Lung and Infection CT-Scan-Based Segmentation with 3D UNet Architecture and Its Modification
COVID-19 is the disease that has spread over the world since December 2019. This disease has a negative impact on individuals, governments, and even the global economy, which has caused the WHO to declare COVID-19 as a PHEIC (Public Health Emergency of International Concern). Until now, there has be...
Saved in:
Published in | Healthcare (Basel) Vol. 11; no. 2; p. 213 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
10.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | COVID-19 is the disease that has spread over the world since December 2019. This disease has a negative impact on individuals, governments, and even the global economy, which has caused the WHO to declare COVID-19 as a PHEIC (Public Health Emergency of International Concern). Until now, there has been no medicine that can completely cure COVID-19. Therefore, to prevent the spread and reduce the negative impact of COVID-19, an accurate and fast test is needed. The use of chest radiography imaging technology, such as CXR and CT-scan, plays a significant role in the diagnosis of COVID-19. In this study, CT-scan segmentation will be carried out using the 3D version of the most recommended segmentation algorithm for bio-medical images, namely 3D UNet, and three other architectures from the 3D UNet modifications, namely 3D ResUNet, 3D VGGUNet, and 3D DenseUNet. These four architectures will be used in two cases of segmentation: binary-class segmentation, where each architecture will segment the lung area from a CT scan; and multi-class segmentation, where each architecture will segment the lung and infection area from a CT scan. Before entering the model, the dataset is preprocessed first by applying a minmax scaler to scale the pixel value to a range of zero to one, and the CLAHE method is also applied to eliminate intensity in homogeneity and noise from the data. Of the four models tested in this study, surprisingly, the original 3D UNet produced the most satisfactory results compared to the other three architectures, although it requires more iterations to obtain the maximum results. For the binary-class segmentation case, 3D UNet produced IoU scores, Dice scores, and accuracy of 94.32%, 97.05%, and 99.37%, respectively. For the case of multi-class segmentation, 3D UNet produced IoU scores, Dice scores, and accuracy of 81.58%, 88.61%, and 98.78%, respectively. The use of 3D segmentation architecture will be very helpful for medical personnel because, apart from helping the process of diagnosing someone with COVID-19, they can also find out the severity of the disease through 3D infection projections. |
---|---|
AbstractList | COVID-19 is the disease that has spread over the world since December 2019. This disease has a negative impact on individuals, governments, and even the global economy, which has caused the WHO to declare COVID-19 as a PHEIC (Public Health Emergency of International Concern). Until now, there has been no medicine that can completely cure COVID-19. Therefore, to prevent the spread and reduce the negative impact of COVID-19, an accurate and fast test is needed. The use of chest radiography imaging technology, such as CXR and CT-scan, plays a significant role in the diagnosis of COVID-19. In this study, CT-scan segmentation will be carried out using the 3D version of the most recommended segmentation algorithm for bio-medical images, namely 3D UNet, and three other architectures from the 3D UNet modifications, namely 3D ResUNet, 3D VGGUNet, and 3D DenseUNet. These four architectures will be used in two cases of segmentation: binary-class segmentation, where each architecture will segment the lung area from a CT scan; and multi-class segmentation, where each architecture will segment the lung and infection area from a CT scan. Before entering the model, the dataset is preprocessed first by applying a minmax scaler to scale the pixel value to a range of zero to one, and the CLAHE method is also applied to eliminate intensity in homogeneity and noise from the data. Of the four models tested in this study, surprisingly, the original 3D UNet produced the most satisfactory results compared to the other three architectures, although it requires more iterations to obtain the maximum results. For the binary-class segmentation case, 3D UNet produced IoU scores, Dice scores, and accuracy of 94.32%, 97.05%, and 99.37%, respectively. For the case of multi-class segmentation, 3D UNet produced IoU scores, Dice scores, and accuracy of 81.58%, 88.61%, and 98.78%, respectively. The use of 3D segmentation architecture will be very helpful for medical personnel because, apart from helping the process of diagnosing someone with COVID-19, they can also find out the severity of the disease through 3D infection projections. |
Author | Suprijadi, Jadi Nugraha, Farid Azhar Lutfi Asnawi, Mohammad Hamid Yulita, Intan Nurma Hendrawati, Triyani Pravitasari, Anindya Apriliyanti Darmawan, Gumgum |
AuthorAffiliation | 1 Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia 2 Department of Computer Science, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia |
AuthorAffiliation_xml | – name: 1 Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia – name: 2 Department of Computer Science, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia |
Author_xml | – sequence: 1 givenname: Mohammad Hamid orcidid: 0000-0002-3543-1703 surname: Asnawi fullname: Asnawi, Mohammad Hamid organization: Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia – sequence: 2 givenname: Anindya Apriliyanti orcidid: 0000-0003-4873-3169 surname: Pravitasari fullname: Pravitasari, Anindya Apriliyanti organization: Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia – sequence: 3 givenname: Gumgum surname: Darmawan fullname: Darmawan, Gumgum organization: Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia – sequence: 4 givenname: Triyani surname: Hendrawati fullname: Hendrawati, Triyani organization: Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia – sequence: 5 givenname: Intan Nurma orcidid: 0000-0002-8539-3311 surname: Yulita fullname: Yulita, Intan Nurma organization: Department of Computer Science, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia – sequence: 6 givenname: Jadi surname: Suprijadi fullname: Suprijadi, Jadi organization: Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia – sequence: 7 givenname: Farid Azhar Lutfi orcidid: 0000-0002-4200-8380 surname: Nugraha fullname: Nugraha, Farid Azhar Lutfi organization: Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36673581$$D View this record in MEDLINE/PubMed |
BookMark | eNplks9vFCEUgImpsXXtP-DBTOLFyyg_BgYuJnWtusmqh7Y3E8LAmx02s1BhRtP_Xrpbm1a5QHjf-_IevOfoKMQACL0k-C1jCr8bwIzTYE0CQjDFlLAn6IRS2tYKM3r04HyMTnPe4rIUYZLxZ-iYCdEyLskJ-rGew6YywVWr0IOdfAzV8rK-sCbUH0wGV13AZgdhMvvQbz8NFftYXX2DqTpLdvBTSZoTHBRTrr5G53tv9_gL9LQ3Y4bTu32Brj6dXy6_1Ovvn1fLs3VtGyWmWnLZUQ5SOaYAN7wHx1hnnXVKKEKBO6qEVJww0pXKpTVOOWEa2fYcE-bYAq0OXhfNVl8nvzPpRkfj9f4ipo02afJ2BC2oJI4IAdSJhvW441xR1uBOuhZ3IIrr_cF1PXc7cLa0nsz4SPo4EvygN_GXVpIrVpwL9OZOkOLPGfKkdz5bGEcTIM5Z01ZI2vC2VQV9_Q-6jXMK5aluqZYSwgUvFD1QNsWcE_T3xRCsb2dB_z8LJenVwzbuU_7-PPsDzXeyDQ |
CitedBy_id | crossref_primary_10_3390_s24051557 crossref_primary_10_3390_info14060333 crossref_primary_10_3390_app132111640 crossref_primary_10_3390_electronics12040911 |
Cites_doi | 10.1007/s10044-021-00984-y 10.1148/ryct.2020200075 10.1016/j.media.2016.05.004 10.1109/RBME.2020.2987975 10.1016/S0140-6736(20)30185-9 10.3390/healthcare10020343 10.1109/TMI.2020.2993291 10.1016/j.media.2016.10.004 10.1016/j.clinimag.2021.01.019 10.1007/s11063-022-10785-x 10.1109/ICASSP.2009.4959845 10.1007/978-3-319-24574-4_28 10.1016/j.eswa.2022.117360 10.3390/app12104825 10.1007/s00540-021-02939-3 10.1148/radiol.2020200642 10.1109/RBME.2020.2990959 10.1109/42.14513 10.1016/j.patcog.2018.05.014 10.1016/j.chest.2020.04.003 10.1002/mp.14609 10.1016/j.ejrad.2020.109009 10.12928/telkomnika.v18i3.14753 10.1002/spe.3011 10.1016/j.media.2017.07.005 10.1016/j.media.2020.101794 10.1016/j.jinf.2020.04.004 10.1038/s41598-020-76550-z 10.1002/mp.14676 10.1148/radiol.2020200432 10.1016/S0140-6736(20)30183-5 10.1002/pa.2372 10.2214/AJR.20.22954 10.1111/cwe.12349 10.3390/electronics11010130 10.1016/j.media.2022.102459 10.1016/j.aej.2020.10.046 10.1016/S0734-189X(87)80186-X |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | NPM AAYXX CITATION 3V. 7RV 7XB 8C1 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH GNUQQ GUQSH KB0 M2O MBDVC NAPCQ PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.3390/healthcare11020213 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Central (purchase pre-March 2016) Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep Nursing & Allied Health Database (Alumni Edition) Research Library Research Library (Corporate) Nursing & Allied Health Premium Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Public Health Research Library Prep ProQuest Central Student ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Research Library (Alumni Edition) Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central Nursing & Allied Health Premium Health Research Premium Collection ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 2227-9032 |
ExternalDocumentID | oai_doaj_org_article_6281d166e2d643f0b5592340b8d70be6 10_3390_healthcare11020213 36673581 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Directorate for Research and Community Service (DRPM) Ministry of Research, Technology, and Higher Education Indonesia grantid: 094/E5/PG.02.00.PT/2022 |
GroupedDBID | 3V. 53G 5VS 7RV 8C1 8FI 8FJ 8G5 AAFWJ AAHBH ABUWG ADBBV AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ CCPQU DIK DWQXO EIHBH FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HYE IAO ITC KQ8 M2O M48 MODMG M~E NAPCQ NPM OK1 PGMZT PIMPY PQQKQ PROAC RNS RPM UKHRP AAYXX CITATION 7XB 8FK COVID MBDVC PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c496t-858b25e89d39e045fed33bcdcd96912e5d296895131b3668cad9d6a487f5013d3 |
