: 10.1002/anie.202104318
– volume: 632
  start-page: 119349
  year: 2021
  ident: 4763_CR9
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119349
– volume: 132
  start-page: 154104
  year: 2010
  ident: 4763_CR32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– ident: 4763_CR33
– volume: 6
  start-page: 882
  year: 2021
  ident: 4763_CR14
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00881-y
– volume: 4
  start-page: eaau1393
  year: 2018
  ident: 4763_CR15
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau1393
– volume: 15
  start-page: 845
  year: 2016
  ident: 4763_CR19
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4621
– volume: 33
  start-page: 32
  year: 2018
  ident: 4763_CR8
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2017.297
– volume: 56
  start-page: 4113
  year: 2017
  ident: 4763_CR11
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b00853
– volume: 6
  start-page: 15
  year: 1996
  ident: 4763_CR30
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 142
  start-page: 9582
  year: 2020
  ident: 4763_CR16
  publication-title: J. Am. Chem. Soc.
– ident: 4763_CR1
– volume: 369
  start-page: 392
  year: 2020
  ident: 4763_CR6
  publication-title: Science
  doi: 10.1126/science.abb3976
– volume: 132
  start-page: 16884
  year: 2020
  ident: 4763_CR17
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202007283
– volume: 54
  start-page: 10843
  year: 2015
  ident: 4763_CR10
  publication-title: Angew. Chem. Int. Edn
  doi: 10.1002/anie.201503782
– volume: 18
  start-page: 875
  year: 2010
  ident: 4763_CR25
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2009.12.006
– volume: 6
  start-page: 466
  year: 2021
  ident: 4763_CR13
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00287-y
– volume: 28
  start-page: 643
  year: 2011
  ident: 4763_CR26
  publication-title: Korean. J. Chem. Eng.
  doi: 10.1007/s11814-010-0446-6
– volume: 58
  start-page: 327
  year: 2019
  ident: 4763_CR7
  publication-title: Angew. Chem. Int. Edn
  doi: 10.1002/anie.201811638
– volume: 5
  start-page: 745
  year: 2012
  ident: 4763_CR24
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2012.05.0132
– volume: 94
  start-page: 123
  year: 2012
  ident: 4763_CR2
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2012.06.016
– volume: 138
  start-page: 9301
  year: 2016
  ident: 4763_CR5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05345
– ident: 4763_CR23
  doi: 10.1201/9781420014044
– volume: 57
  start-page: 8095
  year: 2018
  ident: 4763_CR18
  publication-title: Angew. Chem. Int. Edn
  doi: 10.1002/anie.201803279
– volume: 7
  start-page: 52
  year: 2012
  ident: 4763_CR21
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2012.02.004
– volume: 60
  start-page: 4420
  year: 2021
  ident: 4763_CR22
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c06189
– volume: 50
  start-page: 17953
  year: 1994
  ident: 4763_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 412
  start-page: 720
  year: 2001
  ident: 4763_CR12
  publication-title: Nature
  doi: 10.1038/35089052
– volume: 59
  start-page: 1758
  year: 1999
  ident: 4763_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– ident: 4763_CR27
  doi: 10.1016/B978-0-12-802961-9.00001-2
– volume: 20
  start-page: 1060
  year: 2021
  ident: 4763_CR4
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01054-8
– volume: 27
  start-page: 283
  year: 2021
  ident: 4763_CR20
  publication-title: Adsorption
  doi: 10.1007/s10450-020-00262-z
– volume: 77
  start-page: 3865
  year: 1996
  ident: 4763_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
SSID ssj0005174
Score 2.7113981
Snippet To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity 1 . In particular, nitrogen...
To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity1. In particular, nitrogen...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 706
SubjectTerms 639/301/299/1013
639/638/298/921
Apertures
Asymmetry
Atoms & subatomic particles
Boiling points
Calorific value
Carbon dioxide
Carbon dioxide removal
Carbon sequestration
Chemical Sciences
Distillation
Economic analysis
Editing
Energy efficiency
Humanities and Social Sciences
Ligands
Membranes
Metal-organic frameworks
Methane
multidisciplinary
Natural gas
Natural gas reserves
Nitrogen
Nitrogen removal
NMR
Nuclear magnetic resonance
Polarizability
Science
Science (multidisciplinary)
Selectivity
Zirconium
Title Asymmetric pore windows in MOF membranes for natural gas valorization
URI https://link.springer.com/article/10.1038/s41586-022-04763-5
https://www.proquest.com/docview/2680630765
https://www.proquest.com/docview/2680234945
https://hal.umontpellier.fr/hal-03752951
Volume 606
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9Mw8EQ3IfEysQGiY1QG8QACa_FHHOdp6qaWCrGBEJP6FtmODUi0HaRj4t9zTtx2m8ReIiW5xMl923e-A3glfGAsCEstKwsqa9SD1kgRtz4FY1ihsrbd2-mZmpzLD9N8mhbcmpRWudKJraKuFy6ukR9ypWN5qELlRxe_aOwaFaOrqYVGD7YZWpqY0qXH7zcpHreqMKdNM5nQhw0aLh3TbznNJMoYzW8Ypt73mBZ5zee8FSZtrc_4Iewkt5EMOzrvwj0_34P7bfqma_ZgN4loQ16nOtJvHsFo2PydzWLHLEfQy_bkCuffi6uG_JiT009jMvMznCqjqiPouJK2wicO8c00BLkPf73boPkYzsejrycTmromUCdLtaQm096ZsshtQNtTamuc5jE6igJWi1AaLzl3QeLMzruc45lQmRBB1UXNeWbEE9iaL-b-KRCmQmFqzZnIrbScW5RWFZRHJ8B6WZs-sBXKKpdKisfOFj-rNrQtdNWhuUI0Vy2aq7wPb9fPXHQFNe6EfomUWAPGWtiT4ccqXovNezn6h39YHw5WhKqSBDbVhl_68GJ9G2UnBkQQt4vLDobH-jwI825F4M0r_v9Z-3eP-Awe8JazFOXiALaWvy_9c_RdlnYAvWJa4FGfsEHLrAPYPh6dff7yD5vZ6Uo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8LQNIXhBbIAoDDAIJBBYS2zHSR4QqmClY-142aS9ebZjAxJtB-mo9qf4jZydpIVJ7G2PSS52dF--y30BPOfOp6nnhpq0zKmoUA8aLXgoffJap7lM4ri38YEcHolPx9nxGvzuamFCWmWnE6OirmY2_CPfYbII7aFymb07_UHD1KgQXe1GaDRsse_OF-iy1W_3PiB9XzA22D18P6TtVAFqRSnnVCeFs7rMM-NRN5eF0bZgIXqIDFhxX2onGLNeoOfjbMbwisuEcy-rvGIs0RzXXYdrguNJHirTBx9XKSUXuj63RToJL3ZqPCiLkO7LaCJQpmn2z0G4_jWkYf5l414Iy8bTbnAbbrVmKuk3fLUJa266Bddjuqitt2CzVQk1edn2rX51B3b79flkEiZ0WYJWvSML9Pdni5p8m5Lx5wGZuAm65qhaCRrKJHYUxS2-6JogtyOqm4LQu3B0Jfi8BxvT2dTdB5JKn-uqYCnPjDCMGdQO0kuHRodxotI9SDuUKdu2MA-TNL6rGErnhWrQrBDNKqJZZT14vXzntGngcSn0M6TEEjD03h72RyrcC8OCGdqjv9IebHeEUq3E12rFnz14unyMshoCMIjb2VkDw0I_IIR50xF4tcT_P-vB5Ts-gRvDw_FIjfYO9h_CTRa5TFLGt2Fj_vPMPUK7aW4eR2YlcHLV0vEHN8YiSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcNQWgbggWkAsFDAIJBBYm9iO4xwQWrVdbekDDlTqzbUTm1ZidwvZsuqv8XWMnWRbKtFbj0kmdjQvz2ReAK-582nquaU2LXIqKtSD1ggeSp-8MWkukzjubW9fjg7E58PscAn-dLUwIa2y04lRUVfTMvwj7zOpQnuoXGZ936ZFfN0cfjr9ScMEqRBp7cZpNCyy487n6L7VH7c3kdZvGBtufdsY0XbCAC1FIWfUJMqVpsgz61FPF8qaUrEQSURmrLgvjBOMlV6gF-TKjOEVlwnnXlZ5xVhiOK67DLdynqsgY2rjUnrJlQ7QbcFOwlW_xkNThdRfRhOB8k2zfw7F5eOQknnJ3r0Soo0n3_A-3GtNVjJoeGwVltxkDW7H1NGyXoPVVj3U5G3bw_rdA9ga1OfjcZjWVRK08B2Zo-8_ndfkZEL2vgzJ2I3RTUc1S9BoJrG7KG7x3dQEOR9R3RSHPoSDG8HnI1iZTCfuMZBU-txUiqU8s8IyZlFTSC8dGiDWicr0IO1Qpsu2nXmYqvFDx7A6V7pBs0Y064hmnfXg_eKd06aZx7XQr5ASC8DQh3s02NXhXhgczNA2_Z32YL0jlG6lv9YXvNqDl4vHKLchGIO4nZ41MCz0BkKYDx2BL5b4_2c9uX7HF3AH5ULvbu_vPIW7LDKZpIyvw8rs15l7hibUzD6PvErg6KaF4y-gxCZK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymmetric+pore+windows+in+MOF+membranes+for+natural+gas+valorization&rft.jtitle=Nature+%28London%29&rft.au=Zhou%2C+Sheng&rft.au=Shekhah%2C+Osama&rft.au=Ram%C3%ADrez%2C+Adrian&rft.au=Lyu%2C+Pengbo&rft.date=2022-06-23&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=606&rft.issue=7915&rft.spage=706&rft.epage=712&rft_id=info:doi/10.1038%2Fs41586-022-04763-5&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03752951v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon