The Chi-Square Test of Distance Correlation

Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically equals zero if and only if independence, making it an ideal choice to discover any type of dependency structure given sufficient sample size. One...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 31; no. 1; pp. 254 - 262
Main Authors Shen, Cencheng, Panda, Sambit, Vogelstein, Joshua T.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
DOI10.1080/10618600.2021.1938585

Cover

Loading…
Abstract Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically equals zero if and only if independence, making it an ideal choice to discover any type of dependency structure given sufficient sample size. One major bottleneck is the testing process: because the null distribution of distance correlation depends on the underlying random variables and metric choice, it typically requires a permutation test to estimate the null and compute the p-value, which is very costly for large amount of data. To overcome the difficulty, in this article, we propose a chi-squared test for distance correlation. Method-wise, the chi-squared test is nonparametric, extremely fast, and applicable to bias-corrected distance correlation using any strong negative type metric or characteristic kernel. The test exhibits a similar testing power as the standard permutation test, and can be used for K-sample and partial testing. Theory-wise, we show that the underlying chi-squared distribution well approximates and dominates the limiting null distribution in upper tail, prove the chi-squared test can be valid and universally consistent for testing independence, and establish a testing power inequality with respect to the permutation test. Supplementary files for this article are available online.
AbstractList Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically equals zero if and only if independence, making it an ideal choice to discover any type of dependency structure given sufficient sample size. One major bottleneck is the testing process: because the null distribution of distance correlation depends on the underlying random variables and metric choice, it typically requires a permutation test to estimate the null and compute the p-value, which is very costly for large amount of data. To overcome the difficulty, in this paper we propose a chi-square test for distance correlation. Method-wise, the chi-square test is non-parametric, extremely fast, and applicable to bias-corrected distance correlation using any strong negative type metric or characteristic kernel. The test exhibits a similar testing power as the standard permutation test, and can be utilized for K-sample and partial testing. Theory-wise, we show that the underlying chi-square distribution well approximates and dominates the limiting null distribution in upper tail, prove the chi-square test can be valid and universally consistent for testing independence, and establish a testing power inequality with respect to the permutation test.
Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically equals zero if and only if independence, making it an ideal choice to discover any type of dependency structure given sufficient sample size. One major bottleneck is the testing process: because the null distribution of distance correlation depends on the underlying random variables and metric choice, it typically requires a permutation test to estimate the null and compute the p-value, which is very costly for large amount of data. To overcome the difficulty, in this article, we propose a chi-squared test for distance correlation. Method-wise, the chi-squared test is nonparametric, extremely fast, and applicable to bias-corrected distance correlation using any strong negative type metric or characteristic kernel. The test exhibits a similar testing power as the standard permutation test, and can be used for K-sample and partial testing. Theory-wise, we show that the underlying chi-squared distribution well approximates and dominates the limiting null distribution in upper tail, prove the chi-squared test can be valid and universally consistent for testing independence, and establish a testing power inequality with respect to the permutation test. Supplementary files for this article are available online.
Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically equals zero if and only if independence, making it an ideal choice to discover any type of dependency structure given sufficient sample size. One major bottleneck is the testing process: because the null distribution of distance correlation depends on the underlying random variables and metric choice, it typically requires a permutation test to estimate the null and compute the p-value, which is very costly for large amount of data. To overcome the difficulty, in this paper we propose a chi-square test for distance correlation. Method-wise, the chi-square test is non-parametric, extremely fast, and applicable to bias-corrected distance correlation using any strong negative type metric or characteristic kernel. The test exhibits a similar testing power as the standard permutation test, and can be utilized for K-sample and partial testing. Theory-wise, we show that the underlying chi-square distribution well approximates and dominates the limiting null distribution in upper tail, prove the chi-square test can be valid and universally consistent for testing independence, and establish a testing power inequality with respect to the permutation test.Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically equals zero if and only if independence, making it an ideal choice to discover any type of dependency structure given sufficient sample size. One major bottleneck is the testing process: because the null distribution of distance correlation depends on the underlying random variables and metric choice, it typically requires a permutation test to estimate the null and compute the p-value, which is very costly for large amount of data. To overcome the difficulty, in this paper we propose a chi-square test for distance correlation. Method-wise, the chi-square test is non-parametric, extremely fast, and applicable to bias-corrected distance correlation using any strong negative type metric or characteristic kernel. The test exhibits a similar testing power as the standard permutation test, and can be utilized for K-sample and partial testing. Theory-wise, we show that the underlying chi-square distribution well approximates and dominates the limiting null distribution in upper tail, prove the chi-square test can be valid and universally consistent for testing independence, and establish a testing power inequality with respect to the permutation test.
Author Panda, Sambit
Shen, Cencheng
Vogelstein, Joshua T.
AuthorAffiliation 1 Department of Applied Economics and Statistics, University of Delaware
3 Center for Imaging Science, Kavli Neuroscience Discovery Institute, Johns Hopkins University
2 Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University
AuthorAffiliation_xml – name: 2 Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University
– name: 1 Department of Applied Economics and Statistics, University of Delaware
– name: 3 Center for Imaging Science, Kavli Neuroscience Discovery Institute, Johns Hopkins University
Author_xml – sequence: 1
  givenname: Cencheng
  orcidid: 0000-0003-1030-1432
  surname: Shen
  fullname: Shen, Cencheng
  organization: Department of Applied Economics and Statistics, University of Delaware
– sequence: 2
  givenname: Sambit
  orcidid: 0000-0001-8455-4243
  surname: Panda
  fullname: Panda, Sambit
  organization: Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University
– sequence: 3
  givenname: Joshua T.
  surname: Vogelstein
  fullname: Vogelstein, Joshua T.
  organization: Center for Imaging Science, Kavli Neuroscience Discovery Institute, Johns Hopkins University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35707063$$D View this record in MEDLINE/PubMed
BookMark eNqFUV1LHDEUDUWpuvUnVBb6UpDZ3iSTLwqibP0CoQ9dn0M2k3Ejs4kmMxX_vdnurlgf2qdcuOecnHvOAdoJMTiEPmOYYJDwDQPHkgNMCBA8wYpKJtkHtI8ZFRURmO2UuWCqFWgPHeR8DwCYK_ER7VEmQACn--h4tnDj6cJXvx4Hk9x45nI_ju34h8-9CbbsYkquM72P4RPabU2X3eHmHaHbi_PZ9Kq6-Xl5PT27qWyteF8pLpqmMQDUFW-2rvkcE2CGqHmz2gmG50YSRZi0hjSgpGVUKutwWzPLDR2hk7XuwzBfusa60CfT6YfklyY962i8_nsT_ELfxd9aYYVlTYrA141Aio9DuUgvfbau60xwcciacCGY4ELSAv3yDnofhxTKeZoIUoMkpCQ6QkdvHb1a2eZYAN_XAJtizsm12vr-T2jFoO80Br1qTW9b06vW9Ka1wmbv2NsP_sc7XfN8aGNamqeYukb35rmLqU2lPp81_bfEC411q0U
CitedBy_id crossref_primary_10_1016_j_enconman_2024_119464
crossref_primary_10_1016_j_ins_2024_120912
crossref_primary_10_3390_math11030599
crossref_primary_10_3390_s23041874
crossref_primary_10_4236_as_2021_1211087
crossref_primary_10_1016_j_ijleo_2023_170809
crossref_primary_10_1080_10618600_2023_2270656
crossref_primary_10_5194_esd_14_17_2023
crossref_primary_10_1002_hsr2_1650
crossref_primary_10_1016_j_spl_2024_110278
crossref_primary_10_1515_demo_2023_0108
crossref_primary_10_1002_hsr2_1212
crossref_primary_10_1016_j_heliyon_2024_e41073
crossref_primary_10_1016_j_patrec_2024_06_011
crossref_primary_10_1016_j_asej_2024_103016
crossref_primary_10_1016_j_jmva_2023_105204
crossref_primary_10_1177_14673584251316271
crossref_primary_10_47992_IJCSBE_2581_6942_0348
crossref_primary_10_1007_s10182_020_00378_1
crossref_primary_10_1080_03610918_2023_2202369
crossref_primary_10_1088_2057_1976_ada8ae
crossref_primary_10_3390_jrfm16040219
crossref_primary_10_3390_math10152604
crossref_primary_10_1051_0004_6361_202347764
crossref_primary_10_1111_sjos_12771
crossref_primary_10_2147_BCTT_S399994
crossref_primary_10_1038_s41598_023_34478_0
crossref_primary_10_1007_s10639_024_12515_3
crossref_primary_10_1051_0004_6361_202245803
crossref_primary_10_1109_ACCESS_2024_3387968
crossref_primary_10_3389_fpubh_2022_826896
crossref_primary_10_3389_fsufs_2022_722344
crossref_primary_10_1016_j_ins_2024_121801
Cites_doi 10.1080/01621459.2014.993081
10.1214/13-AOS1140
10.1214/09-AOAS245
10.1093/biomet/ass070
10.1016/j.csda.2019.01.016
10.1080/00949655.2014.928820
10.1214/12-AOP803
10.1214/009053607000000505
10.2174/13816128112092439
10.1214/14-AOS1255
10.7554/eLife.41690
10.1080/00401706.2015.1054435
10.1007/s00357-005-0012-9
10.1007/s11222-016-9721-7
10.1007/s10182-020-00378-1
10.1111/j.1467-9892.2011.00780.x
10.1002/wics.1375
10.1073/pnas.1019203108
10.1080/01621459.2012.695654
10.1016/j.jmva.2013.02.012
10.1080/01621459.2018.1543125
10.1093/biomet/asx082
ContentType Journal Article
Copyright 2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2021
2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Copyright_xml – notice: 2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2021
– notice: 2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
DBID AAYXX
CITATION
NPM
JQ2
7X8
5PM
DOI 10.1080/10618600.2021.1938585
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
ProQuest Computer Science Collection
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 262
ExternalDocumentID PMC9191842
35707063
10_1080_10618600_2021_1938585
1938585
Genre Research Article
Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH120482
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
30N
4.4
5GY
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IAO
IEA
IGG
IGS
IOF
IPNFZ
J.P
JAA
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADXHL
ADYSH
AFRVT
AMPGV
AMVHM
CITATION
07G
29K
2AX
AAIKQ
AAKBW
AAWIL
ABAWQ
ABBHK
ABQDR
ABXSQ
ACAGQ
ACDIW
ACGEE
ACHJO
ADODI
ADULT
AEUMN
AGCQS
AGLEN
AGLNM
AGROQ
AHMOU
AIHAF
ALCKM
ALRMG
AMATQ
AMEWO
AMXXU
BCCOT
BPLKW
C06
CRFIH
D-I
DMQIW
DQDLB
DSRWC
DWIFK
ECEWR
EJD
FEDTE
GIFXF
HGD
HQ6
HVGLF
IPSME
IVXBP
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
NPM
NUSFT
QCRFL
RNS
SA0
TAQ
TFMCV
TOXWX
UB9
JQ2
TASJS
7X8
5PM
ID FETCH-LOGICAL-c496t-967ddda003e202c446b1205a29bd967d751ba829258ca2d098c5389ce1f45c6a3
ISSN 1061-8600
IngestDate Thu Aug 21 18:40:10 EDT 2025
Tue Aug 05 10:00:05 EDT 2025
Wed Aug 13 04:50:55 EDT 2025
Thu Apr 03 06:57:40 EDT 2025
Tue Jul 01 02:05:30 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Wed Dec 25 09:06:45 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords centered chi-square distribution
nonparametric test
testing independence
unbiased distance covariance
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c496t-967ddda003e202c446b1205a29bd967d751ba829258ca2d098c5389ce1f45c6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1030-1432
0000-0001-8455-4243
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9191842
PMID 35707063
PQID 2724082215
PQPubID 29738
PageCount 9
ParticipantIDs pubmed_primary_35707063
crossref_citationtrail_10_1080_10618600_2021_1938585
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9191842
proquest_journals_2724082215
informaworld_taylorfrancis_310_1080_10618600_2021_1938585
proquest_miscellaneous_2677576783
crossref_primary_10_1080_10618600_2021_1938585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationTitleAlternate J Comput Graph Stat
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0011
CIT0033
Balasubramanian K. (CIT0001) 2013
CIT0014
CIT0013
CIT0016
CIT0018
CIT0017
Gretton A. (CIT0007) 2005; 6
CIT0019
Heller R. (CIT0009) 2016; 17
CIT0021
CIT0020
CIT0023
Fukumizu K. (CIT0005) 2007
Szekely G. (CIT0022) 2009; 3
Gretton A. (CIT0006) 2010; 11
Pearson K. (CIT0015) 1895
CIT0003
CIT0025
CIT0002
CIT0024
CIT0027
CIT0004
CIT0026
CIT0029
CIT0028
CIT0008
References_xml – volume: 11
  start-page: 1391
  year: 2010
  ident: CIT0006
  publication-title: Journal of Machine Learning Research
– ident: CIT0013
– ident: CIT0029
  doi: 10.1080/01621459.2014.993081
– ident: CIT0018
  doi: 10.1214/13-AOS1140
– start-page: 126
  year: 2013
  ident: CIT0001
  publication-title: Proceedings of Machine Learning Research
– start-page: 240
  volume-title: Proceedings of the Royal Society of London
  year: 1895
  ident: CIT0015
– ident: CIT0016
  doi: 10.1214/09-AOAS245
– ident: CIT0008
  doi: 10.1093/biomet/ass070
– volume: 17
  start-page: 1
  year: 2016
  ident: CIT0009
  publication-title: Journal of Machine Learning Research
– ident: CIT0003
  doi: 10.1016/j.csda.2019.01.016
– ident: CIT0032
  doi: 10.1080/00949655.2014.928820
– ident: CIT0012
  doi: 10.1214/12-AOP803
– ident: CIT0025
  doi: 10.1214/009053607000000505
– volume: 6
  start-page: 2075
  year: 2005
  ident: CIT0007
  publication-title: Journal of Machine Learning Research
– start-page: 489
  volume-title: Advances in Neural Information Processing Systems
  year: 2007
  ident: CIT0005
– ident: CIT0002
  doi: 10.2174/13816128112092439
– ident: CIT0024
  doi: 10.1214/14-AOS1255
– ident: CIT0026
  doi: 10.7554/eLife.41690
– ident: CIT0014
– ident: CIT0010
  doi: 10.1080/00401706.2015.1054435
– ident: CIT0021
  doi: 10.1007/s00357-005-0012-9
– ident: CIT0031
  doi: 10.1007/s11222-016-9721-7
– ident: CIT0020
  doi: 10.1007/s10182-020-00378-1
– ident: CIT0033
  doi: 10.1111/j.1467-9892.2011.00780.x
– ident: CIT0017
  doi: 10.1002/wics.1375
– ident: CIT0027
  doi: 10.1073/pnas.1019203108
– volume: 3
  start-page: 1233
  year: 2009
  ident: CIT0022
  publication-title: Annals of Applied Statistics
– ident: CIT0011
  doi: 10.1080/01621459.2012.695654
– ident: CIT0023
  doi: 10.1016/j.jmva.2013.02.012
– ident: CIT0028
– ident: CIT0019
  doi: 10.1080/01621459.2018.1543125
– ident: CIT0004
  doi: 10.1093/biomet/asx082
– ident: CIT0030
SSID ssj0001697
Score 2.5074182
Snippet Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 254
SubjectTerms Centered chi-squared distribution
Chi-square test
Correlation
Data science
Nonparametric statistics
Nonparametric test
Permutations
Random variables
Testing independence
Unbiased distance covariance
Title The Chi-Square Test of Distance Correlation
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2021.1938585
https://www.ncbi.nlm.nih.gov/pubmed/35707063
https://www.proquest.com/docview/2724082215
https://www.proquest.com/docview/2677576783
https://pubmed.ncbi.nlm.nih.gov/PMC9191842
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXMoBQXktFBQkrlli5-H4iJZWVdUuh2bR3izbSborlQTY7IVfz0ziOFm6UguXKLJjJ_Fnj2fG8yDko9AloyaJ_ZAp7UdpbnxFE-XzWIWmZGmhWz_uy3lytojOl_FySLDYepc0emp-7_Ur-R9UoQxwRS_Zf0DWdQoFcA_4whUQhuu9MZ6t1v7Vzy0acGVA4ZH5-4I8IS7YGabeuBnG_jYTatqkDr1CEJXobQTrzlcSy9swzk4NY105ZjAIcHs9nD-BYN_pl7_rtTOk-VZfw87bp9M8rzerrbJG2VbPwEZKR5Qa_TQJgjHVtLR7PDssCeyCQt8izZ0tI_aFXYFkzugUuEc8lxz2ov78ff5Vni4uLmR2sswekkeMc4r2mmEwd9sstZlz-o_r3bPS4NPel-wwHjthafcJF3_byI6YjuwpeWKB8j530D8jD4rqiDy-dKF2N0fk8MrB9JygAY03zAgPZ4RXl14_I7zRjHhBFqcn2ezMt-kwfBOJpPFFwvM8V0CGC_gvA3K8piyIFRM6xzoeU61SJlicGsXyQKQGdjNhClpGsUlU-JIcVHVVvCaewahujCkT8jICFlKlPAdOtzSB0Doy-YRE_VhJY2PFY8qSG0ltSNl-iCUOsbRDPCFT1-xHFyzlrgZiDIRsWi1V2aWUkeEdbY971KRdkxvJOIbsY8DHTsgHVw0UE4_BVFXUW3gm4RykbJ6GE_KqA9l9bRhz2AMTqOE78LsHMBr7bk21XrVR2QUVNI3Ym3u89y05xBXWafKOyUHza1u8A9620e_bOf4HvwSd3g
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VegAOtLyXUppKXL1snDi2j2hbtKXsXlgkbpbtJAJRZQtkL_x6ZvLSLmrFgbM9UWyPx9_YM98AnGiX89AngkXcOhar1DMbJpZJYSOfc5W5Ko97PElG1_HFjbhZyIWhsEryofOaKKKy1bS56TK6DYk7JTdG4UmN7h0P-whB6HFrBT4KxO6k5dFg0lnjsCmwgiKMZNosnv99Zul8WmIv_RcGfR1KuXA2nX8C346qDkm5789L1_fPrwgf3zfsz7DZQNfgrNa1LfiQFduwMe54X5-2YZ2wa039vAMUzREMb-_Y1QPqYRZMcUjBLA9-EGRFXQuGVBmkjsXbhevzn9PhiDW1GZiPdVIyncg0TS3ahAz_xqNT6UI-EJZrl1KbFKGzimsulLc8HWjl0bRqn4V5LHxioz1YLWZFdgCBJ4oxzq2PZB4jnrFKpgi7cj_QzsU-7UHcrojxDXE51c_4Y8KG37SdGEMTY5qJ6UG_E_tbM3e8JaAXl9uU1ZVJXtc3MdEbsketbpjGCDwZLok_jiOo6sH3rhm3L73J2CKbzbFPIiW6fFJFPdivVan720hINMgJtsglJes6EDX4cktxd1tRhGt0w1XMD98xpG-wNpqOL83lr8nvL7DOKe2juno6gtXycZ59RTBWuuNqt70AhoAjEg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEK4oJgYPIii6gjomXnvd6Znpx9EsbgBlQyIk3jr9mA4EMovu7MVfb9W8whINB87VNelHdfVX09VfAXzSLvLUi4Jl3DqWq-CZTYVlsrCZj1yVrnnHfTIXh-f58c-izyZcdmmVFEPHliii8dW0uW9C7DPiPlMUo_CgxuiOp2NEIHS39RieCIQnlNWXTeaDM067-iqowkinf8Tzv8-sHU9r5KX_gqB3MylvHU2zLXD9oNqMlKvxqnZj_-cO3-ODRv0CnnfANfnSWto2PCqrHXh2MrC-Lndgk5BrS_z8EiiXI5leXLIfv9AKy-QMR5QsYnJAgBUtLZlSXZA2E-8VnM--nk0PWVeZgflci5ppIUMIFj1Cib3xGFK6lE8Ky7ULJJNF6qzimhfKWx4mWnl0rNqXacwLL2y2CxvVoirfQOKJYIxz6zMZc0QzVsmAoCv6iXYu92EEeb8gxne05VQ949qkHbtpPzGGJsZ0EzOC8aB20_J23Kegb6-2qZsfJrGtbmKye3T3e9MwnQtYGi6JPY4jpBrBx0GMm5duZGxVLlbYRkiJAZ9U2Qhet5Y09DYrJLpjgRK5ZmNDAyIGX5dUlxcNQbjGIFzl_O0DhvQBnp4ezMz3o_m3Pdjk9Oaj-e-0Dxv171X5DpFY7d43e-0vxMchtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Chi-Square+Test+of+Distance+Correlation&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Shen%2C+Cencheng&rft.au=Panda%2C+Sambit&rft.au=Vogelstein%2C+Joshua+T&rft.date=2022&rft.issn=1061-8600&rft.volume=31&rft.issue=1&rft.spage=254&rft_id=info:doi/10.1080%2F10618600.2021.1938585&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon