GABA operates upstream of H⁺-ATPase and improves salinity tolerance in Arabidopsis by enabling cytosolic K⁺ retention and Na⁺ exclusion

The non-protein amino acid γ-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to salinity. However, the physiological rationale for this elevation remains elusive. This study compared electrophysiological and whole-plant responses of salt-treated Arabidopsis mutants pop2-5 a...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 70; no. 21; pp. 6349 - 6361
Main Authors Su, Nana, Wu, Qi, Chen, Jiahui, Shabala, Lana, Mithöfer, Axel, Wang, Haiyang, Qu, Mei, Yu, Min, Cui, Jin, Shabala, Sergey
Format Journal Article
LanguageEnglish
Published UK Oxford University Press 18.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The non-protein amino acid γ-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to salinity. However, the physiological rationale for this elevation remains elusive. This study compared electrophysiological and whole-plant responses of salt-treated Arabidopsis mutants pop2-5 and gad1,2, which have different abilities to accumulate GABA. The pop2-5 mutant, which was able to overaccumulate GABA in its roots, showed a salt-tolerant phenotype. On the contrary, the gad1,2 mutant, lacking the ability to convert glutamate to GABA, showed oversensitivity to salinity. The greater salinity tolerance of the pop2-5 line was explained by: (i) the role of GABA in stress-induced activation of H⁺-ATPase, thus leading to better membrane potential maintenance and reduced stress-induced K⁺ leak from roots; (ii) reduced rates of net Na⁺ uptake; (iii) higher expression of SOS1 and NHX1 genes in the leaves, which contributed to reducing Na⁺ concentration in the cytoplasm by excluding Na⁺ to apoplast and sequestering Na⁺ in the vacuoles; (iv) a lower rate of H₂O₂ production and reduced reactive oxygen species-inducible K⁺ efflux from root epidermis; and (v) better K⁺ retention in the shoot associated with the lower expression level of GORK channels in plant leaves.
AbstractList GABA has beneficial effects on salinity stress tolerance in Arabidopsis linked to increased activity of H+-ATPase, reduced ROS-induced K+ efflux from root epidermis, and increased SOS1 and NHX1 transcript levels in plant roots. Abstract The non-protein amino acid γ-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to salinity. However, the physiological rationale for this elevation remains elusive. This study compared electrophysiological and whole-plant responses of salt-treated Arabidopsis mutants pop2-5 and gad1,2, which have different abilities to accumulate GABA. The pop2-5 mutant, which was able to overaccumulate GABA in its roots, showed a salt-tolerant phenotype. On the contrary, the gad1,2 mutant, lacking the ability to convert glutamate to GABA, showed oversensitivity to salinity. The greater salinity tolerance of the pop2-5 line was explained by: (i) the role of GABA in stress-induced activation of H+-ATPase, thus leading to better membrane potential maintenance and reduced stress-induced K+ leak from roots; (ii) reduced rates of net Na+ uptake; (iii) higher expression of SOS1 and NHX1 genes in the leaves, which contributed to reducing Na+ concentration in the cytoplasm by excluding Na+ to apoplast and sequestering Na+ in the vacuoles; (iv) a lower rate of H2O2 production and reduced reactive oxygen species-inducible K+ efflux from root epidermis; and (v) better K+ retention in the shoot associated with the lower expression level of GORK channels in plant leaves.
The non-protein amino acid γ-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to salinity. However, the physiological rationale for this elevation remains elusive. This study compared electrophysiological and whole-plant responses of salt-treated Arabidopsis mutants pop2-5 and gad1,2, which have different abilities to accumulate GABA. The pop2-5 mutant, which was able to overaccumulate GABA in its roots, showed a salt-tolerant phenotype. On the contrary, the gad1,2 mutant, lacking the ability to convert glutamate to GABA, showed oversensitivity to salinity. The greater salinity tolerance of the pop2-5 line was explained by: (i) the role of GABA in stress-induced activation of H⁺-ATPase, thus leading to better membrane potential maintenance and reduced stress-induced K⁺ leak from roots; (ii) reduced rates of net Na⁺ uptake; (iii) higher expression of SOS1 and NHX1 genes in the leaves, which contributed to reducing Na⁺ concentration in the cytoplasm by excluding Na⁺ to apoplast and sequestering Na⁺ in the vacuoles; (iv) a lower rate of H₂O₂ production and reduced reactive oxygen species-inducible K⁺ efflux from root epidermis; and (v) better K⁺ retention in the shoot associated with the lower expression level of GORK channels in plant leaves.
GABA has beneficial effects on salinity stress tolerance in Arabidopsis linked to increased activity of H+-ATPase, reduced ROS-induced K+ efflux from root epidermis, and increased SOS1 and NHX1 transcript levels in plant roots.
