BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction

Abstract Motivation A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods are expensive and time-consuming. Therefore, the computational methods to predict potential miRNA-disease ass...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 34; no. 18; pp. 3178 - 3186
Main Authors Chen, Xing, Xie, Di, Wang, Lei, Zhao, Qi, You, Zhu-Hong, Liu, Hongsheng
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.09.2018
Online AccessGet full text

Cover

Loading…
Abstract Abstract Motivation A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods are expensive and time-consuming. Therefore, the computational methods to predict potential miRNA-disease associations have been paid increasing attention. Results In this paper, we proposed a novel computational model of Bipartite Network Projection for MiRNA-Disease Association prediction (BNPMDA) based on the known miRNA-disease associations, integrated miRNA similarity and integrated disease similarity. We firstly described the preference degree of a miRNA for its related disease and the preference degree of a disease for its related miRNA with the bias ratings. We constructed bias ratings for miRNAs and diseases by using agglomerative hierarchical clustering according to the three types of networks. Then, we implemented the bipartite network recommendation algorithm to predict the potential miRNA-disease associations by assigning transfer weights to resource allocation links between miRNAs and diseases based on the bias ratings. BNPMDA had been shown to improve the prediction accuracy in comparison with previous models according to the area under the receiver operating characteristics (ROC) curve (AUC) results of three typical cross validations. As a result, the AUCs of Global LOOCV, Local LOOCV and 5-fold cross validation obtained by implementing BNPMDA were 0.9028, 0.8380 and 0.8980 ± 0.0013, respectively. We further implemented two types of case studies on several important human complex diseases to confirm the effectiveness of BNPMDA. In conclusion, BNPMDA could effectively predict the potential miRNA-disease associations at a high accuracy level. Availability and implementation BNPMDA is available via http://www.escience.cn/system/file?fileId=99559. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods are expensive and time-consuming. Therefore, the computational methods to predict potential miRNA-disease associations have been paid increasing attention.MotivationA large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods are expensive and time-consuming. Therefore, the computational methods to predict potential miRNA-disease associations have been paid increasing attention.In this paper, we proposed a novel computational model of Bipartite Network Projection for MiRNA-Disease Association prediction (BNPMDA) based on the known miRNA-disease associations, integrated miRNA similarity and integrated disease similarity. We firstly described the preference degree of a miRNA for its related disease and the preference degree of a disease for its related miRNA with the bias ratings. We constructed bias ratings for miRNAs and diseases by using agglomerative hierarchical clustering according to the three types of networks. Then, we implemented the bipartite network recommendation algorithm to predict the potential miRNA-disease associations by assigning transfer weights to resource allocation links between miRNAs and diseases based on the bias ratings. BNPMDA had been shown to improve the prediction accuracy in comparison with previous models according to the area under the receiver operating characteristics (ROC) curve (AUC) results of three typical cross validations. As a result, the AUCs of Global LOOCV, Local LOOCV and 5-fold cross validation obtained by implementing BNPMDA were 0.9028, 0.8380 and 0.8980 ± 0.0013, respectively. We further implemented two types of case studies on several important human complex diseases to confirm the effectiveness of BNPMDA. In conclusion, BNPMDA could effectively predict the potential miRNA-disease associations at a high accuracy level.ResultsIn this paper, we proposed a novel computational model of Bipartite Network Projection for MiRNA-Disease Association prediction (BNPMDA) based on the known miRNA-disease associations, integrated miRNA similarity and integrated disease similarity. We firstly described the preference degree of a miRNA for its related disease and the preference degree of a disease for its related miRNA with the bias ratings. We constructed bias ratings for miRNAs and diseases by using agglomerative hierarchical clustering according to the three types of networks. Then, we implemented the bipartite network recommendation algorithm to predict the potential miRNA-disease associations by assigning transfer weights to resource allocation links between miRNAs and diseases based on the bias ratings. BNPMDA had been shown to improve the prediction accuracy in comparison with previous models according to the area under the receiver operating characteristics (ROC) curve (AUC) results of three typical cross validations. As a result, the AUCs of Global LOOCV, Local LOOCV and 5-fold cross validation obtained by implementing BNPMDA were 0.9028, 0.8380 and 0.8980 ± 0.0013, respectively. We further implemented two types of case studies on several important human complex diseases to confirm the effectiveness of BNPMDA. In conclusion, BNPMDA could effectively predict the potential miRNA-disease associations at a high accuracy level.BNPMDA is available via http://www.escience.cn/system/file?fileId=99559.Availability and implementationBNPMDA is available via http://www.escience.cn/system/file?fileId=99559.Supplementary data are available at Bioinformatics online.Supplementary informationSupplementary data are available at Bioinformatics online.
A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods are expensive and time-consuming. Therefore, the computational methods to predict potential miRNA-disease associations have been paid increasing attention. In this paper, we proposed a novel computational model of Bipartite Network Projection for MiRNA-Disease Association prediction (BNPMDA) based on the known miRNA-disease associations, integrated miRNA similarity and integrated disease similarity. We firstly described the preference degree of a miRNA for its related disease and the preference degree of a disease for its related miRNA with the bias ratings. We constructed bias ratings for miRNAs and diseases by using agglomerative hierarchical clustering according to the three types of networks. Then, we implemented the bipartite network recommendation algorithm to predict the potential miRNA-disease associations by assigning transfer weights to resource allocation links between miRNAs and diseases based on the bias ratings. BNPMDA had been shown to improve the prediction accuracy in comparison with previous models according to the area under the receiver operating characteristics (ROC) curve (AUC) results of three typical cross validations. As a result, the AUCs of Global LOOCV, Local LOOCV and 5-fold cross validation obtained by implementing BNPMDA were 0.9028, 0.8380 and 0.8980 ± 0.0013, respectively. We further implemented two types of case studies on several important human complex diseases to confirm the effectiveness of BNPMDA. In conclusion, BNPMDA could effectively predict the potential miRNA-disease associations at a high accuracy level. BNPMDA is available via http://www.escience.cn/system/file?fileId=99559. Supplementary data are available at Bioinformatics online.
Abstract Motivation A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods are expensive and time-consuming. Therefore, the computational methods to predict potential miRNA-disease associations have been paid increasing attention. Results In this paper, we proposed a novel computational model of Bipartite Network Projection for MiRNA-Disease Association prediction (BNPMDA) based on the known miRNA-disease associations, integrated miRNA similarity and integrated disease similarity. We firstly described the preference degree of a miRNA for its related disease and the preference degree of a disease for its related miRNA with the bias ratings. We constructed bias ratings for miRNAs and diseases by using agglomerative hierarchical clustering according to the three types of networks. Then, we implemented the bipartite network recommendation algorithm to predict the potential miRNA-disease associations by assigning transfer weights to resource allocation links between miRNAs and diseases based on the bias ratings. BNPMDA had been shown to improve the prediction accuracy in comparison with previous models according to the area under the receiver operating characteristics (ROC) curve (AUC) results of three typical cross validations. As a result, the AUCs of Global LOOCV, Local LOOCV and 5-fold cross validation obtained by implementing BNPMDA were 0.9028, 0.8380 and 0.8980 ± 0.0013, respectively. We further implemented two types of case studies on several important human complex diseases to confirm the effectiveness of BNPMDA. In conclusion, BNPMDA could effectively predict the potential miRNA-disease associations at a high accuracy level. Availability and implementation BNPMDA is available via http://www.escience.cn/system/file?fileId=99559. Supplementary information Supplementary data are available at Bioinformatics online.
Author Zhao, Qi
Xie, Di
Wang, Lei
You, Zhu-Hong
Chen, Xing
Liu, Hongsheng
Author_xml – sequence: 1
  givenname: Xing
  surname: Chen
  fullname: Chen, Xing
  email: xingchen@amss.ac.cn
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 2
  givenname: Di
  surname: Xie
  fullname: Xie, Di
  organization: School of Mathematics, Liaoning University, Shenyang, China
– sequence: 3
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 4
  givenname: Qi
  surname: Zhao
  fullname: Zhao, Qi
  email: zhaoqi.shenyang@gmail.com
  organization: School of Mathematics, Liaoning University, Shenyang, China
– sequence: 5
  givenname: Zhu-Hong
  surname: You
  fullname: You, Zhu-Hong
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Ürümqi, China
– sequence: 6
  givenname: Hongsheng
  surname: Liu
  fullname: Liu, Hongsheng
  organization: Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning Province, Shenyang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29701758$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtOwzAQRS1URKHwCaAs2QTs2HkYVm15SrQgBGvLccaSSxoH2xHi7wkNLGADqxlpzpnR3D00amwDCB0SfEIwp6elsabR1q1lMMqfluGdUrqFdgnLcJzglI_6nmZ5zApMx2jP-xXGKWGM7aBxwnNM8rTYRYvZ8mFxMT2LZqaVLpgA0RLCm3Uv0YOzK1DB2Cbq70QL87icxhfGg_QQTb23ysjNtHVQmQ24j7a1rD0cfNUJer66fJrfxHf317fz6V2sGM9CXECmclpphiHXusCEJ4RCoUmuSlJWTFe8LAvNNWS84hlRVKUqyzNJKl5IDnSCjoe9rbOvHfgg1sYrqGvZgO28SDBNWL814T169IV25Roq0Tqzlu5dfEfQA-cDoJz13oEWyoTNY8FJUwuCxWfg4mfgYgi8t9Nf9veBvzw8eLZr_6l8AIRnng4
CitedBy_id crossref_primary_10_3390_cells8091040
crossref_primary_10_1186_s12859_020_3426_9
crossref_primary_10_1039_C9RA05554A
crossref_primary_10_1186_s12920_019_0622_4
crossref_primary_10_1093_bib_bbac340
crossref_primary_10_3389_fbioe_2020_00330
crossref_primary_10_3892_mmr_2019_10044
crossref_primary_10_1038_s41598_018_35086_z
crossref_primary_10_3389_fgene_2021_720327
crossref_primary_10_1016_j_ymthe_2021_01_003
crossref_primary_10_3390_biology11071003
crossref_primary_10_3390_ijms20040919
crossref_primary_10_1016_j_isci_2022_105299
crossref_primary_10_1109_TCBB_2021_3067338
crossref_primary_10_3390_molecules24173099
crossref_primary_10_1016_j_ygeno_2019_05_021
crossref_primary_10_3892_ol_2019_10495
crossref_primary_10_1016_j_ygeno_2019_08_001
crossref_primary_10_1093_bib_bbac571
crossref_primary_10_3892_ol_2019_10707
crossref_primary_10_1016_j_jbi_2019_103254
crossref_primary_10_1142_S0219720020500419
crossref_primary_10_1109_ACCESS_2020_2972068
crossref_primary_10_3389_fgene_2022_978975
crossref_primary_10_4155_fmc_2018_0507
crossref_primary_10_1016_j_ygeno_2021_02_002
crossref_primary_10_1093_bib_bbaa028
crossref_primary_10_1093_bib_bbz091
crossref_primary_10_1038_s41598_021_00677_w
crossref_primary_10_3390_molecules27144371
crossref_primary_10_1186_s12885_024_12420_5
crossref_primary_10_3389_fmicb_2018_02571
crossref_primary_10_3389_fgene_2021_727744
crossref_primary_10_3389_fgene_2019_01357
crossref_primary_10_3390_ijms22168505
crossref_primary_10_3390_biom12010064
crossref_primary_10_3389_fgene_2019_00020
crossref_primary_10_3389_fgene_2019_00385
crossref_primary_10_1007_s11390_021_0740_2
crossref_primary_10_1093_bib_bbad212
crossref_primary_10_1093_bib_bbaa061
crossref_primary_10_1016_j_neucom_2020_09_032
crossref_primary_10_3389_fmicb_2019_00232
crossref_primary_10_1049_iet_syb_2019_0025
crossref_primary_10_1016_j_mbs_2018_10_004
crossref_primary_10_1093_bib_bbac358
crossref_primary_10_1016_j_knosys_2019_105261
crossref_primary_10_1093_bib_bbac478
crossref_primary_10_1109_JBHI_2019_2937827
crossref_primary_10_1016_j_compbiomed_2019_05_014
crossref_primary_10_1109_TCBB_2019_2934958
crossref_primary_10_3389_fmicb_2018_02560
crossref_primary_10_3389_fmicb_2018_02440
crossref_primary_10_1186_s12911_021_01616_5
crossref_primary_10_1016_j_omtn_2018_12_002
crossref_primary_10_1186_s12859_019_2956_5
crossref_primary_10_1016_j_ygeno_2020_08_024
crossref_primary_10_3389_fgene_2019_00935
crossref_primary_10_1016_j_csbj_2020_08_023
crossref_primary_10_1093_bib_bbac596
crossref_primary_10_1080_15476286_2019_1694732
crossref_primary_10_3389_fgene_2019_01106
crossref_primary_10_1093_nar_gkz328
crossref_primary_10_1109_TCBB_2021_3127017
crossref_primary_10_1016_j_knosys_2020_106718
crossref_primary_10_3389_fphar_2020_01319
crossref_primary_10_1016_j_ygeno_2019_09_018
crossref_primary_10_1093_bib_bbac104
crossref_primary_10_1109_ACCESS_2020_2972283
crossref_primary_10_3390_biology11050777
crossref_primary_10_3390_cells8090977
crossref_primary_10_1166_jbt_2022_3115
crossref_primary_10_3390_ijms20153648
crossref_primary_10_3390_cells8080866
crossref_primary_10_1080_15476286_2018_1521210
crossref_primary_10_1038_s41598_019_41552_z
crossref_primary_10_1093_bioinformatics_btaa670
crossref_primary_10_1093_bib_bbab571
crossref_primary_10_1111_jcmm_18553
crossref_primary_10_1371_journal_pcbi_1007209
crossref_primary_10_1007_s12539_023_00602_x
crossref_primary_10_1038_s41598_018_36297_0
crossref_primary_10_1109_JBHI_2024_3397003
crossref_primary_10_1016_j_biosystems_2020_104292
crossref_primary_10_1039_C9RA11043G
crossref_primary_10_3389_fgene_2018_00303
crossref_primary_10_3389_fcell_2021_774370
crossref_primary_10_3389_fgene_2019_00090
crossref_primary_10_1007_s12539_022_00509_z
crossref_primary_10_3892_ijo_2018_4576
crossref_primary_10_3389_fmicb_2019_00291
crossref_primary_10_3389_fgene_2021_754425
crossref_primary_10_3389_fgene_2019_00751
crossref_primary_10_3389_fgene_2022_1010089
crossref_primary_10_1093_bioinformatics_btz965
crossref_primary_10_1093_bib_bbaa353
crossref_primary_10_1109_ACCESS_2019_2894225
crossref_primary_10_1016_j_omtn_2018_09_020
crossref_primary_10_1016_j_compbiomed_2021_104706
crossref_primary_10_1093_bib_bbac407
crossref_primary_10_3389_fmicb_2019_00827
crossref_primary_10_3390_ijms20061284
crossref_primary_10_3389_fmicb_2019_00826
crossref_primary_10_3390_genes13061021
crossref_primary_10_1089_cmb_2024_0720
crossref_primary_10_31590_ejosat_980257
crossref_primary_10_1016_j_patcog_2020_107385
crossref_primary_10_1038_s41598_019_41553_y
crossref_primary_10_1093_bib_bbaa022
crossref_primary_10_2174_0929866526666190723114142
crossref_primary_10_1093_bib_bbaa140
crossref_primary_10_3389_fmicb_2024_1353278
crossref_primary_10_1016_j_ymeth_2020_08_004
crossref_primary_10_1016_j_omtn_2019_07_022
crossref_primary_10_1016_j_physa_2020_124765
crossref_primary_10_1371_journal_pcbi_1009655
crossref_primary_10_3934_mbe_2024212
crossref_primary_10_1039_C9RA06133A
crossref_primary_10_1109_TCBB_2022_3191972
crossref_primary_10_3390_ijms20020421
crossref_primary_10_1109_ACCESS_2021_3084148
crossref_primary_10_3389_fgene_2019_01147
crossref_primary_10_3389_fphar_2018_01152
crossref_primary_10_1016_j_ipm_2021_102494
crossref_primary_10_1186_s12859_019_3290_7
crossref_primary_10_1186_s12859_020_03906_7
crossref_primary_10_1093_bib_bbab464
crossref_primary_10_1186_s12859_019_2640_9
crossref_primary_10_1016_j_compbiolchem_2020_107200
crossref_primary_10_1016_j_jbi_2019_103358
crossref_primary_10_3390_biomedicines13030536
crossref_primary_10_1093_bfgp_elad040
crossref_primary_10_1038_s41598_021_03238_3
crossref_primary_10_3389_fmed_2022_1015278
crossref_primary_10_1093_bib_bbac066
crossref_primary_10_3389_fgene_2022_828575
crossref_primary_10_3390_biomedicines13010136
crossref_primary_10_29137_umagd_1217754
crossref_primary_10_1038_s41598_018_34604_3
crossref_primary_10_1186_s12859_019_2985_0
crossref_primary_10_1109_TCBB_2021_3138339
crossref_primary_10_1109_TCBB_2019_2933205
crossref_primary_10_1093_bib_bbac292
crossref_primary_10_1007_s12257_020_0049_y
crossref_primary_10_1186_s12864_024_10729_w
crossref_primary_10_1109_TCBB_2019_2957094
crossref_primary_10_3389_fmicb_2018_02174
crossref_primary_10_1109_ACCESS_2019_2958055
crossref_primary_10_1186_s12859_020_3409_x
crossref_primary_10_1016_j_compbiomed_2022_106069
crossref_primary_10_3389_fmicb_2022_995323
crossref_primary_10_2174_0929866526666190410124110
crossref_primary_10_3389_fgene_2018_00576
crossref_primary_10_1007_s11704_023_2490_5
crossref_primary_10_1016_j_isci_2019_09_013
crossref_primary_10_1038_s41598_020_65633_6
crossref_primary_10_3389_fmicb_2019_00507
crossref_primary_10_1007_s10238_024_01512_y
crossref_primary_10_1016_j_omtn_2018_10_005
crossref_primary_10_3389_fmicb_2022_1040252
crossref_primary_10_1186_s12911_020_01320_w
crossref_primary_10_1109_TVCG_2021_3114765
crossref_primary_10_3389_fpls_2018_01685
crossref_primary_10_2174_0929866526666191028162302
crossref_primary_10_1093_bib_bbab302
crossref_primary_10_1371_journal_pcbi_1011927
crossref_primary_10_3389_fmicb_2022_888414
crossref_primary_10_1039_C9MO00162J
crossref_primary_10_1093_bib_bbz120
crossref_primary_10_1186_s13059_019_1811_3
crossref_primary_10_1016_j_ymeth_2021_10_006
crossref_primary_10_1109_ACCESS_2020_2990533
crossref_primary_10_1021_acs_jcim_9b00129
crossref_primary_10_1109_JBHI_2021_3089162
crossref_primary_10_3389_fgene_2019_00099
crossref_primary_10_2174_0929866526666191025104043
crossref_primary_10_1109_TCBB_2024_3415058
crossref_primary_10_1371_journal_pcbi_1007540
crossref_primary_10_1016_j_future_2024_05_055
crossref_primary_10_1109_TNB_2019_2922214
crossref_primary_10_3389_fbioe_2020_00040
crossref_primary_10_3390_info13030108
crossref_primary_10_1186_s12859_020_03799_6
crossref_primary_10_1186_s12967_018_1722_1
crossref_primary_10_1002_cnm_3809
crossref_primary_10_1186_s12967_019_2009_x
crossref_primary_10_1016_j_artmed_2021_102115
crossref_primary_10_1109_TCBB_2018_2872574
crossref_primary_10_1109_TCBB_2018_2883041
crossref_primary_10_1186_s12859_023_05308_x
crossref_primary_10_1016_j_omtn_2019_09_019
crossref_primary_10_1109_TCBB_2024_3351752
crossref_primary_10_3390_ijms20010110
crossref_primary_10_2174_0929866527666191227141713
crossref_primary_10_32604_biocell_2022_019613
crossref_primary_10_1038_s41598_022_21243_y
crossref_primary_10_3389_fgene_2020_00389
crossref_primary_10_1007_s12539_021_00458_z
crossref_primary_10_1093_bib_bbad227
crossref_primary_10_3892_mmr_2018_9769
crossref_primary_10_1021_acs_molpharmaceut_9b00384
crossref_primary_10_1038_s41598_020_63735_9
crossref_primary_10_1016_j_compbiolchem_2021_107566
crossref_primary_10_1093_bib_bbab165
crossref_primary_10_1093_bioinformatics_btac100
crossref_primary_10_1016_j_sigpro_2021_108312
crossref_primary_10_3390_ncrna10010009
crossref_primary_10_1016_j_ymeth_2023_02_003
crossref_primary_10_1038_s41598_018_36656_x
crossref_primary_10_1016_j_knosys_2019_104963
crossref_primary_10_1155_2019_7614850
crossref_primary_10_2174_1381612826666201124112710
crossref_primary_10_3390_genes10090685
crossref_primary_10_2174_1566523223666230419101405
crossref_primary_10_1371_journal_pone_0253136
crossref_primary_10_1155_2021_9678747
crossref_primary_10_1109_TCBB_2020_3027444
crossref_primary_10_1186_s12864_024_11022_6
crossref_primary_10_3389_fgene_2019_00343
crossref_primary_10_1016_j_inffus_2024_102894
crossref_primary_10_1016_j_compbiolchem_2019_107088
crossref_primary_10_1186_s12859_021_04231_3
crossref_primary_10_1089_cmb_2021_0149
crossref_primary_10_1109_TCBB_2020_2994971
crossref_primary_10_1371_journal_pone_0252971
crossref_primary_10_3390_genes10020126
crossref_primary_10_1142_S0219720024500185
crossref_primary_10_1016_j_eswa_2023_122425
crossref_primary_10_1093_bib_bbac159
crossref_primary_10_1016_j_jbi_2019_103180
crossref_primary_10_1109_TCBB_2020_3037331
crossref_primary_10_1186_s12859_022_04796_7
crossref_primary_10_1155_2021_6652948
crossref_primary_10_1093_bib_bbac390
crossref_primary_10_3389_fmicb_2019_00676
crossref_primary_10_3892_mmr_2019_10336
crossref_primary_10_1093_bib_bbac156
crossref_primary_10_1186_s12859_019_3063_3
crossref_primary_10_1093_bib_bbac155
crossref_primary_10_1093_bib_bbac397
crossref_primary_10_1021_acs_jcim_3c01238
crossref_primary_10_2174_1389202920666191023090215
crossref_primary_10_1007_s12539_021_00469_w
crossref_primary_10_1371_journal_pone_0225380
crossref_primary_10_1016_j_omtn_2019_04_010
crossref_primary_10_1186_s12967_019_2063_4
crossref_primary_10_3389_fgene_2018_00239
crossref_primary_10_3389_fmicb_2019_00684
crossref_primary_10_2174_1574893614666191203155511
crossref_primary_10_1080_15476286_2019_1570811
crossref_primary_10_1186_s12859_022_04978_3
crossref_primary_10_3390_genes13050764
Cites_doi 10.1038/35000501
10.1186/1755-8417-2-7
10.1093/carcin/bgr246
10.1080/01621459.1963.10500845
10.1371/journal.pone.0070204
10.1103/PhysRevE.76.046115
10.18632/oncotarget.11251
10.1016/j.ajpath.2012.01.014
10.1038/srep05501
10.1126/science.1113329
10.1111/1759-7714.12322
10.1111/j.1349-7006.2007.00618.x
10.1093/nar/gkt1023
10.2174/2211536603666140522003539
10.1186/1752-0509-7-101
10.1039/c2mb25180a
10.1016/j.ymeth.2015.04.036
10.1039/C4MB00353E
10.1186/1758-907X-1-6
10.1093/bioinformatics/btq241
10.1038/srep13877
10.1158/1535-7163.MCT-11-0055
10.1101/gad.290023.116
10.1038/bjc.2012.251
10.1056/NEJMra035010
10.4103/0973-1482.77072
10.1182/blood-2011-06-361972
10.1038/srep21106
10.1016/0092-8674(93)90530-4
10.1093/carcin/bgs030
10.1186/1752-0509-4-S1-S2
10.1002/1097-0142(197512)36:6<2334::AID-CNCR2820360609>3.0.CO;2-G
10.1007/s10269-014-2475-y
10.1093/bioinformatics/btt677
10.1371/journal.pone.0047067
10.1080/15287394.2012.699856
10.1371/journal.pone.0003420
10.1158/0008-5472.CAN-06-4418
10.1016/j.cell.2009.01.002
10.3390/ijms17010021
10.1093/nar/gkr770
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1093/bioinformatics/bty333
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 3186
ExternalDocumentID 29701758
10_1093_bioinformatics_bty333
10.1093/bioinformatics/bty333
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Applied Basic Research Project
  sequence: 0
  grantid: F16205151
– fundername: Large-scale Equipment Shared Services
  sequence: 0
  grantid: F15165400
– fundername: Education Department of Liaoning Province
  sequence: 0
  grantid: LT2015011
– fundername: National Natural Science Foundation of China
  sequence: 0
  grantid: 31570160
  funderid: 10.13039/501100001809
– fundername: Liaoning province
  sequence: 0
  grantid: 20170520217
– fundername: National Natural Science Foundation of China
  sequence: 0
  grantid: 61772531; 11631014
  funderid: 10.13039/501100001809
– fundername: Important Scientific and Technical Achievements Transformation Project
  sequence: 0
  grantid: Z17-5-078
– fundername: Doctor Startup Foundation
  sequence: 0
GroupedDBID -~X
.2P
5GY
AAMVS
ABPTD
ACGFS
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BCRHZ
F5P
HW0
Q5Y
RD5
ROX
ROZ
TLC
TN5
TOX
WH7
---
-E4
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
M49
NPM
7X8
ID FETCH-LOGICAL-c496t-8e6c73df40e7ff8019213e8f17cb1bd4fd9bb8f9fe69d961c3c5c676a1d98a9e3
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Fri Jul 11 06:47:49 EDT 2025
Thu Apr 03 07:05:15 EDT 2025
Tue Jul 01 03:27:25 EDT 2025
Thu Apr 24 23:03:26 EDT 2025
Fri Dec 06 10:16:17 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-8e6c73df40e7ff8019213e8f17cb1bd4fd9bb8f9fe69d961c3c5c676a1d98a9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/bioinformatics/article-pdf/34/18/3178/25731893/bty333.pdf
PMID 29701758
PQID 2032419229
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2032419229
pubmed_primary_29701758
crossref_citationtrail_10_1093_bioinformatics_bty333
crossref_primary_10_1093_bioinformatics_bty333
oup_primary_10_1093_bioinformatics_bty333
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-15
PublicationDateYYYYMMDD 2018-09-15
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – sequence: 0
  name: Oxford University Press
References Meola (2023012704190620000_bty333-B27) 2009; 2
Li (2023012704190620000_bty333-B21) 2011; 39
Joe (2023012704190620000_bty333-B16) 1963; 58
Lee (2023012704190620000_bty333-B19) 1993; 89
Chen (2023012704190620000_bty333-B8) 2016; 7
Bandyopadhyay (2023012704190620000_bty333-B3) 2010; 1
Akao (2023012704190620000_bty333-B1) 2007; 98
Chen (2023012704190620000_bty333-B7) 2015; 4
Wong (2023012704190620000_bty333-B37) 2015; 17
Zeng (2023012704190620000_bty333-B42) 2016; 7
Xuan (2023012704190620000_bty333-B40) 2013; 8
Shi (2023012704190620000_bty333-B31) 2013; 7
Hu (2023012704190620000_bty333-B14) 2012; 33
Chen (2023012704190620000_bty333-B10) 2016; 6
Bartel (2023012704190620000_bty333-B4) 2009; 136
Stahlhut Espinosa (2023012704190620000_bty333-B33) 2006; 79
Jiang (2023012704190620000_bty333-B15) 2010; 4
Enzinger (2023012704190620000_bty333-B11) 2003; 349
Chen (2023012704190620000_bty333-B9) 2016; 7
Wightman (2023012704190620000_bty333-B36) 1993; 75
Ribeiro (2023012704190620000_bty333-B29) 2014; 3
Kalinowski (2023012704190620000_bty333-B18) 2012; 7
Xu (2023012704190620000_bty333-B39) 2011; 10
Zhang (2023012704190620000_bty333-B43) 2012; 107
Gokhale (2023012704190620000_bty333-B12) 2010; 6
Schwartz (2023012704190620000_bty333-B30) 1975; 36
Von (2023012704190620000_bty333-B34) 2012; 180
Liu (2023012704190620000_bty333-B23) 2012; 75
Leich (2023012704190620000_bty333-B20) 2011; 118
Shi (2023012704190620000_bty333-B32) 2015; 83
Yu (2023012704190620000_bty333-B41) 2012; 33
Lu (2023012704190620000_bty333-B24) 2008; 3
Chen (2023012704190620000_bty333-B6) 2015; 5
Alizadeh (2023012704190620000_bty333-B2) 2000; 403
Jopling (2023012704190620000_bty333-B17) 2005; 309
Mørk (2023012704190620000_bty333-B25) 2014; 30
Li (2023012704190620000_bty333-B22) 2014; 42
Zhou (2023012704190620000_bty333-B44) 2007; 76
Guo (2023012704190620000_bty333-B13) 2008; 68
Pasquinelli (2023012704190620000_bty333-B28) 2016; 30
Xu (2023012704190620000_bty333-B38) 2014; 10
Chen (2023012704190620000_bty333-B5) 2012; 8
Manfredi (2023012704190620000_bty333-B26) 2014; 16
Wang (2023012704190620000_bty333-B35) 2010; 26
References_xml – volume: 403
  start-page: 503
  year: 2000
  ident: 2023012704190620000_bty333-B2
  article-title: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
  publication-title: Nature
  doi: 10.1038/35000501
– volume: 2
  start-page: 7.
  year: 2009
  ident: 2023012704190620000_bty333-B27
  article-title: microRNAs and genetic diseases
  publication-title: PathoGenetics
  doi: 10.1186/1755-8417-2-7
– volume: 33
  start-page: 68
  year: 2012
  ident: 2023012704190620000_bty333-B41
  article-title: MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgr246
– volume: 58
  start-page: 236
  year: 1963
  ident: 2023012704190620000_bty333-B16
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Am. Stat. Assoc
  doi: 10.1080/01621459.1963.10500845
– volume: 8
  start-page: e70204.
  year: 2013
  ident: 2023012704190620000_bty333-B40
  article-title: Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0070204
– volume: 76
  start-page: 046115.
  year: 2007
  ident: 2023012704190620000_bty333-B44
  article-title: Bipartite network projection and personal recommendation
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys
  doi: 10.1103/PhysRevE.76.046115
– volume: 7
  start-page: 65257
  year: 2016
  ident: 2023012704190620000_bty333-B8
  article-title: HGIMDA: heterogeneous graph inference for miRNA–disease association prediction
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11251
– volume: 180
  start-page: 1787
  year: 2012
  ident: 2023012704190620000_bty333-B34
  article-title: MicroRNA 15a, inversely correlated to PKCα, is a potential marker to differentiate between benign and malignant renal tumors in biopsy and urine samples
  publication-title: Am. J. Pathol
  doi: 10.1016/j.ajpath.2012.01.014
– volume: 4
  start-page: 5501
  year: 2015
  ident: 2023012704190620000_bty333-B7
  article-title: Semi-supervised learning for potential human microRNA–disease associations inference
  publication-title: Sci. Rep
  doi: 10.1038/srep05501
– volume: 309
  start-page: 1577
  year: 2005
  ident: 2023012704190620000_bty333-B17
  article-title: Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA
  publication-title: Science
  doi: 10.1126/science.1113329
– volume: 7
  start-page: 232
  year: 2016
  ident: 2023012704190620000_bty333-B42
  article-title: Esophageal cancer statistics in China, 2011: estimates based on 177 cancer registries
  publication-title: Thorac. Cancer
  doi: 10.1111/1759-7714.12322
– volume: 98
  start-page: 1914
  year: 2007
  ident: 2023012704190620000_bty333-B1
  article-title: Downregulation of microRNAs-143 and -145 in B-cell malignancies
  publication-title: Cancer Sci
  doi: 10.1111/j.1349-7006.2007.00618.x
– volume: 42
  start-page: D1070
  year: 2014
  ident: 2023012704190620000_bty333-B22
  article-title: HMDD v2.0: a database for experimentally supported human microRNA and disease associations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1023
– volume: 3
  start-page: 45
  year: 2014
  ident: 2023012704190620000_bty333-B29
  article-title: MicroRNAs: modulators of cell identity, and their applications in tissue engineering
  publication-title: Microrna
  doi: 10.2174/2211536603666140522003539
– volume: 7
  start-page: 101.
  year: 2013
  ident: 2023012704190620000_bty333-B31
  article-title: Walking the interactome to identify human miRNA–disease associations through the functional link between miRNA targets and disease genes
  publication-title: BMC Syst. Biol
  doi: 10.1186/1752-0509-7-101
– volume: 79
  start-page: 131
  year: 2006
  ident: 2023012704190620000_bty333-B33
  article-title: The role of microRNAs in cancer
  publication-title: Yale J. Biol. Med
– volume: 8
  start-page: 2792
  year: 2012
  ident: 2023012704190620000_bty333-B5
  article-title: RWRMDA: predicting novel human microRNA–disease associations
  publication-title: Mol. Biosyst
  doi: 10.1039/c2mb25180a
– volume: 83
  start-page: 98
  year: 2015
  ident: 2023012704190620000_bty333-B32
  article-title: Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.04.036
– volume: 10
  start-page: 2800
  year: 2014
  ident: 2023012704190620000_bty333-B38
  article-title: Prioritizing candidate disease miRNAs by integrating phenotype associations of multiple diseases with matched miRNA and mRNA expression profiles
  publication-title: Mol. Biosyst
  doi: 10.1039/C4MB00353E
– volume: 1
  start-page: 6.
  year: 2010
  ident: 2023012704190620000_bty333-B3
  article-title: Development of the human cancer microRNA network
  publication-title: Silence
  doi: 10.1186/1758-907X-1-6
– volume: 26
  start-page: 1644
  year: 2010
  ident: 2023012704190620000_bty333-B35
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq241
– volume: 5
  start-page: 13877
  year: 2015
  ident: 2023012704190620000_bty333-B6
  article-title: RBMMMDA: predicting multiple types of disease-microRNA associations
  publication-title: Sci. Rep
  doi: 10.1038/srep13877
– volume: 10
  start-page: 1857
  year: 2011
  ident: 2023012704190620000_bty333-B39
  article-title: Prioritizing candidate disease miRNAs by topological features in the miRNA target-dysregulated network: case study of prostate cancer
  publication-title: Mol. Cancer Ther
  doi: 10.1158/1535-7163.MCT-11-0055
– volume: 30
  start-page: 2019
  year: 2016
  ident: 2023012704190620000_bty333-B28
  article-title: A sense-able microRNA
  publication-title: Genes Dev
  doi: 10.1101/gad.290023.116
– volume: 107
  start-page: 352
  year: 2012
  ident: 2023012704190620000_bty333-B43
  article-title: miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2012.251
– volume: 349
  start-page: 2241
  year: 2003
  ident: 2023012704190620000_bty333-B11
  article-title: Esophageal cancer
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJMra035010
– volume: 6
  start-page: 521
  year: 2010
  ident: 2023012704190620000_bty333-B12
  article-title: Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway
  publication-title: J. Cancer Res. Therap
  doi: 10.4103/0973-1482.77072
– volume: 118
  start-page: 5550
  year: 2011
  ident: 2023012704190620000_bty333-B20
  article-title: MicroRNA profiles of t(14; 18)–negative follicular lymphoma support a late germinal center B-cell phenotype
  publication-title: Blood
  doi: 10.1182/blood-2011-06-361972
– volume: 6
  start-page: 21106
  year: 2016
  ident: 2023012704190620000_bty333-B10
  article-title: WBSMDA: within and between score for MiRNA–Disease Association prediction
  publication-title: Sci. Rep
  doi: 10.1038/srep21106
– volume: 75
  start-page: 855
  year: 1993
  ident: 2023012704190620000_bty333-B36
  article-title: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90530-4
– volume: 33
  start-page: 828
  year: 2012
  ident: 2023012704190620000_bty333-B14
  article-title: Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgs030
– volume: 4
  start-page: S2.
  year: 2010
  ident: 2023012704190620000_bty333-B15
  article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network
  publication-title: BMC Syst. Biol
  doi: 10.1186/1752-0509-4-S1-S2
– volume: 36
  start-page: 2334
  year: 1975
  ident: 2023012704190620000_bty333-B30
  article-title: Enzymes in colon cancer. General information
  publication-title: Cancer
  doi: 10.1002/1097-0142(197512)36:6<2334::AID-CNCR2820360609>3.0.CO;2-G
– volume: 16
  start-page: S484
  year: 2014
  ident: 2023012704190620000_bty333-B26
  article-title: Colon cancer: from mass screening to personalised treatment
  publication-title: Oncologie
  doi: 10.1007/s10269-014-2475-y
– volume: 30
  start-page: 392
  year: 2014
  ident: 2023012704190620000_bty333-B25
  article-title: Protein-driven inference of miRNA–disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt677
– volume: 7
  start-page: e47067
  year: 2012
  ident: 2023012704190620000_bty333-B18
  article-title: Regulation of epidermal growth factor receptor signaling and erlotinib sensitivity in head and neck cancer cells by miR-7
  publication-title: PloS One
  doi: 10.1371/journal.pone.0047067
– volume: 75
  start-page: 1154
  year: 2012
  ident: 2023012704190620000_bty333-B23
  article-title: Circulating miR-155 expression in plasma: a potential biomarker for early diagnosis of esophageal cancer in humans
  publication-title: J. Toxicol. Environ. Health A
  doi: 10.1080/15287394.2012.699856
– volume: 3
  start-page: e3420.
  year: 2008
  ident: 2023012704190620000_bty333-B24
  article-title: An analysis of human MicroRNA and disease associations
  publication-title: PloS One
  doi: 10.1371/journal.pone.0003420
– volume: 89
  start-page: 1828
  year: 1993
  ident: 2023012704190620000_bty333-B19
  article-title: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
  publication-title: Cell
– volume: 7
  start-page: 733
  year: 2016
  ident: 2023012704190620000_bty333-B9
  article-title: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases
  publication-title: Bioinformatics
– volume: 68
  start-page: 26
  year: 2008
  ident: 2023012704190620000_bty333-B13
  article-title: Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-4418
– volume: 136
  start-page: 215
  year: 2009
  ident: 2023012704190620000_bty333-B4
  article-title: MicroRNAs: target recognition and regulatory functions
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 17
  start-page: 21.
  year: 2015
  ident: 2023012704190620000_bty333-B37
  article-title: Detection of interactions between proteins through rotation forest and local phase quantization descriptors
  publication-title: Int. J. Mol. Sci
  doi: 10.3390/ijms17010021
– volume: 39
  start-page: e153
  year: 2011
  ident: 2023012704190620000_bty333-B21
  article-title: Prioritizing human cancer microRNAs based on genes’ functional consistency between microRNA and cancer
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr770
SSID ssj0051444
ssj0005056
Score 2.6532176
Snippet Abstract Motivation A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years....
A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3178
Title BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/29701758
https://www.proquest.com/docview/2032419229
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jIPgi3p03IvjiQ11zaZr4tjllCJ1DNthbadIEBrKN2T3s35s063SKqG8tNGk5X9Lzteec7wBwbb-RqcISBQJjFVCZ4yCzvCFAJrJ7TzKOyySapMe6Q_o0ikY1EFa1MF9D-II05Xi6EhF1wsVNWSwJcfKe1hE7sfzB8-gjpyN0yjD-xDIB6lvaOmVvHpKqfuenKTc800a12zfSWTqfx12ws2KNsOVh3gM1PdkHW76P5PIAJO1eP-m07mB7PHNLodCw59O7Yd__abHWh_ZJYDJ-6bWCjo_KwE_YwNnchWzc4SEYPj4M7rvBqk9CoKhgRcA1UzHJDQ11bAx3pA0RzQ2KlUQypyYXUnIjjGYiFwwpoiLFYpahXPBMaHIE6pPpRJ8AiLmRmGFkXRuh1nNnWuahQhbHmCumowaglY1StRIRd70sXlMfzCbppmlTb9oGuF0Pm3kVjd8G3FgA_nrtVQVTaveGC3hkEz1dvKWuO7yLcmPRAMcev_WUWMT2ZRTx03_c6QxsW75Upoug6BzUi_lCX1hOUsjLch2-Aw3h4lI
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BNPMDA%3A+Bipartite+Network+Projection+for+MiRNA-Disease+Association+prediction&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Chen%2C+Xing&rft.au=Xie%2C+Di&rft.au=Wang%2C+Lei&rft.au=Zhao%2C+Qi&rft.date=2018-09-15&rft.eissn=1367-4811&rft.volume=34&rft.issue=18&rft.spage=3178&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbty333&rft_id=info%3Apmid%2F29701758&rft.externalDocID=29701758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon