Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities

Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited. Herein, we used cerium oxide nanoparticles (nanoceria) to pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanobiotechnology Vol. 19; no. 1; pp. 276 - 19
Main Authors Khan, Mohammad Nauman, Li, Yanhui, Khan, Zaid, Chen, Linlin, Liu, Jiahao, Hu, Jin, Wu, Honghong, Li, Zhaohu
Format Journal Article
LanguageEnglish
Published England BioMed Central 16.09.2021
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited. Herein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, -43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, H O , and O in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K retention (29%) and significantly lower Na accumulation (18.5%) and Na /K ratio (37%) than the control. Our results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na /K ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance.
AbstractList Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited.BACKGROUNDSalinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited.Herein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, -43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, H2O2, and •O2- in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K+ retention (29%) and significantly lower Na+ accumulation (18.5%) and Na+/K+ ratio (37%) than the control.RESULTSHerein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, -43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, H2O2, and •O2- in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K+ retention (29%) and significantly lower Na+ accumulation (18.5%) and Na+/K+ ratio (37%) than the control.Our results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na+/K+ ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance.CONCLUSIONSOur results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na+/K+ ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance.
Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited. Herein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, -43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, H O , and O in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K retention (29%) and significantly lower Na accumulation (18.5%) and Na /K ratio (37%) than the control. Our results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na /K ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance.
Background Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited. Results Herein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, −43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, H2O2, and •O2− in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K+ retention (29%) and significantly lower Na+ accumulation (18.5%) and Na+/K+ ratio (37%) than the control. Conclusions Our results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na+/K+ ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance.
Abstract Background Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited. Results Herein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, −43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, H2O2, and •O2 − in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K+ retention (29%) and significantly lower Na+ accumulation (18.5%) and Na+/K+ ratio (37%) than the control. Conclusions Our results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na+/K+ ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance. Graphical abstract
ArticleNumber 276
Author Liu, Jiahao
Li, Yanhui
Khan, Zaid
Khan, Mohammad Nauman
Chen, Linlin
Hu, Jin
Wu, Honghong
Li, Zhaohu
Author_xml – sequence: 1
  givenname: Mohammad Nauman
  surname: Khan
  fullname: Khan, Mohammad Nauman
– sequence: 2
  givenname: Yanhui
  surname: Li
  fullname: Li, Yanhui
– sequence: 3
  givenname: Zaid
  surname: Khan
  fullname: Khan, Zaid
– sequence: 4
  givenname: Linlin
  surname: Chen
  fullname: Chen, Linlin
– sequence: 5
  givenname: Jiahao
  surname: Liu
  fullname: Liu, Jiahao
– sequence: 6
  givenname: Jin
  surname: Hu
  fullname: Hu, Jin
– sequence: 7
  givenname: Honghong
  orcidid: 0000-0001-6629-0280
  surname: Wu
  fullname: Wu, Honghong
– sequence: 8
  givenname: Zhaohu
  surname: Li
  fullname: Li, Zhaohu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34530815$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustq3DAUNSWlebQ_0EURdNONWz1teVMooY9AaKCPtZClOzMabGkqyQn5rP5IvinyOClJFhUISVfnHI50z3F14IOHqnpN8HtCZPMhEdoJUmNaJsG0qbtn1RHhbVszIsTBg_1hdZzSFmNKOeUvqkPGBcOSiKPq6rv2wUB0GiUAi3bRjc6vEfiN9qYUkh4yymGAOJ-R8yjqHeyxeRPDtN6gMdhp0Hmm_bj4iTZhhJCyTi4h7S26-Vvr8XrQCZA22V267CC9rJ6v9JDg1d16Uv3-8vnX6bf6_OLr2emn89rwrsl1a0xjoaHaStb2bXklI6TpW8FNzzpGcWMaKQSlohHYEAGUYMyb3lrRCwKCnVRni64Neqvm1-l4rYJ2al8Ica10zM4MoKzULWa9kVgQLldCrnjfM2P7Tq6IEbxofVy0dlM_gjXgc9TDI9HHN95t1DpcKsnLoLIIvLsTiOHPBCmr0SUDw6A9hCkpKlrOMeds9v32CXQbpujLVy0ogVuGC-rNQ0f_rNz3twDkAjAxpBRhpYzLpVVhNugGRbCao6SWKKkSJbWPkuoKlT6h3qv_h3QLzOvMqg
CitedBy_id crossref_primary_10_1186_s12951_021_01176_w
crossref_primary_10_1016_j_jhazmat_2023_131906
crossref_primary_10_1007_s00709_025_02038_0
crossref_primary_10_1007_s42729_022_01007_3
crossref_primary_10_1002_adma_202301810
crossref_primary_10_1016_j_ecoenv_2025_117886
crossref_primary_10_1016_j_envexpbot_2024_105913
crossref_primary_10_1016_j_ijbiomac_2024_131477
crossref_primary_10_1021_acs_est_3c07339
crossref_primary_10_1371_journal_pone_0303145
crossref_primary_10_1021_acsami_3c00043
crossref_primary_10_1021_acs_jafc_2c04882
crossref_primary_10_3390_agronomy13030729
crossref_primary_10_1016_j_plaphy_2024_108519
crossref_primary_10_1016_j_chemosphere_2022_136911
crossref_primary_10_1039_D1EN00845E
crossref_primary_10_1007_s44154_022_00065_y
crossref_primary_10_1016_j_crope_2023_03_002
crossref_primary_10_1111_jipb_13652
crossref_primary_10_1007_s11105_023_01369_7
crossref_primary_10_1016_j_bcab_2023_102892
crossref_primary_10_1016_j_rhisph_2022_100518
crossref_primary_10_1016_j_indcrop_2024_119001
crossref_primary_10_3390_nano13060974
crossref_primary_10_1039_D2EN00623E
crossref_primary_10_1016_j_stress_2022_100122
crossref_primary_10_1016_j_indcrop_2024_120279
crossref_primary_10_3390_plants13213011
crossref_primary_10_48130_seedbio_0025_0001
crossref_primary_10_3390_ijms23063293
crossref_primary_10_1186_s11671_024_04134_1
crossref_primary_10_1007_s12298_024_01521_x
crossref_primary_10_1002_gch2_202200025
crossref_primary_10_3390_su142214880
crossref_primary_10_1016_j_ijbiomac_2025_141680
crossref_primary_10_1016_j_plaphy_2024_109145
crossref_primary_10_1016_j_envexpbot_2024_105937
crossref_primary_10_3389_fpls_2024_1418515
crossref_primary_10_18615_anadolu_1398603
crossref_primary_10_1021_acs_jafc_3c06185
crossref_primary_10_1016_j_stress_2022_100091
crossref_primary_10_3390_ijms242417612
crossref_primary_10_1016_j_jclepro_2022_133729
crossref_primary_10_1039_D2EN00688J
crossref_primary_10_3390_ijms23095093
crossref_primary_10_3390_plants12020405
crossref_primary_10_29121_ijetmr_v11_i9_2024_1485
crossref_primary_10_1007_s43621_025_00855_0
crossref_primary_10_1016_j_jia_2023_12_013
crossref_primary_10_1016_j_plaphy_2024_108895
crossref_primary_10_38211_joarps_2024_05_200
crossref_primary_10_1016_j_chemosphere_2022_134474
crossref_primary_10_1038_s43016_022_00596_7
crossref_primary_10_1016_j_jenvman_2024_123847
crossref_primary_10_1016_j_scitotenv_2023_168640
crossref_primary_10_1016_j_sajb_2024_10_059
crossref_primary_10_1007_s12668_024_01444_7
crossref_primary_10_3390_plants13202934
crossref_primary_10_3389_fsufs_2024_1418554
crossref_primary_10_3390_metabo13060765
crossref_primary_10_1007_s11051_024_06101_4
crossref_primary_10_3390_horticulturae9030375
crossref_primary_10_3389_fpls_2023_1264698
crossref_primary_10_48130_frures_0024_0037
crossref_primary_10_1016_j_plana_2023_100049
crossref_primary_10_3389_fpls_2022_843994
crossref_primary_10_1016_j_cj_2024_03_007
crossref_primary_10_1186_s12870_024_04773_7
crossref_primary_10_1016_j_xplc_2022_100346
Cites_doi 10.1016/j.envexpbot.2012.11.006
10.1016/j.jksus.2020.10.004
10.1016/j.indcrop.2019.111597
10.1016/j.sajb.2019.08.018
10.3390/plants8060174
10.1016/j.taap.2017.05.025
10.1038/s41598-017-08669-5
10.1007/s00344-019-09942-9
10.1016/j.watres.2020.116322
10.2134/agronj2017.02.0076
10.1590/1678-4685-gmb-2016-0106
10.1016/j.envpol.2016.09.060
10.15258/sst.2008.36.1.26
10.1016/j.tplants.2007.01.005
10.1016/j.cj.2021.06.002:1-26
10.3389/fpls.2018.00001
10.2135/cropsci2018.02.0096
10.1051/agro:2008021
10.1146/annurev-arplant-042811-105550
10.1016/0003-9861(68)90654-1
10.1016/j.jes.2016.12.020
10.1007/s11104-018-3770-y
10.1016/j.matpr.2021.01.727
10.1146/annurev.arplant.59.032607.092911
10.1007/s11738-012-1186-5
10.1016/j.plaphy.2016.09.005
10.1016/j.pmpp.2019.101428
10.3390/ijms20020450
10.1186/s12951-020-00755-7
10.1016/S1001-0742(12)60301-5
10.1016/B978-0-12-818598-8.00018-3
10.3389/fpls.2020.00832
10.2147/NSA.S39409
10.1007/s00344-016-9618-x
10.1016/j.envpol.2017.05.083
10.1016/j.sjbs.2014.12.001
10.1039/D0EN00387E
10.1016/j.jplph.2005.03.013
10.1002/j.2050-0416.1973.tb03557.x
10.17957/IJAB/15.0114
10.1186/s12951-021-00892-7
10.1590/1678-4499.20190360
10.1016/j.scitotenv.2010.03.031
10.1016/j.tplants.2014.09.001
10.1016/j.matlet.2018.10.038
10.1111/j.1365-3040.2005.01271.x
10.3390/molecules24142558
10.1007/s11356-017-0501-5
10.1038/s41598-019-45102-5
10.3390/ijms21218258
10.1007/s00344-021-10338-x
10.1515/botcro-2015-0011
10.4161/psb.4.5.8294
10.1016/j.scitotenv.2016.08.120
10.1007/s40626-015-0041-7
10.1016/j.carbpol.2016.06.083
10.1038/s42003-020-1059-1
10.3390/plants10040749
10.1111/pbi.12467
10.1104/pp.98.3.1080
10.1007/s00344-018-9845-4
10.1016/j.plaphy.2018.04.014
10.1016/j.tplants.2014.02.001
10.1039/c3mt00033h
10.1039/C8EN00323H
10.3390/plants9010062
10.4161/psb.3.3.5539
10.1016/j.stress.2021.100006
10.1016/j.indcrop.2020.112850
10.3390/plants10050835
10.1007/978-1-4020-5578-2_1
10.1016/j.eja.2013.04.001
10.1080/15324982.2018.1498038
10.3109/10408444.2010.529105
10.1016/j.plaphy.2012.05.008
10.3389/fpls.2016.01787
10.1371/journal.pone.0134261
10.3390/agronomy10081192
10.1016/j.heliyon.2020.e03983
10.1016/j.envexpbot.2020.104077
10.1080/07352680490433286
10.1021/acsnano.7b05723
10.1016/j.bios.2018.01.049
10.1111/j.1744-7348.1983.tb02730.x
10.1016/S0963-9969(01)00202-2
10.1039/C8NR00325D
ContentType Journal Article
Copyright 2021. The Author(s).