IEDL.DBID | RPM |
ISSN | 2227-9032 |
IngestDate | Tue Oct 22 15:16:40 EDT 2024 Tue Sep 17 21:30:33 EDT 2024 Fri Oct 25 05:58:07 EDT 2024 Thu Oct 10 18:30:50 EDT 2024 Mon Sep 16 17:23:24 EDT 2024 Sat Sep 28 08:16:36 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 3D ResUNet 3D image segmentation 3D VGGUNet 3D UNet COVID-19 CT-scan 3D DenseUNet |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-858b25e89d39e045fed33bcdcd96912e5d296895131b3668cad9d6a487f5013d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4873-3169 0000-0002-3543-1703 0000-0002-8539-3311 0000-0002-4200-8380 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859364/ |
PMID | 36673581 |
PQID | 2767211565 |
PQPubID | 2032390 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6281d166e2d643f0b5592340b8d70be6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9859364 proquest_miscellaneous_2768245779 proquest_journals_2767211565 crossref_primary_10_3390_healthcare11020213 pubmed_primary_36673581 |
PublicationCentury | 2000 |
PublicationDate | 20230110 |
PublicationDateYYYYMMDD | 2023-01-10 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230110 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Healthcare (Basel) |
PublicationTitleAlternate | Healthcare (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Singh (ref_43) 2021; 52 Sethy (ref_30) 2020; 5 Song (ref_6) 2020; 28 ref_14 ref_12 ref_11 ref_10 Shan (ref_19) 2021; 48 Fang (ref_15) 2020; 296 Wang (ref_2) 2020; 395 ref_17 Owais (ref_40) 2022; 202 Wang (ref_41) 2022; 79 Asai (ref_13) 2021; 35 Alalwan (ref_51) 2021; 60 Wang (ref_29) 2020; 10 Huang (ref_22) 2020; 395 ref_25 Ding (ref_34) 2020; 127 Ai (ref_16) 2020; 296 Li (ref_33) 2020; 214 Rubin (ref_21) 2020; 158 Pravitasari (ref_52) 2020; 18 Huang (ref_8) 2020; 2 Zimmerman (ref_48) 1988; 7 Dong (ref_20) 2021; 14 Havaei (ref_24) 2017; 35 Minaee (ref_28) 2020; 65 Narin (ref_18) 2021; 24 ref_36 Shi (ref_37) 2021; 14 Patil (ref_23) 2013; 2 ref_32 Kamnitsas (ref_54) 2017; 36 Ronneberger (ref_53) 2015; 9351 ref_39 ref_38 Pizer (ref_47) 1987; 39 Litjens (ref_26) 2017; 42 Wang (ref_3) 2020; 323 Meng (ref_35) 2020; 81 Benameur (ref_7) 2021; 76 Hu (ref_27) 2018; 83 ref_46 ref_45 ref_44 Oh (ref_31) 2020; 39 ref_1 Punn (ref_42) 2022; 54 ref_49 ref_9 ref_5 ref_4 |
References_xml | – volume: 24 start-page: 1207 year: 2021 ident: ref_18 article-title: Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-021-00984-y contributor: fullname: Narin – ident: ref_49 – volume: 2 start-page: e200075 year: 2020 ident: ref_8 article-title: Serial Quantitative Chest CT Assessment of COVID-19: A Deep Learning Approach publication-title: Radiol. Cardiothorac. Imaging doi: 10.1148/ryct.2020200075 contributor: fullname: Huang – ident: ref_32 – volume: 35 start-page: 18 year: 2017 ident: ref_24 article-title: Brain tumor segmentation with Deep Neural Networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.05.004 contributor: fullname: Havaei – volume: 14 start-page: 4 year: 2021 ident: ref_37 article-title: Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19 publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2020.2987975 contributor: fullname: Shi – volume: 395 start-page: 470 year: 2020 ident: ref_2 article-title: A novel coronavirus outbreak of global health concern publication-title: Lancet doi: 10.1016/S0140-6736(20)30185-9 contributor: fullname: Wang – ident: ref_39 – ident: ref_1 – ident: ref_11 doi: 10.3390/healthcare10020343 – volume: 39 start-page: 2688 year: 2020 ident: ref_31 article-title: Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2993291 contributor: fullname: Oh – volume: 36 start-page: 61 year: 2017 ident: ref_54 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 contributor: fullname: Kamnitsas – volume: 76 start-page: 6 year: 2021 ident: ref_7 article-title: SARS-CoV-2 diagnosis using medical imaging techniques and artificial intelligence: A review publication-title: Clin. Imaging doi: 10.1016/j.clinimag.2021.01.019 contributor: fullname: Benameur – volume: 54 start-page: 3771 year: 2022 ident: ref_42 article-title: CHS-Net: A Deep Learning Approach for Hierarchical Segmentation of COVID-19 via CT Images publication-title: Neural Process. Lett. doi: 10.1007/s11063-022-10785-x contributor: fullname: Punn – ident: ref_4 – volume: 2 start-page: 22 year: 2013 ident: ref_23 article-title: Medical image segmentation: A Review publication-title: Int. J. Comput. Sci. Mob. Comput. contributor: fullname: Patil – ident: ref_25 doi: 10.1109/ICASSP.2009.4959845 – volume: 9351 start-page: 234 year: 2015 ident: ref_53 article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-319-24574-4_28 contributor: fullname: Ronneberger – volume: 5 start-page: 643 year: 2020 ident: ref_30 article-title: Detection of coronavirus Disease (COVID-19) based on Deep Features and Support Vector Machine publication-title: Int. J. Math. Eng. Manag. Sci. contributor: fullname: Sethy – volume: 202 start-page: 117360 year: 2022 ident: ref_40 article-title: DMDF-Net: Dual multiscale dilated fusion network for accurate segmentation of lesions related to COVID-19 in lung radiographic scans publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117360 contributor: fullname: Owais – ident: ref_38 – ident: ref_17 – ident: ref_45 – ident: ref_9 doi: 10.3390/app12104825 – volume: 35 start-page: 470 year: 2021 ident: ref_13 article-title: Correction to: COVID-19: Accurate interpretation of diagnostic tests—A statistical point of view publication-title: J. Anesth. doi: 10.1007/s00540-021-02939-3 contributor: fullname: Asai – volume: 296 start-page: E32 year: 2020 ident: ref_16 article-title: Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases publication-title: Radiology doi: 10.1148/radiol.2020200642 contributor: fullname: Ai – volume: 14 start-page: 16 year: 2021 ident: ref_20 article-title: The Role of Imaging in the Detection and Management of COVID-19: A Review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2020.2990959 contributor: fullname: Dong – volume: 7 start-page: 304 year: 1988 ident: ref_48 article-title: An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.14513 contributor: fullname: Zimmerman – volume: 83 start-page: 134 year: 2018 ident: ref_27 article-title: Deep learning for image-based cancer detection and diagnosis − A survey publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.05.014 contributor: fullname: Hu – volume: 158 start-page: 106 year: 2020 ident: ref_21 article-title: The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic publication-title: Chest doi: 10.1016/j.chest.2020.04.003 contributor: fullname: Rubin – volume: 48 start-page: 1633 year: 2021 ident: ref_19 article-title: Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction publication-title: Med. Phys. doi: 10.1002/mp.14609 contributor: fullname: Shan – volume: 127 start-page: 109009 year: 2020 ident: ref_34 article-title: Chest CT findings of COVID-19 pneumonia by duration of symptoms publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2020.109009 contributor: fullname: Ding – volume: 18 start-page: 1310 year: 2020 ident: ref_52 article-title: UNET-VGG16 with transfer learning for MRI-based brain tumor segmentation publication-title: TELKOMNIKA (Telecommunication Computing Electronics and Control) doi: 10.12928/telkomnika.v18i3.14753 contributor: fullname: Pravitasari – volume: 52 start-page: 868 year: 2021 ident: ref_43 article-title: Software system to predict the infection in COVID-19 patients using deep learning and web of things publication-title: Softw. Pract. Exp. doi: 10.1002/spe.3011 contributor: fullname: Singh – volume: 42 start-page: 60 year: 2017 ident: ref_26 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 contributor: fullname: Litjens – volume: 65 start-page: 101794 year: 2020 ident: ref_28 article-title: Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101794 contributor: fullname: Minaee – volume: 81 start-page: e33 year: 2020 ident: ref_35 article-title: CT imaging and clinical course of asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, China publication-title: J. Infect. doi: 10.1016/j.jinf.2020.04.004 contributor: fullname: Meng – ident: ref_14 – ident: ref_44 – volume: 10 start-page: 19549 year: 2020 ident: ref_29 article-title: COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images publication-title: Sci. Rep. doi: 10.1038/s41598-020-76550-z contributor: fullname: Wang – ident: ref_46 doi: 10.1002/mp.14676 – volume: 296 start-page: E115 year: 2020 ident: ref_15 article-title: Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR publication-title: Radiology doi: 10.1148/radiol.2020200432 contributor: fullname: Fang – volume: 395 start-page: 497 year: 2020 ident: ref_22 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 contributor: fullname: Huang – ident: ref_5 doi: 10.1002/pa.2372 – volume: 214 start-page: 1280 year: 2020 ident: ref_33 article-title: Coronavirus Disease 2019 (COVID-19): Role of Chest CT in Diagnosis and Management publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.20.22954 contributor: fullname: Li – volume: 28 start-page: 1 year: 2020 ident: ref_6 article-title: The COVID-19 Pandemic and Its Impact on the Global Economy: What Does It Take to Turn Crisis into Opportunity? publication-title: China World Econ. doi: 10.1111/cwe.12349 contributor: fullname: Song – ident: ref_50 – volume: 323 start-page: 1843 year: 2020 ident: ref_3 article-title: Detection of SARS-CoV-2 in Different Types of Clinical Specimens publication-title: JAMA contributor: fullname: Wang – ident: ref_12 – ident: ref_36 – ident: ref_10 doi: 10.3390/electronics11010130 – volume: 79 start-page: 102459 year: 2022 ident: ref_41 article-title: SSA-Net: Spatial self-attention network for COVID-19 pneumonia infection segmentation with semi-supervised few-shot learning publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102459 contributor: fullname: Wang – volume: 60 start-page: 1231 year: 2021 ident: ref_51 article-title: Efficient 3D Deep Learning Model for Medical Image Semantic Segmentation publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.10.046 contributor: fullname: Alalwan – volume: 39 start-page: 355 year: 1987 ident: ref_47 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vis. Graph. Image Process. doi: 10.1016/S0734-189X(87)80186-X contributor: fullname: Pizer |
SSID | ssj0000913835 |
Score | 2.2953873 |
Snippet | COVID-19 is the disease that has spread over the world since December 2019. This disease has a negative impact on individuals, governments, and even the global... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 213 |
SubjectTerms | 3D DenseUNet 3D image segmentation 3D ResUNet 3D UNet 3D VGGUNet Accuracy Algorithms Artificial intelligence Automation Bacterial infections Classification Coronaviruses COVID-19 COVID-19 CT-scan Deep learning Infections Lung diseases Machine learning Medical diagnosis Medical personnel Medical research Pandemics Radiography Respiratory diseases Semantics Severe acute respiratory syndrome coronavirus 2 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB6hPSGhqrzalIeMxA1Z60fixEdeK0DABVbaQ6UofpUeyFYQ_j_jOKx220q99BpbkTNjZ77PHn8DcKxLHphlnuLcFTS3TU6NYIEaY7TyjZI89Gqf9-pqmt_MitlSqa-YE5bkgZPhxkogouJKeeEweAZmEAILmTNTuZIZn8S2mV4iU_0_WHOkXkW6JSOR14-fFulUGPCQ8XO5Eol6wf6_oczfkyWXos_kM3waYCM5TcPdhDXfbsFG2nMj6SrRNny_xZVLmtaR6yHFqiXnj_QBrUfPMFo58uB_PA-XjVoSt2CJvCDTe9-R06UDhfSK7pXczV3MJOq778B0cvl4fkWH6gnU5lp1tCoqIwpfaSe1R-AWvJPSWGedVpoLXzihVYUAS3Ijlaps47RTDRKYUCAudHIXRu289V-BaCOCscFxg_yFlbYpbciFEVZZYYIWGZx8WLL-lUQyaiQX0e71n3bP4Cwae9EzClz3D9Dt9eD2-l9uz2D_w1X1sOpea1GqSGgRo2ZwtGjG9RIPQZrWz9_6PpXIi7LUGXxJnl2MRMYaqEXFMyhXfL4y1NWW9udTr8mto26cyr_9j2_bg_VY1D5u9HC2D6Pu5c0fIPTpzGE_y98BrOsBqA priority: 102 providerName: Directory of Open Access Journals – databaseName: Public Health Database dbid: 8C1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be6mEUF9A6ENG4lZZje3EsU-oXahaBL20K_WAFMWvlgNJ6ab_n3HiDV1AXGMrsmY8nm_G428A3uuKhdzmnuLe5bSwTUENzwM1xmjpGylYGNg-L-X5vPh8U96khNsilVUuz8ThoHadjTnyY17JGKwg_vhw_5PGrlHxdjW10HgO6wz9XCzpUzM25Vgi5yUijPGtjMDo_vhuKqpCt4dxPxMr_mig7f8X1vyzZPKJDzrbhJcJPJKTUdtb8My32_BizLyR8UHRDnz7gvZLmtaRi1Ro1ZLZNb1CGdJT9FmOXPnbH-nJUUtiIpaIj2R-6Xty8uRaYfxFvyBfOxfriYbpuzA_-3Q9O6ephwK1hZY9VaUyvPRKO6E9wrfgnRDGOuu01Iz70nEtFcIswYyQUtnGaScbDGNCiejQiVew1natfwNEGx6MDY4ZjGLyyjaVDQU33ErLTdA8g6OlJOv7kSqjxhAjyr3-W-4ZnEZhTzMjzfXwoXu4rZPV1JIjnGZSeu4QOYXcYPzDRZEb5arceJnB_lJVdbK9Rf17p2TwbhpGq4lXIU3ru8dhjuJFWVU6g9ejZqeViNgJtVQsg2pF5ytLXR1pv98NzNw6ssfJ4u3_l7UHG7FpfUzksHwf1vqHR3-A0KY3h8P-_QVldfnp priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEB5KfRFE6j1aZQXfZHVv2WQfRNpqqaJ9aQ_0QQjZWytoTj1NQf-9M0nOoUcr-JpdNmF2JvN9u3MBeOEqmUUQiaPuKm5Ca7hXInPvvbOptVrmodrnoT2YmY8n5ckGLNsdTQK8uJbaUT-p2eLbq58_fr1Fg39DjBMp--uzVaQU-jIk89TE9oYyyNQplG-C-8Of2UkkZBTVSBmg3Amtxjyafyyz5quGkv7X4dA_wymv-Kf9Lbg9AUu2M2rCHdhI3V24NZ7KsTHZ6B58-YS2zdousg9TEFbH9o75EcqX76I_i-wonX6f0pE6Roe0TL9js8PUs50rVw7jEv0F-zyPFGs0TL8Ps_33x3sHfOqvwINxtud1WXtVptpF7RJCu5yi1j7EEJ11UqUyKmdrhGBaem1tHdroom2R4uQSkWPUD2Czm3fpETDnVfYhR-mR4YgqtFXIRnkVbFA-O1XAy6Ukm_OxjEaD9IPk3vwt9wJ2SdirmVQCe3gwX5w2k0U1ViHUltYmFRFVZeGRGylthK9jJXyyBWwvt6pZqlWjKkuUF1FsAc9Xw2hRdE3Sdml-OcyplSmryhXwcNzZ1Zdo6pJa1rKAam3P1z51faT7ejZU7XZUWc6ax__x3idwk7ra00mPFNuw2S8u01PEPr1_Nij0b8irAx8 priority: 102 providerName: Scholars Portal |
Title | Lung and Infection CT-Scan-Based Segmentation with 3D UNet Architecture and Its Modification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36673581 https://www.proquest.com/docview/2767211565 https://search.proquest.com/docview/2768245779 https://pubmed.ncbi.nlm.nih.gov/PMC9859364 https://doaj.org/article/6281d166e2d643f0b5592340b8d70be6 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-a7mUwxr7nrQsa7G24sSRbth4bt6UdS1bWZvRhYKyvtrA4pXX__51kOyTbnvZigyUbobuzfr_T6Q7gk8ypS3RiY9RdFqe6TmPFEhcrpaSwteDUhWyfc3GySL9cZpc7kA1nYULQvlY3-82v5X5zcx1iK2-XejLEiU3OZqX0SbpEOhnBCBV0g6KH36-kyLqy7oAMR0o_uV5HUuFah2Sf-uI53Ne7zAq6tR6FtP3_wpp_hkxurEHHz-BpDx7JQTfI57BjmxfwpPO8ke5A0Uv4-RXtl9SNIad9oFVDyov4HOcwnuKaZci5vVr2R44a4h2xhB-Sxdy25GBjW6H7RHtPZivj44lC91ewOD66KE_ivoZCrFMp2rjICsUyW0jDpUX45qzhXGmjjRSSMpsZJkWBMItThVNS6NpII2qkMS5DdGj4a9htVo19C0Qq5pR2hipkMUmu61y7lCmmhWbKSRbB52Emq9suVUaFFMOLoPpbBBFM_WSve_o01-HB6u6q6oVdCYZwmgphmUHk5BKF_IfxNFGFyRNlRQR7g6iq3vbuK5YLT2sRqUbwcd2MVuO3QurGrh5Cn4KlWZ7LCN50kl2PZNCMCPItmW8NdbsFFTVk5u4V891_v_keHvt69t7HQ5M92G3vHuwHRD2tGsOoKOkYHk2P5mff8V5--3F6OA4-BLzO0mIc7OA3mR0JEg |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12235,21400,24330,27936,27937,33278,33279,33756,33757,38528,43591,43817,43907,53804,53806,74342,74630,74740 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BewAJId4EChiJG7Ia24kTn1C3tNrCdoXortQDUhS_Wg5N2m76_xkn3tAFxDW2ImvG4_m-8XgG4IMqmE9N6ijuXU4zU2dU89RTrbWSrpaC-b7a51xOl9mX0_w0BtxWMa1yfSb2B7VtTYiR7_JCBrKC-OPT5RUNXaPC7WpsoXEXtkOpKiRf25OD-bfvY5QlVL1EjDG8lhHI73fPx7QqdHzI_JnY8Eh94f5_oc0_kyZveaHDR_AwwkeyN-j7MdxxzRN4MMTeyPCk6Cn8mKEFk7qx5CimWjVkf0FPUIp0gl7LkhN3dhEfHTUkhGKJ-EyWc9eRvVsXC8MvuhU5bm3IKOqnP4Pl4cFif0pjFwVqMiU7Wual5rkrlRXKIYDzzgqhjTVWScW4yy1XskSgJZgWUpamtsrKGomMzxEfWvEctpq2cS-BKM29Nt4yjTwmLUxdGJ9xzY00XHvFE_i4lmR1ORTLqJBkBLlXf8s9gUkQ9jgzFLruP7TXZ1W0m0pyBNRMSsctYiefamRAXGSpLm2RaicT2FmrqorWt6p-75UE3o_DaDfhMqRuXHvTzyl5lheFSuDFoNlxJSL0Qs1LlkCxofONpW6OND_P-9rcKtSPk9mr_y_rHdybLo5n1exo_vU13A8t7ENYh6U7sNVd37g3CHQ6_Tbu5l_ihv53 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkJICPEsgQJG4oasdezEiU-o23bVQllVtCv1gBTFr5YDSemm_59x4g1dQFxjK7Lm4flmPA-A96pIPTPMUZRdTjNTZ1Rz5qnWWklXS5H6vtvnQh4us0_n-XnMf1rFtMr1ndhf1LY1IUY-5YUMzgrij6mPaREn-_OPVz9pmCAVXlrjOI27sFVkUrAJbM0OFidfx4hL6ICJeGOonBHo608vxxQrNIIcrZ3YsE59E_9_Ic8_EyhvWaT5I3gYoSTZHXj_GO645gk8GOJwZCgvegrfjlGbSd1YchTTrhqyd0ZPkaJ0hhbMklN38SMWIDUkhGWJ2CfLhevI7q1HhuEX3Yp8aW3ILuq3P4Pl_OBs75DGiQrUZEp2tMxLzXNXKiuUQzDnnRVCG2uskirlLrdcyRJBl0i1kLI0tVVW1ujU-ByxohXPYdK0jXsBRGnutfE21ejTsMLUhfEZ19xIw7VXPIEPa0pWV0PjjAodjkD36m-6JzALxB53hqbX_Yf2-qKKOlRJjuA6ldJxizjKM43eEBcZ06UtmHYygZ01q6qoiavqt9wk8G5cRh0KDyN149qbfk_Js7woVALbA2fHk4gwFzUv0wSKDZ5vHHVzpfl-2ffpVqGXnMxe_v9Yb-EeCnJ1fLT4_Aruh2n2IcKTsh2YdNc37jVink6_icL8C5-TArQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lung+and+Infection+CT-Scan-Based+Segmentation+with+3D+UNet+Architecture+and+Its+Modification&rft.jtitle=Healthcare+%28Basel%29&rft.au=Asnawi%2C+Mohammad+Hamid&rft.au=Pravitasari%2C+Anindya+Apriliyanti&rft.au=Darmawan%2C+Gumgum&rft.au=Hendrawati%2C+Triyani&rft.date=2023-01-10&rft.issn=2227-9032&rft.eissn=2227-9032&rft.volume=11&rft.issue=2&rft_id=info:doi/10.3390%2Fhealthcare11020213&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9032&client=summon |