Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities
Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited. Herein, we used cerium oxide nanoparticles (nanoceria) to pr...
Saved in:
Published in | Journal of nanobiotechnology Vol. 19; no. 1; pp. 276 - 19 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
16.09.2021
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited.
Herein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, -43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, H
O
, and
O
in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K
retention (29%) and significantly lower Na
accumulation (18.5%) and Na
/K
ratio (37%) than the control.
Our results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na
/K
ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance. |
---|---|
AbstractList | Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited.BACKGROUNDSalinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited.Herein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, -43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, H2O2, and •O2- in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K+ retention (29%) and significantly lower Na+ accumulation (18.5%) and Na+/K+ ratio (37%) than the control.RESULTSHerein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, -43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, H2O2, and •O2- in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K+ retention (29%) and significantly lower Na+ accumulation (18.5%) and Na+/K+ ratio (37%) than the control.Our results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na+/K+ ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance.CONCLUSIONSOur results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na+/K+ ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance. Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited. Herein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, -43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, H O , and O in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K retention (29%) and significantly lower Na accumulation (18.5%) and Na /K ratio (37%) than the control. Our results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na /K ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance. Background Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited. Results Herein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, −43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, H2O2, and •O2− in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K+ retention (29%) and significantly lower Na+ accumulation (18.5%) and Na+/K+ ratio (37%) than the control. Conclusions Our results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na+/K+ ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance. Abstract Background Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited. Results Herein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, −43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, H2O2, and •O2 − in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K+ retention (29%) and significantly lower Na+ accumulation (18.5%) and Na+/K+ ratio (37%) than the control. Conclusions Our results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na+/K+ ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance. Graphical abstract |
ArticleNumber | 276 |
Author | Liu, Jiahao Li, Yanhui Khan, Zaid Khan, Mohammad Nauman Chen, Linlin Hu, Jin Wu, Honghong Li, Zhaohu |
Author_xml | – sequence: 1 givenname: Mohammad Nauman surname: Khan fullname: Khan, Mohammad Nauman – sequence: 2 givenname: Yanhui surname: Li fullname: Li, Yanhui – sequence: 3 givenname: Zaid surname: Khan fullname: Khan, Zaid – sequence: 4 givenname: Linlin surname: Chen fullname: Chen, Linlin – sequence: 5 givenname: Jiahao surname: Liu fullname: Liu, Jiahao – sequence: 6 givenname: Jin surname: Hu fullname: Hu, Jin – sequence: 7 givenname: Honghong orcidid: 0000-0001-6629-0280 surname: Wu fullname: Wu, Honghong – sequence: 8 givenname: Zhaohu surname: Li fullname: Li, Zhaohu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34530815$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustq3DAUNSWlebQ_0EURdNONWz1teVMooY9AaKCPtZClOzMabGkqyQn5rP5IvinyOClJFhUISVfnHI50z3F14IOHqnpN8HtCZPMhEdoJUmNaJsG0qbtn1RHhbVszIsTBg_1hdZzSFmNKOeUvqkPGBcOSiKPq6rv2wUB0GiUAi3bRjc6vEfiN9qYUkh4yymGAOJ-R8yjqHeyxeRPDtN6gMdhp0Hmm_bj4iTZhhJCyTi4h7S26-Vvr8XrQCZA22V267CC9rJ6v9JDg1d16Uv3-8vnX6bf6_OLr2emn89rwrsl1a0xjoaHaStb2bXklI6TpW8FNzzpGcWMaKQSlohHYEAGUYMyb3lrRCwKCnVRni64Neqvm1-l4rYJ2al8Ica10zM4MoKzULWa9kVgQLldCrnjfM2P7Tq6IEbxofVy0dlM_gjXgc9TDI9HHN95t1DpcKsnLoLIIvLsTiOHPBCmr0SUDw6A9hCkpKlrOMeds9v32CXQbpujLVy0ogVuGC-rNQ0f_rNz3twDkAjAxpBRhpYzLpVVhNugGRbCao6SWKKkSJbWPkuoKlT6h3qv_h3QLzOvMqg |
CitedBy_id | crossref_primary_10_1186_s12951_021_01176_w crossref_primary_10_1016_j_jhazmat_2023_131906 crossref_primary_10_1007_s00709_025_02038_0 crossref_primary_10_1007_s42729_022_01007_3 crossref_primary_10_1002_adma_202301810 crossref_primary_10_1016_j_ecoenv_2025_117886 crossref_primary_10_1016_j_envexpbot_2024_105913 crossref_primary_10_1016_j_ijbiomac_2024_131477 crossref_primary_10_1021_acs_est_3c07339 crossref_primary_10_1371_journal_pone_0303145 crossref_primary_10_1021_acsami_3c00043 crossref_primary_10_1021_acs_jafc_2c04882 crossref_primary_10_3390_agronomy13030729 crossref_primary_10_1016_j_plaphy_2024_108519 crossref_primary_10_1016_j_chemosphere_2022_136911 crossref_primary_10_1039_D1EN00845E crossref_primary_10_1007_s44154_022_00065_y crossref_primary_10_1016_j_crope_2023_03_002 crossref_primary_10_1111_jipb_13652 crossref_primary_10_1007_s11105_023_01369_7 crossref_primary_10_1016_j_bcab_2023_102892 crossref_primary_10_1016_j_rhisph_2022_100518 crossref_primary_10_1016_j_indcrop_2024_119001 crossref_primary_10_3390_nano13060974 crossref_primary_10_1039_D2EN00623E crossref_primary_10_1016_j_stress_2022_100122 crossref_primary_10_1016_j_indcrop_2024_120279 crossref_primary_10_3390_plants13213011 crossref_primary_10_48130_seedbio_0025_0001 crossref_primary_10_3390_ijms23063293 crossref_primary_10_1186_s11671_024_04134_1 crossref_primary_10_1007_s12298_024_01521_x crossref_primary_10_1002_gch2_202200025 crossref_primary_10_3390_su142214880 crossref_primary_10_1016_j_ijbiomac_2025_141680 crossref_primary_10_1016_j_plaphy_2024_109145 crossref_primary_10_1016_j_envexpbot_2024_105937 crossref_primary_10_3389_fpls_2024_1418515 crossref_primary_10_18615_anadolu_1398603 crossref_primary_10_1021_acs_jafc_3c06185 crossref_primary_10_1016_j_stress_2022_100091 crossref_primary_10_3390_ijms242417612 crossref_primary_10_1016_j_jclepro_2022_133729 crossref_primary_10_1039_D2EN00688J crossref_primary_10_3390_ijms23095093 crossref_primary_10_3390_plants12020405 crossref_primary_10_29121_ijetmr_v11_i9_2024_1485 crossref_primary_10_1007_s43621_025_00855_0 crossref_primary_10_1016_j_jia_2023_12_013 crossref_primary_10_1016_j_plaphy_2024_108895 crossref_primary_10_38211_joarps_2024_05_200 crossref_primary_10_1016_j_chemosphere_2022_134474 crossref_primary_10_1038_s43016_022_00596_7 crossref_primary_10_1016_j_jenvman_2024_123847 crossref_primary_10_1016_j_scitotenv_2023_168640 crossref_primary_10_1016_j_sajb_2024_10_059 crossref_primary_10_1007_s12668_024_01444_7 crossref_primary_10_3390_plants13202934 crossref_primary_10_3389_fsufs_2024_1418554 crossref_primary_10_3390_metabo13060765 crossref_primary_10_1007_s11051_024_06101_4 crossref_primary_10_3390_horticulturae9030375 crossref_primary_10_3389_fpls_2023_1264698 crossref_primary_10_48130_frures_0024_0037 crossref_primary_10_1016_j_plana_2023_100049 crossref_primary_10_3389_fpls_2022_843994 crossref_primary_10_1016_j_cj_2024_03_007 crossref_primary_10_1186_s12870_024_04773_7 crossref_primary_10_1016_j_xplc_2022_100346 |
Cites_doi | 10.1016/j.envexpbot.2012.11.006 10.1016/j.jksus.2020.10.004 10.1016/j.indcrop.2019.111597 10.1016/j.sajb.2019.08.018 10.3390/plants8060174 10.1016/j.taap.2017.05.025 10.1038/s41598-017-08669-5 10.1007/s00344-019-09942-9 10.1016/j.watres.2020.116322 10.2134/agronj2017.02.0076 10.1590/1678-4685-gmb-2016-0106 10.1016/j.envpol.2016.09.060 10.15258/sst.2008.36.1.26 10.1016/j.tplants.2007.01.005 10.1016/j.cj.2021.06.002:1-26 10.3389/fpls.2018.00001 10.2135/cropsci2018.02.0096 10.1051/agro:2008021 10.1146/annurev-arplant-042811-105550 10.1016/0003-9861(68)90654-1 10.1016/j.jes.2016.12.020 10.1007/s11104-018-3770-y 10.1016/j.matpr.2021.01.727 10.1146/annurev.arplant.59.032607.092911 10.1007/s11738-012-1186-5 10.1016/j.plaphy.2016.09.005 10.1016/j.pmpp.2019.101428 10.3390/ijms20020450 10.1186/s12951-020-00755-7 10.1016/S1001-0742(12)60301-5 10.1016/B978-0-12-818598-8.00018-3 10.3389/fpls.2020.00832 10.2147/NSA.S39409 10.1007/s00344-016-9618-x 10.1016/j.envpol.2017.05.083 10.1016/j.sjbs.2014.12.001 10.1039/D0EN00387E 10.1016/j.jplph.2005.03.013 10.1002/j.2050-0416.1973.tb03557.x 10.17957/IJAB/15.0114 10.1186/s12951-021-00892-7 10.1590/1678-4499.20190360 10.1016/j.scitotenv.2010.03.031 10.1016/j.tplants.2014.09.001 10.1016/j.matlet.2018.10.038 10.1111/j.1365-3040.2005.01271.x 10.3390/molecules24142558 10.1007/s11356-017-0501-5 10.1038/s41598-019-45102-5 10.3390/ijms21218258 10.1007/s00344-021-10338-x 10.1515/botcro-2015-0011 10.4161/psb.4.5.8294 10.1016/j.scitotenv.2016.08.120 10.1007/s40626-015-0041-7 10.1016/j.carbpol.2016.06.083 10.1038/s42003-020-1059-1 10.3390/plants10040749 10.1111/pbi.12467 10.1104/pp.98.3.1080 10.1007/s00344-018-9845-4 10.1016/j.plaphy.2018.04.014 10.1016/j.tplants.2014.02.001 10.1039/c3mt00033h 10.1039/C8EN00323H 10.3390/plants9010062 10.4161/psb.3.3.5539 10.1016/j.stress.2021.100006 10.1016/j.indcrop.2020.112850 10.3390/plants10050835 10.1007/978-1-4020-5578-2_1 10.1016/j.eja.2013.04.001 10.1080/15324982.2018.1498038 10.3109/10408444.2010.529105 10.1016/j.plaphy.2012.05.008 10.3389/fpls.2016.01787 10.1371/journal.pone.0134261 10.3390/agronomy10081192 10.1016/j.heliyon.2020.e03983 10.1016/j.envexpbot.2020.104077 10.1080/07352680490433286 10.1021/acsnano.7b05723 10.1016/j.bios.2018.01.049 10.1111/j.1744-7348.1983.tb02730.x 10.1016/S0963-9969(01)00202-2 10.1039/C8NR00325D |
ContentType | Journal Article |
Copyright | 2021. The Author(s). 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021 |
Copyright_xml | – notice: 2021. The Author(s). – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7TB 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M1P M7P P64 PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12951-021-01026-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Mechanical & Transportation Engineering Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1477-3155 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_d8a703bc805148f58f4bb3cdb98f1c54 PMC8444428 34530815 10_1186_s12951_021_01026_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: innovative research group project of the national natural science foundation of china grantid: 31901464 – fundername: innovative research group project of the national natural science foundation of china grantid: No. 32071971 – fundername: ; grantid: No. 32071971; 31901464 |
GroupedDBID | --- 0R~ 29L 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADDVE ADMLS ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EBLON EBS EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE I-F IAO IHR INH INR ISR ITC ITG ITH KB. KQ8 LK8 M1P M48 M7P MM. M~E O5R O5S OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV RVI SCM SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB ~8M CGR CUY CVF ECM EIF NPM 3V. 7QO 7TB 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c496t-7cc6de62ad837b71023116b754cb393206c6855225650c15e210046bdd5b51e53 |
IEDL.DBID | M48 |
ISSN | 1477-3155 |
IngestDate | Wed Aug 27 01:17:10 EDT 2025 Thu Aug 21 18:30:12 EDT 2025 Thu Jul 10 17:36:54 EDT 2025 Fri Jul 25 19:29:18 EDT 2025 Thu Apr 03 07:00:51 EDT 2025 Tue Jul 01 01:26:46 EDT 2025 Thu Apr 24 23:02:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Nanoceria Na+/K+ ratio Salt stress α-amylase activity ROS homeostasis Seed priming |
Language | English |
License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-7cc6de62ad837b71023116b754cb393206c6855225650c15e210046bdd5b51e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6629-0280 |
OpenAccessLink | https://doaj.org/article/d8a703bc805148f58f4bb3cdb98f1c54 |
PMID | 34530815 |
PQID | 2574450730 |
PQPubID | 44676 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d8a703bc805148f58f4bb3cdb98f1c54 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8444428 proquest_miscellaneous_2574404435 proquest_journals_2574450730 pubmed_primary_34530815 crossref_citationtrail_10_1186_s12951_021_01026_9 crossref_primary_10_1186_s12951_021_01026_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-16 |
PublicationDateYYYYMMDD | 2021-09-16 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of nanobiotechnology |
PublicationTitleAlternate | J Nanobiotechnology |
PublicationYear | 2021 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | J An (1026_CR27) 2020; 7 1026_CR46 W Mahakham (1026_CR65) 2016; 573 S Suchanti (1026_CR67) 2021; 43 F Sami (1026_CR30) 2016; 109 KA Fayez (1026_CR37) 2014; 13 A Movafeghi (1026_CR47) 2018; 64 RY Rawashdeh (1026_CR56) 2020; 6 1026_CR40 H Wu (1026_CR24) 2017; 11 MH Helland (1026_CR28) 2002; 35 E Shtull-Trauring (1026_CR82) 2020; 186 H Wu (1026_CR39) 2021 P Shrivastava (1026_CR86) 2015; 22 E Bakhshandeh (1026_CR2) 2020; 176 SC Xu (1026_CR35) 2010; 9 ME Younis (1026_CR60) 2019; 125 YC Chen (1026_CR80) 2005; 28 H Wu (1026_CR76) 2018; 58 J Bhardwaj (1026_CR69) 2012; 57 VPM Aragão (1026_CR11) 2015; 27 L Pal (1026_CR64) 2019; 38 S Shabala (1026_CR85) 2014; 19 M Imran (1026_CR14) 2013; 49 M Farooq (1026_CR12) 2009; 29 H Wu (1026_CR25) 2018; 5 K Kurek (1026_CR58) 2019; 8 R Munns (1026_CR74) 2008; 59 L Rajjou (1026_CR7) 2012; 63 J Alvarez (1026_CR15) 2021; 10 FR Cassee (1026_CR21) 2011; 41 H Baz (1026_CR43) 2020; 10 MS Rajkumar (1026_CR72) 2020; 3 S Keharom (1026_CR33) 2016; 23 YW Chen (1026_CR88) 2016; 151 MN Khan (1026_CR10) 2019; 140 B Gul (1026_CR4) 2013; 92 H Kato-Noguchi (1026_CR49) 2005; 162 RN Damaris (1026_CR50) 2019; 20 RL Heath (1026_CR34) 1968; 125 T Guha (1026_CR61) 2018; 127 R Leogrande (1026_CR83) 2019; 33 CR de Alves (1026_CR45) 2020; 79 Z Cao (1026_CR92) 2018; 25 B Qian (1026_CR3) 2018; 110 W Mahakham (1026_CR48) 2017; 7 U Chandrasekaran (1026_CR62) 2020; 11 MR Park (1026_CR38) 2016; 8 X Ma (1026_CR73) 2010; 408 IAA Mohamed (1026_CR32) 2020; 9 SV Patil (1026_CR13) 2019; 108 B Shahzad (1026_CR41) 2021 M Rosa (1026_CR55) 2009; 4 E Bakhshandeh (1026_CR5) 2019; 38 PA Brocklehurst (1026_CR9) 1983; 102 U Deinlein (1026_CR75) 2014; 19 V Marthandan (1026_CR8) 2020; 21 K Chakraborty (1026_CR36) 2015; 74 R Sangeetha (1026_CR52) 2013; 1 BGN Bathgate (1026_CR29) 1973; 79 MN Khan (1026_CR1) 2020; 156 ZM Almutairi (1026_CR19) 2016; 18 G Barba-espín (1026_CR68) 2012; 7 A Anand (1026_CR70) 2019; 9 DM Almeida (1026_CR78) 2017; 40 MHZ Mohammadi (1026_CR91) 2021; 1 G Noctor (1026_CR59) 2007; 12 Q Wang (1026_CR22) 2013; 5 M Lv (1026_CR87) 2018; 106 V Baldim (1026_CR71) 2018; 10 M Zhao (1026_CR54) 2018; 9 X Gui (1026_CR93) 2015; 10 GM Newkirk (1026_CR31) 2018; 2018 I Iavicoli (1026_CR94) 2017; 329 KC Jisha (1026_CR18) 2013; 35 T Shah (1026_CR26) 2021; 33 G Ismail (1026_CR44) 2018; 58 L Sticher (1026_CR53) 1992; 98 M Abberton (1026_CR81) 2016; 14 M Ashraf (1026_CR42) 2004; 23 Y Li (1026_CR57) 2021; 19 K Raja (1026_CR17) 2019; 235 H Wu (1026_CR77) 2018; 431 J Liu (1026_CR79) 2021; 19 L Rossi (1026_CR23) 2017; 229 SS Mukhopadhyay (1026_CR95) 2014; 7 H El-Maarouf-Bouteau (1026_CR63) 2008; 3 P Huang (1026_CR51) 2021; 10 V Rameeh (1026_CR6) 2012; 12 MR Ávila (1026_CR16) 2008; 36 M Hanin (1026_CR84) 2016; 7 AAH Abdel Latef (1026_CR20) 2017; 36 L Rossi (1026_CR90) 2016; 219 Y Shang (1026_CR89) 2019; 24 H Qian (1026_CR66) 2013; 25 |
References_xml | – volume: 92 start-page: 4 year: 2013 ident: 1026_CR4 publication-title: Environ Exp Bo doi: 10.1016/j.envexpbot.2012.11.006 – volume: 33 start-page: 101207 year: 2021 ident: 1026_CR26 publication-title: J King Saud Univ - Sci. doi: 10.1016/j.jksus.2020.10.004 – volume: 140 start-page: 111597 year: 2019 ident: 1026_CR10 publication-title: Ind Crops Prod. doi: 10.1016/j.indcrop.2019.111597 – volume: 125 start-page: 393 year: 2019 ident: 1026_CR60 publication-title: South Afr J Bot doi: 10.1016/j.sajb.2019.08.018 – volume: 8 start-page: 1 year: 2019 ident: 1026_CR58 publication-title: Plants doi: 10.3390/plants8060174 – volume: 329 start-page: 96 year: 2017 ident: 1026_CR94 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2017.05.025 – volume: 7 start-page: 1 year: 2017 ident: 1026_CR48 publication-title: Sci Rep doi: 10.1038/s41598-017-08669-5 – volume: 38 start-page: 1402 year: 2019 ident: 1026_CR5 publication-title: J Plant Growth Regul doi: 10.1007/s00344-019-09942-9 – volume: 186 start-page: 116322 year: 2020 ident: 1026_CR82 publication-title: Water Res. doi: 10.1016/j.watres.2020.116322 – volume: 110 start-page: 133 year: 2018 ident: 1026_CR3 publication-title: Agron J doi: 10.2134/agronj2017.02.0076 – volume: 7 start-page: 193 year: 2012 ident: 1026_CR68 publication-title: Landes Biosci. – volume: 40 start-page: 326 year: 2017 ident: 1026_CR78 publication-title: Genet Mol Biol doi: 10.1590/1678-4685-gmb-2016-0106 – volume: 219 start-page: 28 year: 2016 ident: 1026_CR90 publication-title: Environ Pollut doi: 10.1016/j.envpol.2016.09.060 – volume: 36 start-page: 218 year: 2008 ident: 1026_CR16 publication-title: Seed Sci Technol. doi: 10.15258/sst.2008.36.1.26 – volume: 12 start-page: 125 year: 2007 ident: 1026_CR59 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2007.01.005 – year: 2021 ident: 1026_CR39 publication-title: Crop J doi: 10.1016/j.cj.2021.06.002:1-26 – volume: 9 start-page: 1 year: 2018 ident: 1026_CR54 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00001 – volume: 58 start-page: 1751 year: 2018 ident: 1026_CR76 publication-title: Crop Sci doi: 10.2135/cropsci2018.02.0096 – volume: 29 start-page: 185 year: 2009 ident: 1026_CR12 publication-title: Agron Sustain Dev. doi: 10.1051/agro:2008021 – volume: 63 start-page: 507 year: 2012 ident: 1026_CR7 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-042811-105550 – volume: 125 start-page: 189 year: 1968 ident: 1026_CR34 publication-title: Arch Biochem Biophys doi: 10.1016/0003-9861(68)90654-1 – volume: 64 start-page: 130 year: 2018 ident: 1026_CR47 publication-title: J Environ Sci doi: 10.1016/j.jes.2016.12.020 – volume: 431 start-page: 1 year: 2018 ident: 1026_CR77 publication-title: Plant Soil doi: 10.1007/s11104-018-3770-y – volume: 23 start-page: 10 year: 2016 ident: 1026_CR33 publication-title: Int Food Res J – volume: 43 start-page: 3197 year: 2021 ident: 1026_CR67 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2021.01.727 – volume: 59 start-page: 651 year: 2008 ident: 1026_CR74 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.59.032607.092911 – volume: 35 start-page: 1381 year: 2013 ident: 1026_CR18 publication-title: Acta Physiol Plant doi: 10.1007/s11738-012-1186-5 – volume: 109 start-page: 54 year: 2016 ident: 1026_CR30 publication-title: Plant Physiol Biochem Elsevier Ltd doi: 10.1016/j.plaphy.2016.09.005 – volume: 108 start-page: 101428 year: 2019 ident: 1026_CR13 publication-title: Physiol Mol Plant Pathol. doi: 10.1016/j.pmpp.2019.101428 – volume: 20 start-page: 1 year: 2019 ident: 1026_CR50 publication-title: Int J Mol Sci doi: 10.3390/ijms20020450 – volume: 19 start-page: 1 year: 2021 ident: 1026_CR57 publication-title: J Nanobiotechnology doi: 10.1186/s12951-020-00755-7 – volume: 25 start-page: 1947 year: 2013 ident: 1026_CR66 publication-title: J Environ Sci doi: 10.1016/S1001-0742(12)60301-5 – ident: 1026_CR46 doi: 10.1016/B978-0-12-818598-8.00018-3 – volume: 11 start-page: 1 year: 2020 ident: 1026_CR62 publication-title: Front Plant Sci doi: 10.3389/fpls.2020.00832 – volume: 7 start-page: 63 year: 2014 ident: 1026_CR95 publication-title: Nanotechnol Sci Appl doi: 10.2147/NSA.S39409 – volume: 36 start-page: 60 year: 2017 ident: 1026_CR20 publication-title: J Plant Growth Regul doi: 10.1007/s00344-016-9618-x – volume: 229 start-page: 132 year: 2017 ident: 1026_CR23 publication-title: Environ Pollut. doi: 10.1016/j.envpol.2017.05.083 – volume: 22 start-page: 123 year: 2015 ident: 1026_CR86 publication-title: Saudi J Biol Sci doi: 10.1016/j.sjbs.2014.12.001 – volume: 7 start-page: 2214 year: 2020 ident: 1026_CR27 publication-title: Environ Sci Nano doi: 10.1039/D0EN00387E – volume: 162 start-page: 1304 year: 2005 ident: 1026_CR49 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2005.03.013 – volume: 79 start-page: 402 year: 1973 ident: 1026_CR29 publication-title: J Inst Brew doi: 10.1002/j.2050-0416.1973.tb03557.x – volume: 12 start-page: 851 year: 2012 ident: 1026_CR6 publication-title: J Soil Sci Plant Nutr – volume: 18 start-page: 449 year: 2016 ident: 1026_CR19 publication-title: Int J Agric Biol doi: 10.17957/IJAB/15.0114 – volume: 19 start-page: 153 year: 2021 ident: 1026_CR79 publication-title: J Nanobiotech. doi: 10.1186/s12951-021-00892-7 – volume: 79 start-page: 19 year: 2020 ident: 1026_CR45 publication-title: Bragantia. doi: 10.1590/1678-4499.20190360 – volume: 8 start-page: 30 year: 2016 ident: 1026_CR38 publication-title: Life Sci Sp Res – volume: 408 start-page: 3053 year: 2010 ident: 1026_CR73 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2010.03.031 – volume: 19 start-page: 687 year: 2014 ident: 1026_CR85 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.09.001 – volume: 235 start-page: 164 year: 2019 ident: 1026_CR17 publication-title: Mater Lett doi: 10.1016/j.matlet.2018.10.038 – volume: 1 start-page: 1 year: 2013 ident: 1026_CR52 publication-title: Int J Basic Life Sci – volume: 28 start-page: 251 year: 2005 ident: 1026_CR80 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2005.01271.x – volume: 2018 start-page: 1 year: 2018 ident: 1026_CR31 publication-title: J Vis Exp – volume: 24 start-page: 2558 year: 2019 ident: 1026_CR89 publication-title: Molecules. doi: 10.3390/molecules24142558 – volume: 25 start-page: 930 year: 2018 ident: 1026_CR92 publication-title: Environ Sci Pollut Res. doi: 10.1007/s11356-017-0501-5 – volume: 9 start-page: 1 year: 2019 ident: 1026_CR70 publication-title: Sci Rep doi: 10.1038/s41598-019-45102-5 – volume: 21 start-page: 1 year: 2020 ident: 1026_CR8 publication-title: Int J Mol Sci doi: 10.3390/ijms21218258 – year: 2021 ident: 1026_CR41 publication-title: J Plant Growth Regul doi: 10.1007/s00344-021-10338-x – volume: 74 start-page: 123 year: 2015 ident: 1026_CR36 publication-title: Acta Bot Croat. doi: 10.1515/botcro-2015-0011 – volume: 58 start-page: 73 year: 2018 ident: 1026_CR44 publication-title: Egypt J Bot. – volume: 4 start-page: 388 year: 2009 ident: 1026_CR55 publication-title: Plant Signal Behav doi: 10.4161/psb.4.5.8294 – volume: 573 start-page: 1089 year: 2016 ident: 1026_CR65 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.08.120 – volume: 27 start-page: 157 year: 2015 ident: 1026_CR11 publication-title: Theor Exp Plant Physiol doi: 10.1007/s40626-015-0041-7 – volume: 151 start-page: 1210 year: 2016 ident: 1026_CR88 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2016.06.083 – volume: 3 start-page: 340 year: 2020 ident: 1026_CR72 publication-title: Commun Biol doi: 10.1038/s42003-020-1059-1 – volume: 10 start-page: 749 year: 2021 ident: 1026_CR51 publication-title: Plants. doi: 10.3390/plants10040749 – volume: 14 start-page: 1095 year: 2016 ident: 1026_CR81 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12467 – volume: 98 start-page: 1080 year: 1992 ident: 1026_CR53 publication-title: Plant Physiol doi: 10.1104/pp.98.3.1080 – volume: 38 start-page: 315 year: 2019 ident: 1026_CR64 publication-title: J Plant Growth Regul doi: 10.1007/s00344-018-9845-4 – volume: 127 start-page: 403 year: 2018 ident: 1026_CR61 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2018.04.014 – volume: 19 start-page: 371 year: 2014 ident: 1026_CR75 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2014.02.001 – volume: 5 start-page: 753 year: 2013 ident: 1026_CR22 publication-title: Metallomics doi: 10.1039/c3mt00033h – volume: 5 start-page: 1567 year: 2018 ident: 1026_CR25 publication-title: Environ Sci Nano doi: 10.1039/C8EN00323H – volume: 13 start-page: 45 year: 2014 ident: 1026_CR37 publication-title: J Saudi Soc Agric Sci – volume: 9 start-page: 62 year: 2020 ident: 1026_CR32 publication-title: Plants. doi: 10.3390/plants9010062 – volume: 3 start-page: 175 year: 2008 ident: 1026_CR63 publication-title: Plant Signal Behav doi: 10.4161/psb.3.3.5539 – volume: 1 start-page: 100006 year: 2021 ident: 1026_CR91 publication-title: Plant Stress. doi: 10.1016/j.stress.2021.100006 – volume: 156 start-page: 112850 year: 2020 ident: 1026_CR1 publication-title: Ind Crops Prod. doi: 10.1016/j.indcrop.2020.112850 – volume: 10 start-page: 835 year: 2021 ident: 1026_CR15 publication-title: Plants. doi: 10.3390/plants10050835 – ident: 1026_CR40 doi: 10.1007/978-1-4020-5578-2_1 – volume: 49 start-page: 141 year: 2013 ident: 1026_CR14 publication-title: Eur J Agron doi: 10.1016/j.eja.2013.04.001 – volume: 33 start-page: 1 year: 2019 ident: 1026_CR83 publication-title: Arid L Res Manag doi: 10.1080/15324982.2018.1498038 – volume: 9 start-page: 1594 year: 2010 ident: 1026_CR35 publication-title: Agric Sci – volume: 41 start-page: 213 year: 2011 ident: 1026_CR21 publication-title: Crit Rev Toxicol doi: 10.3109/10408444.2010.529105 – volume: 57 start-page: 67 year: 2012 ident: 1026_CR69 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2012.05.008 – volume: 7 start-page: 1 year: 2016 ident: 1026_CR84 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01787 – volume: 10 start-page: 1 year: 2015 ident: 1026_CR93 publication-title: PLoS ONE doi: 10.1371/journal.pone.0134261 – volume: 10 start-page: 1192 year: 2020 ident: 1026_CR43 publication-title: Agronomy. doi: 10.3390/agronomy10081192 – volume: 6 start-page: 03983 year: 2020 ident: 1026_CR56 publication-title: Heliyon. doi: 10.1016/j.heliyon.2020.e03983 – volume: 176 start-page: 104077 year: 2020 ident: 1026_CR2 publication-title: Environ Exp Bot. doi: 10.1016/j.envexpbot.2020.104077 – volume: 23 start-page: 157 year: 2004 ident: 1026_CR42 publication-title: CRC Crit Rev Plant Sci doi: 10.1080/07352680490433286 – volume: 11 start-page: 11283 year: 2017 ident: 1026_CR24 publication-title: ACS Nano doi: 10.1021/acsnano.7b05723 – volume: 106 start-page: 122 year: 2018 ident: 1026_CR87 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2018.01.049 – volume: 102 start-page: 585 year: 1983 ident: 1026_CR9 publication-title: Ann Appl Biol. doi: 10.1111/j.1744-7348.1983.tb02730.x – volume: 35 start-page: 315 year: 2002 ident: 1026_CR28 publication-title: Food Res Int doi: 10.1016/S0963-9969(01)00202-2 – volume: 10 start-page: 6971 year: 2018 ident: 1026_CR71 publication-title: Nanoscale doi: 10.1039/C8NR00325D |
SSID | ssj0022424 |
Score | 2.5260012 |
Snippet | Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant... Background Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve... Abstract Background Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 276 |
SubjectTerms | alpha-Amylases - metabolism Amylases Antioxidants Brassica Brassica napus Brassica napus - drug effects Brassica napus - metabolism Cerium Cerium - chemistry Cerium oxides Crop production Damage tolerance Enzymes Experiments Gene expression Germination Homeostasis Hydrogen peroxide Hygroscopic water Imbibition Localization Metabolism Metabolites Metal Nanoparticles - chemistry Metal Nanoparticles - toxicity Na+/K+ ratio Nanoceria Nanomaterials Nanoparticles Nanotechnology Plant Roots - drug effects Plant Roots - metabolism Plant stress Plant tolerance Polyacrylic acid Potassium - chemistry Potassium - metabolism Priming Rape plants Rapeseed Reactive Oxygen Species - metabolism ROS homeostasis Salinity Salinity tolerance Salt stress Salt tolerance Seed priming Seeds Seeds - drug effects Seeds - enzymology Seeds - metabolism Sodium - chemistry Sodium - metabolism Sodium chloride Sodium Chloride - pharmacology Superoxide Dismutase - metabolism Transmission electron microscopy α-Amylase α-amylase activity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTvSAKG1pWkCu1BuyiOOPOEdagVAlqNSCxM3y17Ir7SaIhCJ-Fn-E38TYya52K0Qv5Bg7keN59rxJMm8Q-iYrFgzPGbGAHsJLJYktqInvragTwGd9iNnIp2fy5IL_vBSXS6W-4j9hvTxwP3EHXhkApXUqCnWrkVAjbi1z3lZqBHdLSqDg8-bB1BBqxaSHeYqMkgcteDUBYXMRQ2eIOki14oaSWv9zFPPfPyWXXM_xJtoYOCM-7Mf6Dr0J9RZ6u6Qk-B7dwS4JngjQhFvwR_g6Veu6wqEep0_8uDXTDnfNNMRCGgFPahzTrlLfoVQPnjU-1fKCy37_-oPHzSw0wB3bSYtN7fHjAzGzeyDbAcdkiL9JivUDujg-Ov9xQoaaCsTxSnakdA6mXxbGQ2RqI71glEpbCu4sAy6XSyeVAFIGRC93VIQiSspJ672wggbBPqK1uqnDJ4RzEUqvuKfwFJyWxoxYsMJYaUzBHPMZovMp1m4QHI91L6Y6BR5K6t4sGsyik1l0laH9xTXXvdzGi72_R8stekap7HQCAKQHAOn_AShDO3O762H9tho2Ms5F3P4y9HXRDCsvfk4xdWhuhz45B76Zoe0eJouRMC4YkC1oKVcAtDLU1ZZ6Mk7q3orDUajPr_FsX9B6kUBfESp30Fp3cxt2gUR1di-tlyeN1BsV priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bbtQwELWgvMAD4k5KQUbiDVlN4kucJwSIqkICJKDSvlm-bXel3WRpUio-ix_hm5jxerddhJrHtSM5O8eeM7bnDCGvVMujFSVnDtDDRKMVc3Vlcd-q8hL4bIiYjfzpszo-ER8ncpI33IZ8rXKzJqaFOvQe98gPAVpCSATkm9UPhlWj8HQ1l9C4SW6hdBle6WomlwEXpj5sEmW0OhzAt0kInmsMoCH2YO2OM0qa_f8jmv_el7zigI7ukbuZOdK3a1PfJzdi94DcuaIn-JBcwFoJ_ggwRQfwSnSVanad0tjN0kE_HexipGO_iFhOI9J5RzH5KvXNBXvosg-pohe89vXLNzrrl7EHBjnMB2q7QP_8Znb5Cyh3pJgS8TMJsj4iJ0cfvr8_ZrmyAvOiVSNrvAcjqNoGiE8dkgxeVco1UnjHgdGVyistgZoB3St9JWONwnLKhSCdrKLkj8le13fxKaGljE3QIlTwFaJqrJ3y6KR1ytqaex4KUm3-YuOz7DhWv1iYFH5oZdZmMWAWk8xi2oK83r6zWotuXNv7HVpu2xMFs9MP_dmpyfPPBG1hbXNeo967nko9Fc5xH1yrpwBKUZCDjd1NnsWDucRcQV5um2H-4aGK7WJ_nvuUAlhnQZ6sYbIdCReSA-WClmYHQDtD3W3p5rOk8a0FPLXev35Yz8jtOsG5ZZU6IHvj2Xl8DiRpdC_STPgLzCoSDA priority: 102 providerName: ProQuest |
Title | Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34530815 https://www.proquest.com/docview/2574450730 https://www.proquest.com/docview/2574404435 https://pubmed.ncbi.nlm.nih.gov/PMC8444428 https://doaj.org/article/d8a703bc805148f58f4bb3cdb98f1c54 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB71cYED4l1DiRaJGzLE3ofXB4QoaqiQWlAhUm7WvtJESuwSu0B_Fn-E38TsxrYaFCHhgw_etbXemdn5Zu35BuCFyKlTbEhjjdoTs0yKWKeJ8vtWieGIZ63z2cinZ-JkzD5O-GQHunJH7QTWW0M7X09qvFq8-vnt-i0a_Jtg8FK8rtFncQyKUx8YY0wR57uwj54p84Z6yvqvCqlPhQjZRpnfm-O8S6LZ-owNRxX4_LeB0L__pbzhnEZ34U6LKsm7tRrcgx1X3ofbN7gGH8APXEfRV6G-kRo9FrkM9bwuiCtn4ScAUqtFQ5pq4XypDUfmJfGJWaFvW8yHLCsbqn3hbeefvpBZtXQVost6XhNVWvL7V6yW1wjHHfHpEt8DWetDGI-Ov74_iduqC7FhuWjizBgUkEiVxdhVewBCk0TojDOjKaK9oTBCcoRtCAWHJuEu9aRzQlvLNU8cp49gr6xKdwBkyF1mJbMJvgWKQ6kpdZorLZRKqaE2gqSb4sK0lOS-MsaiCKGJFMVaLAWKpQhiKfIIXvb3XK4JOf7Z-8hLru_pybTDhWp1UbS2WVipcN3TRnoueDnlcsq0psbqXE5RYVkEh53ci05BC1zqGON-gYzged-Mtuk_uKjSVVdtnyFDRBrB47Wa9COhjFOEY9iSbSjQxlA3W8r5LPB_S4ZHKp_810w8hVtp0O48TsQh7DWrK_cM8VSjB7CbTTI8y9GHAewfHZ99Ph-EvYlBMJ8_QLcfNQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDeBAkaCE4qah-04B4R4VVv6QIJW2pvxa7sr7SZLk1L1TyHxR_hNzHiTbReh3ppj7EhO5puZbxzPDCEvRZl7zZI8NoCemBVSxCZLNe5bpZYDn3Ues5H39sXgkH0e8uEa-dXnwuCxyt4mBkPtaot75JsALcY4AvLt_EeMXaPw72rfQmMBix1_dgohW_Nm-yPI91WWbX06-DCIu64CsWWlaOPCWliAyLSD2Mygg83TVJiCM2tyYDOJsEJyoCVAdRKbcp9hUTVhnOOGpx67RIDJvwaON0GNKobnAR6mWvSJOVJsNuBLOQTrGQbsEOvE5YrzCz0C_kds_z2fecHhbd0mtzqmSt8toHWHrPnqLrl5oX7hPXIKthn8H2CYNuAF6Tz0CDuivhqHgwW00dOWtvXUY_sOTycVxWSvMLdrEERntQsdxOCxr1--0XE98zUw1mbSUF05-ud3rGdnQPE9xRSMn6EA7H1yeCXf_AFZr-rKPyI04b5wkrkU3oKlhdaj3BuujdA6y23uIpL2n1jZrsw5dtuYqhDuSKEWYlEgFhXEosqIvF4-M18U-bh09nuU3HImFugON-rjI9Xpu3JSgy01VmJ9eTnicsSMya0zpRyBErCIbPRyV53VaNQ5xiPyYjkM-o4_cXTl65NuTsKA5Ubk4QImy5XkjOdA8WCkWAHQylJXR6rJONQUlwyuTD6-fFnPyfXBwd6u2t3e33lCbmQB2mWcig2y3h6f-KdA0FrzLGgFJd-vWg3_AnliTEU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoceria+seed+priming+enhanced+salt+tolerance+in+rapeseed+through+modulating+ROS+homeostasis+and+%CE%B1-amylase+activities&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Khan%2C+Mohammad+Nauman&rft.au=Li%2C+Yanhui&rft.au=Khan%2C+Zaid&rft.au=Chen%2C+Linlin&rft.date=2021-09-16&rft.issn=1477-3155&rft.eissn=1477-3155&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12951-021-01026-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12951_021_01026_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon |