Basal ganglia circuits changes in Parkinson's disease patients

► We studied the causal connectivity of basal ganglia networks in Parkinson's disease. ► The dopaminergic system exerts influences on widespread brain networks. ► The pattern of basal ganglia network connectivity is abnormal in Parkinson's disease. ► fMRI appears to be a useful method to d...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience letters Vol. 524; no. 1; pp. 55 - 59
Main Authors Wu, Tao, Wang, Jue, Wang, Chaodong, Hallett, Mark, Zang, Yufeng, Wu, Xiaoli, Chan, Piu
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 22.08.2012
Subjects
Online AccessGet full text
ISSN0304-3940
1872-7972
1872-7972
DOI10.1016/j.neulet.2012.07.012

Cover

Abstract ► We studied the causal connectivity of basal ganglia networks in Parkinson's disease. ► The dopaminergic system exerts influences on widespread brain networks. ► The pattern of basal ganglia network connectivity is abnormal in Parkinson's disease. ► fMRI appears to be a useful method to demonstrate basal ganglia pathways. Functional changes in basal ganglia circuitry are responsible for the major clinical features of Parkinson's disease (PD). Current models of basal ganglia circuitry can only partially explain the cardinal symptoms in PD. We used functional MRI to investigate the causal connectivity of basal ganglia networks from the substantia nigra pars compacta (SNc) in PD in the movement and resting state. In controls, SNc activity predicted increased activity in the supplementary motor area, the default mode network, and dorsolateral prefrontal cortex, but, in patients, activity predicted decreases in the same structures. The SNc had decreased connectivity with the striatum, globus pallidus, subthalamic nucleus, thalamus, supplementary motor area, dorsolateral prefrontal cortex, insula, default mode network, temporal lobe, cerebellum, and pons in patients compared to controls. Levodopa administration partially normalized the pattern of connectivity. Our findings show how the dopaminergic system exerts influences on widespread brain networks, including motor and cognitive networks. The pattern of basal ganglia network connectivity is abnormal in PD secondary to dopamine depletion, and is more deviant in more severe disease. Use of functional MRI with network analysis appears to be a useful method to demonstrate basal ganglia pathways in vivo in human subjects.
AbstractList Functional changes in basal ganglia circuitry are responsible for the major clinical features of Parkinson's disease (PD). Current models of basal ganglia circuitry can only partially explain the cardinal symptoms in PD. We used functional MRI to investigate the causal connectivity of basal ganglia networks from the substantia nigra pars compacta (SNc) in PD in the movement and resting state. In controls, SNc activity predicted increased activity in the supplementary motor area, the default mode network, and dorsolateral prefrontal cortex, but, in patients, activity predicted decreases in the same structures. The SNc had decreased connectivity with the striatum, globus pallidus, subthalamic nucleus, thalamus, supplementary motor area, dorsolateral prefrontal cortex, insula, default mode network, temporal lobe, cerebellum, and pons in patients compared to controls. Levodopa administration partially normalized the pattern of connectivity. Our findings show how the dopaminergic system exerts influences on widespread brain networks, including motor and cognitive networks. The pattern of basal ganglia network connectivity is abnormal in PD secondary to dopamine depletion, and is more deviant in more severe disease. Use of functional MRI with network analysis appears to be a useful method to demonstrate basal ganglia pathways in vivo in human subjects.
► We studied the causal connectivity of basal ganglia networks in Parkinson's disease. ► The dopaminergic system exerts influences on widespread brain networks. ► The pattern of basal ganglia network connectivity is abnormal in Parkinson's disease. ► fMRI appears to be a useful method to demonstrate basal ganglia pathways. Functional changes in basal ganglia circuitry are responsible for the major clinical features of Parkinson's disease (PD). Current models of basal ganglia circuitry can only partially explain the cardinal symptoms in PD. We used functional MRI to investigate the causal connectivity of basal ganglia networks from the substantia nigra pars compacta (SNc) in PD in the movement and resting state. In controls, SNc activity predicted increased activity in the supplementary motor area, the default mode network, and dorsolateral prefrontal cortex, but, in patients, activity predicted decreases in the same structures. The SNc had decreased connectivity with the striatum, globus pallidus, subthalamic nucleus, thalamus, supplementary motor area, dorsolateral prefrontal cortex, insula, default mode network, temporal lobe, cerebellum, and pons in patients compared to controls. Levodopa administration partially normalized the pattern of connectivity. Our findings show how the dopaminergic system exerts influences on widespread brain networks, including motor and cognitive networks. The pattern of basal ganglia network connectivity is abnormal in PD secondary to dopamine depletion, and is more deviant in more severe disease. Use of functional MRI with network analysis appears to be a useful method to demonstrate basal ganglia pathways in vivo in human subjects.
Functional changes in basal ganglia circuitry are responsible for the major clinical features of Parkinson's disease (PD). Current models of basal ganglia circuitry can only partially explain the cardinal symptoms in PD. We used functional MRI to investigate the causal connectivity of basal ganglia networks from the substantia nigra pars compacta (SNc) in PD in the movement and resting state. In controls, SNc activity predicted increased activity in the supplementary motor area, the default mode network, and dorsolateral prefrontal cortex, but, in patients, activity predicted decreases in the same structures. The SNc had decreased connectivity with the striatum, globus pallidus, subthalamic nucleus, thalamus, supplementary motor area, dorsolateral prefrontal cortex, insula, default mode network, temporal lobe, cerebellum, and pons in patients compared to controls. Levodopa administration partially normalized the pattern of connectivity. Our findings show how the dopaminergic system exerts influences on widespread brain networks, including motor and cognitive networks. The pattern of basal ganglia network connectivity is abnormal in PD secondary to dopamine depletion, and is more deviant in more severe disease. Use of functional MRI with network analysis appears to be a useful method to demonstrate basal ganglia pathways in vivo in human subjects.Functional changes in basal ganglia circuitry are responsible for the major clinical features of Parkinson's disease (PD). Current models of basal ganglia circuitry can only partially explain the cardinal symptoms in PD. We used functional MRI to investigate the causal connectivity of basal ganglia networks from the substantia nigra pars compacta (SNc) in PD in the movement and resting state. In controls, SNc activity predicted increased activity in the supplementary motor area, the default mode network, and dorsolateral prefrontal cortex, but, in patients, activity predicted decreases in the same structures. The SNc had decreased connectivity with the striatum, globus pallidus, subthalamic nucleus, thalamus, supplementary motor area, dorsolateral prefrontal cortex, insula, default mode network, temporal lobe, cerebellum, and pons in patients compared to controls. Levodopa administration partially normalized the pattern of connectivity. Our findings show how the dopaminergic system exerts influences on widespread brain networks, including motor and cognitive networks. The pattern of basal ganglia network connectivity is abnormal in PD secondary to dopamine depletion, and is more deviant in more severe disease. Use of functional MRI with network analysis appears to be a useful method to demonstrate basal ganglia pathways in vivo in human subjects.
Author Wu, Tao
Wang, Jue
Hallett, Mark
Zang, Yufeng
Chan, Piu
Wu, Xiaoli
Wang, Chaodong
AuthorAffiliation 3 Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
2 Center for Cognition and Brain Disorders, Affiliated Hospital, Hangzhou Normal University, China
1 Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
AuthorAffiliation_xml – name: 3 Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
– name: 2 Center for Cognition and Brain Disorders, Affiliated Hospital, Hangzhou Normal University, China
– name: 1 Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
Author_xml – sequence: 1
  givenname: Tao
  surname: Wu
  fullname: Wu, Tao
  email: wutao69@gmail.com, wutao69@163.com
  organization: Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
– sequence: 2
  givenname: Jue
  surname: Wang
  fullname: Wang, Jue
  organization: Center for Cognition and Brain Disorders, Affiliated Hospital, Hangzhou Normal University, China
– sequence: 3
  givenname: Chaodong
  surname: Wang
  fullname: Wang, Chaodong
  organization: Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
– sequence: 4
  givenname: Mark
  surname: Hallett
  fullname: Hallett, Mark
  organization: Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
– sequence: 5
  givenname: Yufeng
  surname: Zang
  fullname: Zang, Yufeng
  organization: Center for Cognition and Brain Disorders, Affiliated Hospital, Hangzhou Normal University, China
– sequence: 6
  givenname: Xiaoli
  surname: Wu
  fullname: Wu, Xiaoli
  organization: Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
– sequence: 7
  givenname: Piu
  surname: Chan
  fullname: Chan, Piu
  organization: Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22813979$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAUtFAR3Rb-AUK5wSXBX4kTDpVK1QJSJTjA2Xr7_HbrJWsvdlKJf49Xu0XAATiN9DwzHs2csZMQAzH2XPBGcNG93jSB5pGmRnIhG26aAo_YQvRG1mYw8oQtuOK6VoPmp-ws5w3nvBWtfsJOpeyFGsywYBdvIcNYrSGsRw8V-oSzn3KFd-VCufKh-gTpqw85hpe5cj4TZKp2MHkKU37KHq9gzPTsiOfsy83156v39e3Hdx-uLm9r1EM31T0JcKrjwhiUbqloQNWDcK2SDrTpWieXS4NGGQdSCEShCcRKrbjuuTaoztnFwXc3L7fksPydYLS75LeQvtsI3v7-EvydXcd7q0WnxNAVg1dHgxS_zZQnu_UZaRwhUJyzFVz1HeedVv9Dlf3QatMW6otfY_3M89BvIbw5EDDFnBOtLPqpdBf3Kf1YvOx-TLuxhzHtfkzLjS1QxPoP8YP_P2THrqgMcu8p2YxlLCTnE-FkXfR_N_gBG6O7MA
CitedBy_id crossref_primary_10_1038_s41420_024_02283_x
crossref_primary_10_1016_j_neuroscience_2022_10_026
crossref_primary_10_1016_j_neulet_2023_137099
crossref_primary_10_1038_s41598_024_52355_2
crossref_primary_10_1016_j_neubiorev_2016_11_018
crossref_primary_10_1002_jmri_25571
crossref_primary_10_1371_journal_pone_0124153
crossref_primary_10_1089_brain_2017_0534
crossref_primary_10_1212_WNL_0000000000201288
crossref_primary_10_1111_nyas_12657
crossref_primary_10_1371_journal_pone_0137977
crossref_primary_10_1093_cercor_bhy259
crossref_primary_10_1002_jnr_25311
crossref_primary_10_1007_s10072_022_06228_z
crossref_primary_10_1038_s41598_019_52448_3
crossref_primary_10_1007_s00415_015_7835_z
crossref_primary_10_1016_j_nicl_2020_102409
crossref_primary_10_1371_journal_pone_0165998
crossref_primary_10_1007_s11596_020_2287_9
crossref_primary_10_1016_j_nicl_2018_10_022
crossref_primary_10_3389_fnins_2022_781488
crossref_primary_10_1093_braincomms_fcaa005
crossref_primary_10_3389_fnhum_2017_00288
crossref_primary_10_1155_2021_9926445
crossref_primary_10_3389_fneur_2020_00127
crossref_primary_10_1186_s12883_015_0374_5
crossref_primary_10_2174_1871527320666211006142100
crossref_primary_10_1016_j_brainresbull_2018_01_017
crossref_primary_10_1109_TBME_2023_3250355
crossref_primary_10_1212_WNL_0000000000002985
crossref_primary_10_3389_fneur_2014_00152
crossref_primary_10_3389_fneur_2024_1361538
crossref_primary_10_1016_j_neubiorev_2015_09_007
crossref_primary_10_1371_journal_pone_0157743
crossref_primary_10_1016_j_nicl_2024_103571
crossref_primary_10_3389_fnins_2019_00611
crossref_primary_10_3389_fnins_2020_00141
crossref_primary_10_1016_j_nicl_2024_103724
crossref_primary_10_3389_fnana_2021_725731
crossref_primary_10_1016_j_nicl_2023_103396
crossref_primary_10_1007_s11910_014_0448_6
crossref_primary_10_1016_j_parkreldis_2016_01_016
crossref_primary_10_1371_journal_pone_0302739
crossref_primary_10_1002_hbm_22723
crossref_primary_10_1002_hbm_25715
crossref_primary_10_1109_TNB_2020_2979781
crossref_primary_10_3389_fnhum_2014_00494
crossref_primary_10_1016_j_neuroimage_2018_01_019
crossref_primary_10_1016_j_gaitpost_2016_04_026
crossref_primary_10_1016_j_pnpbp_2024_111169
crossref_primary_10_1016_j_neuropharm_2020_108138
crossref_primary_10_1016_j_neulet_2015_08_029
crossref_primary_10_1038_s41598_018_31988_0
crossref_primary_10_1016_j_bbr_2018_03_011
crossref_primary_10_3389_fnagi_2021_594637
crossref_primary_10_1002_mds_27942
crossref_primary_10_1093_brain_awaa019
crossref_primary_10_3389_fneur_2021_608322
crossref_primary_10_1016_j_physleta_2018_05_022
crossref_primary_10_1038_s41531_021_00266_8
crossref_primary_10_1016_j_neuroscience_2015_12_056
crossref_primary_10_3389_fnins_2021_741489
crossref_primary_10_1371_journal_pone_0262504
crossref_primary_10_3389_fnagi_2021_657221
crossref_primary_10_1007_s11065_022_09559_y
crossref_primary_10_1038_s41598_022_07020_x
crossref_primary_10_1016_j_cortex_2017_03_016
crossref_primary_10_1016_j_eplepsyres_2013_11_013
crossref_primary_10_18632_oncotarget_8088
crossref_primary_10_1002_hbm_22748
crossref_primary_10_1017_S0033291715002755
crossref_primary_10_1016_j_jns_2016_10_035
crossref_primary_10_3988_jcn_2016_12_4_452
crossref_primary_10_1016_j_nicl_2015_04_003
crossref_primary_10_1002_mds_28585
crossref_primary_10_1089_brain_2014_0328
crossref_primary_10_1371_journal_pone_0188196
crossref_primary_10_3389_fnins_2022_831055
crossref_primary_10_1007_s11332_019_00586_6
crossref_primary_10_12963_csd_20703
crossref_primary_10_5498_wjp_v12_i12_1356
crossref_primary_10_3389_fnhum_2021_729677
crossref_primary_10_1007_s11682_014_9317_9
crossref_primary_10_1186_s12883_014_0161_8
crossref_primary_10_1016_j_brainres_2021_147477
crossref_primary_10_1016_j_nicl_2015_06_001
crossref_primary_10_1155_2017_2583910
crossref_primary_10_1002_jnr_24908
crossref_primary_10_1007_s11065_015_9305_x
crossref_primary_10_1016_j_bbr_2019_112048
crossref_primary_10_1016_j_neubiorev_2015_08_010
crossref_primary_10_1016_j_cortex_2015_08_005
crossref_primary_10_3389_fnagi_2018_00127
crossref_primary_10_1016_j_neuroscience_2018_01_053
crossref_primary_10_3389_fneur_2022_847935
crossref_primary_10_1002_jnr_25298
crossref_primary_10_1016_j_neuint_2022_105327
crossref_primary_10_1212_WNL_0000000000000592
crossref_primary_10_1016_j_nicl_2020_102277
crossref_primary_10_1016_S0254_6272_15_30164_3
crossref_primary_10_1080_00207454_2019_1667781
crossref_primary_10_1093_cercor_bhab237
crossref_primary_10_1016_j_nicl_2017_09_004
crossref_primary_10_1038_s41598_017_02127_y
Cites_doi 10.1016/0166-2236(90)90110-V
10.1212/WNL.17.5.427
10.1016/S1353-8020(09)70822-3
10.1016/j.neuroimage.2010.05.086
10.1016/S0197-4580(02)00065-9
10.1002/hbm.460020107
10.2307/1912791
10.1038/mp.2010.46
10.1001/archneurol.2009.97
10.1016/j.neulet.2009.04.025
10.1212/WNL.56.6.730
10.1016/j.conb.2008.11.001
10.1073/pnas.98.2.676
10.1016/0166-2236(90)90107-L
10.1016/j.euroneuro.2010.07.001
10.1016/j.neuroimage.2010.11.074
10.1146/annurev.neuro.31.060407.125606
10.1073/pnas.1000496107
10.1002/cne.903440211
10.1212/WNL.0b013e31820af94e
10.1523/JNEUROSCI.0810-09.2009
10.1016/j.neuroimage.2009.10.051
ContentType Journal Article
Copyright 2012 Elsevier Ireland Ltd
Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Ireland Ltd
– notice: Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1016/j.neulet.2012.07.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE

Neurosciences Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-7972
EndPage 59
ExternalDocumentID PMC4163196
22813979
10_1016_j_neulet_2012_07_012
S0304394012009354
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA NS003031
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
KOM
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
WH7
YCJ
~G-
.55
.GJ
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADIYS
ADNMO
AEIPS
AETEA
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMQ
HVGLF
MVM
R2-
SEW
SNS
SSH
WUQ
X7M
ZGI
ZXP
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c496t-8e1ad360177c2db3e9c38a1d532da4765d2bb7c737da211cc14ea1f3f048047c3
IEDL.DBID AIKHN
ISSN 0304-3940
1872-7972
IngestDate Thu Aug 21 18:10:30 EDT 2025
Thu Sep 04 18:23:26 EDT 2025
Thu Sep 04 17:35:23 EDT 2025
Mon Jul 21 05:50:36 EDT 2025
Tue Jul 01 04:07:07 EDT 2025
Thu Apr 24 22:51:04 EDT 2025
Fri Feb 23 02:33:14 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Granger causality analysis
Dopaminergic deficits
Parkinson's disease
Basal ganglia circuits
Substantia nigra
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-8e1ad360177c2db3e9c38a1d532da4765d2bb7c737da211cc14ea1f3f048047c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4163196
PMID 22813979
PQID 1032895475
PQPubID 23479
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4163196
proquest_miscellaneous_1038600643
proquest_miscellaneous_1032895475
pubmed_primary_22813979
crossref_citationtrail_10_1016_j_neulet_2012_07_012
crossref_primary_10_1016_j_neulet_2012_07_012
elsevier_sciencedirect_doi_10_1016_j_neulet_2012_07_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-22
PublicationDateYYYYMMDD 2012-08-22
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-22
  day: 22
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Neuroscience letters
PublicationTitleAlternate Neurosci Lett
PublicationYear 2012
Publisher Elsevier Ireland Ltd
Publisher_xml – name: Elsevier Ireland Ltd
References Kelly, de Zubicaray, Di Martino, Copland, Reiss, Klein, Castellanos, Milham, McMahon (bib0070) 2009; 29
Delaveau, Salgado-Pineda, Fossati, Witjas, Azulay, Blin (bib0030) 2010; 20
Strick, Dum, Fiez (bib0115) 2009; 32
Friston (bib0045) 1994; 2
Alexander, Crutcher (bib0010) 1990; 13
Hoehn, Yahr (bib0060) 1967; 17
van Eimeren, Monchi, Ballanger, Strafella (bib0120) 2009; 66
Hamilton, Chen, Thomason, Schwartz, Gotlib (bib0055) 2011; 16
Bostan, Dum, Strick (bib0015) 2010; 107
Chen, Hamilton, Thomason, Gotlib, Saad, Cox (bib0025) 2009; 17
Nagano-Saito, Liu, Doyon, Dagher (bib0085) 2009; 458
DeLong, Wichmann (bib0040) 2009; 3
Parent, Hazrati (bib0100) 1994; 344
Granger (bib0050) 1969; 37
Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (bib0110) 2001; 98
DeLong (bib0035) 1990; 13
Wu, Wang, Hallett, Chen, Li, Chan (bib0130) 2011; 55
Lang, Fahn (bib0075) 1989
Aarsland, Andersen, Larsen, Lolk, Kragh-Sorensen (bib0005) 2001; 56
Braak, Del Tredici, Rüba, de Vos, Jansen Steur, Braak (bib0020) 2003; 24
Menke, Jbabdi, Miller, Matthews, Zarei (bib0080) 2010; 52
Nambu (bib0090) 2008; 18
Petrella, Sheldon, Prince, Calhoun, Doraiswamy (bib0105) 2011; 76
Jahanshani, Jenkins, Brown, Marsden, Passingham, Brooks (bib0065) 1995; 118
Obeso, Marin, Rodriguez-Oroz, Blesa, Benitez-Temino, Mena-Segovia, Rodriguez, Olanow (bib0095) 2008; 64
Wu, Chan, Hallett (bib0125) 2010; 49
Jahanshani (10.1016/j.neulet.2012.07.012_bib0065) 1995; 118
Kelly (10.1016/j.neulet.2012.07.012_bib0070) 2009; 29
Nambu (10.1016/j.neulet.2012.07.012_bib0090) 2008; 18
Hoehn (10.1016/j.neulet.2012.07.012_bib0060) 1967; 17
van Eimeren (10.1016/j.neulet.2012.07.012_bib0120) 2009; 66
Bostan (10.1016/j.neulet.2012.07.012_bib0015) 2010; 107
Wu (10.1016/j.neulet.2012.07.012_bib0125) 2010; 49
Raichle (10.1016/j.neulet.2012.07.012_bib0110) 2001; 98
DeLong (10.1016/j.neulet.2012.07.012_bib0035) 1990; 13
Obeso (10.1016/j.neulet.2012.07.012_bib0095) 2008; 64
Chen (10.1016/j.neulet.2012.07.012_bib0025) 2009; 17
Strick (10.1016/j.neulet.2012.07.012_bib0115) 2009; 32
Wu (10.1016/j.neulet.2012.07.012_bib0130) 2011; 55
Aarsland (10.1016/j.neulet.2012.07.012_bib0005) 2001; 56
DeLong (10.1016/j.neulet.2012.07.012_bib0040) 2009; 3
Braak (10.1016/j.neulet.2012.07.012_bib0020) 2003; 24
Alexander (10.1016/j.neulet.2012.07.012_bib0010) 1990; 13
Granger (10.1016/j.neulet.2012.07.012_bib0050) 1969; 37
Nagano-Saito (10.1016/j.neulet.2012.07.012_bib0085) 2009; 458
Hamilton (10.1016/j.neulet.2012.07.012_bib0055) 2011; 16
Delaveau (10.1016/j.neulet.2012.07.012_bib0030) 2010; 20
Lang (10.1016/j.neulet.2012.07.012_bib0075) 1989
Friston (10.1016/j.neulet.2012.07.012_bib0045) 1994; 2
Parent (10.1016/j.neulet.2012.07.012_bib0100) 1994; 344
Petrella (10.1016/j.neulet.2012.07.012_bib0105) 2011; 76
Menke (10.1016/j.neulet.2012.07.012_bib0080) 2010; 52
References_xml – volume: 17
  start-page: 427
  year: 1967
  end-page: 442
  ident: bib0060
  article-title: Parkinsonism: onset, progression and mortality
  publication-title: Neurology
– volume: 3
  start-page: S237
  year: 2009
  end-page: S240
  ident: bib0040
  article-title: Update on models of basal ganglia function and dysfunction
  publication-title: Parkinsonism and Related Disorders, Supplements
– volume: 29
  start-page: 7364
  year: 2009
  end-page: 7378
  ident: bib0070
  article-title: -Dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study
  publication-title: Journal of Neuroscience
– volume: 16
  start-page: 763
  year: 2011
  end-page: 772
  ident: bib0055
  article-title: Investigating neural primacy in major depressive disorder: multivariate granger causality analysis of resting-state fMRI time-series data
  publication-title: Molecular Psychiatry
– volume: 107
  start-page: 8452
  year: 2010
  end-page: 8456
  ident: bib0015
  article-title: The basal ganglia communicate with the cerebellum
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 76
  start-page: 511
  year: 2011
  end-page: 517
  ident: bib0105
  article-title: Default mode network connectivity in stable vs progressive mild cognitive impairment
  publication-title: Neurology
– volume: 344
  start-page: 305
  year: 1994
  end-page: 320
  ident: bib0100
  article-title: Multiple striatal representation in primate substantia nigra
  publication-title: Journal of Comparative Neurology
– volume: 37
  start-page: 424
  year: 1969
  end-page: 438
  ident: bib0050
  article-title: Investigating causal relations by economic models and cross-spectral methods
  publication-title: Econometrica
– volume: 32
  start-page: 413
  year: 2009
  end-page: 434
  ident: bib0115
  article-title: Cerebellum and nonmotor function
  publication-title: Annual Review of Neuroscience
– volume: 56
  start-page: 730
  year: 2001
  end-page: 736
  ident: bib0005
  article-title: Risk of dementia in Parkinson's disease. A community-based, prospective study
  publication-title: Neurology
– volume: 66
  start-page: 877
  year: 2009
  end-page: 883
  ident: bib0120
  article-title: Dysfunction of the default mode network in Parkinson disease. A functional magnetic resonance imaging study
  publication-title: Archives of Neurology
– volume: 2
  start-page: 56
  year: 1994
  end-page: 78
  ident: bib0045
  article-title: Functional and effective connectivity in neuroimaging: a synthesis
  publication-title: Human Brain Mapping
– volume: 24
  start-page: 197
  year: 2003
  end-page: 211
  ident: bib0020
  article-title: Staging of brain pathology related to sporadic Parkinson's disease
  publication-title: Neurobiology of Aging
– volume: 17
  start-page: 1718
  year: 2009
  ident: bib0025
  article-title: Granger causality via vector auto-regression tuned for fMRI data analysis
  publication-title: Proceedings of the International Society of Magnetic Resonance in Medicine
– volume: 13
  start-page: 281
  year: 1990
  end-page: 285
  ident: bib0035
  article-title: Primate models of movement disorders of basal ganglia origin
  publication-title: Trends in Neurosciences
– volume: 52
  start-page: 1175
  year: 2010
  end-page: 1180
  ident: bib0080
  article-title: Connectivity-based segmentation of the substantia nigra in human and its implications in Parkinson's disease
  publication-title: NeuroImage
– volume: 118
  start-page: 913
  year: 1995
  end-page: 933
  ident: bib0065
  article-title: Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects
  publication-title: Brain
– volume: 458
  start-page: 1
  year: 2009
  end-page: 5
  ident: bib0085
  article-title: Dopamine modulates default mode network deactivation in elderly individuals during the Tower of London task
  publication-title: Neuroscience Letters
– volume: 13
  start-page: 266
  year: 1990
  end-page: 271
  ident: bib0010
  article-title: Functional architecture of basal ganglia circuits: neural substrates of parallel processing
  publication-title: Trends in Neurosciences
– volume: 18
  start-page: 595
  year: 2008
  end-page: 604
  ident: bib0090
  article-title: Seven problems on the basal ganglia
  publication-title: Current Opinion in Neurobiology
– volume: 64
  start-page: S30
  year: 2008
  end-page: S46
  ident: bib0095
  article-title: The basal ganglia in Parkinson's disease: current concepts and unexplained observations
  publication-title: Annals of Neurology
– volume: 20
  start-page: 784
  year: 2010
  end-page: 792
  ident: bib0030
  article-title: Dopaminergic modulation of the default mode network in Parkinson's disease
  publication-title: European Neuropsychopharmacology
– start-page: 285
  year: 1989
  end-page: 309
  ident: bib0075
  article-title: Assessment of Parkinson's disease
  publication-title: Quantification of Neurological Deficit
– volume: 49
  start-page: 2581
  year: 2010
  end-page: 2587
  ident: bib0125
  article-title: Effective connectivity of neural networks in automatic movements in Parkinson's disease
  publication-title: NeuroImage
– volume: 55
  start-page: 204
  year: 2011
  end-page: 215
  ident: bib0130
  article-title: Effective connectivity of brain networks during self-initiated movement in Parkinson's disease
  publication-title: NeuroImage
– volume: 98
  start-page: 676
  year: 2001
  end-page: 682
  ident: bib0110
  article-title: A default mode of brain function
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 13
  start-page: 281
  year: 1990
  ident: 10.1016/j.neulet.2012.07.012_bib0035
  article-title: Primate models of movement disorders of basal ganglia origin
  publication-title: Trends in Neurosciences
  doi: 10.1016/0166-2236(90)90110-V
– volume: 17
  start-page: 427
  year: 1967
  ident: 10.1016/j.neulet.2012.07.012_bib0060
  article-title: Parkinsonism: onset, progression and mortality
  publication-title: Neurology
  doi: 10.1212/WNL.17.5.427
– volume: 3
  start-page: S237
  year: 2009
  ident: 10.1016/j.neulet.2012.07.012_bib0040
  article-title: Update on models of basal ganglia function and dysfunction
  publication-title: Parkinsonism and Related Disorders, Supplements
  doi: 10.1016/S1353-8020(09)70822-3
– volume: 52
  start-page: 1175
  year: 2010
  ident: 10.1016/j.neulet.2012.07.012_bib0080
  article-title: Connectivity-based segmentation of the substantia nigra in human and its implications in Parkinson's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.05.086
– volume: 24
  start-page: 197
  year: 2003
  ident: 10.1016/j.neulet.2012.07.012_bib0020
  article-title: Staging of brain pathology related to sporadic Parkinson's disease
  publication-title: Neurobiology of Aging
  doi: 10.1016/S0197-4580(02)00065-9
– volume: 2
  start-page: 56
  year: 1994
  ident: 10.1016/j.neulet.2012.07.012_bib0045
  article-title: Functional and effective connectivity in neuroimaging: a synthesis
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.460020107
– volume: 37
  start-page: 424
  year: 1969
  ident: 10.1016/j.neulet.2012.07.012_bib0050
  article-title: Investigating causal relations by economic models and cross-spectral methods
  publication-title: Econometrica
  doi: 10.2307/1912791
– volume: 64
  start-page: S30
  issue: Suppl.
  year: 2008
  ident: 10.1016/j.neulet.2012.07.012_bib0095
  article-title: The basal ganglia in Parkinson's disease: current concepts and unexplained observations
  publication-title: Annals of Neurology
– volume: 16
  start-page: 763
  year: 2011
  ident: 10.1016/j.neulet.2012.07.012_bib0055
  article-title: Investigating neural primacy in major depressive disorder: multivariate granger causality analysis of resting-state fMRI time-series data
  publication-title: Molecular Psychiatry
  doi: 10.1038/mp.2010.46
– volume: 66
  start-page: 877
  year: 2009
  ident: 10.1016/j.neulet.2012.07.012_bib0120
  article-title: Dysfunction of the default mode network in Parkinson disease. A functional magnetic resonance imaging study
  publication-title: Archives of Neurology
  doi: 10.1001/archneurol.2009.97
– volume: 458
  start-page: 1
  year: 2009
  ident: 10.1016/j.neulet.2012.07.012_bib0085
  article-title: Dopamine modulates default mode network deactivation in elderly individuals during the Tower of London task
  publication-title: Neuroscience Letters
  doi: 10.1016/j.neulet.2009.04.025
– volume: 56
  start-page: 730
  year: 2001
  ident: 10.1016/j.neulet.2012.07.012_bib0005
  article-title: Risk of dementia in Parkinson's disease. A community-based, prospective study
  publication-title: Neurology
  doi: 10.1212/WNL.56.6.730
– volume: 18
  start-page: 595
  year: 2008
  ident: 10.1016/j.neulet.2012.07.012_bib0090
  article-title: Seven problems on the basal ganglia
  publication-title: Current Opinion in Neurobiology
  doi: 10.1016/j.conb.2008.11.001
– volume: 98
  start-page: 676
  year: 2001
  ident: 10.1016/j.neulet.2012.07.012_bib0110
  article-title: A default mode of brain function
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.98.2.676
– start-page: 285
  year: 1989
  ident: 10.1016/j.neulet.2012.07.012_bib0075
  article-title: Assessment of Parkinson's disease
– volume: 118
  start-page: 913
  year: 1995
  ident: 10.1016/j.neulet.2012.07.012_bib0065
  article-title: Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects
  publication-title: Brain
– volume: 13
  start-page: 266
  year: 1990
  ident: 10.1016/j.neulet.2012.07.012_bib0010
  article-title: Functional architecture of basal ganglia circuits: neural substrates of parallel processing
  publication-title: Trends in Neurosciences
  doi: 10.1016/0166-2236(90)90107-L
– volume: 17
  start-page: 1718
  year: 2009
  ident: 10.1016/j.neulet.2012.07.012_bib0025
  article-title: Granger causality via vector auto-regression tuned for fMRI data analysis
  publication-title: Proceedings of the International Society of Magnetic Resonance in Medicine
– volume: 20
  start-page: 784
  year: 2010
  ident: 10.1016/j.neulet.2012.07.012_bib0030
  article-title: Dopaminergic modulation of the default mode network in Parkinson's disease
  publication-title: European Neuropsychopharmacology
  doi: 10.1016/j.euroneuro.2010.07.001
– volume: 55
  start-page: 204
  year: 2011
  ident: 10.1016/j.neulet.2012.07.012_bib0130
  article-title: Effective connectivity of brain networks during self-initiated movement in Parkinson's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.11.074
– volume: 32
  start-page: 413
  year: 2009
  ident: 10.1016/j.neulet.2012.07.012_bib0115
  article-title: Cerebellum and nonmotor function
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev.neuro.31.060407.125606
– volume: 107
  start-page: 8452
  year: 2010
  ident: 10.1016/j.neulet.2012.07.012_bib0015
  article-title: The basal ganglia communicate with the cerebellum
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1000496107
– volume: 344
  start-page: 305
  year: 1994
  ident: 10.1016/j.neulet.2012.07.012_bib0100
  article-title: Multiple striatal representation in primate substantia nigra
  publication-title: Journal of Comparative Neurology
  doi: 10.1002/cne.903440211
– volume: 76
  start-page: 511
  year: 2011
  ident: 10.1016/j.neulet.2012.07.012_bib0105
  article-title: Default mode network connectivity in stable vs progressive mild cognitive impairment
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31820af94e
– volume: 29
  start-page: 7364
  year: 2009
  ident: 10.1016/j.neulet.2012.07.012_bib0070
  article-title: l-Dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0810-09.2009
– volume: 49
  start-page: 2581
  year: 2010
  ident: 10.1016/j.neulet.2012.07.012_bib0125
  article-title: Effective connectivity of neural networks in automatic movements in Parkinson's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.051
SSID ssj0005154
Score 2.4079418
Snippet ► We studied the causal connectivity of basal ganglia networks in Parkinson's disease. ► The dopaminergic system exerts influences on widespread brain...
Functional changes in basal ganglia circuitry are responsible for the major clinical features of Parkinson's disease (PD). Current models of basal ganglia...
Functional changes in basal ganglia circuitry are responsible for the major clinical features of Parkinson’s disease (PD). Current models of basal ganglia...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 55
SubjectTerms Adult
Basal ganglia
Basal Ganglia - physiopathology
Basal ganglia circuits
Brain
Cerebellum
Cognitive ability
Cortex (prefrontal)
Dopamine
Dopaminergic deficits
Female
Functional magnetic resonance imaging
Globus pallidus
Granger causality analysis
Humans
Magnetic Resonance Imaging
Male
Middle Aged
Movement disorders
Neostriatum
Nerve Net - physiopathology
Neural networks
Neurodegenerative diseases
Parkinson Disease - physiopathology
Parkinson's disease
Pons
Substantia nigra
subthalamic nucleus
supplementary motor area
Temporal lobe
Thalamus
Title Basal ganglia circuits changes in Parkinson's disease patients
URI https://dx.doi.org/10.1016/j.neulet.2012.07.012
https://www.ncbi.nlm.nih.gov/pubmed/22813979
https://www.proquest.com/docview/1032895475
https://www.proquest.com/docview/1038600643
https://pubmed.ncbi.nlm.nih.gov/PMC4163196
Volume 524
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WwlxQdDyWB6VkRCcwtbv5IK0VFQLqL1Apd4s23FKEKRVs3vgwm_H4zgLC4JKnKIkHske2-OxZ77PAM-4K2WgShXW1k0hlFeFaypfeOFLT4PVUiIa-fhELU7FuzN5tgWHIxYG0yqz7R9serLW-cssa3N22bazDxjUw3u9KR7wcym2YYfxSskJ7Mzfvl-c_Mz0oHJgkcIgQBQYEXQpzasLq6ggzPFiicWTsr-tUH96oL8nUv6yMh3dhlvZpSTzodZ3YCt0u7A37-J2-us38pykJM90er4LN45zLH0PXr22fRQ7twjktcS3V37VLnsyQIF70nYEIdEJHfaiJzmSQzIRa38XTo_efDxcFPk2haj3Si2LMlBb87j_0tqz2vFQeV5aWkvOaiu0kjVzTnvNdW3jrtB7KoKlDW8QdS605_dg0l104QEQjpQ3OnpeTnJxYOM4aJSz0iuKdPLOTYGPGjQ-U43jjRdfzJhT9tkMejeod3OgTXxMoVhLXQ5UG9eU12PnmI0hY-JqcI3k07EvTZxNGCKxXbhY9SbRC1ZSaPnPMqVKrtwU7g_9v64vYyW61FWs28bIWBdANu_NP137KbF6o2cczeHD_27VI7iJb3jgzdhjmCyvVuFJ9JiWbh-2X36n-3le_ABvoha_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQRcELQ8lqeREJyird_JBWmpqLa0uxdaqTfLdhwIatOq2T3w7_EkzsKCoBKnSIlHcsb2eMYz32eAN9zlMlClMmvLKhPKq8xVhc-88LmnwWopEY08X6jZqfh0Js-2YH_AwmBZZbL9vU3vrHV6M0nanFzV9eQzJvXwXm-KB_xciluwLWSM9kawPT08mi1-VnpQ2bNIYRIgCgwIuq7MqwmrqCCs8WIdiydlf9uh_vRAfy-k_GVnOrgP95JLSaZ9rx_AVmh2YHfaxHD64jt5S7oiz-70fAduz1MufRfef7BtFPtiEchria-v_apetqSHArekbghCojt02LuWpEwOSUSs7UM4Pfh4sj_L0m0KUe-FWmZ5oLbkMf7S2rPS8VB4nltaSs5KK7SSJXNOe811aWNU6D0VwdKKV4g6F9rzRzBqLpvwBAhHyhsdPS8nudizcR5UylnpFUU6eefGwAcNGp-oxvHGi3Mz1JR9M73eDerd7GkTH2PI1lJXPdXGDe31MDhmY8qYuBvcIPl6GEsTVxOmSGwTLlet6egFCym0_GebXHWu3Bge9-O_7i9jObrURezbxsxYN0A2780vTf21Y_VGzziaw6f__Vev4M7sZH5sjg8XR8_gLn7Bw2_GnsNoeb0KL6L3tHQv0-r4ARprGK4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Basal+ganglia+circuits+changes+in+Parkinson%E2%80%99s+disease+patients&rft.jtitle=Neuroscience+letters&rft.au=Wu%2C+Tao&rft.au=Wang%2C+Jue&rft.au=Wang%2C+Chaodong&rft.au=Hallett%2C+Mark&rft.date=2012-08-22&rft.issn=0304-3940&rft.eissn=1872-7972&rft.volume=524&rft.issue=1&rft.spage=55&rft.epage=59&rft_id=info:doi/10.1016%2Fj.neulet.2012.07.012&rft_id=info%3Apmid%2F22813979&rft.externalDocID=PMC4163196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3940&client=summon