GABA has beneficial effects on salinity stress tolerance in Arabidopsis linked to increased activity of H + -ATPase, reduced ROS-induced K + efflux from root epidermis, and increased SOS1 and NHX1 transcript levels in plant roots. The non-protein amino acid γ-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to salinity. However, the physiological rationale for this elevation remains elusive. This study compared electrophysiological and whole-plant responses of salt-treated Arabidopsis mutants pop2-5 and gad1,2 , which have different abilities to accumulate GABA. The pop2-5 mutant, which was able to overaccumulate GABA in its roots, showed a salt-tolerant phenotype. On the contrary, the gad1,2 mutant, lacking the ability to convert glutamate to GABA, showed oversensitivity to salinity. The greater salinity tolerance of the pop2-5 line was explained by: (i) the role of GABA in stress-induced activation of H + -ATPase, thus leading to better membrane potential maintenance and reduced stress-induced K + leak from roots; (ii) reduced rates of net Na + uptake; (iii) higher expression of SOS1 and NHX1 genes in the leaves, which contributed to reducing Na + concentration in the cytoplasm by excluding Na + to apoplast and sequestering Na + in the vacuoles; (iv) a lower rate of H 2 O 2 production and reduced reactive oxygen species-inducible K + efflux from root epidermis; and (v) better K + retention in the shoot associated with the lower expression level of GORK channels in plant leaves.
The non-protein amino acid γ-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to salinity. However, the physiological rationale for this elevation remains elusive. This study compared electrophysiological and whole-plant responses of salt-treated Arabidopsis mutants pop2-5 and gad1,2, which have different abilities to accumulate GABA. The pop2-5 mutant, which was able to overaccumulate GABA in its roots, showed a salt-tolerant phenotype. On the contrary, the gad1,2 mutant, lacking the ability to convert glutamate to GABA, showed oversensitivity to salinity. The greater salinity tolerance of the pop2-5 line was explained by: (i) the role of GABA in stress-induced activation of H+-ATPase, thus leading to better membrane potential maintenance and reduced stress-induced K+ leak from roots; (ii) reduced rates of net Na+ uptake; (iii) higher expression of SOS1 and NHX1 genes in the leaves, which contributed to reducing Na+ concentration in the cytoplasm by excluding Na+ to apoplast and sequestering Na+ in the vacuoles; (iv) a lower rate of H2O2 production and reduced reactive oxygen species-inducible K+ efflux from root epidermis; and (v) better K+ retention in the shoot associated with the lower expression level of GORK channels in plant leaves.The non-protein amino acid γ-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to salinity. However, the physiological rationale for this elevation remains elusive. This study compared electrophysiological and whole-plant responses of salt-treated Arabidopsis mutants pop2-5 and gad1,2, which have different abilities to accumulate GABA. The pop2-5 mutant, which was able to overaccumulate GABA in its roots, showed a salt-tolerant phenotype. On the contrary, the gad1,2 mutant, lacking the ability to convert glutamate to GABA, showed oversensitivity to salinity. The greater salinity tolerance of the pop2-5 line was explained by: (i) the role of GABA in stress-induced activation of H+-ATPase, thus leading to better membrane potential maintenance and reduced stress-induced K+ leak from roots; (ii) reduced rates of net Na+ uptake; (iii) higher expression of SOS1 and NHX1 genes in the leaves, which contributed to reducing Na+ concentration in the cytoplasm by excluding Na+ to apoplast and sequestering Na+ in the vacuoles; (iv) a lower rate of H2O2 production and reduced reactive oxygen species-inducible K+ efflux from root epidermis; and (v) better K+ retention in the shoot associated with the lower expression level of GORK channels in plant leaves.
The non-protein gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to salinity. However, the physiological rationale beyond this elevation remains elusive. This study compared electrophysiological and whole-plant responses of salt-treated Arabidopsis thaliana mutants pop2-5 and gad1,2 that possess different abilities for GABA accumulation. The pop2-5 mutant that was capable to over-accumulate GABA in its roots showed a salt-tolerant phenotype. On the contrary, gad1,2 mutant lacking an ability for conversion of glutamate to GABA showed over-sensitivity to salinity. The differential salinity tolerance between two lines was explained by: (1) the role of GABA in the stress-induced activation of H+-ATPase thus leading to better membrane potential maintenance and reduced extent of stress-induced K+ leak from roots; (2) reduced rates of net Na+ uptake in pop2-5 roots; (3) higher expression of SOS1 and NHX1 genes in leaves of salt-tolerant pop2-5 plants, which contributed to reducing Na+ concentration in the cytoplasm by excluding Na+ to apoplast and sequestering Na+ in vacuole; (4) lower rate of H2O2 production and reduced ROS-inducible K+ efflux from root epidermis in the tolerant line; and (5) better K+ retention in the shoot associated with the lower expression level of GORK channels in plant leaves.
Author Wu, Qi
Qu, Mei
Chen, Jiahui
Cui, Jin
Shabala, Sergey
Mithöfer, Axel
Su, Nana
Shabala, Lana
Wang, Haiyang
Yu, Min
AuthorAffiliation 5 Oklahoma State University , USA
1 College of Life Sciences, Nanjing Agricultural University , Nanjing 210095, China
4 Research Group of Plant Defense Physiology, Max Planck Institute for Chemical Ecology , D-07745 Jena, Germany
2 Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania , Hobart, Tasmania 7001, Australia
3 International Research Centre for Environmental Membrane Biology, Foshan University , Foshan 528000, China
AuthorAffiliation_xml – name: 4 Research Group of Plant Defense Physiology, Max Planck Institute for Chemical Ecology , D-07745 Jena, Germany
– name: 5 Oklahoma State University , USA
– name: 3 International Research Centre for Environmental Membrane Biology, Foshan University , Foshan 528000, China
– name: 2 Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania , Hobart, Tasmania 7001, Australia
– name: 1 College of Life Sciences, Nanjing Agricultural University , Nanjing 210095, China
Author_xml – sequence: 1
  givenname: Nana
  surname: Su
  fullname: Su, Nana
– sequence: 2
  givenname: Qi
  surname: Wu
  fullname: Wu, Qi
– sequence: 3
  givenname: Jiahui
  surname: Chen
  fullname: Chen, Jiahui
– sequence: 4
  givenname: Lana
  surname: Shabala
  fullname: Shabala, Lana
– sequence: 5
  givenname: Axel
  surname: Mithöfer
  fullname: Mithöfer, Axel
– sequence: 6
  givenname: Haiyang
  surname: Wang
  fullname: Wang, Haiyang
– sequence: 7
  givenname: Mei
  surname: Qu
  fullname: Qu, Mei
– sequence: 8
  givenname: Min
  surname: Yu
  fullname: Yu, Min
– sequence: 9
  givenname: Jin
  surname: Cui
  fullname: Cui, Jin
– sequence: 10
  givenname: Sergey
  surname: Shabala
  fullname: Shabala, Sergey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31420662$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu1DAURS1URKeFDXuQN0gIKfTZiZ1kgzRU0CIqYFHWluO8FI8ydrCdqsOOD-CH-By-BA_TVoAQK0vP555n-R6QPecdEvKQwXMGbXm0uuqOMHwpZX2HLFgloeBVyfbIAoDzAlpR75ODGFcAIECIe2S_ZBUHKfmCfDtZvlxSP2HQCSOdp5gC6jX1Az398fV7sTz_oCNS7Xpq11PwlxmKerTOpg1Nfsw5Z5BaR5dBd7b3U7SRdhuKTncZu6Bmk3z0ozX0bRbSgAldst79cr7T2xlemXGOeXaf3B30GPHB9XlIPr5-dX58Wpy9P3lzvDwrTNXKVLRQMi1aI_tSSN2AMHKArq5bDdhCM6BpGql514u-68AMFbK6qWoosWLIQJSH5MXOO83dGnuTXxT0qKZg1zpslNdW_Xnj7Cd14S-VbERbl20WPL0WBP95xpjU2kaD46gd-jkqzmvBm6phW_Tx77tul9x0kAHYASb4GAMOytikt1-UV9tRMVDbmlWuWe1qzpFnf0VurP-En-xgP0__5x7tuFVMPtySXLaS17IqfwIna8aD
CitedBy_id crossref_primary_10_1002_jpln_202000007
crossref_primary_10_1080_15592324_2022_2163343
crossref_primary_10_1093_jxb_eraa358
crossref_primary_10_3389_fpls_2022_1081188
crossref_primary_10_1080_07352689_2019_1707944
crossref_primary_10_3390_ijms251910749
crossref_primary_10_1007_s44154_024_00180_y
crossref_primary_10_1093_treephys_tpad002
crossref_primary_10_1016_j_jbiotec_2020_11_015
crossref_primary_10_1016_j_jplph_2021_153432
crossref_primary_10_1080_15592324_2020_1862565
crossref_primary_10_32615_ps_2020_070
crossref_primary_10_3390_plants12213753
crossref_primary_10_3390_genes13030501
crossref_primary_10_3390_plants13010046
crossref_primary_10_3390_agronomy14050908
crossref_primary_10_1111_pce_13740
crossref_primary_10_1186_s12870_020_02669_w
crossref_primary_10_1007_s00299_020_02652_7
crossref_primary_10_1016_j_scitotenv_2022_158673
crossref_primary_10_3390_plants13010082
crossref_primary_10_1007_s00344_022_10812_0
crossref_primary_10_1016_j_plantsci_2024_112085
crossref_primary_10_1002_pld3_70007
crossref_primary_10_1016_j_envexpbot_2020_104136
crossref_primary_10_1016_j_molp_2021_12_003
crossref_primary_10_1016_j_scienta_2023_112313
crossref_primary_10_1002_advs_202400930
crossref_primary_10_1016_j_xplc_2021_100188
crossref_primary_10_3390_ijms221910715
crossref_primary_10_1007_s42729_024_01850_6
crossref_primary_10_1111_ppl_13917
crossref_primary_10_3389_fpls_2020_616077
crossref_primary_10_1007_s00344_025_11634_6
crossref_primary_10_1093_treephys_tpaa101
crossref_primary_10_1111_nph_19390
crossref_primary_10_1016_j_sajb_2023_04_027
crossref_primary_10_1016_j_atech_2024_100668
crossref_primary_10_1016_j_pep_2024_106612
crossref_primary_10_1016_j_stress_2024_100526
crossref_primary_10_3390_metabo13060741
crossref_primary_10_1007_s00344_021_10538_5
crossref_primary_10_1186_s12870_024_04968_y
crossref_primary_10_1007_s00344_024_11470_0
crossref_primary_10_1016_j_plaphy_2024_108886
crossref_primary_10_1111_nph_19300
crossref_primary_10_1093_jxb_eraa175
crossref_primary_10_3390_agriculture12050638
crossref_primary_10_1002_fft2_70005
crossref_primary_10_3390_horticulturae9020230
crossref_primary_10_1007_s00344_022_10610_8
crossref_primary_10_1093_jxb_eraa172
crossref_primary_10_1007_s00344_021_10426_y
crossref_primary_10_3389_fpls_2020_01192
crossref_primary_10_3390_plants10102178
crossref_primary_10_3390_plants13192750
crossref_primary_10_3389_fpls_2020_571025
crossref_primary_10_1016_j_indcrop_2022_115296
crossref_primary_10_3390_metabo13030347
crossref_primary_10_1016_j_cj_2024_09_006
crossref_primary_10_7554_eLife_83361
crossref_primary_10_1002_fes3_70004
crossref_primary_10_3390_plants10091939
crossref_primary_10_1016_j_xplc_2023_100726
crossref_primary_10_1111_jipb_13827
crossref_primary_10_1016_j_envexpbot_2024_105723
crossref_primary_10_1007_s11738_023_03580_1
crossref_primary_10_1016_j_plantsci_2022_111509
crossref_primary_10_1111_tpj_15946
crossref_primary_10_3390_agronomy14112524
crossref_primary_10_1016_j_plgene_2021_100283
crossref_primary_10_1186_s12870_024_05023_6
crossref_primary_10_3389_fpls_2022_1095363
crossref_primary_10_1016_j_jplph_2022_153708
crossref_primary_10_1016_j_plaphy_2022_06_023
crossref_primary_10_1016_j_scienta_2021_110229
crossref_primary_10_1093_treephys_tpae083
crossref_primary_10_3390_plants13010051
crossref_primary_10_3389_fpls_2021_667458
crossref_primary_10_1080_15592324_2020_1853384
crossref_primary_10_1093_plphys_kiab347
crossref_primary_10_1007_s11032_024_01460_1
crossref_primary_10_1016_j_plaphy_2022_01_001
Cites_doi 10.1038/emboj.2012.273
10.1093/pcp/pcm171
10.1093/pcp/pcq007
10.1046/j.0031-9317.2001.1140108.x
10.1111/nph.13550
10.3389/fpls.2017.00388
10.1093/jxb/erv465
10.1146/annurev.biophys.093008.131331
10.1093/jxb/erm284
10.1073/pnas.120170197
10.1111/j.1399-3054.2007.01008.x
10.1007/s00018-016-2415-7
10.1016/j.jplph.2014.01.015
10.1038/ncomms8879
10.1111/nph.14920
10.1146/annurev.arplant.51.1.463
10.1093/jxb/erp243
10.1093/jxb/err280
10.3390/ijms19030702
10.1104/pp.111.176883
10.1111/ppl.12483
10.1073/pnas.55.1.134
10.1021/pr101140n
10.1139/b02-087
10.1007/s10725-015-0074-6
10.1111/jipb.12238
10.1242/jcs.064352
10.1016/j.jplph.2011.10.007
10.1016/j.tplants.2011.10.001
10.1071/FP08030
10.1093/jxb/erv558
10.1016/S0092-8674(03)00479-3
10.1093/jxb/ers343
10.3389/fpls.2015.01128
10.1016/j.tplants.2007.10.005
10.1073/pnas.1018921108
10.1016/j.plantsci.2016.01.005
10.1111/pce.12180
10.1186/1471-2229-10-20
10.1093/jxb/eru528
10.1111/pce.12033
10.1146/annurev-arplant-042916-040936
10.1104/pp.107.110262
10.1093/aob/mct205
10.1038/nprot.2006.238
10.1071/FP09051
10.1016/j.tplants.2011.12.006
10.1111/j.1365-3040.2009.02065.x
10.1126/science.285.5431.1256
10.1111/j.1574-6976.2006.00019.x
10.1146/annurev.arplant.59.032607.092911
10.1007/s11103-004-0650-z
10.1007/s12298-010-0028-4
10.1111/j.1365-3040.2009.02041.x
10.1016/j.tplants.2014.09.001
10.1007/s11104-012-1366-5
10.1007/BF00009293
10.3389/fpls.2017.01001
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2019
The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2019
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.
DBID TOX
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/jxb/erz367
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1460-2431
EndPage 6361
ExternalDocumentID PMC6859739
31420662
10_1093_jxb_erz367
10.1093/jxb/erz367
26962764
Genre Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: 10.13039/501100000923
– fundername: National Natural Science Foundation of China
  grantid: 31772360
  funderid: 10.13039/501100001809
– fundername: ; ;
– fundername: ; ;
  grantid: 31772360
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
4.4
482
48X
5GY
5VS
5WA
5WD
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAXTN
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
CS3
CZ4
D-I
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
ECGQY
EE~
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JENOY
JLS
JST
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
ML0
N9A
NGC
NLBLG
NOMLY
NU-
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TLC
TN5
TR2
UHB
UPT
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZKX
~02
~91
~KM
AASNB
ADRIX
AFXEN
ESX
M49
RIG
TOX
AAYXX
CITATION
EJD
NPM
Z5M
7X8
2~F
5PM
ABBHK
AEUPB
DATOO
IPSME
JPM
SA0
ID FETCH-LOGICAL-c496t-9031a59c6d356a805c6f0b779a0e908fec886a2bd5dbb0cf4e1784703e41e1053
IEDL.DBID TOX
ISSN 0022-0957
1460-2431
IngestDate Thu Aug 21 13:38:26 EDT 2025
Fri Jul 11 09:54:09 EDT 2025
Wed Feb 19 02:32:45 EST 2025
Thu Apr 24 23:12:11 EDT 2025
Tue Jul 01 03:05:42 EDT 2025
Wed Sep 11 04:40:43 EDT 2024
Thu Jun 19 19:51:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Arabidopsis
ATPase
hydrogen peroxide
reactive oxygen species
H
potassium retention
sodium sequestration
H+-ATPase
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-9031a59c6d356a805c6f0b779a0e908fec886a2bd5dbb0cf4e1784703e41e1053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-2345-8981
OpenAccessLink https://dx.doi.org/10.1093/jxb/erz367
PMID 31420662
PQID 2275284819
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6859739
proquest_miscellaneous_2275284819
pubmed_primary_31420662
crossref_citationtrail_10_1093_jxb_erz367
crossref_primary_10_1093_jxb_erz367
oup_primary_10_1093_jxb_erz367
jstor_primary_26962764
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-18
PublicationDateYYYYMMDD 2019-11-18
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-18
  day: 18
PublicationDecade 2010
PublicationPlace UK
PublicationPlace_xml – name: UK
– name: England
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Shelp (2019111807002793000_CIT0049) 2012; 17
Yue (2019111807002793000_CIT0060) 2012; 169
Fait (2019111807002793000_CIT0013) 2008; 13
Quintero (2019111807002793000_CIT0034) 2011; 108
Kaye (2019111807002793000_CIT0019) 2011; 157
Hasegawa (2019111807002793000_CIT0014) 2000; 51
Bouché (2019111807002793000_CIT0005) 2004; 55
Ma (2019111807002793000_CIT0022) 2012; 63
Shabala (2019111807002793000_CIT0043) 2006; 30
Shabala (2019111807002793000_CIT0045) 2016; 67
Ismail (2019111807002793000_CIT0016) 2017; 68
Morales (2019111807002793000_CIT0028) 2016; 67
Ben Rejeb (2019111807002793000_CIT0002) 2015; 208
Koyama (2019111807002793000_CIT0020) 1995; 36
Renault (2019111807002793000_CIT0038) 2010; 10
Vijayakumari (2019111807002793000_CIT0055) 2016; 78
Mekonnen (2019111807002793000_CIT0025) 2016; 245
Ramesh (2019111807002793000_CIT0036) 2015; 6
Chen (2019111807002793000_CIT0007) 2007; 58
Miller (2019111807002793000_CIT0026) 2010; 33
Scholz (2019111807002793000_CIT0041) 2017; 8
Van Cauwenberghe (2019111807002793000_CIT0054) 2002; 80
Nguyen (2019111807002793000_CIT0030) 2017; 8
Cuin (2019111807002793000_CIT0010) 2009; 36
Chen (2019111807002793000_CIT0008) 2007; 145
Demidchik (2019111807002793000_CIT0011) 2014; 171
Maksimovic (2019111807002793000_CIT0023) 2013; 365
Shi (2019111807002793000_CIT0051) 2010; 33
Li (2019111807002793000_CIT0021) 2017; 159
Riccardi (2019111807002793000_CIT0039) 2006; 1
Steward (2019111807002793000_CIT0053) 1949; 110
Marino (2019111807002793000_CIT0024) 2012; 17
Ramesh (2019111807002793000_CIT0035) 2017; 74
Wang (2019111807002793000_CIT0056) 2018; 19
Scholz (2019111807002793000_CIT0042) 2015; 6
Yang (2019111807002793000_CIT0059) 2018; 217
Shabala (2019111807002793000_CIT0048) 2002; 114
Munns (2019111807002793000_CIT0029) 2008; 59
Jayakannan (2019111807002793000_CIT0017) 2015; 66
Hossain (2019111807002793000_CIT0015) 2010; 16
Shabala (2019111807002793000_CIT0046) 2014; 19
Shabala (2019111807002793000_CIT0047) 2008; 133
Pandolfi (2019111807002793000_CIT0033) 2010; 51
Miyashita (2019111807002793000_CIT0027) 2008; 49
Brini (2019111807002793000_CIT0006) 2012; 3
(2019111807002793000_CIT0057) 2009; 60
Palmgren (2019111807002793000_CIT0032) 2011; 40
Shabala (2019111807002793000_CIT0044) 2013; 112
Wu (2019111807002793000_CIT0058) 2015; 57
Zhang (2019111807002793000_CIT0061) 2011; 10
Palanivelu (2019111807002793000_CIT0031) 2003; 114
Apse (2019111807002793000_CIT0001) 1999; 85
Jiang (2019111807002793000_CIT0018) 2012; 31
Smethurst (2019111807002793000_CIT0052) 2008; 35
Demidchik (2019111807002793000_CIT0012) 2010; 123
Bose (2019111807002793000_CIT0004) 2013; 64
Bose (2019111807002793000_CIT0003) 2014; 37
Rotman (2019111807002793000_CIT0040) 1966; 55
Clemensson-Lindell (2019111807002793000_CIT0009) 1994; 159
Shi (2019111807002793000_CIT0050) 2000; 97
Renault (2019111807002793000_CIT0037) 2013; 36
References_xml – volume: 31
  start-page: 4359
  year: 2012
  ident: 2019111807002793000_CIT0018
  article-title: ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis
  publication-title: The EMBO Journal
  doi: 10.1038/emboj.2012.273
– volume: 49
  start-page: 92
  year: 2008
  ident: 2019111807002793000_CIT0027
  article-title: Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana
  publication-title: Plant & Cell Physiology
  doi: 10.1093/pcp/pcm171
– volume: 51
  start-page: 422
  year: 2010
  ident: 2019111807002793000_CIT0033
  article-title: Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants
  publication-title: Plant & Cell Physiology
  doi: 10.1093/pcp/pcq007
– volume: 114
  start-page: 47
  year: 2002
  ident: 2019111807002793000_CIT0048
  article-title: Kinetics of net H+, Ca2+, K+, Na+, NH4+, and Cl
  publication-title: Physiologia Plantarum
  doi: 10.1046/j.0031-9317.2001.1140108.x
– volume: 208
  start-page: 1138
  year: 2015
  ident: 2019111807002793000_CIT0002
  article-title: Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana
  publication-title: New Phytologist
  doi: 10.1111/nph.13550
– volume: 8
  start-page: 388
  year: 2017
  ident: 2019111807002793000_CIT0041
  article-title: Evidence for GABA-induced systemic GABA accumulation in Arabidopsis upon wounding
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2017.00388
– volume: 67
  start-page: 1015
  year: 2016
  ident: 2019111807002793000_CIT0045
  article-title: On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erv465
– volume: 40
  start-page: 243
  year: 2011
  ident: 2019111807002793000_CIT0032
  article-title: P-type ATPases
  publication-title: Annual Review of Biophysics
  doi: 10.1146/annurev.biophys.093008.131331
– volume: 58
  start-page: 4245
  year: 2007
  ident: 2019111807002793000_CIT0007
  article-title: Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erm284
– volume: 97
  start-page: 6896
  year: 2000
  ident: 2019111807002793000_CIT0050
  article-title: The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.120170197
– volume: 133
  start-page: 651
  year: 2008
  ident: 2019111807002793000_CIT0047
  article-title: Potassium transport and plant salt tolerance
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.2007.01008.x
– volume: 74
  start-page: 1577
  year: 2017
  ident: 2019111807002793000_CIT0035
  article-title: γ-Aminobutyric acid (GABA) signalling in plants
  publication-title: Cellular and Molecular Life Sciences
  doi: 10.1007/s00018-016-2415-7
– volume: 171
  start-page: 696
  year: 2014
  ident: 2019111807002793000_CIT0011
  article-title: Mechanisms and physiological roles of K+ efflux from root cells
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2014.01.015
– volume: 36
  start-page: 201
  year: 1995
  ident: 2019111807002793000_CIT0020
  article-title: Effects of aluminium and pH on root growth and cell viability in Arabidopsis thaliana strain Landsberg in hydroponic culture
  publication-title: Plant and Cell Physiology
– volume: 6
  start-page: 7879
  year: 2015
  ident: 2019111807002793000_CIT0036
  article-title: GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters
  publication-title: Nature Communications
  doi: 10.1038/ncomms8879
– volume: 217
  start-page: 523
  year: 2018
  ident: 2019111807002793000_CIT0059
  article-title: Elucidating the molecular mechanisms mediating plant salt-stress responses
  publication-title: New Phytologist
  doi: 10.1111/nph.14920
– volume: 51
  start-page: 463
  year: 2000
  ident: 2019111807002793000_CIT0014
  article-title: Plant cellular and molecular responses to high salinity
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
  doi: 10.1146/annurev.arplant.51.1.463
– volume: 110
  start-page: 439
  year: 1949
  ident: 2019111807002793000_CIT0053
  article-title: γ-Aminobutyric acid: a constituent of the potato tuber?
  publication-title: Science
– volume: 60
  start-page: 4089
  year: 2009
  ident: 2019111807002793000_CIT0057
  article-title: Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erp243
– volume: 63
  start-page: 305
  year: 2012
  ident: 2019111807002793000_CIT0022
  article-title: NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na⁺/K⁺ homeostasis in Arabidopsis under salt stress
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/err280
– volume: 19
  start-page: 702
  year: 2018
  ident: 2019111807002793000_CIT0056
  article-title: Hydrogen peroxide-induced root Ca2+ and K+ fluxes correlate with salt tolerance in cereals: towards the cell-based phenotyping
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms19030702
– volume: 157
  start-page: 229
  year: 2011
  ident: 2019111807002793000_CIT0019
  article-title: Inositol polyphosphate 5-phosphatase7 regulates the production of reactive oxygen species and salt tolerance in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.176883
– volume: 159
  start-page: 42
  year: 2017
  ident: 2019111807002793000_CIT0021
  article-title: Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera)
  publication-title: Physiologia Plantarum
  doi: 10.1111/ppl.12483
– volume: 55
  start-page: 134
  year: 1966
  ident: 2019111807002793000_CIT0040
  article-title: Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluoregenic esters
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.55.1.134
– volume: 10
  start-page: 1904
  year: 2011
  ident: 2019111807002793000_CIT0061
  article-title: Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress
  publication-title: Journal of Proteome Research
  doi: 10.1021/pr101140n
– volume: 80
  start-page: 933
  year: 2002
  ident: 2019111807002793000_CIT0054
  article-title: Plant pyruvate-dependent gamma aminobutyrate transaminase: identification of an Arabidopsis cDNA and its expression in Escherichia coli
  publication-title: Canadian Journal of Botany
  doi: 10.1139/b02-087
– volume: 78
  start-page: 57
  year: 2016
  ident: 2019111807002793000_CIT0055
  article-title: γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress
  publication-title: Plant Growth Regulation
  doi: 10.1007/s10725-015-0074-6
– volume: 57
  start-page: 171
  year: 2015
  ident: 2019111807002793000_CIT0058
  article-title: K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley
  publication-title: Journal of Integrative Plant Biology
  doi: 10.1111/jipb.12238
– volume: 123
  start-page: 1468
  year: 2010
  ident: 2019111807002793000_CIT0012
  article-title: Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.064352
– volume: 169
  start-page: 255
  year: 2012
  ident: 2019111807002793000_CIT0060
  article-title: SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2011.10.007
– volume: 3
  start-page: 927436
  year: 2012
  ident: 2019111807002793000_CIT0006
  article-title: Ion transporters and abiotic stress tolerance in plants
  publication-title: ISRN Molecular Biology
– volume: 17
  start-page: 9
  year: 2012
  ident: 2019111807002793000_CIT0024
  article-title: A burst of plant NADPH oxidases
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2011.10.001
– volume: 35
  start-page: 640
  year: 2008
  ident: 2019111807002793000_CIT0052
  article-title: Multiple traits associated with salt tolerance in lucerne: revealing the underlying cellular mechanisms
  publication-title: Functional Plant Biology
  doi: 10.1071/FP08030
– volume: 67
  start-page: 1663
  year: 2016
  ident: 2019111807002793000_CIT0028
  article-title: The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erv558
– volume: 114
  start-page: 47
  year: 2003
  ident: 2019111807002793000_CIT0031
  article-title: Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00479-3
– volume: 64
  start-page: 471
  year: 2013
  ident: 2019111807002793000_CIT0004
  article-title: Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K⁺ retention via regulation of the plasma membrane H⁺-ATPase and by altering SOS1 transcript levels in roots
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ers343
– volume: 6
  start-page: 1128
  year: 2015
  ident: 2019111807002793000_CIT0042
  article-title: Insect herbivory-elicited GABA accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2015.01128
– volume: 13
  start-page: 14
  year: 2008
  ident: 2019111807002793000_CIT0013
  article-title: Highway or byway: the metabolic role of the GABA shunt in plants
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2007.10.005
– volume: 108
  start-page: 2611
  year: 2011
  ident: 2019111807002793000_CIT0034
  article-title: Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.1018921108
– volume: 245
  start-page: 25
  year: 2016
  ident: 2019111807002793000_CIT0025
  article-title: Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana
  publication-title: Plant Science
  doi: 10.1016/j.plantsci.2016.01.005
– volume: 37
  start-page: 589
  year: 2014
  ident: 2019111807002793000_CIT0003
  article-title: Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.12180
– volume: 10
  start-page: 20
  year: 2010
  ident: 2019111807002793000_CIT0038
  article-title: The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance
  publication-title: BMC Plant Biology
  doi: 10.1186/1471-2229-10-20
– volume: 66
  start-page: 1865
  year: 2015
  ident: 2019111807002793000_CIT0017
  article-title: The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eru528
– volume: 36
  start-page: 1009
  year: 2013
  ident: 2019111807002793000_CIT0037
  article-title: γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.12033
– volume: 68
  start-page: 405
  year: 2017
  ident: 2019111807002793000_CIT0016
  article-title: Genomics, physiology, and molecular breeding approaches for improving salt tolerance
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev-arplant-042916-040936
– volume: 145
  start-page: 1714
  year: 2007
  ident: 2019111807002793000_CIT0008
  article-title: Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley
  publication-title: Plant Physiology
  doi: 10.1104/pp.107.110262
– volume: 112
  start-page: 1209
  year: 2013
  ident: 2019111807002793000_CIT0044
  article-title: Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops
  publication-title: Annals of Botany
  doi: 10.1093/aob/mct205
– volume: 1
  start-page: 1458
  year: 2006
  ident: 2019111807002793000_CIT0039
  article-title: Analysis of apoptosis by propidium iodide staining and flow cytometry
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2006.238
– volume: 36
  start-page: 1110
  year: 2009
  ident: 2019111807002793000_CIT0010
  article-title: Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions
  publication-title: Functional Plant Biology
  doi: 10.1071/FP09051
– volume: 17
  start-page: 57
  year: 2012
  ident: 2019111807002793000_CIT0049
  article-title: Compartmentation of GABA metabolism raises intriguing questions
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2011.12.006
– volume: 33
  start-page: 149
  year: 2010
  ident: 2019111807002793000_CIT0051
  article-title: Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production
  publication-title: Plant, Cell & Environment
  doi: 10.1111/j.1365-3040.2009.02065.x
– volume: 85
  start-page: 1256
  year: 1999
  ident: 2019111807002793000_CIT0001
  article-title: Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis
  publication-title: Science
  doi: 10.1126/science.285.5431.1256
– volume: 30
  start-page: 472
  year: 2006
  ident: 2019111807002793000_CIT0043
  article-title: Non-invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment
  publication-title: FEMS Microbiology Reviews
  doi: 10.1111/j.1574-6976.2006.00019.x
– volume: 59
  start-page: 651
  year: 2008
  ident: 2019111807002793000_CIT0029
  article-title: Mechanisms of salinity tolerance
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 55
  start-page: 315
  year: 2004
  ident: 2019111807002793000_CIT0005
  article-title: The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-004-0650-z
– volume: 16
  start-page: 259
  year: 2010
  ident: 2019111807002793000_CIT0015
  article-title: Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress
  publication-title: Physiology and Molecular Biology of Plants
  doi: 10.1007/s12298-010-0028-4
– volume: 33
  start-page: 453
  year: 2010
  ident: 2019111807002793000_CIT0026
  article-title: Reactive oxygen species homeostasis and signalling during drought and salinity stresses
  publication-title: Plant, Cell & Environment
  doi: 10.1111/j.1365-3040.2009.02041.x
– volume: 19
  start-page: 687
  year: 2014
  ident: 2019111807002793000_CIT0046
  article-title: Salt bladders: do they matter?
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2014.09.001
– volume: 365
  start-page: 141
  year: 2013
  ident: 2019111807002793000_CIT0023
  article-title: Linking oxidative and salinity stress tolerance in barley: Can root antioxidant enzyme activity be used as a measure of stress tolerance?
  publication-title: Plant and Soil
  doi: 10.1007/s11104-012-1366-5
– volume: 159
  start-page: 297
  year: 1994
  ident: 2019111807002793000_CIT0009
  article-title: Triphenyltetrazolium chloride as an indicator of fine-root vitality and environmental stress in coniferous forest stands: Applications and limitations
  publication-title: Plant and Soil
  doi: 10.1007/BF00009293
– volume: 8
  start-page: 1001
  year: 2017
  ident: 2019111807002793000_CIT0030
  article-title: Ethanol enhances high-salinity stress tolerance by detoxifying reactive oxygen species in Arabidopsis thaliana and rice
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2017.01001
SSID ssj0005055
Score 2.5763986
Snippet The non-protein amino acid γ-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to salinity. However, the physiological rationale for...
GABA has beneficial effects on salinity stress tolerance in Arabidopsis linked to increased activity of H+-ATPase, reduced ROS-induced K+ efflux from root...
The non-protein gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to salinity. However, the physiological rationale beyond this...
GABA has beneficial effects on salinity stress tolerance in Arabidopsis linked to increased activity of H + -ATPase, reduced ROS-induced K + efflux from root...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6349
SubjectTerms Plant—Environment Interactions
Research Papers
Title GABA operates upstream of H⁺-ATPase and improves salinity tolerance in Arabidopsis by enabling cytosolic K⁺ retention and Na⁺ exclusion
URI https://www.jstor.org/stable/26962764
https://www.ncbi.nlm.nih.gov/pubmed/31420662
https://www.proquest.com/docview/2275284819
https://pubmed.ncbi.nlm.nih.gov/PMC6859739
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Pb9MwFLbQtAMXBINBNqiM4IKqakmc2PGxQ4zCxODQSb1F_vEigkpSNam08g_wb_Ne0pZ1muCUQ56dyJ-t99l-73uMvSVpSQm4TbW-wA2KwSVlnaJ6xMJrqSKtPOU7f7mSk-vk8yydbYJomnuu8LU4-3Fjz2D5S0jKGUfvSwr506-zv4EcYZpuNcGRMKitCOle0z2300ce3klpu8Us7wZI3vI4F4_Zow1V5OMe2yfsAVRH7PC8Rjq3fsp-fxyfj3m9IFFkaPhqQVkf5ievCz4ZjsbTb-ieuKk8L7tjAzRpDGVBtmve1nOgehrAywq7N7b09aIpG27XHCiXCt0Zd-u2bkg0mF8O-ZKoNUHY9Xhlhhxu3HxFJ23P2PXFh-n7yWhTVWHkEi3bkcZlbFLtpBepNFmYOlmEViltQtBhVoDLMmli61NvbeiKBCKFLiwUkESAbEwcs4OqruAF414pSJz12AifxptMFCIzFuHXwkUiYO-2g567jeQ4Vb6Y5_3Vt8gRoLwHKGBvdraLXmjjXqvjDrudCX5JxkomARsgmP9s-XqLc44riK5FTAX1qsnjWKUxVRXQAXve477rR0QJ6d3HAVN7M2JnQOrc-2-q8nun0i0z3KsJffK_HztlD5GEacpvjLKX7KBdruAVEp3WDpDif7ocdLP9DwdY_3E
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GABA+operates+upstream+of+H%2B-ATPase+and+improves+salinity+tolerance+in+Arabidopsis+by+enabling+cytosolic+K%2B+retention+and+Na%2B+exclusion&rft.jtitle=Journal+of+experimental+botany&rft.au=Su%2C+Nana&rft.au=Wu%2C+Qi&rft.au=Chen%2C+Jiahui&rft.au=Shabala%2C+Lana&rft.date=2019-11-18&rft.pub=Oxford+University+Press&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=70&rft.issue=21&rft.spage=6349&rft.epage=6361&rft_id=info:doi/10.1093%2Fjxb%2Ferz367&rft_id=info%3Apmid%2F31420662&rft.externalDocID=PMC6859739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon