Inhalable antibiotic resistomes emitted from hospitals: metagenomic insights into bacterial hosts, clinical relevance, and environmental risks
Threats of antimicrobial resistance (AMR) to human health are on the rise worldwide. Airborne fine particulate matter (PM ), especially those emitted from hospitals, could serve as a substantial yet lesser-known environmental medium of inhalable antibiotic resistomes. A genome-centric understanding...
Saved in:
Published in | Microbiome Vol. 10; no. 1; pp. 19 - 16 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
27.01.2022
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Threats of antimicrobial resistance (AMR) to human health are on the rise worldwide. Airborne fine particulate matter (PM
), especially those emitted from hospitals, could serve as a substantial yet lesser-known environmental medium of inhalable antibiotic resistomes. A genome-centric understanding of the hosting bacterial taxa, mobility potential, and consequent risks of the resistomes is needed to reveal the health relevance of PM
-associated AMR from clinical settings.
Compared to urban ambient air PM
, the hospital samples harbored nearly twice the abundance of antibiotic resistantance genes (ARGs, ~ 0.2 log
(ARGs/16S rRNA gene)) in the summer and winter sampled. The profiled resistome was closely correlated with the human-source-influenced (~ 30% of the contribution) bacterial community (Procrustes test, P < 0.001), reflecting the potential antibiotic-resistant bacteria (PARB), such as the human commensals Staphylococcus spp. and Corynebacterium spp. Despite the reduced abundance and diversity of the assembled metagenomes from summer to winter, the high horizontal transfer potential of ARGs, such as the clinically relevant bla
and bacA, in the human virulent PARB remained unaffected in the hospital air PM samples. The occurring patterns of β-lactam resistance genes and their hosting genomes in the studied hospital-emitting PM
were closely related to the in-ward β-lactam-resistant infections (SEM, std = 0.62, P < 0.01). Featured with more abundant potentially virulent PARB (2.89 genome copies/m
-air), the hospital samples had significantly higher resistome risk index scores than the urban ambient air samples, indicating that daily human exposure to virulent PARB via the inhalation of PM
was ten times greater than from the ingestion of drinking water.
The significance of AMR in the studied hospital-emitting PM
was highlighted by the greater abundance of ARGs, the prevalence of potentially virulent PARB, and the close association with hospital in-ward β-lactam infections. A larger-scale multi-source comparison of genome-resolved antibiotic resistomes is needed to provide a more holistic understanding to evaluate the importance of airborne AMR from the "One-Health" perspective. Video Abstract. |
---|---|
AbstractList | Background Threats of antimicrobial resistance (AMR) to human health are on the rise worldwide. Airborne fine particulate matter (PM2.5), especially those emitted from hospitals, could serve as a substantial yet lesser-known environmental medium of inhalable antibiotic resistomes. A genome-centric understanding of the hosting bacterial taxa, mobility potential, and consequent risks of the resistomes is needed to reveal the health relevance of PM2.5-associated AMR from clinical settings. Results Compared to urban ambient air PM2.5, the hospital samples harbored nearly twice the abundance of antibiotic resistantance genes (ARGs, ~ 0.2 log10(ARGs/16S rRNA gene)) in the summer and winter sampled. The profiled resistome was closely correlated with the human-source-influenced (~ 30% of the contribution) bacterial community (Procrustes test, P < 0.001), reflecting the potential antibiotic-resistant bacteria (PARB), such as the human commensals Staphylococcus spp. and Corynebacterium spp. Despite the reduced abundance and diversity of the assembled metagenomes from summer to winter, the high horizontal transfer potential of ARGs, such as the clinically relevant blaOXA and bacA, in the human virulent PARB remained unaffected in the hospital air PM samples. The occurring patterns of β-lactam resistance genes and their hosting genomes in the studied hospital-emitting PM2.5 were closely related to the in-ward β-lactam-resistant infections (SEM, std = 0.62, P < 0.01). Featured with more abundant potentially virulent PARB (2.89 genome copies/m3-air), the hospital samples had significantly higher resistome risk index scores than the urban ambient air samples, indicating that daily human exposure to virulent PARB via the inhalation of PM2.5 was ten times greater than from the ingestion of drinking water. Conclusions The significance of AMR in the studied hospital-emitting PM2.5 was highlighted by the greater abundance of ARGs, the prevalence of potentially virulent PARB, and the close association with hospital in-ward β-lactam infections. A larger-scale multi-source comparison of genome-resolved antibiotic resistomes is needed to provide a more holistic understanding to evaluate the importance of airborne AMR from the “One-Health” perspective. Video Abstract Threats of antimicrobial resistance (AMR) to human health are on the rise worldwide. Airborne fine particulate matter (PM ), especially those emitted from hospitals, could serve as a substantial yet lesser-known environmental medium of inhalable antibiotic resistomes. A genome-centric understanding of the hosting bacterial taxa, mobility potential, and consequent risks of the resistomes is needed to reveal the health relevance of PM -associated AMR from clinical settings. Compared to urban ambient air PM , the hospital samples harbored nearly twice the abundance of antibiotic resistantance genes (ARGs, ~ 0.2 log (ARGs/16S rRNA gene)) in the summer and winter sampled. The profiled resistome was closely correlated with the human-source-influenced (~ 30% of the contribution) bacterial community (Procrustes test, P < 0.001), reflecting the potential antibiotic-resistant bacteria (PARB), such as the human commensals Staphylococcus spp. and Corynebacterium spp. Despite the reduced abundance and diversity of the assembled metagenomes from summer to winter, the high horizontal transfer potential of ARGs, such as the clinically relevant bla and bacA, in the human virulent PARB remained unaffected in the hospital air PM samples. The occurring patterns of β-lactam resistance genes and their hosting genomes in the studied hospital-emitting PM were closely related to the in-ward β-lactam-resistant infections (SEM, std = 0.62, P < 0.01). Featured with more abundant potentially virulent PARB (2.89 genome copies/m -air), the hospital samples had significantly higher resistome risk index scores than the urban ambient air samples, indicating that daily human exposure to virulent PARB via the inhalation of PM was ten times greater than from the ingestion of drinking water. The significance of AMR in the studied hospital-emitting PM was highlighted by the greater abundance of ARGs, the prevalence of potentially virulent PARB, and the close association with hospital in-ward β-lactam infections. A larger-scale multi-source comparison of genome-resolved antibiotic resistomes is needed to provide a more holistic understanding to evaluate the importance of airborne AMR from the "One-Health" perspective. Video Abstract. Threats of antimicrobial resistance (AMR) to human health are on the rise worldwide. Airborne fine particulate matter (PM2.5), especially those emitted from hospitals, could serve as a substantial yet lesser-known environmental medium of inhalable antibiotic resistomes. A genome-centric understanding of the hosting bacterial taxa, mobility potential, and consequent risks of the resistomes is needed to reveal the health relevance of PM2.5-associated AMR from clinical settings.BACKGROUNDThreats of antimicrobial resistance (AMR) to human health are on the rise worldwide. Airborne fine particulate matter (PM2.5), especially those emitted from hospitals, could serve as a substantial yet lesser-known environmental medium of inhalable antibiotic resistomes. A genome-centric understanding of the hosting bacterial taxa, mobility potential, and consequent risks of the resistomes is needed to reveal the health relevance of PM2.5-associated AMR from clinical settings.Compared to urban ambient air PM2.5, the hospital samples harbored nearly twice the abundance of antibiotic resistantance genes (ARGs, ~ 0.2 log10(ARGs/16S rRNA gene)) in the summer and winter sampled. The profiled resistome was closely correlated with the human-source-influenced (~ 30% of the contribution) bacterial community (Procrustes test, P < 0.001), reflecting the potential antibiotic-resistant bacteria (PARB), such as the human commensals Staphylococcus spp. and Corynebacterium spp. Despite the reduced abundance and diversity of the assembled metagenomes from summer to winter, the high horizontal transfer potential of ARGs, such as the clinically relevant blaOXA and bacA, in the human virulent PARB remained unaffected in the hospital air PM samples. The occurring patterns of β-lactam resistance genes and their hosting genomes in the studied hospital-emitting PM2.5 were closely related to the in-ward β-lactam-resistant infections (SEM, std = 0.62, P < 0.01). Featured with more abundant potentially virulent PARB (2.89 genome copies/m3-air), the hospital samples had significantly higher resistome risk index scores than the urban ambient air samples, indicating that daily human exposure to virulent PARB via the inhalation of PM2.5 was ten times greater than from the ingestion of drinking water.RESULTSCompared to urban ambient air PM2.5, the hospital samples harbored nearly twice the abundance of antibiotic resistantance genes (ARGs, ~ 0.2 log10(ARGs/16S rRNA gene)) in the summer and winter sampled. The profiled resistome was closely correlated with the human-source-influenced (~ 30% of the contribution) bacterial community (Procrustes test, P < 0.001), reflecting the potential antibiotic-resistant bacteria (PARB), such as the human commensals Staphylococcus spp. and Corynebacterium spp. Despite the reduced abundance and diversity of the assembled metagenomes from summer to winter, the high horizontal transfer potential of ARGs, such as the clinically relevant blaOXA and bacA, in the human virulent PARB remained unaffected in the hospital air PM samples. The occurring patterns of β-lactam resistance genes and their hosting genomes in the studied hospital-emitting PM2.5 were closely related to the in-ward β-lactam-resistant infections (SEM, std = 0.62, P < 0.01). Featured with more abundant potentially virulent PARB (2.89 genome copies/m3-air), the hospital samples had significantly higher resistome risk index scores than the urban ambient air samples, indicating that daily human exposure to virulent PARB via the inhalation of PM2.5 was ten times greater than from the ingestion of drinking water.The significance of AMR in the studied hospital-emitting PM2.5 was highlighted by the greater abundance of ARGs, the prevalence of potentially virulent PARB, and the close association with hospital in-ward β-lactam infections. A larger-scale multi-source comparison of genome-resolved antibiotic resistomes is needed to provide a more holistic understanding to evaluate the importance of airborne AMR from the "One-Health" perspective. Video Abstract.CONCLUSIONSThe significance of AMR in the studied hospital-emitting PM2.5 was highlighted by the greater abundance of ARGs, the prevalence of potentially virulent PARB, and the close association with hospital in-ward β-lactam infections. A larger-scale multi-source comparison of genome-resolved antibiotic resistomes is needed to provide a more holistic understanding to evaluate the importance of airborne AMR from the "One-Health" perspective. Video Abstract. Abstract Background Threats of antimicrobial resistance (AMR) to human health are on the rise worldwide. Airborne fine particulate matter (PM2.5), especially those emitted from hospitals, could serve as a substantial yet lesser-known environmental medium of inhalable antibiotic resistomes. A genome-centric understanding of the hosting bacterial taxa, mobility potential, and consequent risks of the resistomes is needed to reveal the health relevance of PM2.5-associated AMR from clinical settings. Results Compared to urban ambient air PM2.5, the hospital samples harbored nearly twice the abundance of antibiotic resistantance genes (ARGs, ~ 0.2 log10(ARGs/16S rRNA gene)) in the summer and winter sampled. The profiled resistome was closely correlated with the human-source-influenced (~ 30% of the contribution) bacterial community (Procrustes test, P < 0.001), reflecting the potential antibiotic-resistant bacteria (PARB), such as the human commensals Staphylococcus spp. and Corynebacterium spp. Despite the reduced abundance and diversity of the assembled metagenomes from summer to winter, the high horizontal transfer potential of ARGs, such as the clinically relevant bla OXA and bacA, in the human virulent PARB remained unaffected in the hospital air PM samples. The occurring patterns of β-lactam resistance genes and their hosting genomes in the studied hospital-emitting PM2.5 were closely related to the in-ward β-lactam-resistant infections (SEM, std = 0.62, P < 0.01). Featured with more abundant potentially virulent PARB (2.89 genome copies/m3-air), the hospital samples had significantly higher resistome risk index scores than the urban ambient air samples, indicating that daily human exposure to virulent PARB via the inhalation of PM2.5 was ten times greater than from the ingestion of drinking water. Conclusions The significance of AMR in the studied hospital-emitting PM2.5 was highlighted by the greater abundance of ARGs, the prevalence of potentially virulent PARB, and the close association with hospital in-ward β-lactam infections. A larger-scale multi-source comparison of genome-resolved antibiotic resistomes is needed to provide a more holistic understanding to evaluate the importance of airborne AMR from the “One-Health” perspective. Video Abstract |
ArticleNumber | 19 |
Author | Liu, Hang Zhao, Jue Jin, Ling Xie, Jiawen Li, Xiang-dong Wu, Dong Ye, Dan |
Author_xml | – sequence: 1 givenname: Dong surname: Wu fullname: Wu, Dong – sequence: 2 givenname: Ling surname: Jin fullname: Jin, Ling – sequence: 3 givenname: Jiawen surname: Xie fullname: Xie, Jiawen – sequence: 4 givenname: Hang surname: Liu fullname: Liu, Hang – sequence: 5 givenname: Jue surname: Zhao fullname: Zhao, Jue – sequence: 6 givenname: Dan surname: Ye fullname: Ye, Dan – sequence: 7 givenname: Xiang-dong orcidid: 0000-0002-4044-2888 surname: Li fullname: Li, Xiang-dong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35086564$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vFSEUhiemxtbaP-DCTOLGRUf5GmBcmJjGj5s0caNrwsCZe7kycAXuTfwT_maZ3ta0XciGA7w8HM55nzcnIQZompcYvcVY8neZIcxlhwjuEMaD6PonzRlBbOgIx_LkXnzaXOS8RXUMmAkmnzWntEeS95ydNX9WYaO9Hj20OhQ3ulicaRNkl0ucIbcwu1LAtlOKc7uJeeeK9vl9O0PRawhxrnIXsltvSq5Bie2oTYHktF_kJV-2xrvgTF0n8HDQwcBlfcy2EA4uxTBDKMuhyz_zi-bpVPFwcTufNz8-f_p-9bW7_vZldfXxujNs4KUbcA-DJWwQmnGgBgwlViJkLBWCcWEtkVJiNmFLe6x7OZGJ9HLsKaFGmJGeN6sj10a9VbvkZp1-q6idutmIaa10qpXwoKSdOGcIKDOWcWP1NBpKJTOC6PocqqwPR9ZuP85gTf1O0v4B9OFJcBu1jgclxcAZ4xXw5haQ4q895KJmlw14rwPEfVaEEyrrl6mo0tePpNu4T6GWqqooYqyWpK-qV_cz-pfKXdurQB4FJsWcE0zK1LYWF5cEnVcYqcVk6mgyVU2mbkymFjZ5dPWO_p9LfwFXktcw |
CitedBy_id | crossref_primary_10_1016_j_watres_2024_122866 crossref_primary_10_1016_j_envint_2024_109143 crossref_primary_10_1016_j_scitotenv_2024_170991 crossref_primary_10_1016_j_envpol_2023_123169 crossref_primary_10_1016_j_jhazmat_2024_136165 crossref_primary_10_1021_acs_est_3c07935 crossref_primary_10_3389_fpubh_2022_989496 crossref_primary_10_3390_nu15143177 crossref_primary_10_1016_j_ecoenv_2023_114734 crossref_primary_10_1021_acs_est_3c02801 crossref_primary_10_1016_j_psj_2023_103365 crossref_primary_10_1093_femsec_fiae155 crossref_primary_10_1016_j_wasman_2025_01_030 crossref_primary_10_1021_acs_est_1c08654 crossref_primary_10_1039_D2EM00091A crossref_primary_10_1016_j_jhazmat_2022_130091 crossref_primary_10_1016_j_micres_2022_127023 crossref_primary_10_3390_app132011229 crossref_primary_10_1016_j_eng_2024_09_013 crossref_primary_10_1016_j_scitotenv_2023_163334 crossref_primary_10_1128_msystems_00698_22 crossref_primary_10_1016_j_buildenv_2023_110024 crossref_primary_10_3389_fmed_2025_1546298 crossref_primary_10_3390_antibiotics13060539 crossref_primary_10_1038_s43586_024_00376_6 crossref_primary_10_1002_ece3_11435 crossref_primary_10_1016_j_atmosres_2024_107453 crossref_primary_10_1016_j_envint_2023_107784 crossref_primary_10_1016_j_jaerosci_2024_106459 crossref_primary_10_3390_foods12112140 crossref_primary_10_3390_ani13193083 crossref_primary_10_1016_j_watres_2022_119359 crossref_primary_10_1016_j_envint_2024_108639 crossref_primary_10_1016_j_scitotenv_2022_158050 crossref_primary_10_1007_s11882_023_01081_2 crossref_primary_10_3390_ijerph21080983 crossref_primary_10_1016_j_scitotenv_2023_165942 crossref_primary_10_1021_acs_est_3c04681 crossref_primary_10_1038_s41467_023_42998_6 crossref_primary_10_3390_biology13121022 crossref_primary_10_1016_j_jhazmat_2024_136544 crossref_primary_10_1016_j_envpol_2023_122404 crossref_primary_10_1016_j_jhazmat_2024_136466 crossref_primary_10_1016_j_buildenv_2022_109787 crossref_primary_10_1016_j_scitotenv_2023_162031 crossref_primary_10_3389_fcimb_2024_1484100 crossref_primary_10_1016_j_scitotenv_2022_159907 crossref_primary_10_1016_j_coesh_2022_100424 crossref_primary_10_1016_j_envint_2023_107751 crossref_primary_10_1186_s40168_023_01732_6 crossref_primary_10_1016_j_envpol_2024_124120 crossref_primary_10_1007_s00253_024_13326_9 crossref_primary_10_1080_02786826_2024_2410037 crossref_primary_10_1016_j_watres_2024_121584 crossref_primary_10_1016_j_watres_2024_122552 crossref_primary_10_1016_j_jhazmat_2024_136253 crossref_primary_10_3389_fmicb_2024_1392789 crossref_primary_10_1038_s41598_024_81376_0 crossref_primary_10_1016_j_apr_2022_101610 crossref_primary_10_1021_acs_est_3c02593 crossref_primary_10_1088_1755_1315_1223_1_012010 crossref_primary_10_1016_j_jhazmat_2025_137127 crossref_primary_10_1016_j_envpol_2025_125903 crossref_primary_10_1360_nso_20220050 crossref_primary_10_1080_00071668_2024_2360621 crossref_primary_10_1016_j_scitotenv_2024_171703 |
Cites_doi | 10.1038/nature17672 10.1016/j.watres.2012.11.027 10.1186/2049-2618-2-26 10.1038/ismej.2015.59 10.1016/j.jhin.2019.06.016 10.1186/1471-2105-11-119 10.1093/nsr/nww079 10.1038/s41467-018-07992-3 10.1038/nprot.2015.046 10.1186/s13059-020-01964-x 10.1021/acs.est.7b03623 10.1038/nmeth.4197 10.1289/ehp.1408555 10.1016/S1473-3099(16)30329-2 10.1038/d41586-019-01960-7 10.1177/039139881003300903 10.1016/j.celrep.2018.06.109 10.1016/j.ajic.2016.01.041 10.1186/1471-2180-10-242 10.1016/j.cej.2020.126854 10.1016/j.ijfoodmicro.2005.03.008 10.1021/acs.est.8b04630 10.1038/nature13377 10.1016/S1473-3099(05)70166-3 10.1038/nrmicro3399 10.1093/bioinformatics/bty560 10.1126/science.336.6083.795 10.1016/S2214-109X(15)00192-8 10.1038/nmeth.3103 10.1016/0195-6701(87)90048-X 10.1073/pnas.1222743110 10.1016/j.envint.2021.106501 10.1016/j.ijantimicag.2012.01.011 10.1164/rccm.202001-0197OC 10.1016/j.jhazmat.2018.01.043 10.1021/acs.est.5b02566 10.1126/science.1220761 10.1038/s41396-018-0235-5 10.1021/acs.est.8b02204 10.1016/j.watres.2019.115160 10.7717/peerj.7359 10.1021/es4048472 10.1093/bioinformatics/btl158 10.1177/1420326X03012001007 10.1038/nmicrobiol.2016.187 10.1038/nmeth.1923 10.1038/s41564-019-0426-5 10.1038/nmeth.3589 10.1371/journal.pone.0196668 10.1093/bioinformatics/btz848 10.1016/j.ymeth.2016.02.020 10.1016/j.watres.2020.116455 10.1016/j.watres.2020.116318 10.1056/NEJMoa1817364 10.1186/s40168-018-0541-1 10.1128/CMR.05035-11 10.1016/j.envint.2020.105625 10.1038/ismej.2015.47 10.1186/s40168-016-0199-5 10.1038/nmeth.1650 10.1016/j.watres.2014.05.019 10.1186/s40168-017-0369-0 10.1021/acs.est.7b03797 10.1016/j.scitotenv.2017.09.222 10.1016/S1473-3099(20)30003-7 10.1093/femsec/fiy079 |
ContentType | Journal Article |
Copyright | 2022. The Author(s). 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2022 |
Copyright_xml | – notice: 2022. The Author(s). – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s40168-021-01197-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2049-2618 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_8df6640e34cd46cdafbc3384c72ad370 PMC8796446 35086564 10_1186_s40168_021_01197_5 |
Genre | Video-Audio Media Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IEP IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SOJ UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c496t-915e9d2497a46e3cec32d800cd377467dd288814f1d351a58f2f258b5323c7cb3 |
IEDL.DBID | M48 |
ISSN | 2049-2618 |
IngestDate | Wed Aug 27 01:23:57 EDT 2025 Thu Aug 21 13:46:28 EDT 2025 Thu Jul 10 23:40:28 EDT 2025 Fri Jul 25 11:56:14 EDT 2025 Mon Jul 21 06:06:11 EDT 2025 Tue Jul 01 04:16:41 EDT 2025 Thu Apr 24 23:05:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Hospital PM2.5 AMR risk Healthcare-associated infection ARG-hosting bacteria Antibiotic resistome |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-915e9d2497a46e3cec32d800cd377467dd288814f1d351a58f2f258b5323c7cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-4044-2888 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s40168-021-01197-5 |
PMID | 35086564 |
PQID | 2630444975 |
PQPubID | 2040205 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8df6640e34cd46cdafbc3384c72ad370 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8796446 proquest_miscellaneous_2623891537 proquest_journals_2630444975 pubmed_primary_35086564 crossref_citationtrail_10_1186_s40168_021_01197_5 crossref_primary_10_1186_s40168_021_01197_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-27 |
PublicationDateYYYYMMDD | 2022-01-27 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Microbiome |
PublicationTitleAlternate | Microbiome |
PublicationYear | 2022 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | 1197_CR3 K Kang (1197_CR65) 2018; 24 B Li (1197_CR6) 2015; 9 PJ Vikesland (1197_CR5) 2017; 51 M Hvistendahl (1197_CR20) 2012; 336 W Li (1197_CR42) 2006; 22 DM Livermore (1197_CR18) 2005; 5 KJ Forsberg (1197_CR56) 2012; 337 N Qin (1197_CR12) 2020; 21 BG Wu (1197_CR23) 2020; 202 D Hyatt (1197_CR41) 2010; 11 World Health Organization (1197_CR4) 2015 J Xie (1197_CR10) 2019; 53 SM Zainab (1197_CR52) 2020; 187 YQ Li (1197_CR49) 2010; 10 A Karkman (1197_CR67) 2019; 10 PM Huijbers (1197_CR53) 2015; 49 F Spagnolo (1197_CR19) 2018; 12 C Cao (1197_CR11) 2014; 48 C Pal (1197_CR30) 2016; 4 AD McEachran (1197_CR68) 2015; 123 J Li (1197_CR7) 2018; 52 KD Allen (1197_CR25) 1987; 9 EC Pehrsson (1197_CR55) 2016; 533 DT Truong (1197_CR33) 2015; 12 R Zhao (1197_CR46) 2020; 186 D Campoccia (1197_CR62) 2010; 33 D Wu (1197_CR15) 2017; 51 J Liang (1197_CR43) 2019; 168 YG Zhu (1197_CR50) 2013; 110 SH Mirhoseini (1197_CR24) 2016; 44 ZC Zhou (1197_CR26) 2021; 153 D Knights (1197_CR40) 2011; 8 1197_CR70 S Buffet-Bataillon (1197_CR48) 2012; 39 R Laxminarayan (1197_CR2) 2020; 20 Y Hu (1197_CR21) 2015; 3 J Hu (1197_CR14) 2018; 615 L Ma (1197_CR69) 2017; 5 B Langmead (1197_CR45) 2012; 9 S Chen (1197_CR32) 2018; 34 LS Tzouvelekis (1197_CR58) 2012; 25 C Liu (1197_CR13) 2019; 381 PH Gilligan (1197_CR60) 2003 X Li (1197_CR28) 2021; 406 M Oh (1197_CR47) 2018; 94 P Kalliokoski (1197_CR64) 2003; 12 1197_CR34 L Jin (1197_CR8) 2017; 4 W Jiang (1197_CR31) 2015; 10 R Sugden (1197_CR1) 2016; 1 I Michael (1197_CR16) 2013; 47 L Wu (1197_CR61) 2019; 4 KJ Forsberg (1197_CR54) 2014; 509 XD Li (1197_CR9) 2019; 570 XL Gao (1197_CR29) 2018; 349 R Patro (1197_CR44) 2017; 14 Y Yang (1197_CR51) 2014; 62 S Mathur (1197_CR57) 2005; 105 TR Walsh (1197_CR17) 2016; 16 P He (1197_CR27) 2020; 139 RE Stockwell (1197_CR22) 2019; 103 X Qu (1197_CR63) 2018; 13 JL Martinez (1197_CR66) 2015; 13 PA Chaumeil (1197_CR39) 2019; 36 GV Uritskiy (1197_CR38) 2018; 6 DD Kang (1197_CR36) 2019; 7 J Liu (1197_CR59) 2015; 9 YW Wu (1197_CR35) 2014; 2 J Alneberg (1197_CR37) 2014; 11 |
References_xml | – volume: 533 start-page: 212 year: 2016 ident: 1197_CR55 publication-title: Nature doi: 10.1038/nature17672 – volume: 47 start-page: 957 year: 2013 ident: 1197_CR16 publication-title: Water Res doi: 10.1016/j.watres.2012.11.027 – volume: 2 start-page: 26 year: 2014 ident: 1197_CR35 publication-title: Microbiome doi: 10.1186/2049-2618-2-26 – volume: 9 start-page: 2490 year: 2015 ident: 1197_CR6 publication-title: ISME J doi: 10.1038/ismej.2015.59 – volume: 103 start-page: 175 year: 2019 ident: 1197_CR22 publication-title: J Hosp Infect doi: 10.1016/j.jhin.2019.06.016 – volume: 11 start-page: 119 year: 2010 ident: 1197_CR41 publication-title: BMC Bioinform doi: 10.1186/1471-2105-11-119 – volume: 4 start-page: 593 year: 2017 ident: 1197_CR8 publication-title: Natl Sci Rev doi: 10.1093/nsr/nww079 – volume: 10 start-page: 80 year: 2019 ident: 1197_CR67 publication-title: Nat Commun doi: 10.1038/s41467-018-07992-3 – volume: 10 start-page: 768 year: 2015 ident: 1197_CR31 publication-title: Nat Protoc doi: 10.1038/nprot.2015.046 – volume: 21 start-page: 55 year: 2020 ident: 1197_CR12 publication-title: Genome Biol doi: 10.1186/s13059-020-01964-x – volume: 51 start-page: 13061 year: 2017 ident: 1197_CR5 publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b03623 – volume: 14 start-page: 417 year: 2017 ident: 1197_CR44 publication-title: Nat Methods doi: 10.1038/nmeth.4197 – volume: 123 start-page: 337 year: 2015 ident: 1197_CR68 publication-title: Environ Health Perspect doi: 10.1289/ehp.1408555 – volume: 16 start-page: 1102 year: 2016 ident: 1197_CR17 publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(16)30329-2 – volume: 570 start-page: 437 year: 2019 ident: 1197_CR9 publication-title: Nature doi: 10.1038/d41586-019-01960-7 – volume: 33 start-page: 575 year: 2010 ident: 1197_CR62 publication-title: Int J Artif Organs doi: 10.1177/039139881003300903 – volume: 24 start-page: 1190 year: 2018 ident: 1197_CR65 publication-title: Cell Rep doi: 10.1016/j.celrep.2018.06.109 – volume: 44 start-page: 898 year: 2016 ident: 1197_CR24 publication-title: Am J Infect Control doi: 10.1016/j.ajic.2016.01.041 – volume: 10 start-page: 242 year: 2010 ident: 1197_CR49 publication-title: BMC Microb doi: 10.1186/1471-2180-10-242 – volume-title: Global action plan on antimicrobial resistance year: 2015 ident: 1197_CR4 – volume: 406 start-page: 126854 year: 2021 ident: 1197_CR28 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.126854 – volume: 105 start-page: 281 year: 2005 ident: 1197_CR57 publication-title: Int J Food Microbiol doi: 10.1016/j.ijfoodmicro.2005.03.008 – volume: 53 start-page: 963 year: 2019 ident: 1197_CR10 publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b04630 – volume: 509 start-page: 612 year: 2014 ident: 1197_CR54 publication-title: Nature doi: 10.1038/nature13377 – ident: 1197_CR3 – volume: 5 start-page: 450 year: 2005 ident: 1197_CR18 publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(05)70166-3 – volume: 13 start-page: 116 year: 2015 ident: 1197_CR66 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3399 – volume: 34 start-page: i884 year: 2018 ident: 1197_CR32 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty560 – volume: 336 start-page: 795 year: 2012 ident: 1197_CR20 publication-title: Science doi: 10.1126/science.336.6083.795 – volume: 3 issue: 12 year: 2015 ident: 1197_CR21 publication-title: Lancet Glob Health doi: 10.1016/S2214-109X(15)00192-8 – volume: 11 start-page: 1144 year: 2014 ident: 1197_CR37 publication-title: Nat Methods doi: 10.1038/nmeth.3103 – volume: 9 start-page: 110 year: 1987 ident: 1197_CR25 publication-title: J Hosp Infect doi: 10.1016/0195-6701(87)90048-X – volume: 110 start-page: 3435 year: 2013 ident: 1197_CR50 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1222743110 – volume: 153 start-page: 106501 year: 2021 ident: 1197_CR26 publication-title: Environ Int doi: 10.1016/j.envint.2021.106501 – volume: 39 start-page: 381 year: 2012 ident: 1197_CR48 publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2012.01.011 – volume: 202 start-page: 1678 year: 2020 ident: 1197_CR23 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.202001-0197OC – volume: 349 start-page: 10 year: 2018 ident: 1197_CR29 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2018.01.043 – volume: 49 start-page: 11993 year: 2015 ident: 1197_CR53 publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b02566 – volume: 337 start-page: 1107 year: 2012 ident: 1197_CR56 publication-title: Science doi: 10.1126/science.1220761 – volume: 12 start-page: 2835 year: 2018 ident: 1197_CR19 publication-title: ISME J doi: 10.1038/s41396-018-0235-5 – volume: 52 start-page: 10975 year: 2018 ident: 1197_CR7 publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b02204 – volume: 168 start-page: 115160 year: 2019 ident: 1197_CR43 publication-title: Water Res doi: 10.1016/j.watres.2019.115160 – volume: 7 year: 2019 ident: 1197_CR36 publication-title: PeerJ doi: 10.7717/peerj.7359 – volume: 48 start-page: 1499 year: 2014 ident: 1197_CR11 publication-title: Environ Sci Technol doi: 10.1021/es4048472 – volume: 22 start-page: 1658 year: 2006 ident: 1197_CR42 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl158 – volume: 12 start-page: 41 year: 2003 ident: 1197_CR64 publication-title: Indoor Built Environ doi: 10.1177/1420326X03012001007 – volume: 1 start-page: 16187 year: 2016 ident: 1197_CR1 publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2016.187 – volume: 9 start-page: 357 year: 2012 ident: 1197_CR45 publication-title: Nat Methods doi: 10.1038/nmeth.1923 – volume: 4 start-page: 1183 year: 2019 ident: 1197_CR61 publication-title: Nat Microbiol doi: 10.1038/s41564-019-0426-5 – volume: 12 start-page: 902 year: 2015 ident: 1197_CR33 publication-title: Nat Methods doi: 10.1038/nmeth.3589 – volume: 13 year: 2018 ident: 1197_CR63 publication-title: PLoS One doi: 10.1371/journal.pone.0196668 – ident: 1197_CR70 – volume: 36 start-page: 1925 year: 2019 ident: 1197_CR39 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz848 – volume-title: Manual of Clinical Microbiology. 8th edn year: 2003 ident: 1197_CR60 – ident: 1197_CR34 doi: 10.1016/j.ymeth.2016.02.020 – volume: 187 start-page: 116455 year: 2020 ident: 1197_CR52 publication-title: Water Res doi: 10.1016/j.watres.2020.116455 – volume: 186 start-page: 116318 year: 2020 ident: 1197_CR46 publication-title: Water Res doi: 10.1016/j.watres.2020.116318 – volume: 381 start-page: 705 year: 2019 ident: 1197_CR13 publication-title: New Eng J Med doi: 10.1056/NEJMoa1817364 – volume: 6 start-page: 158 year: 2018 ident: 1197_CR38 publication-title: Microbiome doi: 10.1186/s40168-018-0541-1 – volume: 25 start-page: 682 year: 2012 ident: 1197_CR58 publication-title: Clin Microbiol Rev doi: 10.1128/CMR.05035-11 – volume: 139 start-page: 105625 year: 2020 ident: 1197_CR27 publication-title: Environ Int doi: 10.1016/j.envint.2020.105625 – volume: 9 start-page: 2078 year: 2015 ident: 1197_CR59 publication-title: ISME J doi: 10.1038/ismej.2015.47 – volume: 4 start-page: 54 year: 2016 ident: 1197_CR30 publication-title: Microbiome doi: 10.1186/s40168-016-0199-5 – volume: 8 start-page: 761 year: 2011 ident: 1197_CR40 publication-title: Nat Methods doi: 10.1038/nmeth.1650 – volume: 62 start-page: 97 year: 2014 ident: 1197_CR51 publication-title: Water Res doi: 10.1016/j.watres.2014.05.019 – volume: 5 start-page: 154 year: 2017 ident: 1197_CR69 publication-title: Microbiome doi: 10.1186/s40168-017-0369-0 – volume: 51 start-page: 12859 year: 2017 ident: 1197_CR15 publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b03797 – volume: 615 start-page: 1332 year: 2018 ident: 1197_CR14 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.09.222 – volume: 20 start-page: e51 year: 2020 ident: 1197_CR2 publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(20)30003-7 – volume: 94 start-page: fiy079 year: 2018 ident: 1197_CR47 publication-title: FEMS Microbiol Ecol doi: 10.1093/femsec/fiy079 |
SSID | ssj0000914748 |
Score | 2.5441236 |
Snippet | Threats of antimicrobial resistance (AMR) to human health are on the rise worldwide. Airborne fine particulate matter (PM
), especially those emitted from... Background Threats of antimicrobial resistance (AMR) to human health are on the rise worldwide. Airborne fine particulate matter (PM2.5), especially those... Threats of antimicrobial resistance (AMR) to human health are on the rise worldwide. Airborne fine particulate matter (PM2.5), especially those emitted from... Abstract Background Threats of antimicrobial resistance (AMR) to human health are on the rise worldwide. Airborne fine particulate matter (PM2.5), especially... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 19 |
SubjectTerms | Abundance Aluminum AMR risk Anti-Bacterial Agents - pharmacology Antibiotic resistance Antibiotic resistome Antibiotics Antimicrobial resistance ARG-hosting bacteria Bacteria Bacteria - genetics Commensals Drinking water Genes, Bacterial Genetic testing Genomes Health risk assessment Health risks Healthcare-associated infection Horizontal transfer Hospital PM2.5 Hospitals Humans Infections Inhalation Metagenome - genetics Metagenomics Particulate matter Pathogens Pulmonology RNA, Ribosomal, 16S - genetics rRNA 16S Summer Taxonomy Ventilators Winter β-Lactam antibiotics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEJRXoCAjcaNR12-HG62oCgdOVOrNcmxHG9HNVjg98Cf4zcw42dUuQnDhFsUT2RmP7fnkmW8IeWuCDo1nsQZrkrUMDa9bqbvae60av9DoxmK0xRd9eSU_X6vrnVJfGBM20QNPiju1sdNaLpKQIUodou_aALBKBsN9FKagdTjzdsBU2YMbJo20mywZq08zAAlta4xIKLW2arV3EhXC_j95mb8HS-6cPhcPyYPZbaQfpuE-IvfScEQOp0KSPx6Tn5-Gpb_BLCgKmurbfg1yFJA0EgesUqZp1Y_gW1LMJqHLuVZIfk9XafRI07oC8X7IiNQzPIxr2k40ztAp5oHkE7rJoaRYZqUEDpxAZ5HupMphY5-_5Sfk6uLj1_PLeq60UAfZ6BF2PJWaCEjMeKmTCCkIHsGVDKBhrEcSIwekzGTHolDMK9vxjivbKsFFMKEVT8nBsB7Sc0JZY6X3SaeGJck5axe8E5YbxoPUtosVYRutuzDTkGM1jBtX4IjVbpopBzPlykw5VZF3229uJxKOv0qf4WRuJZFAu7wAs3KzWbl_mVVFjjem4OZVnR3XAun1GgN9vNk2w3rESxY_pPUdynC8-lXCVOTZZDnbkQjwhsF_lhUxeza1N9T9lqFfFs5viynDUr_4H__2ktznmMSxYDU3x-Rg_H6XXoFrNbavyyr6BXnBIz0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiRqOu3w4XBIiqcOBEpb1Fju2wEd2k1Omhf4LfzExedBHqLYonipMZ2zP2zPcR8sZ47QvHQg7WJHPpC55XUte5c1oVbqXRjcVsi2_65FR-Xav1tOGWprTKeU4cJurQedwjP-JaILRZYdT78185skbh6epEoXGb3EHoMrRqszbLHgushdJIO9fKWH2UIJzQNse8hIFxK1c769EA2_8_X_PflMlra9DxA3J_ch7ph1HbD8mt2D4id0c6yavH5PeXduPOsBaKwv9qqqYDOQrxNMIHbGOicdv04GFSrCmhm4kxJL2j29g7BGvdgnjTJozXE1z0Ha1GMGd4KVaDpEM6V1JSJFsZ0gcO4WWBXiuYw8Ym_UxPyOnx5--fTvKJbyH3stA9zHsqFgHiMeOkjsJHL3gAh9IHYZCVJAQO8TKTNQtCMadszWuubKUEF974Sjwle23XxueEssJK56KOBYuSc1ateC0sN4x7qW0dMsLmv176CYwcOTHOyiEosbocNVWCpspBU6XKyNvlmfMRiuNG6Y-ozEUSYbSHG93Fj3IalaUNtdZyFYX0QWofXF15iNmlN9zBR68ycjCbQjmN7VT-tcSMvF6aYVTiUYtrY3eJMhwPgJUwGXk2Ws7SEwE-MXjRMiNmx6Z2urrb0jabAfnbYuGw1Ps3d-sFucexSGPFcm4OyF5_cRlfguvUV6-G8fEHcMgZ8w priority: 102 providerName: ProQuest |
Title | Inhalable antibiotic resistomes emitted from hospitals: metagenomic insights into bacterial hosts, clinical relevance, and environmental risks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35086564 https://www.proquest.com/docview/2630444975 https://www.proquest.com/docview/2623891537 https://pubmed.ncbi.nlm.nih.gov/PMC8796446 https://doaj.org/article/8df6640e34cd46cdafbc3384c72ad370 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9NAFB72guCLeLe6lhF8c6OdS2YSQaQru6wFF1ELfQuTmck22KbaZMH9E_5mz5kkZStFfGrpnGTSmXMy35fMOR8hL7VVNjXMReBNMpI25VEuVREZo-LUjBTCWNxtcaHOp3Iyi2d7pJc76gaw3kntUE9qul68_vXz-j0E_LsQ8Il6UwNHUEmEmw2CjFYU75NDWJk0Khp86uB-uDOnTOogqMUBGEdAHpI-j2bnabbWqlDSfxcO_Xs75Y316ewuudMBSzpuPeEe2fPVfXKrlZq8fkB-f6zmZoF5UhTGsszLFdhR4NpYWmDpa-qXZQPok2K-CZ13aiL1W7r0jcFCrkswL6sauXwNX5oVzdtCz9ApZorUx7TPsqQoxBK2FhxDZ47eSKbDxrL-Xj8k07PTbx_Oo06LIbIyVQ3cE2OfOuBq2kjlhfVWcAdg0zqhUbHEOQ5cmsmCOREzEycFL3ic5LHgwmqbi0fkoFpV_gmhLE2kMV75lHnJOctHvBAJ14xbqZLCDQjrRz2zXaFy1MtYZIGwJCprZyqDmcrCTGXxgLzaHPOjLdPxT-sTnMyNJZbYDj-s1pdZF7FZ4gql5MgLaZ1U1pkit8DnpdXcwJ8eDchR7wpZ77YZVwIL8KUa-nixaYaIxdcwpvKrK7Th-HI4FnpAHrees7kSAXgZELYcEL3lU1uXut1SlfNQFTzBpGKpnv5Hv8_IbY5ZHCMWcX1EDpr1lX8O2KrJh2Rfz_SQHI7Hk68T-Dw5vfj8ZRieVAxDMP0BgRwmAw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgRKMmtmM7SAjxqnZp6amV9hYc22GjdpO2SYX6J_gp_EZm8li6CPXW22o9u_HujMcz9nzzEfJKWWlTE7sQrEmEwqYszIUsQmNkkppIYhiL1RZ7cnIgvs6S2Rr5PWJhsKxy9Imdo3a1xTPyLSY5tjZLVfL--CRE1ii8XR0pNHqz2PHnPyFla95NP4N-XzO2_WX_0yQcWAVCK1LZwupOfOog61BGSM-tt5w5CJus4wq5N5xjkBXGoogdT2KT6IIVLNF5whm3yuYcvvcauQ4bb4TJnpqp5ZkO7L1CCT1ic7TcaiB9kTrEOoiO4StMVva_jibgf7HtvyWaF_a87Tvk9hCs0g-9dd0la766R2709JXn98mvaTU3R4i9oqCfMi9rkKOQv2O7goVvqF-ULUS0FDEsdD4wlDRv6cK3BpvDLkC8rBo8H2jgRVvTvG8eDQ9F9EmzSUfkJkVyl65cYRMe5ugFgB4Ols1h84AcXIkmHpL1qq78Y0LjVAtjvPRp7AVjcR6xgmumYmaF1IULSDz-65kdmp8jB8dR1iVBWma9pjLQVNZpKksC8mb5meO-9cel0h9RmUtJbNvdvVGf_sgGL5BpV0gpIs-FdUJaZ4rccq6FVczAj44CsjGaQjb4kib7a_kBebkcBi-AVzum8vUZyjC8cE64Csij3nKWM-EQg0PULgKiVmxqZaqrI1U57zqNawQqC_nk8mm9IDcn-992s93p3s5TcoshQCSKQ6Y2yHp7euafQdjW5s-7tULJ96tenH8AA5JVnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhalable+antibiotic+resistomes+emitted+from+hospitals%3A+metagenomic+insights+into+bacterial+hosts%2C+clinical+relevance%2C+and+environmental+risks&rft.jtitle=Microbiome&rft.au=Wu%2C+Dong&rft.au=Jin%2C+Ling&rft.au=Xie%2C+Jiawen&rft.au=Liu%2C+Hang&rft.date=2022-01-27&rft.issn=2049-2618&rft.eissn=2049-2618&rft.volume=10&rft.issue=1&rft.spage=19&rft_id=info:doi/10.1186%2Fs40168-021-01197-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon |