The Chi-Square Test of Distance Correlation
Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically equals zero if and only if independence, making it an ideal choice to discover any type of dependency structure given sufficient sample size. One...
Saved in:
Published in | Journal of computational and graphical statistics Vol. 31; no. 1; pp. 254 - 262 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1061-8600 1537-2715 |
DOI | 10.1080/10618600.2021.1938585 |
Cover
Loading…
Abstract | Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically equals zero if and only if independence, making it an ideal choice to discover any type of dependency structure given sufficient sample size. One major bottleneck is the testing process: because the null distribution of distance correlation depends on the underlying random variables and metric choice, it typically requires a permutation test to estimate the null and compute the p-value, which is very costly for large amount of data. To overcome the difficulty, in this article, we propose a chi-squared test for distance correlation. Method-wise, the chi-squared test is nonparametric, extremely fast, and applicable to bias-corrected distance correlation using any strong negative type metric or characteristic kernel. The test exhibits a similar testing power as the standard permutation test, and can be used for K-sample and partial testing. Theory-wise, we show that the underlying chi-squared distribution well approximates and dominates the limiting null distribution in upper tail, prove the chi-squared test can be valid and universally consistent for testing independence, and establish a testing power inequality with respect to the permutation test. Supplementary files for this article are available online. |
---|---|
AbstractList | Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically equals zero if and only if independence, making it an ideal choice to discover any type of dependency structure given sufficient sample size. One major bottleneck is the testing process: because the null distribution of distance correlation depends on the underlying random variables and metric choice, it typically requires a permutation test to estimate the null and compute the p-value, which is very costly for large amount of data. To overcome the difficulty, in this paper we propose a chi-square test for distance correlation. Method-wise, the chi-square test is non-parametric, extremely fast, and applicable to bias-corrected distance correlation using any strong negative type metric or characteristic kernel. The test exhibits a similar testing power as the standard permutation test, and can be utilized for K-sample and partial testing. Theory-wise, we show that the underlying chi-square distribution well approximates and dominates the limiting null distribution in upper tail, prove the chi-square test can be valid and universally consistent for testing independence, and establish a testing power inequality with respect to the permutation test. Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically equals zero if and only if independence, making it an ideal choice to discover any type of dependency structure given sufficient sample size. One major bottleneck is the testing process: because the null distribution of distance correlation depends on the underlying random variables and metric choice, it typically requires a permutation test to estimate the null and compute the p-value, which is very costly for large amount of data. To overcome the difficulty, in this article, we propose a chi-squared test for distance correlation. Method-wise, the chi-squared test is nonparametric, extremely fast, and applicable to bias-corrected distance correlation using any strong negative type metric or characteristic kernel. The test exhibits a similar testing power as the standard permutation test, and can be used for K-sample and partial testing. Theory-wise, we show that the underlying chi-squared distribution well approximates and dominates the limiting null distribution in upper tail, prove the chi-squared test can be valid and universally consistent for testing independence, and establish a testing power inequality with respect to the permutation test. Supplementary files for this article are available online. Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically equals zero if and only if independence, making it an ideal choice to discover any type of dependency structure given sufficient sample size. One major bottleneck is the testing process: because the null distribution of distance correlation depends on the underlying random variables and metric choice, it typically requires a permutation test to estimate the null and compute the p-value, which is very costly for large amount of data. To overcome the difficulty, in this paper we propose a chi-square test for distance correlation. Method-wise, the chi-square test is non-parametric, extremely fast, and applicable to bias-corrected distance correlation using any strong negative type metric or characteristic kernel. The test exhibits a similar testing power as the standard permutation test, and can be utilized for K-sample and partial testing. Theory-wise, we show that the underlying chi-square distribution well approximates and dominates the limiting null distribution in upper tail, prove the chi-square test can be valid and universally consistent for testing independence, and establish a testing power inequality with respect to the permutation test.Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically equals zero if and only if independence, making it an ideal choice to discover any type of dependency structure given sufficient sample size. One major bottleneck is the testing process: because the null distribution of distance correlation depends on the underlying random variables and metric choice, it typically requires a permutation test to estimate the null and compute the p-value, which is very costly for large amount of data. To overcome the difficulty, in this paper we propose a chi-square test for distance correlation. Method-wise, the chi-square test is non-parametric, extremely fast, and applicable to bias-corrected distance correlation using any strong negative type metric or characteristic kernel. The test exhibits a similar testing power as the standard permutation test, and can be utilized for K-sample and partial testing. Theory-wise, we show that the underlying chi-square distribution well approximates and dominates the limiting null distribution in upper tail, prove the chi-square test can be valid and universally consistent for testing independence, and establish a testing power inequality with respect to the permutation test. |
Author | Panda, Sambit Shen, Cencheng Vogelstein, Joshua T. |
AuthorAffiliation | 1 Department of Applied Economics and Statistics, University of Delaware 3 Center for Imaging Science, Kavli Neuroscience Discovery Institute, Johns Hopkins University 2 Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University |
AuthorAffiliation_xml | – name: 2 Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University – name: 1 Department of Applied Economics and Statistics, University of Delaware – name: 3 Center for Imaging Science, Kavli Neuroscience Discovery Institute, Johns Hopkins University |
Author_xml | – sequence: 1 givenname: Cencheng orcidid: 0000-0003-1030-1432 surname: Shen fullname: Shen, Cencheng organization: Department of Applied Economics and Statistics, University of Delaware – sequence: 2 givenname: Sambit orcidid: 0000-0001-8455-4243 surname: Panda fullname: Panda, Sambit organization: Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University – sequence: 3 givenname: Joshua T. surname: Vogelstein fullname: Vogelstein, Joshua T. organization: Center for Imaging Science, Kavli Neuroscience Discovery Institute, Johns Hopkins University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35707063$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUV1LHDEUDUWpuvUnVBb6UpDZ3iSTLwqibP0CoQ9dn0M2k3Ejs4kmMxX_vdnurlgf2qdcuOecnHvOAdoJMTiEPmOYYJDwDQPHkgNMCBA8wYpKJtkHtI8ZFRURmO2UuWCqFWgPHeR8DwCYK_ER7VEmQACn--h4tnDj6cJXvx4Hk9x45nI_ju34h8-9CbbsYkquM72P4RPabU2X3eHmHaHbi_PZ9Kq6-Xl5PT27qWyteF8pLpqmMQDUFW-2rvkcE2CGqHmz2gmG50YSRZi0hjSgpGVUKutwWzPLDR2hk7XuwzBfusa60CfT6YfklyY962i8_nsT_ELfxd9aYYVlTYrA141Aio9DuUgvfbau60xwcciacCGY4ELSAv3yDnofhxTKeZoIUoMkpCQ6QkdvHb1a2eZYAN_XAJtizsm12vr-T2jFoO80Br1qTW9b06vW9Ka1wmbv2NsP_sc7XfN8aGNamqeYukb35rmLqU2lPp81_bfEC411q0U |
CitedBy_id | crossref_primary_10_1016_j_enconman_2024_119464 crossref_primary_10_1016_j_ins_2024_120912 crossref_primary_10_3390_math11030599 crossref_primary_10_3390_s23041874 crossref_primary_10_4236_as_2021_1211087 crossref_primary_10_1016_j_ijleo_2023_170809 crossref_primary_10_1080_10618600_2023_2270656 crossref_primary_10_5194_esd_14_17_2023 crossref_primary_10_1002_hsr2_1650 crossref_primary_10_1016_j_spl_2024_110278 crossref_primary_10_1515_demo_2023_0108 crossref_primary_10_1002_hsr2_1212 crossref_primary_10_1016_j_heliyon_2024_e41073 crossref_primary_10_1016_j_patrec_2024_06_011 crossref_primary_10_1016_j_asej_2024_103016 crossref_primary_10_1016_j_jmva_2023_105204 crossref_primary_10_1177_14673584251316271 crossref_primary_10_47992_IJCSBE_2581_6942_0348 crossref_primary_10_1007_s10182_020_00378_1 crossref_primary_10_1080_03610918_2023_2202369 crossref_primary_10_1088_2057_1976_ada8ae crossref_primary_10_3390_jrfm16040219 crossref_primary_10_3390_math10152604 crossref_primary_10_1051_0004_6361_202347764 crossref_primary_10_1111_sjos_12771 crossref_primary_10_2147_BCTT_S399994 crossref_primary_10_1038_s41598_023_34478_0 crossref_primary_10_1007_s10639_024_12515_3 crossref_primary_10_1051_0004_6361_202245803 crossref_primary_10_1109_ACCESS_2024_3387968 crossref_primary_10_3389_fpubh_2022_826896 crossref_primary_10_3389_fsufs_2022_722344 crossref_primary_10_1016_j_ins_2024_121801 |
Cites_doi | 10.1080/01621459.2014.993081 10.1214/13-AOS1140 10.1214/09-AOAS245 10.1093/biomet/ass070 10.1016/j.csda.2019.01.016 10.1080/00949655.2014.928820 10.1214/12-AOP803 10.1214/009053607000000505 10.2174/13816128112092439 10.1214/14-AOS1255 10.7554/eLife.41690 10.1080/00401706.2015.1054435 10.1007/s00357-005-0012-9 10.1007/s11222-016-9721-7 10.1007/s10182-020-00378-1 10.1111/j.1467-9892.2011.00780.x 10.1002/wics.1375 10.1073/pnas.1019203108 10.1080/01621459.2012.695654 10.1016/j.jmva.2013.02.012 10.1080/01621459.2018.1543125 10.1093/biomet/asx082 |
ContentType | Journal Article |
Copyright | 2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2021 2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America |
Copyright_xml | – notice: 2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2021 – notice: 2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America |
DBID | AAYXX CITATION NPM JQ2 7X8 5PM |
DOI | 10.1080/10618600.2021.1938585 |
DatabaseName | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | ProQuest Computer Science Collection PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-2715 |
EndPage | 262 |
ExternalDocumentID | PMC9191842 35707063 10_1080_10618600_2021_1938585 1938585 |
Genre | Research Article Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH120482 |
GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 30N 4.4 5GY AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB AEGXH AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IAO IEA IGG IGS IOF IPNFZ J.P JAA KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ AAGDL AAHIA AAYXX ADXHL ADYSH AFRVT AMPGV AMVHM CITATION 07G 29K 2AX AAIKQ AAKBW AAWIL ABAWQ ABBHK ABQDR ABXSQ ACAGQ ACDIW ACGEE ACHJO ADODI ADULT AEUMN AGCQS AGLEN AGLNM AGROQ AHMOU AIHAF ALCKM ALRMG AMATQ AMEWO AMXXU BCCOT BPLKW C06 CRFIH D-I DMQIW DQDLB DSRWC DWIFK ECEWR EJD FEDTE GIFXF HGD HQ6 HVGLF IPSME IVXBP JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST NPM NUSFT QCRFL RNS SA0 TAQ TFMCV TOXWX UB9 JQ2 TASJS 7X8 5PM |
ID | FETCH-LOGICAL-c496t-967ddda003e202c446b1205a29bd967d751ba829258ca2d098c5389ce1f45c6a3 |
ISSN | 1061-8600 |
IngestDate | Thu Aug 21 18:40:10 EDT 2025 Tue Aug 05 10:00:05 EDT 2025 Wed Aug 13 04:50:55 EDT 2025 Thu Apr 03 06:57:40 EDT 2025 Tue Jul 01 02:05:30 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Wed Dec 25 09:06:45 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | centered chi-square distribution nonparametric test testing independence unbiased distance covariance |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c496t-967ddda003e202c446b1205a29bd967d751ba829258ca2d098c5389ce1f45c6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1030-1432 0000-0001-8455-4243 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9191842 |
PMID | 35707063 |
PQID | 2724082215 |
PQPubID | 29738 |
PageCount | 9 |
ParticipantIDs | pubmed_primary_35707063 crossref_citationtrail_10_1080_10618600_2021_1938585 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9191842 proquest_journals_2724082215 informaworld_taylorfrancis_310_1080_10618600_2021_1938585 proquest_miscellaneous_2677576783 crossref_primary_10_1080_10618600_2021_1938585 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022-00-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Alexandria |
PublicationTitle | Journal of computational and graphical statistics |
PublicationTitleAlternate | J Comput Graph Stat |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0011 CIT0033 Balasubramanian K. (CIT0001) 2013 CIT0014 CIT0013 CIT0016 CIT0018 CIT0017 Gretton A. (CIT0007) 2005; 6 CIT0019 Heller R. (CIT0009) 2016; 17 CIT0021 CIT0020 CIT0023 Fukumizu K. (CIT0005) 2007 Szekely G. (CIT0022) 2009; 3 Gretton A. (CIT0006) 2010; 11 Pearson K. (CIT0015) 1895 CIT0003 CIT0025 CIT0002 CIT0024 CIT0027 CIT0004 CIT0026 CIT0029 CIT0028 CIT0008 |
References_xml | – volume: 11 start-page: 1391 year: 2010 ident: CIT0006 publication-title: Journal of Machine Learning Research – ident: CIT0013 – ident: CIT0029 doi: 10.1080/01621459.2014.993081 – ident: CIT0018 doi: 10.1214/13-AOS1140 – start-page: 126 year: 2013 ident: CIT0001 publication-title: Proceedings of Machine Learning Research – start-page: 240 volume-title: Proceedings of the Royal Society of London year: 1895 ident: CIT0015 – ident: CIT0016 doi: 10.1214/09-AOAS245 – ident: CIT0008 doi: 10.1093/biomet/ass070 – volume: 17 start-page: 1 year: 2016 ident: CIT0009 publication-title: Journal of Machine Learning Research – ident: CIT0003 doi: 10.1016/j.csda.2019.01.016 – ident: CIT0032 doi: 10.1080/00949655.2014.928820 – ident: CIT0012 doi: 10.1214/12-AOP803 – ident: CIT0025 doi: 10.1214/009053607000000505 – volume: 6 start-page: 2075 year: 2005 ident: CIT0007 publication-title: Journal of Machine Learning Research – start-page: 489 volume-title: Advances in Neural Information Processing Systems year: 2007 ident: CIT0005 – ident: CIT0002 doi: 10.2174/13816128112092439 – ident: CIT0024 doi: 10.1214/14-AOS1255 – ident: CIT0026 doi: 10.7554/eLife.41690 – ident: CIT0014 – ident: CIT0010 doi: 10.1080/00401706.2015.1054435 – ident: CIT0021 doi: 10.1007/s00357-005-0012-9 – ident: CIT0031 doi: 10.1007/s11222-016-9721-7 – ident: CIT0020 doi: 10.1007/s10182-020-00378-1 – ident: CIT0033 doi: 10.1111/j.1467-9892.2011.00780.x – ident: CIT0017 doi: 10.1002/wics.1375 – ident: CIT0027 doi: 10.1073/pnas.1019203108 – volume: 3 start-page: 1233 year: 2009 ident: CIT0022 publication-title: Annals of Applied Statistics – ident: CIT0011 doi: 10.1080/01621459.2012.695654 – ident: CIT0023 doi: 10.1016/j.jmva.2013.02.012 – ident: CIT0028 – ident: CIT0019 doi: 10.1080/01621459.2018.1543125 – ident: CIT0004 doi: 10.1093/biomet/asx082 – ident: CIT0030 |
SSID | ssj0001697 |
Score | 2.5074182 |
Snippet | Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 254 |
SubjectTerms | Centered chi-squared distribution Chi-square test Correlation Data science Nonparametric statistics Nonparametric test Permutations Random variables Testing independence Unbiased distance covariance |
Title | The Chi-Square Test of Distance Correlation |
URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2021.1938585 https://www.ncbi.nlm.nih.gov/pubmed/35707063 https://www.proquest.com/docview/2724082215 https://www.proquest.com/docview/2677576783 https://pubmed.ncbi.nlm.nih.gov/PMC9191842 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXMoBQXktFBQkrlli5-H4iJZWVdUuh2bR3izbSborlQTY7IVfz0ziOFm6UguXKLJjJ_Fnj2fG8yDko9AloyaJ_ZAp7UdpbnxFE-XzWIWmZGmhWz_uy3lytojOl_FySLDYepc0emp-7_Ur-R9UoQxwRS_Zf0DWdQoFcA_4whUQhuu9MZ6t1v7Vzy0acGVA4ZH5-4I8IS7YGabeuBnG_jYTatqkDr1CEJXobQTrzlcSy9swzk4NY105ZjAIcHs9nD-BYN_pl7_rtTOk-VZfw87bp9M8rzerrbJG2VbPwEZKR5Qa_TQJgjHVtLR7PDssCeyCQt8izZ0tI_aFXYFkzugUuEc8lxz2ov78ff5Vni4uLmR2sswekkeMc4r2mmEwd9sstZlz-o_r3bPS4NPel-wwHjthafcJF3_byI6YjuwpeWKB8j530D8jD4rqiDy-dKF2N0fk8MrB9JygAY03zAgPZ4RXl14_I7zRjHhBFqcn2ezMt-kwfBOJpPFFwvM8V0CGC_gvA3K8piyIFRM6xzoeU61SJlicGsXyQKQGdjNhClpGsUlU-JIcVHVVvCaewahujCkT8jICFlKlPAdOtzSB0Doy-YRE_VhJY2PFY8qSG0ltSNl-iCUOsbRDPCFT1-xHFyzlrgZiDIRsWi1V2aWUkeEdbY971KRdkxvJOIbsY8DHTsgHVw0UE4_BVFXUW3gm4RykbJ6GE_KqA9l9bRhz2AMTqOE78LsHMBr7bk21XrVR2QUVNI3Ym3u89y05xBXWafKOyUHza1u8A9620e_bOf4HvwSd3g |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VegAOtLyXUppKXL1snDi2j2hbtKXsXlgkbpbtJAJRZQtkL_x6ZvLSLmrFgbM9UWyPx9_YM98AnGiX89AngkXcOhar1DMbJpZJYSOfc5W5Ko97PElG1_HFjbhZyIWhsEryofOaKKKy1bS56TK6DYk7JTdG4UmN7h0P-whB6HFrBT4KxO6k5dFg0lnjsCmwgiKMZNosnv99Zul8WmIv_RcGfR1KuXA2nX8C346qDkm5789L1_fPrwgf3zfsz7DZQNfgrNa1LfiQFduwMe54X5-2YZ2wa039vAMUzREMb-_Y1QPqYRZMcUjBLA9-EGRFXQuGVBmkjsXbhevzn9PhiDW1GZiPdVIyncg0TS3ahAz_xqNT6UI-EJZrl1KbFKGzimsulLc8HWjl0bRqn4V5LHxioz1YLWZFdgCBJ4oxzq2PZB4jnrFKpgi7cj_QzsU-7UHcrojxDXE51c_4Y8KG37SdGEMTY5qJ6UG_E_tbM3e8JaAXl9uU1ZVJXtc3MdEbsketbpjGCDwZLok_jiOo6sH3rhm3L73J2CKbzbFPIiW6fFJFPdivVan720hINMgJtsglJes6EDX4cktxd1tRhGt0w1XMD98xpG-wNpqOL83lr8nvL7DOKe2juno6gtXycZ59RTBWuuNqt70AhoAjEg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEK4oJgYPIii6gjomXnvd6Znpx9EsbgBlQyIk3jr9mA4EMovu7MVfb9W8whINB87VNelHdfVX09VfAXzSLvLUi4Jl3DqWq-CZTYVlsrCZj1yVrnnHfTIXh-f58c-izyZcdmmVFEPHliii8dW0uW9C7DPiPlMUo_CgxuiOp2NEIHS39RieCIQnlNWXTeaDM067-iqowkinf8Tzv8-sHU9r5KX_gqB3MylvHU2zLXD9oNqMlKvxqnZj_-cO3-ODRv0CnnfANfnSWto2PCqrHXh2MrC-Lndgk5BrS_z8EiiXI5leXLIfv9AKy-QMR5QsYnJAgBUtLZlSXZA2E-8VnM--nk0PWVeZgflci5ppIUMIFj1Cib3xGFK6lE8Ky7ULJJNF6qzimhfKWx4mWnl0rNqXacwLL2y2CxvVoirfQOKJYIxz6zMZc0QzVsmAoCv6iXYu92EEeb8gxne05VQ949qkHbtpPzGGJsZ0EzOC8aB20_J23Kegb6-2qZsfJrGtbmKye3T3e9MwnQtYGi6JPY4jpBrBx0GMm5duZGxVLlbYRkiJAZ9U2Qhet5Y09DYrJLpjgRK5ZmNDAyIGX5dUlxcNQbjGIFzl_O0DhvQBnp4ezMz3o_m3Pdjk9Oaj-e-0Dxv171X5DpFY7d43e-0vxMchtg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Chi-Square+Test+of+Distance+Correlation&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Shen%2C+Cencheng&rft.au=Panda%2C+Sambit&rft.au=Vogelstein%2C+Joshua+T&rft.date=2022&rft.issn=1061-8600&rft.volume=31&rft.issue=1&rft.spage=254&rft_id=info:doi/10.1080%2F10618600.2021.1938585&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |