BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction
Abstract Motivation A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods are expensive and time-consuming. Therefore, the computational methods to predict potential miRNA-disease ass...
Saved in:
Published in | Bioinformatics Vol. 34; no. 18; pp. 3178 - 3186 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
15.09.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Motivation
A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods are expensive and time-consuming. Therefore, the computational methods to predict potential miRNA-disease associations have been paid increasing attention.
Results
In this paper, we proposed a novel computational model of Bipartite Network Projection for MiRNA-Disease Association prediction (BNPMDA) based on the known miRNA-disease associations, integrated miRNA similarity and integrated disease similarity. We firstly described the preference degree of a miRNA for its related disease and the preference degree of a disease for its related miRNA with the bias ratings. We constructed bias ratings for miRNAs and diseases by using agglomerative hierarchical clustering according to the three types of networks. Then, we implemented the bipartite network recommendation algorithm to predict the potential miRNA-disease associations by assigning transfer weights to resource allocation links between miRNAs and diseases based on the bias ratings. BNPMDA had been shown to improve the prediction accuracy in comparison with previous models according to the area under the receiver operating characteristics (ROC) curve (AUC) results of three typical cross validations. As a result, the AUCs of Global LOOCV, Local LOOCV and 5-fold cross validation obtained by implementing BNPMDA were 0.9028, 0.8380 and 0.8980 ± 0.0013, respectively. We further implemented two types of case studies on several important human complex diseases to confirm the effectiveness of BNPMDA. In conclusion, BNPMDA could effectively predict the potential miRNA-disease associations at a high accuracy level.
Availability and implementation
BNPMDA is available via http://www.escience.cn/system/file?fileId=99559.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods are expensive and time-consuming. Therefore, the computational methods to predict potential miRNA-disease associations have been paid increasing attention.MotivationA large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods are expensive and time-consuming. Therefore, the computational methods to predict potential miRNA-disease associations have been paid increasing attention.In this paper, we proposed a novel computational model of Bipartite Network Projection for MiRNA-Disease Association prediction (BNPMDA) based on the known miRNA-disease associations, integrated miRNA similarity and integrated disease similarity. We firstly described the preference degree of a miRNA for its related disease and the preference degree of a disease for its related miRNA with the bias ratings. We constructed bias ratings for miRNAs and diseases by using agglomerative hierarchical clustering according to the three types of networks. Then, we implemented the bipartite network recommendation algorithm to predict the potential miRNA-disease associations by assigning transfer weights to resource allocation links between miRNAs and diseases based on the bias ratings. BNPMDA had been shown to improve the prediction accuracy in comparison with previous models according to the area under the receiver operating characteristics (ROC) curve (AUC) results of three typical cross validations. As a result, the AUCs of Global LOOCV, Local LOOCV and 5-fold cross validation obtained by implementing BNPMDA were 0.9028, 0.8380 and 0.8980 ± 0.0013, respectively. We further implemented two types of case studies on several important human complex diseases to confirm the effectiveness of BNPMDA. In conclusion, BNPMDA could effectively predict the potential miRNA-disease associations at a high accuracy level.ResultsIn this paper, we proposed a novel computational model of Bipartite Network Projection for MiRNA-Disease Association prediction (BNPMDA) based on the known miRNA-disease associations, integrated miRNA similarity and integrated disease similarity. We firstly described the preference degree of a miRNA for its related disease and the preference degree of a disease for its related miRNA with the bias ratings. We constructed bias ratings for miRNAs and diseases by using agglomerative hierarchical clustering according to the three types of networks. Then, we implemented the bipartite network recommendation algorithm to predict the potential miRNA-disease associations by assigning transfer weights to resource allocation links between miRNAs and diseases based on the bias ratings. BNPMDA had been shown to improve the prediction accuracy in comparison with previous models according to the area under the receiver operating characteristics (ROC) curve (AUC) results of three typical cross validations. As a result, the AUCs of Global LOOCV, Local LOOCV and 5-fold cross validation obtained by implementing BNPMDA were 0.9028, 0.8380 and 0.8980 ± 0.0013, respectively. We further implemented two types of case studies on several important human complex diseases to confirm the effectiveness of BNPMDA. In conclusion, BNPMDA could effectively predict the potential miRNA-disease associations at a high accuracy level.BNPMDA is available via http://www.escience.cn/system/file?fileId=99559.Availability and implementationBNPMDA is available via http://www.escience.cn/system/file?fileId=99559.Supplementary data are available at Bioinformatics online.Supplementary informationSupplementary data are available at Bioinformatics online. A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods are expensive and time-consuming. Therefore, the computational methods to predict potential miRNA-disease associations have been paid increasing attention. In this paper, we proposed a novel computational model of Bipartite Network Projection for MiRNA-Disease Association prediction (BNPMDA) based on the known miRNA-disease associations, integrated miRNA similarity and integrated disease similarity. We firstly described the preference degree of a miRNA for its related disease and the preference degree of a disease for its related miRNA with the bias ratings. We constructed bias ratings for miRNAs and diseases by using agglomerative hierarchical clustering according to the three types of networks. Then, we implemented the bipartite network recommendation algorithm to predict the potential miRNA-disease associations by assigning transfer weights to resource allocation links between miRNAs and diseases based on the bias ratings. BNPMDA had been shown to improve the prediction accuracy in comparison with previous models according to the area under the receiver operating characteristics (ROC) curve (AUC) results of three typical cross validations. As a result, the AUCs of Global LOOCV, Local LOOCV and 5-fold cross validation obtained by implementing BNPMDA were 0.9028, 0.8380 and 0.8980 ± 0.0013, respectively. We further implemented two types of case studies on several important human complex diseases to confirm the effectiveness of BNPMDA. In conclusion, BNPMDA could effectively predict the potential miRNA-disease associations at a high accuracy level. BNPMDA is available via http://www.escience.cn/system/file?fileId=99559. Supplementary data are available at Bioinformatics online. Abstract Motivation A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods are expensive and time-consuming. Therefore, the computational methods to predict potential miRNA-disease associations have been paid increasing attention. Results In this paper, we proposed a novel computational model of Bipartite Network Projection for MiRNA-Disease Association prediction (BNPMDA) based on the known miRNA-disease associations, integrated miRNA similarity and integrated disease similarity. We firstly described the preference degree of a miRNA for its related disease and the preference degree of a disease for its related miRNA with the bias ratings. We constructed bias ratings for miRNAs and diseases by using agglomerative hierarchical clustering according to the three types of networks. Then, we implemented the bipartite network recommendation algorithm to predict the potential miRNA-disease associations by assigning transfer weights to resource allocation links between miRNAs and diseases based on the bias ratings. BNPMDA had been shown to improve the prediction accuracy in comparison with previous models according to the area under the receiver operating characteristics (ROC) curve (AUC) results of three typical cross validations. As a result, the AUCs of Global LOOCV, Local LOOCV and 5-fold cross validation obtained by implementing BNPMDA were 0.9028, 0.8380 and 0.8980 ± 0.0013, respectively. We further implemented two types of case studies on several important human complex diseases to confirm the effectiveness of BNPMDA. In conclusion, BNPMDA could effectively predict the potential miRNA-disease associations at a high accuracy level. Availability and implementation BNPMDA is available via http://www.escience.cn/system/file?fileId=99559. Supplementary information Supplementary data are available at Bioinformatics online. |
Author | Zhao, Qi Xie, Di Wang, Lei You, Zhu-Hong Chen, Xing Liu, Hongsheng |
Author_xml | – sequence: 1 givenname: Xing surname: Chen fullname: Chen, Xing email: xingchen@amss.ac.cn organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 2 givenname: Di surname: Xie fullname: Xie, Di organization: School of Mathematics, Liaoning University, Shenyang, China – sequence: 3 givenname: Lei surname: Wang fullname: Wang, Lei organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 4 givenname: Qi surname: Zhao fullname: Zhao, Qi email: zhaoqi.shenyang@gmail.com organization: School of Mathematics, Liaoning University, Shenyang, China – sequence: 5 givenname: Zhu-Hong surname: You fullname: You, Zhu-Hong organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Ürümqi, China – sequence: 6 givenname: Hongsheng surname: Liu fullname: Liu, Hongsheng organization: Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning Province, Shenyang, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29701758$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkMtOwzAQRS1URKHwCaAs2QTs2HkYVm15SrQgBGvLccaSSxoH2xHi7wkNLGADqxlpzpnR3D00amwDCB0SfEIwp6elsabR1q1lMMqfluGdUrqFdgnLcJzglI_6nmZ5zApMx2jP-xXGKWGM7aBxwnNM8rTYRYvZ8mFxMT2LZqaVLpgA0RLCm3Uv0YOzK1DB2Cbq70QL87icxhfGg_QQTb23ysjNtHVQmQ24j7a1rD0cfNUJer66fJrfxHf317fz6V2sGM9CXECmclpphiHXusCEJ4RCoUmuSlJWTFe8LAvNNWS84hlRVKUqyzNJKl5IDnSCjoe9rbOvHfgg1sYrqGvZgO28SDBNWL814T169IV25Roq0Tqzlu5dfEfQA-cDoJz13oEWyoTNY8FJUwuCxWfg4mfgYgi8t9Nf9veBvzw8eLZr_6l8AIRnng4 |
CitedBy_id | crossref_primary_10_3390_cells8091040 crossref_primary_10_1186_s12859_020_3426_9 crossref_primary_10_1039_C9RA05554A crossref_primary_10_1186_s12920_019_0622_4 crossref_primary_10_1093_bib_bbac340 crossref_primary_10_3389_fbioe_2020_00330 crossref_primary_10_3892_mmr_2019_10044 crossref_primary_10_1038_s41598_018_35086_z crossref_primary_10_3389_fgene_2021_720327 crossref_primary_10_1016_j_ymthe_2021_01_003 crossref_primary_10_3390_biology11071003 crossref_primary_10_3390_ijms20040919 crossref_primary_10_1016_j_isci_2022_105299 crossref_primary_10_1109_TCBB_2021_3067338 crossref_primary_10_3390_molecules24173099 crossref_primary_10_1016_j_ygeno_2019_05_021 crossref_primary_10_3892_ol_2019_10495 crossref_primary_10_1016_j_ygeno_2019_08_001 crossref_primary_10_1093_bib_bbac571 crossref_primary_10_3892_ol_2019_10707 crossref_primary_10_1016_j_jbi_2019_103254 crossref_primary_10_1142_S0219720020500419 crossref_primary_10_1109_ACCESS_2020_2972068 crossref_primary_10_3389_fgene_2022_978975 crossref_primary_10_4155_fmc_2018_0507 crossref_primary_10_1016_j_ygeno_2021_02_002 crossref_primary_10_1093_bib_bbaa028 crossref_primary_10_1093_bib_bbz091 crossref_primary_10_1038_s41598_021_00677_w crossref_primary_10_3390_molecules27144371 crossref_primary_10_1186_s12885_024_12420_5 crossref_primary_10_3389_fmicb_2018_02571 crossref_primary_10_3389_fgene_2021_727744 crossref_primary_10_3389_fgene_2019_01357 crossref_primary_10_3390_ijms22168505 crossref_primary_10_3390_biom12010064 crossref_primary_10_3389_fgene_2019_00020 crossref_primary_10_3389_fgene_2019_00385 crossref_primary_10_1007_s11390_021_0740_2 crossref_primary_10_1093_bib_bbad212 crossref_primary_10_1093_bib_bbaa061 crossref_primary_10_1016_j_neucom_2020_09_032 crossref_primary_10_3389_fmicb_2019_00232 crossref_primary_10_1049_iet_syb_2019_0025 crossref_primary_10_1016_j_mbs_2018_10_004 crossref_primary_10_1093_bib_bbac358 crossref_primary_10_1016_j_knosys_2019_105261 crossref_primary_10_1093_bib_bbac478 crossref_primary_10_1109_JBHI_2019_2937827 crossref_primary_10_1016_j_compbiomed_2019_05_014 crossref_primary_10_1109_TCBB_2019_2934958 crossref_primary_10_3389_fmicb_2018_02560 crossref_primary_10_3389_fmicb_2018_02440 crossref_primary_10_1186_s12911_021_01616_5 crossref_primary_10_1016_j_omtn_2018_12_002 crossref_primary_10_1186_s12859_019_2956_5 crossref_primary_10_1016_j_ygeno_2020_08_024 crossref_primary_10_3389_fgene_2019_00935 crossref_primary_10_1016_j_csbj_2020_08_023 crossref_primary_10_1093_bib_bbac596 crossref_primary_10_1080_15476286_2019_1694732 crossref_primary_10_3389_fgene_2019_01106 crossref_primary_10_1093_nar_gkz328 crossref_primary_10_1109_TCBB_2021_3127017 crossref_primary_10_1016_j_knosys_2020_106718 crossref_primary_10_3389_fphar_2020_01319 crossref_primary_10_1016_j_ygeno_2019_09_018 crossref_primary_10_1093_bib_bbac104 crossref_primary_10_1109_ACCESS_2020_2972283 crossref_primary_10_3390_biology11050777 crossref_primary_10_3390_cells8090977 crossref_primary_10_1166_jbt_2022_3115 crossref_primary_10_3390_ijms20153648 crossref_primary_10_3390_cells8080866 crossref_primary_10_1080_15476286_2018_1521210 crossref_primary_10_1038_s41598_019_41552_z crossref_primary_10_1093_bioinformatics_btaa670 crossref_primary_10_1093_bib_bbab571 crossref_primary_10_1111_jcmm_18553 crossref_primary_10_1371_journal_pcbi_1007209 crossref_primary_10_1007_s12539_023_00602_x crossref_primary_10_1038_s41598_018_36297_0 crossref_primary_10_1109_JBHI_2024_3397003 crossref_primary_10_1016_j_biosystems_2020_104292 crossref_primary_10_1039_C9RA11043G crossref_primary_10_3389_fgene_2018_00303 crossref_primary_10_3389_fcell_2021_774370 crossref_primary_10_3389_fgene_2019_00090 crossref_primary_10_1007_s12539_022_00509_z crossref_primary_10_3892_ijo_2018_4576 crossref_primary_10_3389_fmicb_2019_00291 crossref_primary_10_3389_fgene_2021_754425 crossref_primary_10_3389_fgene_2019_00751 crossref_primary_10_3389_fgene_2022_1010089 crossref_primary_10_1093_bioinformatics_btz965 crossref_primary_10_1093_bib_bbaa353 crossref_primary_10_1109_ACCESS_2019_2894225 crossref_primary_10_1016_j_omtn_2018_09_020 crossref_primary_10_1016_j_compbiomed_2021_104706 crossref_primary_10_1093_bib_bbac407 crossref_primary_10_3389_fmicb_2019_00827 crossref_primary_10_3390_ijms20061284 crossref_primary_10_3389_fmicb_2019_00826 crossref_primary_10_3390_genes13061021 crossref_primary_10_1089_cmb_2024_0720 crossref_primary_10_31590_ejosat_980257 crossref_primary_10_1016_j_patcog_2020_107385 crossref_primary_10_1038_s41598_019_41553_y crossref_primary_10_1093_bib_bbaa022 crossref_primary_10_2174_0929866526666190723114142 crossref_primary_10_1093_bib_bbaa140 crossref_primary_10_3389_fmicb_2024_1353278 crossref_primary_10_1016_j_ymeth_2020_08_004 crossref_primary_10_1016_j_omtn_2019_07_022 crossref_primary_10_1016_j_physa_2020_124765 crossref_primary_10_1371_journal_pcbi_1009655 crossref_primary_10_3934_mbe_2024212 crossref_primary_10_1039_C9RA06133A crossref_primary_10_1109_TCBB_2022_3191972 crossref_primary_10_3390_ijms20020421 crossref_primary_10_1109_ACCESS_2021_3084148 crossref_primary_10_3389_fgene_2019_01147 crossref_primary_10_3389_fphar_2018_01152 crossref_primary_10_1016_j_ipm_2021_102494 crossref_primary_10_1186_s12859_019_3290_7 crossref_primary_10_1186_s12859_020_03906_7 crossref_primary_10_1093_bib_bbab464 crossref_primary_10_1186_s12859_019_2640_9 crossref_primary_10_1016_j_compbiolchem_2020_107200 crossref_primary_10_1016_j_jbi_2019_103358 crossref_primary_10_3390_biomedicines13030536 crossref_primary_10_1093_bfgp_elad040 crossref_primary_10_1038_s41598_021_03238_3 crossref_primary_10_3389_fmed_2022_1015278 crossref_primary_10_1093_bib_bbac066 crossref_primary_10_3389_fgene_2022_828575 crossref_primary_10_3390_biomedicines13010136 crossref_primary_10_29137_umagd_1217754 crossref_primary_10_1038_s41598_018_34604_3 crossref_primary_10_1186_s12859_019_2985_0 crossref_primary_10_1109_TCBB_2021_3138339 crossref_primary_10_1109_TCBB_2019_2933205 crossref_primary_10_1093_bib_bbac292 crossref_primary_10_1007_s12257_020_0049_y crossref_primary_10_1186_s12864_024_10729_w crossref_primary_10_1109_TCBB_2019_2957094 crossref_primary_10_3389_fmicb_2018_02174 crossref_primary_10_1109_ACCESS_2019_2958055 crossref_primary_10_1186_s12859_020_3409_x crossref_primary_10_1016_j_compbiomed_2022_106069 crossref_primary_10_3389_fmicb_2022_995323 crossref_primary_10_2174_0929866526666190410124110 crossref_primary_10_3389_fgene_2018_00576 crossref_primary_10_1007_s11704_023_2490_5 crossref_primary_10_1016_j_isci_2019_09_013 crossref_primary_10_1038_s41598_020_65633_6 crossref_primary_10_3389_fmicb_2019_00507 crossref_primary_10_1007_s10238_024_01512_y crossref_primary_10_1016_j_omtn_2018_10_005 crossref_primary_10_3389_fmicb_2022_1040252 crossref_primary_10_1186_s12911_020_01320_w crossref_primary_10_1109_TVCG_2021_3114765 crossref_primary_10_3389_fpls_2018_01685 crossref_primary_10_2174_0929866526666191028162302 crossref_primary_10_1093_bib_bbab302 crossref_primary_10_1371_journal_pcbi_1011927 crossref_primary_10_3389_fmicb_2022_888414 crossref_primary_10_1039_C9MO00162J crossref_primary_10_1093_bib_bbz120 crossref_primary_10_1186_s13059_019_1811_3 crossref_primary_10_1016_j_ymeth_2021_10_006 crossref_primary_10_1109_ACCESS_2020_2990533 crossref_primary_10_1021_acs_jcim_9b00129 crossref_primary_10_1109_JBHI_2021_3089162 crossref_primary_10_3389_fgene_2019_00099 crossref_primary_10_2174_0929866526666191025104043 crossref_primary_10_1109_TCBB_2024_3415058 crossref_primary_10_1371_journal_pcbi_1007540 crossref_primary_10_1016_j_future_2024_05_055 crossref_primary_10_1109_TNB_2019_2922214 crossref_primary_10_3389_fbioe_2020_00040 crossref_primary_10_3390_info13030108 crossref_primary_10_1186_s12859_020_03799_6 crossref_primary_10_1186_s12967_018_1722_1 crossref_primary_10_1002_cnm_3809 crossref_primary_10_1186_s12967_019_2009_x crossref_primary_10_1016_j_artmed_2021_102115 crossref_primary_10_1109_TCBB_2018_2872574 crossref_primary_10_1109_TCBB_2018_2883041 crossref_primary_10_1186_s12859_023_05308_x crossref_primary_10_1016_j_omtn_2019_09_019 crossref_primary_10_1109_TCBB_2024_3351752 crossref_primary_10_3390_ijms20010110 crossref_primary_10_2174_0929866527666191227141713 crossref_primary_10_32604_biocell_2022_019613 crossref_primary_10_1038_s41598_022_21243_y crossref_primary_10_3389_fgene_2020_00389 crossref_primary_10_1007_s12539_021_00458_z crossref_primary_10_1093_bib_bbad227 crossref_primary_10_3892_mmr_2018_9769 crossref_primary_10_1021_acs_molpharmaceut_9b00384 crossref_primary_10_1038_s41598_020_63735_9 crossref_primary_10_1016_j_compbiolchem_2021_107566 crossref_primary_10_1093_bib_bbab165 crossref_primary_10_1093_bioinformatics_btac100 crossref_primary_10_1016_j_sigpro_2021_108312 crossref_primary_10_3390_ncrna10010009 crossref_primary_10_1016_j_ymeth_2023_02_003 crossref_primary_10_1038_s41598_018_36656_x crossref_primary_10_1016_j_knosys_2019_104963 crossref_primary_10_1155_2019_7614850 crossref_primary_10_2174_1381612826666201124112710 crossref_primary_10_3390_genes10090685 crossref_primary_10_2174_1566523223666230419101405 crossref_primary_10_1371_journal_pone_0253136 crossref_primary_10_1155_2021_9678747 crossref_primary_10_1109_TCBB_2020_3027444 crossref_primary_10_1186_s12864_024_11022_6 crossref_primary_10_3389_fgene_2019_00343 crossref_primary_10_1016_j_inffus_2024_102894 crossref_primary_10_1016_j_compbiolchem_2019_107088 crossref_primary_10_1186_s12859_021_04231_3 crossref_primary_10_1089_cmb_2021_0149 crossref_primary_10_1109_TCBB_2020_2994971 crossref_primary_10_1371_journal_pone_0252971 crossref_primary_10_3390_genes10020126 crossref_primary_10_1142_S0219720024500185 crossref_primary_10_1016_j_eswa_2023_122425 crossref_primary_10_1093_bib_bbac159 crossref_primary_10_1016_j_jbi_2019_103180 crossref_primary_10_1109_TCBB_2020_3037331 crossref_primary_10_1186_s12859_022_04796_7 crossref_primary_10_1155_2021_6652948 crossref_primary_10_1093_bib_bbac390 crossref_primary_10_3389_fmicb_2019_00676 crossref_primary_10_3892_mmr_2019_10336 crossref_primary_10_1093_bib_bbac156 crossref_primary_10_1186_s12859_019_3063_3 crossref_primary_10_1093_bib_bbac155 crossref_primary_10_1093_bib_bbac397 crossref_primary_10_1021_acs_jcim_3c01238 crossref_primary_10_2174_1389202920666191023090215 crossref_primary_10_1007_s12539_021_00469_w crossref_primary_10_1371_journal_pone_0225380 crossref_primary_10_1016_j_omtn_2019_04_010 crossref_primary_10_1186_s12967_019_2063_4 crossref_primary_10_3389_fgene_2018_00239 crossref_primary_10_3389_fmicb_2019_00684 crossref_primary_10_2174_1574893614666191203155511 crossref_primary_10_1080_15476286_2019_1570811 crossref_primary_10_1186_s12859_022_04978_3 crossref_primary_10_3390_genes13050764 |
Cites_doi | 10.1038/35000501 10.1186/1755-8417-2-7 10.1093/carcin/bgr246 10.1080/01621459.1963.10500845 10.1371/journal.pone.0070204 10.1103/PhysRevE.76.046115 10.18632/oncotarget.11251 10.1016/j.ajpath.2012.01.014 10.1038/srep05501 10.1126/science.1113329 10.1111/1759-7714.12322 10.1111/j.1349-7006.2007.00618.x 10.1093/nar/gkt1023 10.2174/2211536603666140522003539 10.1186/1752-0509-7-101 10.1039/c2mb25180a 10.1016/j.ymeth.2015.04.036 10.1039/C4MB00353E 10.1186/1758-907X-1-6 10.1093/bioinformatics/btq241 10.1038/srep13877 10.1158/1535-7163.MCT-11-0055 10.1101/gad.290023.116 10.1038/bjc.2012.251 10.1056/NEJMra035010 10.4103/0973-1482.77072 10.1182/blood-2011-06-361972 10.1038/srep21106 10.1016/0092-8674(93)90530-4 10.1093/carcin/bgs030 10.1186/1752-0509-4-S1-S2 10.1002/1097-0142(197512)36:6<2334::AID-CNCR2820360609>3.0.CO;2-G 10.1007/s10269-014-2475-y 10.1093/bioinformatics/btt677 10.1371/journal.pone.0047067 10.1080/15287394.2012.699856 10.1371/journal.pone.0003420 10.1158/0008-5472.CAN-06-4418 10.1016/j.cell.2009.01.002 10.3390/ijms17010021 10.1093/nar/gkr770 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018 |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018 |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1093/bioinformatics/bty333 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1460-2059 1367-4811 |
EndPage | 3186 |
ExternalDocumentID | 29701758 10_1093_bioinformatics_bty333 10.1093/bioinformatics/bty333 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Applied Basic Research Project sequence: 0 grantid: F16205151 – fundername: Large-scale Equipment Shared Services sequence: 0 grantid: F15165400 – fundername: Education Department of Liaoning Province sequence: 0 grantid: LT2015011 – fundername: National Natural Science Foundation of China sequence: 0 grantid: 31570160 funderid: 10.13039/501100001809 – fundername: Liaoning province sequence: 0 grantid: 20170520217 – fundername: National Natural Science Foundation of China sequence: 0 grantid: 61772531; 11631014 funderid: 10.13039/501100001809 – fundername: Important Scientific and Technical Achievements Transformation Project sequence: 0 grantid: Z17-5-078 – fundername: Doctor Startup Foundation sequence: 0 |
GroupedDBID | -~X .2P 5GY AAMVS ABPTD ACGFS ADZXQ ALMA_UNASSIGNED_HOLDINGS BCRHZ F5P HW0 Q5Y RD5 ROX ROZ TLC TN5 TOX WH7 --- -E4 .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. R44 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM M49 NPM 7X8 |
ID | FETCH-LOGICAL-c496t-8e6c73df40e7ff8019213e8f17cb1bd4fd9bb8f9fe69d961c3c5c676a1d98a9e3 |
IEDL.DBID | TOX |
ISSN | 1367-4803 1367-4811 |
IngestDate | Fri Jul 11 06:47:49 EDT 2025 Thu Apr 03 07:05:15 EDT 2025 Tue Jul 01 03:27:25 EDT 2025 Thu Apr 24 23:03:26 EDT 2025 Fri Dec 06 10:16:17 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-8e6c73df40e7ff8019213e8f17cb1bd4fd9bb8f9fe69d961c3c5c676a1d98a9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/bioinformatics/article-pdf/34/18/3178/25731893/bty333.pdf |
PMID | 29701758 |
PQID | 2032419229 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2032419229 pubmed_primary_29701758 crossref_citationtrail_10_1093_bioinformatics_bty333 crossref_primary_10_1093_bioinformatics_bty333 oup_primary_10_1093_bioinformatics_bty333 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-15 |
PublicationDateYYYYMMDD | 2018-09-15 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – sequence: 0 name: Oxford University Press |
References | Meola (2023012704190620000_bty333-B27) 2009; 2 Li (2023012704190620000_bty333-B21) 2011; 39 Joe (2023012704190620000_bty333-B16) 1963; 58 Lee (2023012704190620000_bty333-B19) 1993; 89 Chen (2023012704190620000_bty333-B8) 2016; 7 Bandyopadhyay (2023012704190620000_bty333-B3) 2010; 1 Akao (2023012704190620000_bty333-B1) 2007; 98 Chen (2023012704190620000_bty333-B7) 2015; 4 Wong (2023012704190620000_bty333-B37) 2015; 17 Zeng (2023012704190620000_bty333-B42) 2016; 7 Xuan (2023012704190620000_bty333-B40) 2013; 8 Shi (2023012704190620000_bty333-B31) 2013; 7 Hu (2023012704190620000_bty333-B14) 2012; 33 Chen (2023012704190620000_bty333-B10) 2016; 6 Bartel (2023012704190620000_bty333-B4) 2009; 136 Stahlhut Espinosa (2023012704190620000_bty333-B33) 2006; 79 Jiang (2023012704190620000_bty333-B15) 2010; 4 Enzinger (2023012704190620000_bty333-B11) 2003; 349 Chen (2023012704190620000_bty333-B9) 2016; 7 Wightman (2023012704190620000_bty333-B36) 1993; 75 Ribeiro (2023012704190620000_bty333-B29) 2014; 3 Kalinowski (2023012704190620000_bty333-B18) 2012; 7 Xu (2023012704190620000_bty333-B39) 2011; 10 Zhang (2023012704190620000_bty333-B43) 2012; 107 Gokhale (2023012704190620000_bty333-B12) 2010; 6 Schwartz (2023012704190620000_bty333-B30) 1975; 36 Von (2023012704190620000_bty333-B34) 2012; 180 Liu (2023012704190620000_bty333-B23) 2012; 75 Leich (2023012704190620000_bty333-B20) 2011; 118 Shi (2023012704190620000_bty333-B32) 2015; 83 Yu (2023012704190620000_bty333-B41) 2012; 33 Lu (2023012704190620000_bty333-B24) 2008; 3 Chen (2023012704190620000_bty333-B6) 2015; 5 Alizadeh (2023012704190620000_bty333-B2) 2000; 403 Jopling (2023012704190620000_bty333-B17) 2005; 309 Mørk (2023012704190620000_bty333-B25) 2014; 30 Li (2023012704190620000_bty333-B22) 2014; 42 Zhou (2023012704190620000_bty333-B44) 2007; 76 Guo (2023012704190620000_bty333-B13) 2008; 68 Pasquinelli (2023012704190620000_bty333-B28) 2016; 30 Xu (2023012704190620000_bty333-B38) 2014; 10 Chen (2023012704190620000_bty333-B5) 2012; 8 Manfredi (2023012704190620000_bty333-B26) 2014; 16 Wang (2023012704190620000_bty333-B35) 2010; 26 |
References_xml | – volume: 403 start-page: 503 year: 2000 ident: 2023012704190620000_bty333-B2 article-title: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling publication-title: Nature doi: 10.1038/35000501 – volume: 2 start-page: 7. year: 2009 ident: 2023012704190620000_bty333-B27 article-title: microRNAs and genetic diseases publication-title: PathoGenetics doi: 10.1186/1755-8417-2-7 – volume: 33 start-page: 68 year: 2012 ident: 2023012704190620000_bty333-B41 article-title: MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells publication-title: Carcinogenesis doi: 10.1093/carcin/bgr246 – volume: 58 start-page: 236 year: 1963 ident: 2023012704190620000_bty333-B16 article-title: Hierarchical grouping to optimize an objective function publication-title: J. Am. Stat. Assoc doi: 10.1080/01621459.1963.10500845 – volume: 8 start-page: e70204. year: 2013 ident: 2023012704190620000_bty333-B40 article-title: Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors publication-title: PLoS One doi: 10.1371/journal.pone.0070204 – volume: 76 start-page: 046115. year: 2007 ident: 2023012704190620000_bty333-B44 article-title: Bipartite network projection and personal recommendation publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys doi: 10.1103/PhysRevE.76.046115 – volume: 7 start-page: 65257 year: 2016 ident: 2023012704190620000_bty333-B8 article-title: HGIMDA: heterogeneous graph inference for miRNA–disease association prediction publication-title: Oncotarget doi: 10.18632/oncotarget.11251 – volume: 180 start-page: 1787 year: 2012 ident: 2023012704190620000_bty333-B34 article-title: MicroRNA 15a, inversely correlated to PKCα, is a potential marker to differentiate between benign and malignant renal tumors in biopsy and urine samples publication-title: Am. J. Pathol doi: 10.1016/j.ajpath.2012.01.014 – volume: 4 start-page: 5501 year: 2015 ident: 2023012704190620000_bty333-B7 article-title: Semi-supervised learning for potential human microRNA–disease associations inference publication-title: Sci. Rep doi: 10.1038/srep05501 – volume: 309 start-page: 1577 year: 2005 ident: 2023012704190620000_bty333-B17 article-title: Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA publication-title: Science doi: 10.1126/science.1113329 – volume: 7 start-page: 232 year: 2016 ident: 2023012704190620000_bty333-B42 article-title: Esophageal cancer statistics in China, 2011: estimates based on 177 cancer registries publication-title: Thorac. Cancer doi: 10.1111/1759-7714.12322 – volume: 98 start-page: 1914 year: 2007 ident: 2023012704190620000_bty333-B1 article-title: Downregulation of microRNAs-143 and -145 in B-cell malignancies publication-title: Cancer Sci doi: 10.1111/j.1349-7006.2007.00618.x – volume: 42 start-page: D1070 year: 2014 ident: 2023012704190620000_bty333-B22 article-title: HMDD v2.0: a database for experimentally supported human microRNA and disease associations publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1023 – volume: 3 start-page: 45 year: 2014 ident: 2023012704190620000_bty333-B29 article-title: MicroRNAs: modulators of cell identity, and their applications in tissue engineering publication-title: Microrna doi: 10.2174/2211536603666140522003539 – volume: 7 start-page: 101. year: 2013 ident: 2023012704190620000_bty333-B31 article-title: Walking the interactome to identify human miRNA–disease associations through the functional link between miRNA targets and disease genes publication-title: BMC Syst. Biol doi: 10.1186/1752-0509-7-101 – volume: 79 start-page: 131 year: 2006 ident: 2023012704190620000_bty333-B33 article-title: The role of microRNAs in cancer publication-title: Yale J. Biol. Med – volume: 8 start-page: 2792 year: 2012 ident: 2023012704190620000_bty333-B5 article-title: RWRMDA: predicting novel human microRNA–disease associations publication-title: Mol. Biosyst doi: 10.1039/c2mb25180a – volume: 83 start-page: 98 year: 2015 ident: 2023012704190620000_bty333-B32 article-title: Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering publication-title: Methods doi: 10.1016/j.ymeth.2015.04.036 – volume: 10 start-page: 2800 year: 2014 ident: 2023012704190620000_bty333-B38 article-title: Prioritizing candidate disease miRNAs by integrating phenotype associations of multiple diseases with matched miRNA and mRNA expression profiles publication-title: Mol. Biosyst doi: 10.1039/C4MB00353E – volume: 1 start-page: 6. year: 2010 ident: 2023012704190620000_bty333-B3 article-title: Development of the human cancer microRNA network publication-title: Silence doi: 10.1186/1758-907X-1-6 – volume: 26 start-page: 1644 year: 2010 ident: 2023012704190620000_bty333-B35 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq241 – volume: 5 start-page: 13877 year: 2015 ident: 2023012704190620000_bty333-B6 article-title: RBMMMDA: predicting multiple types of disease-microRNA associations publication-title: Sci. Rep doi: 10.1038/srep13877 – volume: 10 start-page: 1857 year: 2011 ident: 2023012704190620000_bty333-B39 article-title: Prioritizing candidate disease miRNAs by topological features in the miRNA target-dysregulated network: case study of prostate cancer publication-title: Mol. Cancer Ther doi: 10.1158/1535-7163.MCT-11-0055 – volume: 30 start-page: 2019 year: 2016 ident: 2023012704190620000_bty333-B28 article-title: A sense-able microRNA publication-title: Genes Dev doi: 10.1101/gad.290023.116 – volume: 107 start-page: 352 year: 2012 ident: 2023012704190620000_bty333-B43 article-title: miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer publication-title: Br. J. Cancer doi: 10.1038/bjc.2012.251 – volume: 349 start-page: 2241 year: 2003 ident: 2023012704190620000_bty333-B11 article-title: Esophageal cancer publication-title: N. Engl. J. Med doi: 10.1056/NEJMra035010 – volume: 6 start-page: 521 year: 2010 ident: 2023012704190620000_bty333-B12 article-title: Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway publication-title: J. Cancer Res. Therap doi: 10.4103/0973-1482.77072 – volume: 118 start-page: 5550 year: 2011 ident: 2023012704190620000_bty333-B20 article-title: MicroRNA profiles of t(14; 18)–negative follicular lymphoma support a late germinal center B-cell phenotype publication-title: Blood doi: 10.1182/blood-2011-06-361972 – volume: 6 start-page: 21106 year: 2016 ident: 2023012704190620000_bty333-B10 article-title: WBSMDA: within and between score for MiRNA–Disease Association prediction publication-title: Sci. Rep doi: 10.1038/srep21106 – volume: 75 start-page: 855 year: 1993 ident: 2023012704190620000_bty333-B36 article-title: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans publication-title: Cell doi: 10.1016/0092-8674(93)90530-4 – volume: 33 start-page: 828 year: 2012 ident: 2023012704190620000_bty333-B14 article-title: Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls publication-title: Carcinogenesis doi: 10.1093/carcin/bgs030 – volume: 4 start-page: S2. year: 2010 ident: 2023012704190620000_bty333-B15 article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network publication-title: BMC Syst. Biol doi: 10.1186/1752-0509-4-S1-S2 – volume: 36 start-page: 2334 year: 1975 ident: 2023012704190620000_bty333-B30 article-title: Enzymes in colon cancer. General information publication-title: Cancer doi: 10.1002/1097-0142(197512)36:6<2334::AID-CNCR2820360609>3.0.CO;2-G – volume: 16 start-page: S484 year: 2014 ident: 2023012704190620000_bty333-B26 article-title: Colon cancer: from mass screening to personalised treatment publication-title: Oncologie doi: 10.1007/s10269-014-2475-y – volume: 30 start-page: 392 year: 2014 ident: 2023012704190620000_bty333-B25 article-title: Protein-driven inference of miRNA–disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt677 – volume: 7 start-page: e47067 year: 2012 ident: 2023012704190620000_bty333-B18 article-title: Regulation of epidermal growth factor receptor signaling and erlotinib sensitivity in head and neck cancer cells by miR-7 publication-title: PloS One doi: 10.1371/journal.pone.0047067 – volume: 75 start-page: 1154 year: 2012 ident: 2023012704190620000_bty333-B23 article-title: Circulating miR-155 expression in plasma: a potential biomarker for early diagnosis of esophageal cancer in humans publication-title: J. Toxicol. Environ. Health A doi: 10.1080/15287394.2012.699856 – volume: 3 start-page: e3420. year: 2008 ident: 2023012704190620000_bty333-B24 article-title: An analysis of human MicroRNA and disease associations publication-title: PloS One doi: 10.1371/journal.pone.0003420 – volume: 89 start-page: 1828 year: 1993 ident: 2023012704190620000_bty333-B19 article-title: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 publication-title: Cell – volume: 7 start-page: 733 year: 2016 ident: 2023012704190620000_bty333-B9 article-title: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases publication-title: Bioinformatics – volume: 68 start-page: 26 year: 2008 ident: 2023012704190620000_bty333-B13 article-title: Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-4418 – volume: 136 start-page: 215 year: 2009 ident: 2023012704190620000_bty333-B4 article-title: MicroRNAs: target recognition and regulatory functions publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 17 start-page: 21. year: 2015 ident: 2023012704190620000_bty333-B37 article-title: Detection of interactions between proteins through rotation forest and local phase quantization descriptors publication-title: Int. J. Mol. Sci doi: 10.3390/ijms17010021 – volume: 39 start-page: e153 year: 2011 ident: 2023012704190620000_bty333-B21 article-title: Prioritizing human cancer microRNAs based on genes’ functional consistency between microRNA and cancer publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr770 |
SSID | ssj0051444 ssj0005056 |
Score | 2.6532176 |
Snippet | Abstract
Motivation
A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years.... A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3178 |
Title | BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29701758 https://www.proquest.com/docview/2032419229 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jIPgi3p03IvjiQ11zaZr4tjllCJ1DNthbadIEBrKN2T3s35s063SKqG8tNGk5X9Lzteec7wBwbb-RqcISBQJjFVCZ4yCzvCFAJrJ7TzKOyySapMe6Q_o0ikY1EFa1MF9D-II05Xi6EhF1wsVNWSwJcfKe1hE7sfzB8-gjpyN0yjD-xDIB6lvaOmVvHpKqfuenKTc800a12zfSWTqfx12ws2KNsOVh3gM1PdkHW76P5PIAJO1eP-m07mB7PHNLodCw59O7Yd__abHWh_ZJYDJ-6bWCjo_KwE_YwNnchWzc4SEYPj4M7rvBqk9CoKhgRcA1UzHJDQ11bAx3pA0RzQ2KlUQypyYXUnIjjGYiFwwpoiLFYpahXPBMaHIE6pPpRJ8AiLmRmGFkXRuh1nNnWuahQhbHmCumowaglY1StRIRd70sXlMfzCbppmlTb9oGuF0Pm3kVjd8G3FgA_nrtVQVTaveGC3hkEz1dvKWuO7yLcmPRAMcev_WUWMT2ZRTx03_c6QxsW75Upoug6BzUi_lCX1hOUsjLch2-Aw3h4lI |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BNPMDA%3A+Bipartite+Network+Projection+for+MiRNA-Disease+Association+prediction&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Chen%2C+Xing&rft.au=Xie%2C+Di&rft.au=Wang%2C+Lei&rft.au=Zhao%2C+Qi&rft.date=2018-09-15&rft.eissn=1367-4811&rft.volume=34&rft.issue=18&rft.spage=3178&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbty333&rft_id=info%3Apmid%2F29701758&rft.externalDocID=29701758 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |