Lung and Infection CT-Scan-Based Segmentation with 3D UNet Architecture and Its Modification

COVID-19 is the disease that has spread over the world since December 2019. This disease has a negative impact on individuals, governments, and even the global economy, which has caused the WHO to declare COVID-19 as a PHEIC (Public Health Emergency of International Concern). Until now, there has be...

Full description

Saved in:
Bibliographic Details
Published inHealthcare (Basel) Vol. 11; no. 2; p. 213
Main Authors Asnawi, Mohammad Hamid, Pravitasari, Anindya Apriliyanti, Darmawan, Gumgum, Hendrawati, Triyani, Yulita, Intan Nurma, Suprijadi, Jadi, Nugraha, Farid Azhar Lutfi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.01.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract COVID-19 is the disease that has spread over the world since December 2019. This disease has a negative impact on individuals, governments, and even the global economy, which has caused the WHO to declare COVID-19 as a PHEIC (Public Health Emergency of International Concern). Until now, there has been no medicine that can completely cure COVID-19. Therefore, to prevent the spread and reduce the negative impact of COVID-19, an accurate and fast test is needed. The use of chest radiography imaging technology, such as CXR and CT-scan, plays a significant role in the diagnosis of COVID-19. In this study, CT-scan segmentation will be carried out using the 3D version of the most recommended segmentation algorithm for bio-medical images, namely 3D UNet, and three other architectures from the 3D UNet modifications, namely 3D ResUNet, 3D VGGUNet, and 3D DenseUNet. These four architectures will be used in two cases of segmentation: binary-class segmentation, where each architecture will segment the lung area from a CT scan; and multi-class segmentation, where each architecture will segment the lung and infection area from a CT scan. Before entering the model, the dataset is preprocessed first by applying a minmax scaler to scale the pixel value to a range of zero to one, and the CLAHE method is also applied to eliminate intensity in homogeneity and noise from the data. Of the four models tested in this study, surprisingly, the original 3D UNet produced the most satisfactory results compared to the other three architectures, although it requires more iterations to obtain the maximum results. For the binary-class segmentation case, 3D UNet produced IoU scores, Dice scores, and accuracy of 94.32%, 97.05%, and 99.37%, respectively. For the case of multi-class segmentation, 3D UNet produced IoU scores, Dice scores, and accuracy of 81.58%, 88.61%, and 98.78%, respectively. The use of 3D segmentation architecture will be very helpful for medical personnel because, apart from helping the process of diagnosing someone with COVID-19, they can also find out the severity of the disease through 3D infection projections.
AbstractList COVID-19 is the disease that has spread over the world since December 2019. This disease has a negative impact on individuals, governments, and even the global economy, which has caused the WHO to declare COVID-19 as a PHEIC (Public Health Emergency of International Concern). Until now, there has been no medicine that can completely cure COVID-19. Therefore, to prevent the spread and reduce the negative impact of COVID-19, an accurate and fast test is needed. The use of chest radiography imaging technology, such as CXR and CT-scan, plays a significant role in the diagnosis of COVID-19. In this study, CT-scan segmentation will be carried out using the 3D version of the most recommended segmentation algorithm for bio-medical images, namely 3D UNet, and three other architectures from the 3D UNet modifications, namely 3D ResUNet, 3D VGGUNet, and 3D DenseUNet. These four architectures will be used in two cases of segmentation: binary-class segmentation, where each architecture will segment the lung area from a CT scan; and multi-class segmentation, where each architecture will segment the lung and infection area from a CT scan. Before entering the model, the dataset is preprocessed first by applying a minmax scaler to scale the pixel value to a range of zero to one, and the CLAHE method is also applied to eliminate intensity in homogeneity and noise from the data. Of the four models tested in this study, surprisingly, the original 3D UNet produced the most satisfactory results compared to the other three architectures, although it requires more iterations to obtain the maximum results. For the binary-class segmentation case, 3D UNet produced IoU scores, Dice scores, and accuracy of 94.32%, 97.05%, and 99.37%, respectively. For the case of multi-class segmentation, 3D UNet produced IoU scores, Dice scores, and accuracy of 81.58%, 88.61%, and 98.78%, respectively. The use of 3D segmentation architecture will be very helpful for medical personnel because, apart from helping the process of diagnosing someone with COVID-19, they can also find out the severity of the disease through 3D infection projections.
Author Suprijadi, Jadi
Nugraha, Farid Azhar Lutfi
Asnawi, Mohammad Hamid
Yulita, Intan Nurma
Hendrawati, Triyani
Pravitasari, Anindya Apriliyanti
Darmawan, Gumgum
AuthorAffiliation 1 Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia
2 Department of Computer Science, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia
AuthorAffiliation_xml – name: 1 Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia
– name: 2 Department of Computer Science, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia
Author_xml – sequence: 1
  givenname: Mohammad Hamid
  orcidid: 0000-0002-3543-1703
  surname: Asnawi
  fullname: Asnawi, Mohammad Hamid
  organization: Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia
– sequence: 2
  givenname: Anindya Apriliyanti
  orcidid: 0000-0003-4873-3169
  surname: Pravitasari
  fullname: Pravitasari, Anindya Apriliyanti
  organization: Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia
– sequence: 3
  givenname: Gumgum
  surname: Darmawan
  fullname: Darmawan, Gumgum
  organization: Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia
– sequence: 4
  givenname: Triyani
  surname: Hendrawati
  fullname: Hendrawati, Triyani
  organization: Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia
– sequence: 5
  givenname: Intan Nurma
  orcidid: 0000-0002-8539-3311
  surname: Yulita
  fullname: Yulita, Intan Nurma
  organization: Department of Computer Science, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia
– sequence: 6
  givenname: Jadi
  surname: Suprijadi
  fullname: Suprijadi, Jadi
  organization: Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia
– sequence: 7
  givenname: Farid Azhar Lutfi
  orcidid: 0000-0002-4200-8380
  surname: Nugraha
  fullname: Nugraha, Farid Azhar Lutfi
  organization: Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36673581$$D View this record in MEDLINE/PubMed
BookMark eNplks9vFCEUgImpsXXtP-DBTOLFyyg_BgYuJnWtusmqh7Y3E8LAmx02s1BhRtP_Xrpbm1a5QHjf-_IevOfoKMQACL0k-C1jCr8bwIzTYE0CQjDFlLAn6IRS2tYKM3r04HyMTnPe4rIUYZLxZ-iYCdEyLskJ-rGew6YywVWr0IOdfAzV8rK-sCbUH0wGV13AZgdhMvvQbz8NFftYXX2DqTpLdvBTSZoTHBRTrr5G53tv9_gL9LQ3Y4bTu32Brj6dXy6_1Ovvn1fLs3VtGyWmWnLZUQ5SOaYAN7wHx1hnnXVKKEKBO6qEVJww0pXKpTVOOWEa2fYcE-bYAq0OXhfNVl8nvzPpRkfj9f4ipo02afJ2BC2oJI4IAdSJhvW441xR1uBOuhZ3IIrr_cF1PXc7cLa0nsz4SPo4EvygN_GXVpIrVpwL9OZOkOLPGfKkdz5bGEcTIM5Z01ZI2vC2VQV9_Q-6jXMK5aluqZYSwgUvFD1QNsWcE_T3xRCsb2dB_z8LJenVwzbuU_7-PPsDzXeyDQ
CitedBy_id crossref_primary_10_3390_s24051557
crossref_primary_10_3390_info14060333
crossref_primary_10_3390_app132111640
crossref_primary_10_3390_electronics12040911
Cites_doi 10.1007/s10044-021-00984-y
10.1148/ryct.2020200075
10.1016/j.media.2016.05.004
10.1109/RBME.2020.2987975
10.1016/S0140-6736(20)30185-9
10.3390/healthcare10020343
10.1109/TMI.2020.2993291
10.1016/j.media.2016.10.004
10.1016/j.clinimag.2021.01.019
10.1007/s11063-022-10785-x
10.1109/ICASSP.2009.4959845
10.1007/978-3-319-24574-4_28
10.1016/j.eswa.2022.117360
10.3390/app12104825
10.1007/s00540-021-02939-3
10.1148/radiol.2020200642
10.1109/RBME.2020.2990959
10.1109/42.14513
10.1016/j.patcog.2018.05.014
10.1016/j.chest.2020.04.003
10.1002/mp.14609
10.1016/j.ejrad.2020.109009
10.12928/telkomnika.v18i3.14753
10.1002/spe.3011
10.1016/j.media.2017.07.005
10.1016/j.media.2020.101794
10.1016/j.jinf.2020.04.004
10.1038/s41598-020-76550-z
10.1002/mp.14676
10.1148/radiol.2020200432
10.1016/S0140-6736(20)30183-5
10.1002/pa.2372
10.2214/AJR.20.22954
10.1111/cwe.12349
10.3390/electronics11010130
10.1016/j.media.2022.102459
10.1016/j.aej.2020.10.046
10.1016/S0734-189X(87)80186-X
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID NPM
AAYXX
CITATION
3V.
7RV
7XB
8C1
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
KB0
M2O
MBDVC
NAPCQ
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.3390/healthcare11020213
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Central (purchase pre-March 2016)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
Nursing & Allied Health Database (Alumni Edition)
Research Library
Research Library (Corporate)
Nursing & Allied Health Premium
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Public Health
Research Library Prep
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Research Library (Alumni Edition)
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
Nursing & Allied Health Premium
Health Research Premium Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2227-9032
ExternalDocumentID oai_doaj_org_article_6281d166e2d643f0b5592340b8d70be6
10_3390_healthcare11020213
36673581
Genre Journal Article
GrantInformation_xml – fundername: Directorate for Research and Community Service (DRPM) Ministry of Research, Technology, and Higher Education Indonesia
  grantid: 094/E5/PG.02.00.PT/2022
GroupedDBID 3V.
53G
5VS
7RV
8C1
8FI
8FJ
8G5
AAFWJ
AAHBH
ABUWG
ADBBV
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
CCPQU
DIK
DWQXO
EIHBH
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HYE
IAO
ITC
KQ8
M2O
M48
MODMG
M~E
NAPCQ
NPM
OK1
PGMZT
PIMPY
PQQKQ
PROAC
RNS
RPM
UKHRP
AAYXX
CITATION
7XB
8FK
COVID
MBDVC
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c496t-858b25e89d39e045fed33bcdcd96912e5d296895131b3668cad9d6a487f5013d3
IEDL.DBID RPM
ISSN 2227-9032
IngestDate Tue Oct 22 15:16:40 EDT 2024
Tue Sep 17 21:30:33 EDT 2024
Fri Oct 25 05:58:07 EDT 2024
Thu Oct 10 18:30:50 EDT 2024
Mon Sep 16 17:23:24 EDT 2024
Sat Sep 28 08:16:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 3D ResUNet
3D image segmentation
3D VGGUNet
3D UNet
COVID-19 CT-scan
3D DenseUNet
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-858b25e89d39e045fed33bcdcd96912e5d296895131b3668cad9d6a487f5013d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4873-3169
0000-0002-3543-1703
0000-0002-8539-3311
0000-0002-4200-8380
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859364/
PMID 36673581
PQID 2767211565
PQPubID 2032390
ParticipantIDs doaj_primary_oai_doaj_org_article_6281d166e2d643f0b5592340b8d70be6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9859364
proquest_miscellaneous_2768245779
proquest_journals_2767211565
crossref_primary_10_3390_healthcare11020213
pubmed_primary_36673581
PublicationCentury 2000
PublicationDate 20230110
PublicationDateYYYYMMDD 2023-01-10
PublicationDate_xml – month: 1
  year: 2023
  text: 20230110
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Healthcare (Basel)
PublicationTitleAlternate Healthcare (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Singh (ref_43) 2021; 52
Sethy (ref_30) 2020; 5
Song (ref_6) 2020; 28
ref_14
ref_12
ref_11
ref_10
Shan (ref_19) 2021; 48
Fang (ref_15) 2020; 296
Wang (ref_2) 2020; 395
ref_17
Owais (ref_40) 2022; 202
Wang (ref_41) 2022; 79
Asai (ref_13) 2021; 35
Alalwan (ref_51) 2021; 60
Wang (ref_29) 2020; 10
Huang (ref_22) 2020; 395
ref_25
Ding (ref_34) 2020; 127
Ai (ref_16) 2020; 296
Li (ref_33) 2020; 214
Rubin (ref_21) 2020; 158
Pravitasari (ref_52) 2020; 18
Huang (ref_8) 2020; 2
Zimmerman (ref_48) 1988; 7
Dong (ref_20) 2021; 14
Havaei (ref_24) 2017; 35
Minaee (ref_28) 2020; 65
Narin (ref_18) 2021; 24
ref_36
Shi (ref_37) 2021; 14
Patil (ref_23) 2013; 2
ref_32
Kamnitsas (ref_54) 2017; 36
Ronneberger (ref_53) 2015; 9351
ref_39
ref_38
Pizer (ref_47) 1987; 39
Litjens (ref_26) 2017; 42
Wang (ref_3) 2020; 323
Meng (ref_35) 2020; 81
Benameur (ref_7) 2021; 76
Hu (ref_27) 2018; 83
ref_46
ref_45
ref_44
Oh (ref_31) 2020; 39
ref_1
Punn (ref_42) 2022; 54
ref_49
ref_9
ref_5
ref_4
References_xml – volume: 24
  start-page: 1207
  year: 2021
  ident: ref_18
  article-title: Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-021-00984-y
  contributor:
    fullname: Narin
– ident: ref_49
– volume: 2
  start-page: e200075
  year: 2020
  ident: ref_8
  article-title: Serial Quantitative Chest CT Assessment of COVID-19: A Deep Learning Approach
  publication-title: Radiol. Cardiothorac. Imaging
  doi: 10.1148/ryct.2020200075
  contributor:
    fullname: Huang
– ident: ref_32
– volume: 35
  start-page: 18
  year: 2017
  ident: ref_24
  article-title: Brain tumor segmentation with Deep Neural Networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.05.004
  contributor:
    fullname: Havaei
– volume: 14
  start-page: 4
  year: 2021
  ident: ref_37
  article-title: Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2020.2987975
  contributor:
    fullname: Shi
– volume: 395
  start-page: 470
  year: 2020
  ident: ref_2
  article-title: A novel coronavirus outbreak of global health concern
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30185-9
  contributor:
    fullname: Wang
– ident: ref_39
– ident: ref_1
– ident: ref_11
  doi: 10.3390/healthcare10020343
– volume: 39
  start-page: 2688
  year: 2020
  ident: ref_31
  article-title: Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2993291
  contributor:
    fullname: Oh
– volume: 36
  start-page: 61
  year: 2017
  ident: ref_54
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
  contributor:
    fullname: Kamnitsas
– volume: 76
  start-page: 6
  year: 2021
  ident: ref_7
  article-title: SARS-CoV-2 diagnosis using medical imaging techniques and artificial intelligence: A review
  publication-title: Clin. Imaging
  doi: 10.1016/j.clinimag.2021.01.019
  contributor:
    fullname: Benameur
– volume: 54
  start-page: 3771
  year: 2022
  ident: ref_42
  article-title: CHS-Net: A Deep Learning Approach for Hierarchical Segmentation of COVID-19 via CT Images
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-022-10785-x
  contributor:
    fullname: Punn
– ident: ref_4
– volume: 2
  start-page: 22
  year: 2013
  ident: ref_23
  article-title: Medical image segmentation: A Review
  publication-title: Int. J. Comput. Sci. Mob. Comput.
  contributor:
    fullname: Patil
– ident: ref_25
  doi: 10.1109/ICASSP.2009.4959845
– volume: 9351
  start-page: 234
  year: 2015
  ident: ref_53
  article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-319-24574-4_28
  contributor:
    fullname: Ronneberger
– volume: 5
  start-page: 643
  year: 2020
  ident: ref_30
  article-title: Detection of coronavirus Disease (COVID-19) based on Deep Features and Support Vector Machine
  publication-title: Int. J. Math. Eng. Manag. Sci.
  contributor:
    fullname: Sethy
– volume: 202
  start-page: 117360
  year: 2022
  ident: ref_40
  article-title: DMDF-Net: Dual multiscale dilated fusion network for accurate segmentation of lesions related to COVID-19 in lung radiographic scans
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117360
  contributor:
    fullname: Owais
– ident: ref_38
– ident: ref_17
– ident: ref_45
– ident: ref_9
  doi: 10.3390/app12104825
– volume: 35
  start-page: 470
  year: 2021
  ident: ref_13
  article-title: Correction to: COVID-19: Accurate interpretation of diagnostic tests—A statistical point of view
  publication-title: J. Anesth.
  doi: 10.1007/s00540-021-02939-3
  contributor:
    fullname: Asai
– volume: 296
  start-page: E32
  year: 2020
  ident: ref_16
  article-title: Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases
  publication-title: Radiology
  doi: 10.1148/radiol.2020200642
  contributor:
    fullname: Ai
– volume: 14
  start-page: 16
  year: 2021
  ident: ref_20
  article-title: The Role of Imaging in the Detection and Management of COVID-19: A Review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2020.2990959
  contributor:
    fullname: Dong
– volume: 7
  start-page: 304
  year: 1988
  ident: ref_48
  article-title: An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.14513
  contributor:
    fullname: Zimmerman
– volume: 83
  start-page: 134
  year: 2018
  ident: ref_27
  article-title: Deep learning for image-based cancer detection and diagnosis − A survey
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.05.014
  contributor:
    fullname: Hu
– volume: 158
  start-page: 106
  year: 2020
  ident: ref_21
  article-title: The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic
  publication-title: Chest
  doi: 10.1016/j.chest.2020.04.003
  contributor:
    fullname: Rubin
– volume: 48
  start-page: 1633
  year: 2021
  ident: ref_19
  article-title: Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction
  publication-title: Med. Phys.
  doi: 10.1002/mp.14609
  contributor:
    fullname: Shan
– volume: 127
  start-page: 109009
  year: 2020
  ident: ref_34
  article-title: Chest CT findings of COVID-19 pneumonia by duration of symptoms
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2020.109009
  contributor:
    fullname: Ding
– volume: 18
  start-page: 1310
  year: 2020
  ident: ref_52
  article-title: UNET-VGG16 with transfer learning for MRI-based brain tumor segmentation
  publication-title: TELKOMNIKA (Telecommunication Computing Electronics and Control)
  doi: 10.12928/telkomnika.v18i3.14753
  contributor:
    fullname: Pravitasari
– volume: 52
  start-page: 868
  year: 2021
  ident: ref_43
  article-title: Software system to predict the infection in COVID-19 patients using deep learning and web of things
  publication-title: Softw. Pract. Exp.
  doi: 10.1002/spe.3011
  contributor:
    fullname: Singh
– volume: 42
  start-page: 60
  year: 2017
  ident: ref_26
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
  contributor:
    fullname: Litjens
– volume: 65
  start-page: 101794
  year: 2020
  ident: ref_28
  article-title: Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101794
  contributor:
    fullname: Minaee
– volume: 81
  start-page: e33
  year: 2020
  ident: ref_35
  article-title: CT imaging and clinical course of asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, China
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2020.04.004
  contributor:
    fullname: Meng
– ident: ref_14
– ident: ref_44
– volume: 10
  start-page: 19549
  year: 2020
  ident: ref_29
  article-title: COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-76550-z
  contributor:
    fullname: Wang
– ident: ref_46
  doi: 10.1002/mp.14676
– volume: 296
  start-page: E115
  year: 2020
  ident: ref_15
  article-title: Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR
  publication-title: Radiology
  doi: 10.1148/radiol.2020200432
  contributor:
    fullname: Fang
– volume: 395
  start-page: 497
  year: 2020
  ident: ref_22
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
  contributor:
    fullname: Huang
– ident: ref_5
  doi: 10.1002/pa.2372
– volume: 214
  start-page: 1280
  year: 2020
  ident: ref_33
  article-title: Coronavirus Disease 2019 (COVID-19): Role of Chest CT in Diagnosis and Management
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.20.22954
  contributor:
    fullname: Li
– volume: 28
  start-page: 1
  year: 2020
  ident: ref_6
  article-title: The COVID-19 Pandemic and Its Impact on the Global Economy: What Does It Take to Turn Crisis into Opportunity?
  publication-title: China World Econ.
  doi: 10.1111/cwe.12349
  contributor:
    fullname: Song
– ident: ref_50
– volume: 323
  start-page: 1843
  year: 2020
  ident: ref_3
  article-title: Detection of SARS-CoV-2 in Different Types of Clinical Specimens
  publication-title: JAMA
  contributor:
    fullname: Wang
– ident: ref_12
– ident: ref_36
– ident: ref_10
  doi: 10.3390/electronics11010130
– volume: 79
  start-page: 102459
  year: 2022
  ident: ref_41
  article-title: SSA-Net: Spatial self-attention network for COVID-19 pneumonia infection segmentation with semi-supervised few-shot learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102459
  contributor:
    fullname: Wang
– volume: 60
  start-page: 1231
  year: 2021
  ident: ref_51
  article-title: Efficient 3D Deep Learning Model for Medical Image Semantic Segmentation
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.10.046
  contributor:
    fullname: Alalwan
– volume: 39
  start-page: 355
  year: 1987
  ident: ref_47
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/S0734-189X(87)80186-X
  contributor:
    fullname: Pizer
SSID ssj0000913835
Score 2.2953873
Snippet COVID-19 is the disease that has spread over the world since December 2019. This disease has a negative impact on individuals, governments, and even the global...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 213
SubjectTerms 3D DenseUNet
3D image segmentation
3D ResUNet
3D UNet
3D VGGUNet
Accuracy
Algorithms
Artificial intelligence
Automation
Bacterial infections
Classification
Coronaviruses
COVID-19
COVID-19 CT-scan
Deep learning
Infections
Lung diseases
Machine learning
Medical diagnosis
Medical personnel
Medical research
Pandemics
Radiography
Respiratory diseases
Semantics
Severe acute respiratory syndrome coronavirus 2
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB6hPSGhqrzalIeMxA1Z60fixEdeK0DABVbaQ6UofpUeyFYQ_j_jOKx220q99BpbkTNjZ77PHn8DcKxLHphlnuLcFTS3TU6NYIEaY7TyjZI89Gqf9-pqmt_MitlSqa-YE5bkgZPhxkogouJKeeEweAZmEAILmTNTuZIZn8S2mV4iU_0_WHOkXkW6JSOR14-fFulUGPCQ8XO5Eol6wf6_oczfkyWXos_kM3waYCM5TcPdhDXfbsFG2nMj6SrRNny_xZVLmtaR6yHFqiXnj_QBrUfPMFo58uB_PA-XjVoSt2CJvCDTe9-R06UDhfSK7pXczV3MJOq778B0cvl4fkWH6gnU5lp1tCoqIwpfaSe1R-AWvJPSWGedVpoLXzihVYUAS3Ijlaps47RTDRKYUCAudHIXRu289V-BaCOCscFxg_yFlbYpbciFEVZZYYIWGZx8WLL-lUQyaiQX0e71n3bP4Cwae9EzClz3D9Dt9eD2-l9uz2D_w1X1sOpea1GqSGgRo2ZwtGjG9RIPQZrWz9_6PpXIi7LUGXxJnl2MRMYaqEXFMyhXfL4y1NWW9udTr8mto26cyr_9j2_bg_VY1D5u9HC2D6Pu5c0fIPTpzGE_y98BrOsBqA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Health Database
  dbid: 8C1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be6mEUF9A6ENG4lZZje3EsU-oXahaBL20K_WAFMWvlgNJ6ab_n3HiDV1AXGMrsmY8nm_G428A3uuKhdzmnuLe5bSwTUENzwM1xmjpGylYGNg-L-X5vPh8U96khNsilVUuz8ThoHadjTnyY17JGKwg_vhw_5PGrlHxdjW10HgO6wz9XCzpUzM25Vgi5yUijPGtjMDo_vhuKqpCt4dxPxMr_mig7f8X1vyzZPKJDzrbhJcJPJKTUdtb8My32_BizLyR8UHRDnz7gvZLmtaRi1Ro1ZLZNb1CGdJT9FmOXPnbH-nJUUtiIpaIj2R-6Xty8uRaYfxFvyBfOxfriYbpuzA_-3Q9O6ephwK1hZY9VaUyvPRKO6E9wrfgnRDGOuu01Iz70nEtFcIswYyQUtnGaScbDGNCiejQiVew1natfwNEGx6MDY4ZjGLyyjaVDQU33ErLTdA8g6OlJOv7kSqjxhAjyr3-W-4ZnEZhTzMjzfXwoXu4rZPV1JIjnGZSeu4QOYXcYPzDRZEb5arceJnB_lJVdbK9Rf17p2TwbhpGq4lXIU3ru8dhjuJFWVU6g9ejZqeViNgJtVQsg2pF5ytLXR1pv98NzNw6ssfJ4u3_l7UHG7FpfUzksHwf1vqHR3-A0KY3h8P-_QVldfnp
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEB5KfRFE6j1aZQXfZHVv2WQfRNpqqaJ9aQ_0QQjZWytoTj1NQf-9M0nOoUcr-JpdNmF2JvN9u3MBeOEqmUUQiaPuKm5Ca7hXInPvvbOptVrmodrnoT2YmY8n5ckGLNsdTQK8uJbaUT-p2eLbq58_fr1Fg39DjBMp--uzVaQU-jIk89TE9oYyyNQplG-C-8Of2UkkZBTVSBmg3Amtxjyafyyz5quGkv7X4dA_wymv-Kf9Lbg9AUu2M2rCHdhI3V24NZ7KsTHZ6B58-YS2zdousg9TEFbH9o75EcqX76I_i-wonX6f0pE6Roe0TL9js8PUs50rVw7jEv0F-zyPFGs0TL8Ps_33x3sHfOqvwINxtud1WXtVptpF7RJCu5yi1j7EEJ11UqUyKmdrhGBaem1tHdroom2R4uQSkWPUD2Czm3fpETDnVfYhR-mR4YgqtFXIRnkVbFA-O1XAy6Ukm_OxjEaD9IPk3vwt9wJ2SdirmVQCe3gwX5w2k0U1ViHUltYmFRFVZeGRGylthK9jJXyyBWwvt6pZqlWjKkuUF1FsAc9Xw2hRdE3Sdml-OcyplSmryhXwcNzZ1Zdo6pJa1rKAam3P1z51faT7ejZU7XZUWc6ax__x3idwk7ra00mPFNuw2S8u01PEPr1_Nij0b8irAx8
  priority: 102
  providerName: Scholars Portal
Title Lung and Infection CT-Scan-Based Segmentation with 3D UNet Architecture and Its Modification
URI https://www.ncbi.nlm.nih.gov/pubmed/36673581
https://www.proquest.com/docview/2767211565
https://search.proquest.com/docview/2768245779
https://pubmed.ncbi.nlm.nih.gov/PMC9859364
https://doaj.org/article/6281d166e2d643f0b5592340b8d70be6
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-a7mUwxr7nrQsa7G24sSRbth4bt6UdS1bWZvRhYKyvtrA4pXX__51kOyTbnvZigyUbobuzfr_T6Q7gk8ypS3RiY9RdFqe6TmPFEhcrpaSwteDUhWyfc3GySL9cZpc7kA1nYULQvlY3-82v5X5zcx1iK2-XejLEiU3OZqX0SbpEOhnBCBV0g6KH36-kyLqy7oAMR0o_uV5HUuFah2Sf-uI53Ne7zAq6tR6FtP3_wpp_hkxurEHHz-BpDx7JQTfI57BjmxfwpPO8ke5A0Uv4-RXtl9SNIad9oFVDyov4HOcwnuKaZci5vVr2R44a4h2xhB-Sxdy25GBjW6H7RHtPZivj44lC91ewOD66KE_ivoZCrFMp2rjICsUyW0jDpUX45qzhXGmjjRSSMpsZJkWBMItThVNS6NpII2qkMS5DdGj4a9htVo19C0Qq5pR2hipkMUmu61y7lCmmhWbKSRbB52Emq9suVUaFFMOLoPpbBBFM_WSve_o01-HB6u6q6oVdCYZwmgphmUHk5BKF_IfxNFGFyRNlRQR7g6iq3vbuK5YLT2sRqUbwcd2MVuO3QurGrh5Cn4KlWZ7LCN50kl2PZNCMCPItmW8NdbsFFTVk5u4V891_v_keHvt69t7HQ5M92G3vHuwHRD2tGsOoKOkYHk2P5mff8V5--3F6OA4-BLzO0mIc7OA3mR0JEg
link.rule.ids 230,315,730,783,787,867,888,2109,2228,12235,21400,24330,27936,27937,33278,33279,33756,33757,38528,43591,43817,43907,53804,53806,74342,74630,74740
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BewAJId4EChiJG7Ia24kTn1C3tNrCdoXortQDUhS_Wg5N2m76_xkn3tAFxDW2ImvG4_m-8XgG4IMqmE9N6ijuXU4zU2dU89RTrbWSrpaC-b7a51xOl9mX0_w0BtxWMa1yfSb2B7VtTYiR7_JCBrKC-OPT5RUNXaPC7WpsoXEXtkOpKiRf25OD-bfvY5QlVL1EjDG8lhHI73fPx7QqdHzI_JnY8Eh94f5_oc0_kyZveaHDR_AwwkeyN-j7MdxxzRN4MMTeyPCk6Cn8mKEFk7qx5CimWjVkf0FPUIp0gl7LkhN3dhEfHTUkhGKJ-EyWc9eRvVsXC8MvuhU5bm3IKOqnP4Pl4cFif0pjFwVqMiU7Wual5rkrlRXKIYDzzgqhjTVWScW4yy1XskSgJZgWUpamtsrKGomMzxEfWvEctpq2cS-BKM29Nt4yjTwmLUxdGJ9xzY00XHvFE_i4lmR1ORTLqJBkBLlXf8s9gUkQ9jgzFLruP7TXZ1W0m0pyBNRMSsctYiefamRAXGSpLm2RaicT2FmrqorWt6p-75UE3o_DaDfhMqRuXHvTzyl5lheFSuDFoNlxJSL0Qs1LlkCxofONpW6OND_P-9rcKtSPk9mr_y_rHdybLo5n1exo_vU13A8t7ENYh6U7sNVd37g3CHQ6_Tbu5l_ihv53
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkJICPEsgQJG4oasdezEiU-o23bVQllVtCv1gBTFr5YDSemm_59x4g1dQFxjK7Lm4flmPA-A96pIPTPMUZRdTjNTZ1Rz5qnWWklXS5H6vtvnQh4us0_n-XnMf1rFtMr1ndhf1LY1IUY-5YUMzgrij6mPaREn-_OPVz9pmCAVXlrjOI27sFVkUrAJbM0OFidfx4hL6ICJeGOonBHo608vxxQrNIIcrZ3YsE59E_9_Ic8_EyhvWaT5I3gYoSTZHXj_GO645gk8GOJwZCgvegrfjlGbSd1YchTTrhqyd0ZPkaJ0hhbMklN38SMWIDUkhGWJ2CfLhevI7q1HhuEX3Yp8aW3ILuq3P4Pl_OBs75DGiQrUZEp2tMxLzXNXKiuUQzDnnRVCG2uskirlLrdcyRJBl0i1kLI0tVVW1ujU-ByxohXPYdK0jXsBRGnutfE21ejTsMLUhfEZ19xIw7VXPIEPa0pWV0PjjAodjkD36m-6JzALxB53hqbX_Yf2-qKKOlRJjuA6ldJxizjKM43eEBcZ06UtmHYygZ01q6qoiavqt9wk8G5cRh0KDyN149qbfk_Js7woVALbA2fHk4gwFzUv0wSKDZ5vHHVzpfl-2ffpVqGXnMxe_v9Yb-EeCnJ1fLT4_Aruh2n2IcKTsh2YdNc37jVink6_icL8C5-TArQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lung+and+Infection+CT-Scan-Based+Segmentation+with+3D+UNet+Architecture+and+Its+Modification&rft.jtitle=Healthcare+%28Basel%29&rft.au=Asnawi%2C+Mohammad+Hamid&rft.au=Pravitasari%2C+Anindya+Apriliyanti&rft.au=Darmawan%2C+Gumgum&rft.au=Hendrawati%2C+Triyani&rft.date=2023-01-10&rft.issn=2227-9032&rft.eissn=2227-9032&rft.volume=11&rft.issue=2&rft_id=info:doi/10.3390%2Fhealthcare11020213&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9032&client=summon