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021
Copyright_xml – notice: 2021. The Author(s).
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7TB
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M1P
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12951-021-01026-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Mechanical & Transportation Engineering Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1477-3155
EndPage 19
ExternalDocumentID oai_doaj_org_article_d8a703bc805148f58f4bb3cdb98f1c54
PMC8444428
34530815
10_1186_s12951_021_01026_9
Genre Journal Article
GrantInformation_xml – fundername: innovative research group project of the national natural science foundation of china
  grantid: 31901464
– fundername: innovative research group project of the national natural science foundation of china
  grantid: No. 32071971
– fundername: ;
  grantid: No. 32071971; 31901464
GroupedDBID ---
0R~
29L
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADDVE
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EBLON
EBS
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
I-F
IAO
IHR
INH
INR
ISR
ITC
ITG
ITH
KB.
KQ8
LK8
M1P
M48
M7P
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
RVI
SCM
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7TB
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c496t-7cc6de62ad837b71023116b754cb393206c6855225650c15e210046bdd5b51e53
IEDL.DBID M48
ISSN 1477-3155
IngestDate Wed Aug 27 01:17:10 EDT 2025
Thu Aug 21 18:30:12 EDT 2025
Thu Jul 10 17:36:54 EDT 2025
Fri Jul 25 19:29:18 EDT 2025
Thu Apr 03 07:00:51 EDT 2025
Tue Jul 01 01:26:46 EDT 2025
Thu Apr 24 23:02:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nanoceria
Na+/K+ ratio
Salt stress
α-amylase activity
ROS homeostasis
Seed priming
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-7cc6de62ad837b71023116b754cb393206c6855225650c15e210046bdd5b51e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6629-0280
OpenAccessLink https://doaj.org/article/d8a703bc805148f58f4bb3cdb98f1c54
PMID 34530815
PQID 2574450730
PQPubID 44676
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_d8a703bc805148f58f4bb3cdb98f1c54
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8444428
proquest_miscellaneous_2574404435
proquest_journals_2574450730
pubmed_primary_34530815
crossref_citationtrail_10_1186_s12951_021_01026_9
crossref_primary_10_1186_s12951_021_01026_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-16
PublicationDateYYYYMMDD 2021-09-16
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-16
  day: 16
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of nanobiotechnology
PublicationTitleAlternate J Nanobiotechnology
PublicationYear 2021
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References J An (1026_CR27) 2020; 7
1026_CR46
W Mahakham (1026_CR65) 2016; 573
S Suchanti (1026_CR67) 2021; 43
F Sami (1026_CR30) 2016; 109
KA Fayez (1026_CR37) 2014; 13
A Movafeghi (1026_CR47) 2018; 64
RY Rawashdeh (1026_CR56) 2020; 6
1026_CR40
H Wu (1026_CR24) 2017; 11
MH Helland (1026_CR28) 2002; 35
E Shtull-Trauring (1026_CR82) 2020; 186
H Wu (1026_CR39) 2021
P Shrivastava (1026_CR86) 2015; 22
E Bakhshandeh (1026_CR2) 2020; 176
SC Xu (1026_CR35) 2010; 9
ME Younis (1026_CR60) 2019; 125
YC Chen (1026_CR80) 2005; 28
H Wu (1026_CR76) 2018; 58
J Bhardwaj (1026_CR69) 2012; 57
VPM Aragão (1026_CR11) 2015; 27
L Pal (1026_CR64) 2019; 38
S Shabala (1026_CR85) 2014; 19
M Imran (1026_CR14) 2013; 49
M Farooq (1026_CR12) 2009; 29
H Wu (1026_CR25) 2018; 5
K Kurek (1026_CR58) 2019; 8
R Munns (1026_CR74) 2008; 59
L Rajjou (1026_CR7) 2012; 63
J Alvarez (1026_CR15) 2021; 10
FR Cassee (1026_CR21) 2011; 41
H Baz (1026_CR43) 2020; 10
MS Rajkumar (1026_CR72) 2020; 3
S Keharom (1026_CR33) 2016; 23
YW Chen (1026_CR88) 2016; 151
MN Khan (1026_CR10) 2019; 140
B Gul (1026_CR4) 2013; 92
H Kato-Noguchi (1026_CR49) 2005; 162
RN Damaris (1026_CR50) 2019; 20
RL Heath (1026_CR34) 1968; 125
T Guha (1026_CR61) 2018; 127
R Leogrande (1026_CR83) 2019; 33
CR de Alves (1026_CR45) 2020; 79
Z Cao (1026_CR92) 2018; 25
B Qian (1026_CR3) 2018; 110
W Mahakham (1026_CR48) 2017; 7
U Chandrasekaran (1026_CR62) 2020; 11
MR Park (1026_CR38) 2016; 8
X Ma (1026_CR73) 2010; 408
IAA Mohamed (1026_CR32) 2020; 9
SV Patil (1026_CR13) 2019; 108
B Shahzad (1026_CR41) 2021
M Rosa (1026_CR55) 2009; 4
E Bakhshandeh (1026_CR5) 2019; 38
PA Brocklehurst (1026_CR9) 1983; 102
U Deinlein (1026_CR75) 2014; 19
V Marthandan (1026_CR8) 2020; 21
K Chakraborty (1026_CR36) 2015; 74
R Sangeetha (1026_CR52) 2013; 1
BGN Bathgate (1026_CR29) 1973; 79
MN Khan (1026_CR1) 2020; 156
ZM Almutairi (1026_CR19) 2016; 18
G Barba-espín (1026_CR68) 2012; 7
A Anand (1026_CR70) 2019; 9
DM Almeida (1026_CR78) 2017; 40
MHZ Mohammadi (1026_CR91) 2021; 1
G Noctor (1026_CR59) 2007; 12
Q Wang (1026_CR22) 2013; 5
M Lv (1026_CR87) 2018; 106
V Baldim (1026_CR71) 2018; 10
M Zhao (1026_CR54) 2018; 9
X Gui (1026_CR93) 2015; 10
GM Newkirk (1026_CR31) 2018; 2018
I Iavicoli (1026_CR94) 2017; 329
KC Jisha (1026_CR18) 2013; 35
T Shah (1026_CR26) 2021; 33
G Ismail (1026_CR44) 2018; 58
L Sticher (1026_CR53) 1992; 98
M Abberton (1026_CR81) 2016; 14
M Ashraf (1026_CR42) 2004; 23
Y Li (1026_CR57) 2021; 19
K Raja (1026_CR17) 2019; 235
H Wu (1026_CR77) 2018; 431
J Liu (1026_CR79) 2021; 19
L Rossi (1026_CR23) 2017; 229
SS Mukhopadhyay (1026_CR95) 2014; 7
H El-Maarouf-Bouteau (1026_CR63) 2008; 3
P Huang (1026_CR51) 2021; 10
V Rameeh (1026_CR6) 2012; 12
MR Ávila (1026_CR16) 2008; 36
M Hanin (1026_CR84) 2016; 7
AAH Abdel Latef (1026_CR20) 2017; 36
L Rossi (1026_CR90) 2016; 219
Y Shang (1026_CR89) 2019; 24
H Qian (1026_CR66) 2013; 25
References_xml – volume: 92
  start-page: 4
  year: 2013
  ident: 1026_CR4
  publication-title: Environ Exp Bo
  doi: 10.1016/j.envexpbot.2012.11.006
– volume: 33
  start-page: 101207
  year: 2021
  ident: 1026_CR26
  publication-title: J King Saud Univ - Sci.
  doi: 10.1016/j.jksus.2020.10.004
– volume: 140
  start-page: 111597
  year: 2019
  ident: 1026_CR10
  publication-title: Ind Crops Prod.
  doi: 10.1016/j.indcrop.2019.111597
– volume: 125
  start-page: 393
  year: 2019
  ident: 1026_CR60
  publication-title: South Afr J Bot
  doi: 10.1016/j.sajb.2019.08.018
– volume: 8
  start-page: 1
  year: 2019
  ident: 1026_CR58
  publication-title: Plants
  doi: 10.3390/plants8060174
– volume: 329
  start-page: 96
  year: 2017
  ident: 1026_CR94
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2017.05.025
– volume: 7
  start-page: 1
  year: 2017
  ident: 1026_CR48
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-08669-5
– volume: 38
  start-page: 1402
  year: 2019
  ident: 1026_CR5
  publication-title: J Plant Growth Regul
  doi: 10.1007/s00344-019-09942-9
– volume: 186
  start-page: 116322
  year: 2020
  ident: 1026_CR82
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116322
– volume: 110
  start-page: 133
  year: 2018
  ident: 1026_CR3
  publication-title: Agron J
  doi: 10.2134/agronj2017.02.0076
– volume: 7
  start-page: 193
  year: 2012
  ident: 1026_CR68
  publication-title: Landes Biosci.
– volume: 40
  start-page: 326
  year: 2017
  ident: 1026_CR78
  publication-title: Genet Mol Biol
  doi: 10.1590/1678-4685-gmb-2016-0106
– volume: 219
  start-page: 28
  year: 2016
  ident: 1026_CR90
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2016.09.060
– volume: 36
  start-page: 218
  year: 2008
  ident: 1026_CR16
  publication-title: Seed Sci Technol.
  doi: 10.15258/sst.2008.36.1.26
– volume: 12
  start-page: 125
  year: 2007
  ident: 1026_CR59
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2007.01.005
– year: 2021
  ident: 1026_CR39
  publication-title: Crop J
  doi: 10.1016/j.cj.2021.06.002:1-26
– volume: 9
  start-page: 1
  year: 2018
  ident: 1026_CR54
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00001
– volume: 58
  start-page: 1751
  year: 2018
  ident: 1026_CR76
  publication-title: Crop Sci
  doi: 10.2135/cropsci2018.02.0096
– volume: 29
  start-page: 185
  year: 2009
  ident: 1026_CR12
  publication-title: Agron Sustain Dev.
  doi: 10.1051/agro:2008021
– volume: 63
  start-page: 507
  year: 2012
  ident: 1026_CR7
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-042811-105550
– volume: 125
  start-page: 189
  year: 1968
  ident: 1026_CR34
  publication-title: Arch Biochem Biophys
  doi: 10.1016/0003-9861(68)90654-1
– volume: 64
  start-page: 130
  year: 2018
  ident: 1026_CR47
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2016.12.020
– volume: 431
  start-page: 1
  year: 2018
  ident: 1026_CR77
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3770-y
– volume: 23
  start-page: 10
  year: 2016
  ident: 1026_CR33
  publication-title: Int Food Res J
– volume: 43
  start-page: 3197
  year: 2021
  ident: 1026_CR67
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2021.01.727
– volume: 59
  start-page: 651
  year: 2008
  ident: 1026_CR74
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 35
  start-page: 1381
  year: 2013
  ident: 1026_CR18
  publication-title: Acta Physiol Plant
  doi: 10.1007/s11738-012-1186-5
– volume: 109
  start-page: 54
  year: 2016
  ident: 1026_CR30
  publication-title: Plant Physiol Biochem Elsevier Ltd
  doi: 10.1016/j.plaphy.2016.09.005
– volume: 108
  start-page: 101428
  year: 2019
  ident: 1026_CR13
  publication-title: Physiol Mol Plant Pathol.
  doi: 10.1016/j.pmpp.2019.101428
– volume: 20
  start-page: 1
  year: 2019
  ident: 1026_CR50
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20020450
– volume: 19
  start-page: 1
  year: 2021
  ident: 1026_CR57
  publication-title: J Nanobiotechnology
  doi: 10.1186/s12951-020-00755-7
– volume: 25
  start-page: 1947
  year: 2013
  ident: 1026_CR66
  publication-title: J Environ Sci
  doi: 10.1016/S1001-0742(12)60301-5
– ident: 1026_CR46
  doi: 10.1016/B978-0-12-818598-8.00018-3
– volume: 11
  start-page: 1
  year: 2020
  ident: 1026_CR62
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.00832
– volume: 7
  start-page: 63
  year: 2014
  ident: 1026_CR95
  publication-title: Nanotechnol Sci Appl
  doi: 10.2147/NSA.S39409
– volume: 36
  start-page: 60
  year: 2017
  ident: 1026_CR20
  publication-title: J Plant Growth Regul
  doi: 10.1007/s00344-016-9618-x
– volume: 229
  start-page: 132
  year: 2017
  ident: 1026_CR23
  publication-title: Environ Pollut.
  doi: 10.1016/j.envpol.2017.05.083
– volume: 22
  start-page: 123
  year: 2015
  ident: 1026_CR86
  publication-title: Saudi J Biol Sci
  doi: 10.1016/j.sjbs.2014.12.001
– volume: 7
  start-page: 2214
  year: 2020
  ident: 1026_CR27
  publication-title: Environ Sci Nano
  doi: 10.1039/D0EN00387E
– volume: 162
  start-page: 1304
  year: 2005
  ident: 1026_CR49
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2005.03.013
– volume: 79
  start-page: 402
  year: 1973
  ident: 1026_CR29
  publication-title: J Inst Brew
  doi: 10.1002/j.2050-0416.1973.tb03557.x
– volume: 12
  start-page: 851
  year: 2012
  ident: 1026_CR6
  publication-title: J Soil Sci Plant Nutr
– volume: 18
  start-page: 449
  year: 2016
  ident: 1026_CR19
  publication-title: Int J Agric Biol
  doi: 10.17957/IJAB/15.0114
– volume: 19
  start-page: 153
  year: 2021
  ident: 1026_CR79
  publication-title: J Nanobiotech.
  doi: 10.1186/s12951-021-00892-7
– volume: 79
  start-page: 19
  year: 2020
  ident: 1026_CR45
  publication-title: Bragantia.
  doi: 10.1590/1678-4499.20190360
– volume: 8
  start-page: 30
  year: 2016
  ident: 1026_CR38
  publication-title: Life Sci Sp Res
– volume: 408
  start-page: 3053
  year: 2010
  ident: 1026_CR73
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2010.03.031
– volume: 19
  start-page: 687
  year: 2014
  ident: 1026_CR85
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.09.001
– volume: 235
  start-page: 164
  year: 2019
  ident: 1026_CR17
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2018.10.038
– volume: 1
  start-page: 1
  year: 2013
  ident: 1026_CR52
  publication-title: Int J Basic Life Sci
– volume: 28
  start-page: 251
  year: 2005
  ident: 1026_CR80
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2005.01271.x
– volume: 2018
  start-page: 1
  year: 2018
  ident: 1026_CR31
  publication-title: J Vis Exp
– volume: 24
  start-page: 2558
  year: 2019
  ident: 1026_CR89
  publication-title: Molecules.
  doi: 10.3390/molecules24142558
– volume: 25
  start-page: 930
  year: 2018
  ident: 1026_CR92
  publication-title: Environ Sci Pollut Res.
  doi: 10.1007/s11356-017-0501-5
– volume: 9
  start-page: 1
  year: 2019
  ident: 1026_CR70
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-45102-5
– volume: 21
  start-page: 1
  year: 2020
  ident: 1026_CR8
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21218258
– year: 2021
  ident: 1026_CR41
  publication-title: J Plant Growth Regul
  doi: 10.1007/s00344-021-10338-x
– volume: 74
  start-page: 123
  year: 2015
  ident: 1026_CR36
  publication-title: Acta Bot Croat.
  doi: 10.1515/botcro-2015-0011
– volume: 58
  start-page: 73
  year: 2018
  ident: 1026_CR44
  publication-title: Egypt J Bot.
– volume: 4
  start-page: 388
  year: 2009
  ident: 1026_CR55
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.4.5.8294
– volume: 573
  start-page: 1089
  year: 2016
  ident: 1026_CR65
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.08.120
– volume: 27
  start-page: 157
  year: 2015
  ident: 1026_CR11
  publication-title: Theor Exp Plant Physiol
  doi: 10.1007/s40626-015-0041-7
– volume: 151
  start-page: 1210
  year: 2016
  ident: 1026_CR88
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2016.06.083
– volume: 3
  start-page: 340
  year: 2020
  ident: 1026_CR72
  publication-title: Commun Biol
  doi: 10.1038/s42003-020-1059-1
– volume: 10
  start-page: 749
  year: 2021
  ident: 1026_CR51
  publication-title: Plants.
  doi: 10.3390/plants10040749
– volume: 14
  start-page: 1095
  year: 2016
  ident: 1026_CR81
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.12467
– volume: 98
  start-page: 1080
  year: 1992
  ident: 1026_CR53
  publication-title: Plant Physiol
  doi: 10.1104/pp.98.3.1080
– volume: 38
  start-page: 315
  year: 2019
  ident: 1026_CR64
  publication-title: J Plant Growth Regul
  doi: 10.1007/s00344-018-9845-4
– volume: 127
  start-page: 403
  year: 2018
  ident: 1026_CR61
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2018.04.014
– volume: 19
  start-page: 371
  year: 2014
  ident: 1026_CR75
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2014.02.001
– volume: 5
  start-page: 753
  year: 2013
  ident: 1026_CR22
  publication-title: Metallomics
  doi: 10.1039/c3mt00033h
– volume: 5
  start-page: 1567
  year: 2018
  ident: 1026_CR25
  publication-title: Environ Sci Nano
  doi: 10.1039/C8EN00323H
– volume: 13
  start-page: 45
  year: 2014
  ident: 1026_CR37
  publication-title: J Saudi Soc Agric Sci
– volume: 9
  start-page: 62
  year: 2020
  ident: 1026_CR32
  publication-title: Plants.
  doi: 10.3390/plants9010062
– volume: 3
  start-page: 175
  year: 2008
  ident: 1026_CR63
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.3.3.5539
– volume: 1
  start-page: 100006
  year: 2021
  ident: 1026_CR91
  publication-title: Plant Stress.
  doi: 10.1016/j.stress.2021.100006
– volume: 156
  start-page: 112850
  year: 2020
  ident: 1026_CR1
  publication-title: Ind Crops Prod.
  doi: 10.1016/j.indcrop.2020.112850
– volume: 10
  start-page: 835
  year: 2021
  ident: 1026_CR15
  publication-title: Plants.
  doi: 10.3390/plants10050835
– ident: 1026_CR40
  doi: 10.1007/978-1-4020-5578-2_1
– volume: 49
  start-page: 141
  year: 2013
  ident: 1026_CR14
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2013.04.001
– volume: 33
  start-page: 1
  year: 2019
  ident: 1026_CR83
  publication-title: Arid L Res Manag
  doi: 10.1080/15324982.2018.1498038
– volume: 9
  start-page: 1594
  year: 2010
  ident: 1026_CR35
  publication-title: Agric Sci
– volume: 41
  start-page: 213
  year: 2011
  ident: 1026_CR21
  publication-title: Crit Rev Toxicol
  doi: 10.3109/10408444.2010.529105
– volume: 57
  start-page: 67
  year: 2012
  ident: 1026_CR69
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2012.05.008
– volume: 7
  start-page: 1
  year: 2016
  ident: 1026_CR84
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.01787
– volume: 10
  start-page: 1
  year: 2015
  ident: 1026_CR93
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0134261
– volume: 10
  start-page: 1192
  year: 2020
  ident: 1026_CR43
  publication-title: Agronomy.
  doi: 10.3390/agronomy10081192
– volume: 6
  start-page: 03983
  year: 2020
  ident: 1026_CR56
  publication-title: Heliyon.
  doi: 10.1016/j.heliyon.2020.e03983
– volume: 176
  start-page: 104077
  year: 2020
  ident: 1026_CR2
  publication-title: Environ Exp Bot.
  doi: 10.1016/j.envexpbot.2020.104077
– volume: 23
  start-page: 157
  year: 2004
  ident: 1026_CR42
  publication-title: CRC Crit Rev Plant Sci
  doi: 10.1080/07352680490433286
– volume: 11
  start-page: 11283
  year: 2017
  ident: 1026_CR24
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05723
– volume: 106
  start-page: 122
  year: 2018
  ident: 1026_CR87
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2018.01.049
– volume: 102
  start-page: 585
  year: 1983
  ident: 1026_CR9
  publication-title: Ann Appl Biol.
  doi: 10.1111/j.1744-7348.1983.tb02730.x
– volume: 35
  start-page: 315
  year: 2002
  ident: 1026_CR28
  publication-title: Food Res Int
  doi: 10.1016/S0963-9969(01)00202-2
– volume: 10
  start-page: 6971
  year: 2018
  ident: 1026_CR71
  publication-title: Nanoscale
  doi: 10.1039/C8NR00325D
SSID ssj0022424
Score 2.5260012
Snippet Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant...
Background Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve...
Abstract Background Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 276
SubjectTerms alpha-Amylases - metabolism
Amylases
Antioxidants
Brassica
Brassica napus
Brassica napus - drug effects
Brassica napus - metabolism
Cerium
Cerium - chemistry
Cerium oxides
Crop production
Damage tolerance
Enzymes
Experiments
Gene expression
Germination
Homeostasis
Hydrogen peroxide
Hygroscopic water
Imbibition
Localization
Metabolism
Metabolites
Metal Nanoparticles - chemistry
Metal Nanoparticles - toxicity
Na+/K+ ratio
Nanoceria
Nanomaterials
Nanoparticles
Nanotechnology
Plant Roots - drug effects
Plant Roots - metabolism
Plant stress
Plant tolerance
Polyacrylic acid
Potassium - chemistry
Potassium - metabolism
Priming
Rape plants
Rapeseed
Reactive Oxygen Species - metabolism
ROS homeostasis
Salinity
Salinity tolerance
Salt stress
Salt tolerance
Seed priming
Seeds
Seeds - drug effects
Seeds - enzymology
Seeds - metabolism
Sodium - chemistry
Sodium - metabolism
Sodium chloride
Sodium Chloride - pharmacology
Superoxide Dismutase - metabolism
Transmission electron microscopy
α-Amylase
α-amylase activity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTvSAKG1pWkCu1BuyiOOPOEdagVAlqNSCxM3y17Ir7SaIhCJ-Fn-E38TYya52K0Qv5Bg7keN59rxJMm8Q-iYrFgzPGbGAHsJLJYktqInvragTwGd9iNnIp2fy5IL_vBSXS6W-4j9hvTxwP3EHXhkApXUqCnWrkVAjbi1z3lZqBHdLSqDg8-bB1BBqxaSHeYqMkgcteDUBYXMRQ2eIOki14oaSWv9zFPPfPyWXXM_xJtoYOCM-7Mf6Dr0J9RZ6u6Qk-B7dwS4JngjQhFvwR_g6Veu6wqEep0_8uDXTDnfNNMRCGgFPahzTrlLfoVQPnjU-1fKCy37_-oPHzSw0wB3bSYtN7fHjAzGzeyDbAcdkiL9JivUDujg-Ov9xQoaaCsTxSnakdA6mXxbGQ2RqI71glEpbCu4sAy6XSyeVAFIGRC93VIQiSspJ672wggbBPqK1uqnDJ4RzEUqvuKfwFJyWxoxYsMJYaUzBHPMZovMp1m4QHI91L6Y6BR5K6t4sGsyik1l0laH9xTXXvdzGi72_R8stekap7HQCAKQHAOn_AShDO3O762H9tho2Ms5F3P4y9HXRDCsvfk4xdWhuhz45B76Zoe0eJouRMC4YkC1oKVcAtDLU1ZZ6Mk7q3orDUajPr_FsX9B6kUBfESp30Fp3cxt2gUR1di-tlyeN1BsV
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bbtQwELWgvMAD4k5KQUbiDVlN4kucJwSIqkICJKDSvlm-bXel3WRpUio-ix_hm5jxerddhJrHtSM5O8eeM7bnDCGvVMujFSVnDtDDRKMVc3Vlcd-q8hL4bIiYjfzpszo-ER8ncpI33IZ8rXKzJqaFOvQe98gPAVpCSATkm9UPhlWj8HQ1l9C4SW6hdBle6WomlwEXpj5sEmW0OhzAt0kInmsMoCH2YO2OM0qa_f8jmv_el7zigI7ukbuZOdK3a1PfJzdi94DcuaIn-JBcwFoJ_ggwRQfwSnSVanad0tjN0kE_HexipGO_iFhOI9J5RzH5KvXNBXvosg-pohe89vXLNzrrl7EHBjnMB2q7QP_8Znb5Cyh3pJgS8TMJsj4iJ0cfvr8_ZrmyAvOiVSNrvAcjqNoGiE8dkgxeVco1UnjHgdGVyistgZoB3St9JWONwnLKhSCdrKLkj8le13fxKaGljE3QIlTwFaJqrJ3y6KR1ytqaex4KUm3-YuOz7DhWv1iYFH5oZdZmMWAWk8xi2oK83r6zWotuXNv7HVpu2xMFs9MP_dmpyfPPBG1hbXNeo967nko9Fc5xH1yrpwBKUZCDjd1NnsWDucRcQV5um2H-4aGK7WJ_nvuUAlhnQZ6sYbIdCReSA-WClmYHQDtD3W3p5rOk8a0FPLXev35Yz8jtOsG5ZZU6IHvj2Xl8DiRpdC_STPgLzCoSDA
  priority: 102
  providerName: ProQuest
Title Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities
URI https://www.ncbi.nlm.nih.gov/pubmed/34530815
https://www.proquest.com/docview/2574450730
https://www.proquest.com/docview/2574404435
https://pubmed.ncbi.nlm.nih.gov/PMC8444428
https://doaj.org/article/d8a703bc805148f58f4bb3cdb98f1c54
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB71cYED4l1DiRaJGzLE3ofXB4QoaqiQWlAhUm7WvtJESuwSu0B_Fn-E38TsxrYaFCHhgw_etbXemdn5Zu35BuCFyKlTbEhjjdoTs0yKWKeJ8vtWieGIZ63z2cinZ-JkzD5O-GQHunJH7QTWW0M7X09qvFq8-vnt-i0a_Jtg8FK8rtFncQyKUx8YY0wR57uwj54p84Z6yvqvCqlPhQjZRpnfm-O8S6LZ-owNRxX4_LeB0L__pbzhnEZ34U6LKsm7tRrcgx1X3ofbN7gGH8APXEfRV6G-kRo9FrkM9bwuiCtn4ScAUqtFQ5pq4XypDUfmJfGJWaFvW8yHLCsbqn3hbeefvpBZtXQVost6XhNVWvL7V6yW1wjHHfHpEt8DWetDGI-Ov74_iduqC7FhuWjizBgUkEiVxdhVewBCk0TojDOjKaK9oTBCcoRtCAWHJuEu9aRzQlvLNU8cp49gr6xKdwBkyF1mJbMJvgWKQ6kpdZorLZRKqaE2gqSb4sK0lOS-MsaiCKGJFMVaLAWKpQhiKfIIXvb3XK4JOf7Z-8hLru_pybTDhWp1UbS2WVipcN3TRnoueDnlcsq0psbqXE5RYVkEh53ci05BC1zqGON-gYzged-Mtuk_uKjSVVdtnyFDRBrB47Wa9COhjFOEY9iSbSjQxlA3W8r5LPB_S4ZHKp_810w8hVtp0O48TsQh7DWrK_cM8VSjB7CbTTI8y9GHAewfHZ99Ph-EvYlBMJ8_QLcfNQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDeBAkaCE4qah-04B4R4VVv6QIJW2pvxa7sr7SZLk1L1TyHxR_hNzHiTbReh3ppj7EhO5puZbxzPDCEvRZl7zZI8NoCemBVSxCZLNe5bpZYDn3Ues5H39sXgkH0e8uEa-dXnwuCxyt4mBkPtaot75JsALcY4AvLt_EeMXaPw72rfQmMBix1_dgohW_Nm-yPI91WWbX06-DCIu64CsWWlaOPCWliAyLSD2Mygg83TVJiCM2tyYDOJsEJyoCVAdRKbcp9hUTVhnOOGpx67RIDJvwaON0GNKobnAR6mWvSJOVJsNuBLOQTrGQbsEOvE5YrzCz0C_kds_z2fecHhbd0mtzqmSt8toHWHrPnqLrl5oX7hPXIKthn8H2CYNuAF6Tz0CDuivhqHgwW00dOWtvXUY_sOTycVxWSvMLdrEERntQsdxOCxr1--0XE98zUw1mbSUF05-ud3rGdnQPE9xRSMn6EA7H1yeCXf_AFZr-rKPyI04b5wkrkU3oKlhdaj3BuujdA6y23uIpL2n1jZrsw5dtuYqhDuSKEWYlEgFhXEosqIvF4-M18U-bh09nuU3HImFugON-rjI9Xpu3JSgy01VmJ9eTnicsSMya0zpRyBErCIbPRyV53VaNQ5xiPyYjkM-o4_cXTl65NuTsKA5Ubk4QImy5XkjOdA8WCkWAHQylJXR6rJONQUlwyuTD6-fFnPyfXBwd6u2t3e33lCbmQB2mWcig2y3h6f-KdA0FrzLGgFJd-vWg3_AnliTEU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoceria+seed+priming+enhanced+salt+tolerance+in+rapeseed+through+modulating+ROS+homeostasis+and+%CE%B1-amylase+activities&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Khan%2C+Mohammad+Nauman&rft.au=Li%2C+Yanhui&rft.au=Khan%2C+Zaid&rft.au=Chen%2C+Linlin&rft.date=2021-09-16&rft.issn=1477-3155&rft.eissn=1477-3155&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12951-021-01026-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12951_021_01026_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon