Identification of novel RNA design candidates by clustering the extended RNA-As-Graphs library

We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA h...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1864; no. 6; p. 129534
Main Authors Jain, Swati, Zhu, Qiyao, Paz, Amiel S.P., Schlick, Tamar
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2020.129534

Cover

Loading…
Abstract We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA helices and loops. The graph theoretical framework facilitates graph enumeration, partitioning, and clustering approaches to study RNA structure and its applications. Clustering graph topologies based on features derived from graph Laplacian matrices and known RNA structures allows us to classify topologies into ‘existing’ or hypothetical, and the latter into, ‘RNA-like’ or ‘non RNA-like’ topologies. Here we update our list of existing tree graph topologies and RAG-3D database of atomic fragments to include newly determined RNA structures. We then use linear and quadratic regression, optionally with dimensionality reduction, to derive graph features and apply several clustering algorithms on our tree-graph library and recently expanded dual-graph library to classify them into the three groups. The unsupervised PAM and K-means clustering approaches correctly classify 72–77% of all existing graph topologies and 75–82% of newly added ones as RNA-like. For supervised k-NN clustering, the cross-validation accuracy ranges from 57 to 81%. Using linear regression with unsupervised clustering, or quadratic regression with supervised clustering, provides better accuracies than supervised/linear clustering. All accuracies are better than random, especially for newly added existing topologies, thus lending credibility to our approach. Our updated RAG-3D database and motif classification by clustering present new RNA substructures and RNA-like motifs as novel design candidates. •Updated the list of tree graph topologies and RAG-3D fragment database using newly solved RNA structures•Identified novel RNA-like motifs, with high accuracy, using unsupervised and supervised clustering algorithms•Updated database and motif classification present new RNA substructures and RNA-like motifs as novel design candidates
AbstractList We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA helices and loops. The graph theoretical framework facilitates graph enumeration, partitioning, and clustering approaches to study RNA structure and its applications.Clustering graph topologies based on features derived from graph Laplacian matrices and known RNA structures allows us to classify topologies into ‘existing’ or hypothetical, and the latter into, ‘RNA-like’ or ‘non RNA-like’ topologies. Here we update our list of existing tree graph topologies and RAG-3D database of atomic fragments to include newly determined RNA structures. We then use linear and quadratic regression, optionally with dimensionality reduction, to derive graph features and apply several clustering algorithms on our tree-graph library and recently expanded dual-graph library to classify them into the three groups.The unsupervised PAM and K-means clustering approaches correctly classify 72–77% of all existing graph topologies and 75–82% of newly added ones as RNA-like. For supervised k-NN clustering, the cross-validation accuracy ranges from 57 to 81%.Using linear regression with unsupervised clustering, or quadratic regression with supervised clustering, provides better accuracies than supervised/linear clustering. All accuracies are better than random, especially for newly added existing topologies, thus lending credibility to our approach.Our updated RAG-3D database and motif classification by clustering present new RNA substructures and RNA-like motifs as novel design candidates.
We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA helices and loops. The graph theoretical framework facilitates graph enumeration, partitioning, and clustering approaches to study RNA structure and its applications. Clustering graph topologies based on features derived from graph Laplacian matrices and known RNA structures allows us to classify topologies into ‘existing’ or hypothetical, and the latter into, ‘RNA-like’ or ‘non RNA-like’ topologies. Here we update our list of existing tree graph topologies and RAG-3D database of atomic fragments to include newly determined RNA structures. We then use linear and quadratic regression, optionally with dimensionality reduction, to derive graph features and apply several clustering algorithms on our tree-graph library and recently expanded dual-graph library to classify them into the three groups. The unsupervised PAM and K-means clustering approaches correctly classify 72–77% of all existing graph topologies and 75–82% of newly added ones as RNA-like. For supervised k-NN clustering, the cross-validation accuracy ranges from 57 to 81%. Using linear regression with unsupervised clustering, or quadratic regression with supervised clustering, provides better accuracies than supervised/linear clustering. All accuracies are better than random, especially for newly added existing topologies, thus lending credibility to our approach. Our updated RAG-3D database and motif classification by clustering present new RNA substructures and RNA-like motifs as novel design candidates. •Updated the list of tree graph topologies and RAG-3D fragment database using newly solved RNA structures•Identified novel RNA-like motifs, with high accuracy, using unsupervised and supervised clustering algorithms•Updated database and motif classification present new RNA substructures and RNA-like motifs as novel design candidates
We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA helices and loops. The graph theoretical framework facilitates graph enumeration, partitioning, and clustering approaches to study RNA structure and its applications. Clustering graph topologies based on features derived from graph Laplacian matrices and known RNA structures allows us to classify topologies into 'existing' or hypothetical, and the latter into, 'RNA-like' or 'non RNA-like' topologies. Here we update our list of existing tree graph topologies and RAG-3D database of atomic fragments to include newly determined RNA structures. We then use linear and quadratic regression, optionally with dimensionality reduction, to derive graph features and apply several clustering algorithms on our tree-graph library and recently expanded dual-graph library to classify them into the three groups. The unsupervised PAM and K-means clustering approaches correctly classify 72-77% of all existing graph topologies and 75-82% of newly added ones as RNA-like. For supervised k-NN clustering, the cross-validation accuracy ranges from 57 to 81%. Using linear regression with unsupervised clustering, or quadratic regression with supervised clustering, provides better accuracies than supervised/linear clustering. All accuracies are better than random, especially for newly added existing topologies, thus lending credibility to our approach. Our updated RAG-3D database and motif classification by clustering present new RNA substructures and RNA-like motifs as novel design candidates.
We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA helices and loops. The graph theoretical framework facilitates graph enumeration, partitioning, and clustering approaches to study RNA structure and its applications.BACKGROUNDWe re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA helices and loops. The graph theoretical framework facilitates graph enumeration, partitioning, and clustering approaches to study RNA structure and its applications.Clustering graph topologies based on features derived from graph Laplacian matrices and known RNA structures allows us to classify topologies into 'existing' or hypothetical, and the latter into, 'RNA-like' or 'non RNA-like' topologies. Here we update our list of existing tree graph topologies and RAG-3D database of atomic fragments to include newly determined RNA structures. We then use linear and quadratic regression, optionally with dimensionality reduction, to derive graph features and apply several clustering algorithms on our tree-graph library and recently expanded dual-graph library to classify them into the three groups.METHODSClustering graph topologies based on features derived from graph Laplacian matrices and known RNA structures allows us to classify topologies into 'existing' or hypothetical, and the latter into, 'RNA-like' or 'non RNA-like' topologies. Here we update our list of existing tree graph topologies and RAG-3D database of atomic fragments to include newly determined RNA structures. We then use linear and quadratic regression, optionally with dimensionality reduction, to derive graph features and apply several clustering algorithms on our tree-graph library and recently expanded dual-graph library to classify them into the three groups.The unsupervised PAM and K-means clustering approaches correctly classify 72-77% of all existing graph topologies and 75-82% of newly added ones as RNA-like. For supervised k-NN clustering, the cross-validation accuracy ranges from 57 to 81%.RESULTSThe unsupervised PAM and K-means clustering approaches correctly classify 72-77% of all existing graph topologies and 75-82% of newly added ones as RNA-like. For supervised k-NN clustering, the cross-validation accuracy ranges from 57 to 81%.Using linear regression with unsupervised clustering, or quadratic regression with supervised clustering, provides better accuracies than supervised/linear clustering. All accuracies are better than random, especially for newly added existing topologies, thus lending credibility to our approach.CONCLUSIONSUsing linear regression with unsupervised clustering, or quadratic regression with supervised clustering, provides better accuracies than supervised/linear clustering. All accuracies are better than random, especially for newly added existing topologies, thus lending credibility to our approach.Our updated RAG-3D database and motif classification by clustering present new RNA substructures and RNA-like motifs as novel design candidates.GENERAL SIGNIFICANCEOur updated RAG-3D database and motif classification by clustering present new RNA substructures and RNA-like motifs as novel design candidates.
ArticleNumber 129534
Author Zhu, Qiyao
Schlick, Tamar
Jain, Swati
Paz, Amiel S.P.
AuthorAffiliation 2 Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
4 NYU-ECNU Center for Computational Chemistry, NYU Shanghai, 3663 Zhongshang Road North, Shanghai 200062, China
1 Department of Chemistry, New York University, 1021 4 Silver, 100 Washington Square East, New York, NY 10003, USA
3 NYU Shanghai, 1555 Century Avenue, Shanghai 200135, China
AuthorAffiliation_xml – name: 3 NYU Shanghai, 1555 Century Avenue, Shanghai 200135, China
– name: 1 Department of Chemistry, New York University, 1021 4 Silver, 100 Washington Square East, New York, NY 10003, USA
– name: 2 Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
– name: 4 NYU-ECNU Center for Computational Chemistry, NYU Shanghai, 3663 Zhongshang Road North, Shanghai 200062, China
Author_xml – sequence: 1
  givenname: Swati
  surname: Jain
  fullname: Jain, Swati
  organization: Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY 10003, USA
– sequence: 2
  givenname: Qiyao
  surname: Zhu
  fullname: Zhu, Qiyao
  organization: Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
– sequence: 3
  givenname: Amiel S.P.
  surname: Paz
  fullname: Paz, Amiel S.P.
  organization: NYU Shanghai, 1555 Century Avenue, Shanghai 200135, China
– sequence: 4
  givenname: Tamar
  surname: Schlick
  fullname: Schlick, Tamar
  email: schlick@nyu.edu
  organization: Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY 10003, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31954797$$D View this record in MEDLINE/PubMed
BookMark eNqFkVGPEyEUhYlZ43ZX_4ExPPoyFRhmAB9Mmo2um2w0MfoqYeBOSzOFCrTZ_fdS2zXqg8sLCZxzcu79LtBZiAEQeknJnBLav1nPh8EsIcwZYfWJqa7lT9CMSsEaSUh_hmakJbzhtO_O0UXOa1JPp7pn6LylquNCiRn6fuMgFD96a4qPAccRh7iHCX_5tMAOsl8GbE1w3pkCGQ_32E67XCD5sMRlBRjuCgQH7mBoFrm5Tma7ynjyQzLp_jl6Opopw4vTfYm-fXj_9epjc_v5-uZqcdtYrvrSiG4Uo3CDVIrLQRo2WEJG06rOCUcMEZSoOtfYtZJKLpUlYqDCgbSUCQqsvUTvjrnb3bABZ-tMyUx6m_ymttDReP33T_ArvYx7LYiQhMka8PoUkOKPHeSiNz5bmCYTIO6yZlyInqqW9I9LW87ajtdJqvTVn7V-93nYfxW8PQpsijknGLX15ReJ2tJPmhJ9gK3X-ghbH2DrI-xq5v-YH_IfsZ12BRXI3kPS2XoIFpxPYIt20f8_4CfnMcS4
CitedBy_id crossref_primary_10_1016_j_bpj_2020_08_026
crossref_primary_10_1016_j_bbagen_2021_129888
crossref_primary_10_1146_annurev_biophys_091720_102019
crossref_primary_10_1021_acs_jpcb_0c10685
Cites_doi 10.1073/pnas.77.11.6309
10.1093/bioinformatics/bth084
10.1016/j.jmb.2015.10.009
10.1093/bioinformatics/6.4.309
10.1093/nar/gky524
10.1186/1471-2105-5-88
10.1016/j.jmb.2004.06.054
10.1093/nar/gkg365
10.1016/0010-4809(89)90039-6
10.1038/80729
10.1098/rstb.2011.0132
10.1371/journal.pone.0106074
10.1093/nar/gkx045
10.1093/bioinformatics/btm439
10.1016/j.ymeth.2019.03.022
10.1016/j.ymeth.2018.03.009
10.1089/oli.2009.0199
10.1186/1471-2105-12-219
10.1261/rna.374907
10.1016/j.ymeth.2016.04.026
10.1016/j.bpj.2016.12.037
10.3109/10409238.2013.844092
10.1073/pnas.1318893111
10.21136/CMJ.1973.101168
10.1093/bioinformatics/btz611
10.1093/nar/gkv823
10.3390/genes9080371
10.1016/j.jmb.2017.09.017
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.bbagen.2020.129534
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 129534
ExternalDocumentID PMC7078028
31954797
10_1016_j_bbagen_2020_129534
S0304416520300246
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM122562
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
EFKBS
ID FETCH-LOGICAL-c496t-75f7f7db89948b8a2bc00fa395d7d0a07109872f53818489c07b17de8c1271e23
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Thu Aug 21 18:32:01 EDT 2025
Fri Jul 11 10:01:40 EDT 2025
Fri Jul 11 11:03:57 EDT 2025
Wed Feb 19 02:29:18 EST 2025
Tue Jul 01 00:22:13 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Fri Feb 23 02:48:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Graph clustering
F-RAG
Tree and dual graph topologies
RAG-3D database
RNA design
RNA
RNA-like motifs
LOO
PDB
PCA
RAG-IF
3D
2D
k-NN
RAG
PAM
MSE
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-75f7f7db89948b8a2bc00fa395d7d0a07109872f53818489c07b17de8c1271e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7078028
PMID 31954797
PQID 2342354948
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7078028
proquest_miscellaneous_2477619306
proquest_miscellaneous_2342354948
pubmed_primary_31954797
crossref_citationtrail_10_1016_j_bbagen_2020_129534
crossref_primary_10_1016_j_bbagen_2020_129534
elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129534
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jain, Saju, Petingi, Schlick (bb0080) 2019; 162–163
Jain, Bayrak, Petingi, Schlick (bb0075) 2018; 9
Lilley (bb0005) 2011; 366
Kim, Zheng, Elmetwaly, Schlick (bb0065) 2014; 9
Zahran, Bayrak, Elmetwaly, Schlick (bb0070) 2015; 43
Jain, Laederach, Ramos, Schlick (bb0110) 2018; 46
Schlick (bb0125) 2018; 143
Gan, Fera, Zorn, Shiffeldrim, Tang, Laserson, Kim, Schlick (bb0055) 2004; 20
Nussinov, Jacobson (bb0035) 1980; 77
Izzo, Kim, Elmetwaly, Schlick (bb0135) 2011; 12
Kim, Shin, Elmetwaly, Gan, Schlick (bb0085) 2007; 23
Kim, Gan, Schlick (bb0090) 2007; 13
Jain, Schlick (bb0105) 2017; 429
Bayrak, Kim, Schlick (bb0100) 2017; 45
Kim, Shiffeldrim, Gan, Schlick (bb0145) 2004; 341
Patil, Zhou, Rana (bb0010) 2014; 49
Le, Nussinov, Maizel (bb0040) 1989; 22
Meng, Tariq, Jain, Elmetwaly, Schlick (bb0115) 2019
Dawson, Maciejczyk, Jankowska, Bujnicki (bb0120) 2016; 103
Jain, Tao, Schlick (bb9029) 2019
Doudna (bb0015) 2000; 7
Schlick, Pyle (bb0025) 2017; 113
Baba, Elmetwaly, Kim, Schlick (bb0130) 2016; 428
Fiedler (bb0140) 1973; 23
Kim, Laing, Elmetwaly, Jung, Curuksu, Schlick (bb0095) 2014; 111
Waterman (bb0030) 1978; 1
Shapiro, Zhang (bb0045) 1990; 6
Gan, Pasquali, Schlick (bb0050) 2003; 31
Thiel, Giangrande (bb0020) 2009; 19
Fera, Kim, Shiffeldrim, Zorn, Laserson, Gan, Schlick (bb0060) 2004; 5
Jain (10.1016/j.bbagen.2020.129534_bb0080) 2019; 162–163
Le (10.1016/j.bbagen.2020.129534_bb0040) 1989; 22
Dawson (10.1016/j.bbagen.2020.129534_bb0120) 2016; 103
Gan (10.1016/j.bbagen.2020.129534_bb0055) 2004; 20
Schlick (10.1016/j.bbagen.2020.129534_bb0125) 2018; 143
Schlick (10.1016/j.bbagen.2020.129534_bb0025) 2017; 113
Baba (10.1016/j.bbagen.2020.129534_bb0130) 2016; 428
Fiedler (10.1016/j.bbagen.2020.129534_bb0140) 1973; 23
Shapiro (10.1016/j.bbagen.2020.129534_bb0045) 1990; 6
Kim (10.1016/j.bbagen.2020.129534_bb0095) 2014; 111
Jain (10.1016/j.bbagen.2020.129534_bb0110) 2018; 46
Izzo (10.1016/j.bbagen.2020.129534_bb0135) 2011; 12
Waterman (10.1016/j.bbagen.2020.129534_bb0030) 1978; 1
Lilley (10.1016/j.bbagen.2020.129534_bb0005) 2011; 366
Gan (10.1016/j.bbagen.2020.129534_bb0050) 2003; 31
Nussinov (10.1016/j.bbagen.2020.129534_bb0035) 1980; 77
Bayrak (10.1016/j.bbagen.2020.129534_bb0100) 2017; 45
Fera (10.1016/j.bbagen.2020.129534_bb0060) 2004; 5
Patil (10.1016/j.bbagen.2020.129534_bb0010) 2014; 49
Kim (10.1016/j.bbagen.2020.129534_bb0065) 2014; 9
Meng (10.1016/j.bbagen.2020.129534_bb0115) 2019
Jain (10.1016/j.bbagen.2020.129534_bb9029) 2019
Doudna (10.1016/j.bbagen.2020.129534_bb0015) 2000; 7
Zahran (10.1016/j.bbagen.2020.129534_bb0070) 2015; 43
Jain (10.1016/j.bbagen.2020.129534_bb0075) 2018; 9
Kim (10.1016/j.bbagen.2020.129534_bb0090) 2007; 13
Kim (10.1016/j.bbagen.2020.129534_bb0145) 2004; 341
Kim (10.1016/j.bbagen.2020.129534_bb0085) 2007; 23
Thiel (10.1016/j.bbagen.2020.129534_bb0020) 2009; 19
Jain (10.1016/j.bbagen.2020.129534_bb0105) 2017; 429
References_xml – volume: 20
  start-page: 1285
  year: 2004
  end-page: 1291
  ident: bb0055
  article-title: RAG: RNA-As-Graphs database|concepts, analysis, and features
  publication-title: Bioinformatics
– volume: 143
  start-page: 16
  year: 2018
  end-page: 33
  ident: bb0125
  article-title: Adventures with RNA graphs
  publication-title: Methods
– volume: 9
  start-page: 371
  year: 2018
  ident: bb0075
  article-title: Dual graph partitioning highlights a small group of Pseudoknot-containing RNA submotifs
  publication-title: Genes
– volume: 162–163
  start-page: 74
  year: 2019
  end-page: 84
  ident: bb0080
  article-title: An extended dual graph library and partitioning algorithm applicable to Pseudoknotted RNA structures
  publication-title: Methods
– volume: 46
  start-page: 7040
  year: 2018
  end-page: 7051
  ident: bb0110
  article-title: A pipeline for computational design of novel RNA-like topologies
  publication-title: Nucleic Acids Res.
– volume: 113
  start-page: 225
  year: 2017
  end-page: 234
  ident: bb0025
  article-title: Opportunities and challenges in RNA structural modeling and design
  publication-title: Biophys. J.
– volume: 22
  start-page: 461
  year: 1989
  end-page: 473
  ident: bb0040
  article-title: Tree graphs of RNA secondary structures and their comparisons
  publication-title: Comput. Biomed. Res.
– volume: 429
  start-page: 3587
  year: 2017
  end-page: 3605
  ident: bb0105
  article-title: F-RAG: generating atomic models from RNA graphs using fragment assembly
  publication-title: J. Mol. Biol.
– volume: 19
  start-page: 209
  year: 2009
  end-page: 222
  ident: bb0020
  article-title: Therapeutic applications of DNA and RNA aptamers
  publication-title: Oligonucleotides
– volume: 103
  start-page: 138
  year: 2016
  end-page: 156
  ident: bb0120
  article-title: Coarse-grained modeling of RNA 3D structure
  publication-title: Methods
– volume: 45
  start-page: 5414
  year: 2017
  end-page: 5422
  ident: bb0100
  article-title: Using sequence signatures and kink-turn motifs in knowledge-based statistical potentials for RNA structure prediction
  publication-title: Nucleic Acids Res.
– volume: 12
  start-page: 219
  year: 2011
  ident: bb0135
  article-title: RAG: an update to the RNA-As-Graphs resource
  publication-title: BMC Bioinformatics
– volume: 31
  start-page: 2926
  year: 2003
  end-page: 2943
  ident: bb0050
  article-title: Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design
  publication-title: Nucleic Acids Res.
– volume: 366
  start-page: 2910
  year: 2011
  end-page: 2917
  ident: bb0005
  article-title: Mechanisms of RNA catalysis
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
– volume: 77
  start-page: 6309
  year: 1980
  end-page: 6313
  ident: bb0035
  article-title: Fast algorithm for predicting the secondary structure of single-stranded RNA
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 1
  start-page: 167
  year: 1978
  end-page: 212
  ident: bb0030
  article-title: Secondary structure of single-stranded nucleic acids
  publication-title: Adv. Math. Suppl. Stud.
– volume: 111
  start-page: 4079
  year: 2014
  end-page: 4084
  ident: bb0095
  article-title: Graph-based sampling for approximating global helical topologies of RNA
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 43
  start-page: 9474
  year: 2015
  end-page: 9488
  ident: bb0070
  article-title: RAG-3D: a search tool for RNA 3D substructures
  publication-title: Nucleic Acids Res.
– volume: 23
  start-page: 298
  year: 1973
  end-page: 305
  ident: bb0140
  article-title: Algebraic connectivity of graphs
  publication-title: Czechoslov. Math. J.
– volume: 5
  start-page: 88
  year: 2004
  ident: bb0060
  article-title: RAG: RNA-As-Graphs web resource
  publication-title: BMC Bioinformatics
– volume: 7
  start-page: 954
  year: 2000
  end-page: 956
  ident: bb0015
  article-title: Structural genomics of RNA
  publication-title: Nat. Struct. Mol. Biol.
– volume: 23
  start-page: 2959
  year: 2007
  end-page: 2960
  ident: bb0085
  article-title: RAGPOOLS: RNA-As-Graph-Pools–a web server for assisting the design of structured RNA pools for in vitro selection
  publication-title: Bioinformatics
– start-page: btz611
  year: 2019
  ident: bb0115
  article-title: RAG-Web: RNA structure prediction/design using RNA-As-Graphs
  publication-title: Bioinformatics
– volume: 49
  start-page: 16
  year: 2014
  end-page: 32
  ident: bb0010
  article-title: Gene regulation by non-coding RNAs
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– start-page: 107438
  year: 2019
  ident: bb9029
  article-title: Inverse folding with RNA-As-Graphs produces a large pool of candidate sequences with target topologies
  publication-title: J. Struct. Biol.
– volume: 6
  start-page: 309
  year: 1990
  end-page: 318
  ident: bb0045
  article-title: Comparing multiple RNA secondary structures using tree comparisons
  publication-title: Bioinformatics
– volume: 13
  start-page: 478
  year: 2007
  end-page: 492
  ident: bb0090
  article-title: A computational proposal for designing structured RNA pools for in vitro selection of RNAs
  publication-title: RNA
– volume: 9
  year: 2014
  ident: bb0065
  article-title: RNA graph partitioning for the discovery of RNA modularity: a novel application of graph partition algorithm to biology
  publication-title: PLoS One
– volume: 341
  start-page: 1129
  year: 2004
  end-page: 1144
  ident: bb0145
  article-title: Candidates for novel RNA topologies
  publication-title: J. Mol. Biol.
– volume: 428
  start-page: 811
  year: 2016
  end-page: 821
  ident: bb0130
  article-title: Predicting large RNA-like topologies by a knowledge-based clustering approach
  publication-title: J. Mol. Biol.
– volume: 77
  start-page: 6309
  issue: 11
  year: 1980
  ident: 10.1016/j.bbagen.2020.129534_bb0035
  article-title: Fast algorithm for predicting the secondary structure of single-stranded RNA
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.77.11.6309
– volume: 20
  start-page: 1285
  issue: 8
  year: 2004
  ident: 10.1016/j.bbagen.2020.129534_bb0055
  article-title: RAG: RNA-As-Graphs database|concepts, analysis, and features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth084
– start-page: 107438
  year: 2019
  ident: 10.1016/j.bbagen.2020.129534_bb9029
  article-title: Inverse folding with RNA-As-Graphs produces a large pool of candidate sequences with target topologies
  publication-title: J. Struct. Biol.
– volume: 428
  start-page: 811
  issue: 5
  year: 2016
  ident: 10.1016/j.bbagen.2020.129534_bb0130
  article-title: Predicting large RNA-like topologies by a knowledge-based clustering approach
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2015.10.009
– volume: 6
  start-page: 309
  issue: 4
  year: 1990
  ident: 10.1016/j.bbagen.2020.129534_bb0045
  article-title: Comparing multiple RNA secondary structures using tree comparisons
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/6.4.309
– volume: 46
  start-page: 7040
  issue: 14
  year: 2018
  ident: 10.1016/j.bbagen.2020.129534_bb0110
  article-title: A pipeline for computational design of novel RNA-like topologies
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky524
– volume: 5
  start-page: 88
  issue: 1
  year: 2004
  ident: 10.1016/j.bbagen.2020.129534_bb0060
  article-title: RAG: RNA-As-Graphs web resource
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-88
– volume: 341
  start-page: 1129
  issue: 5
  year: 2004
  ident: 10.1016/j.bbagen.2020.129534_bb0145
  article-title: Candidates for novel RNA topologies
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.06.054
– volume: 31
  start-page: 2926
  issue: 11
  year: 2003
  ident: 10.1016/j.bbagen.2020.129534_bb0050
  article-title: Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg365
– volume: 22
  start-page: 461
  issue: 5
  year: 1989
  ident: 10.1016/j.bbagen.2020.129534_bb0040
  article-title: Tree graphs of RNA secondary structures and their comparisons
  publication-title: Comput. Biomed. Res.
  doi: 10.1016/0010-4809(89)90039-6
– volume: 7
  start-page: 954
  year: 2000
  ident: 10.1016/j.bbagen.2020.129534_bb0015
  article-title: Structural genomics of RNA
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/80729
– volume: 1
  start-page: 167
  year: 1978
  ident: 10.1016/j.bbagen.2020.129534_bb0030
  article-title: Secondary structure of single-stranded nucleic acids
  publication-title: Adv. Math. Suppl. Stud.
– volume: 366
  start-page: 2910
  issue: 1580
  year: 2011
  ident: 10.1016/j.bbagen.2020.129534_bb0005
  article-title: Mechanisms of RNA catalysis
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2011.0132
– volume: 9
  issue: 9
  year: 2014
  ident: 10.1016/j.bbagen.2020.129534_bb0065
  article-title: RNA graph partitioning for the discovery of RNA modularity: a novel application of graph partition algorithm to biology
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0106074
– volume: 45
  start-page: 5414
  issue: 9
  year: 2017
  ident: 10.1016/j.bbagen.2020.129534_bb0100
  article-title: Using sequence signatures and kink-turn motifs in knowledge-based statistical potentials for RNA structure prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx045
– volume: 23
  start-page: 2959
  issue: 21
  year: 2007
  ident: 10.1016/j.bbagen.2020.129534_bb0085
  article-title: RAGPOOLS: RNA-As-Graph-Pools–a web server for assisting the design of structured RNA pools for in vitro selection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm439
– volume: 162–163
  start-page: 74
  year: 2019
  ident: 10.1016/j.bbagen.2020.129534_bb0080
  article-title: An extended dual graph library and partitioning algorithm applicable to Pseudoknotted RNA structures
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.03.022
– volume: 143
  start-page: 16
  issue: 1
  year: 2018
  ident: 10.1016/j.bbagen.2020.129534_bb0125
  article-title: Adventures with RNA graphs
  publication-title: Methods
  doi: 10.1016/j.ymeth.2018.03.009
– volume: 19
  start-page: 209
  issue: 3
  year: 2009
  ident: 10.1016/j.bbagen.2020.129534_bb0020
  article-title: Therapeutic applications of DNA and RNA aptamers
  publication-title: Oligonucleotides
  doi: 10.1089/oli.2009.0199
– volume: 12
  start-page: 219
  year: 2011
  ident: 10.1016/j.bbagen.2020.129534_bb0135
  article-title: RAG: an update to the RNA-As-Graphs resource
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-219
– volume: 13
  start-page: 478
  issue: 4
  year: 2007
  ident: 10.1016/j.bbagen.2020.129534_bb0090
  article-title: A computational proposal for designing structured RNA pools for in vitro selection of RNAs
  publication-title: RNA
  doi: 10.1261/rna.374907
– volume: 103
  start-page: 138
  year: 2016
  ident: 10.1016/j.bbagen.2020.129534_bb0120
  article-title: Coarse-grained modeling of RNA 3D structure
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.04.026
– volume: 113
  start-page: 225
  issue: 2
  year: 2017
  ident: 10.1016/j.bbagen.2020.129534_bb0025
  article-title: Opportunities and challenges in RNA structural modeling and design
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2016.12.037
– volume: 49
  start-page: 16
  issue: 1
  year: 2014
  ident: 10.1016/j.bbagen.2020.129534_bb0010
  article-title: Gene regulation by non-coding RNAs
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409238.2013.844092
– volume: 111
  start-page: 4079
  issue: 11
  year: 2014
  ident: 10.1016/j.bbagen.2020.129534_bb0095
  article-title: Graph-based sampling for approximating global helical topologies of RNA
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1318893111
– volume: 23
  start-page: 298
  issue: 2
  year: 1973
  ident: 10.1016/j.bbagen.2020.129534_bb0140
  article-title: Algebraic connectivity of graphs
  publication-title: Czechoslov. Math. J.
  doi: 10.21136/CMJ.1973.101168
– start-page: btz611
  year: 2019
  ident: 10.1016/j.bbagen.2020.129534_bb0115
  article-title: RAG-Web: RNA structure prediction/design using RNA-As-Graphs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz611
– volume: 43
  start-page: 9474
  issue: 19
  year: 2015
  ident: 10.1016/j.bbagen.2020.129534_bb0070
  article-title: RAG-3D: a search tool for RNA 3D substructures
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv823
– volume: 9
  start-page: 371
  issue: 8
  year: 2018
  ident: 10.1016/j.bbagen.2020.129534_bb0075
  article-title: Dual graph partitioning highlights a small group of Pseudoknot-containing RNA submotifs
  publication-title: Genes
  doi: 10.3390/genes9080371
– volume: 429
  start-page: 3587
  issue: 23
  year: 2017
  ident: 10.1016/j.bbagen.2020.129534_bb0105
  article-title: F-RAG: generating atomic models from RNA graphs using fragment assembly
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.09.017
SSID ssj0000595
Score 2.3374357
Snippet We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129534
SubjectTerms Algorithms
Cluster Analysis
Computational Biology
Databases, Factual
Gene Library
Graph clustering
graphs
Humans
Linear Models
Models, Molecular
Nucleic Acid Conformation
RAG-3D database
regression analysis
RNA
RNA - genetics
RNA - ultrastructure
RNA design
RNA-like motifs
topology
Tree and dual graph topologies
Title Identification of novel RNA design candidates by clustering the extended RNA-As-Graphs library
URI https://dx.doi.org/10.1016/j.bbagen.2020.129534
https://www.ncbi.nlm.nih.gov/pubmed/31954797
https://www.proquest.com/docview/2342354948
https://www.proquest.com/docview/2477619306
https://pubmed.ncbi.nlm.nih.gov/PMC7078028
Volume 1864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6tFiG4IFheXWBlJK6mcWLH8bGqWAqIHoCV9oRlJ7YoqtIVbVfaC7-dmTgpFAQrccvDlhzPxPN5PPMNwIsYTPSNKHihXMOlCJG7LDjUZSMaXJRLoyjB-f28nJ3Jt-fq_ACmQy4MhVX2a39a07vVun8y7mdzfLFYjD_SoR7CCZXjBVoaot2WUpOWv_z-M8wD4YNKJwmSU-shfa6L8fIef1piQc2JZsGoQv7NPP0JP3-PovzFLJ3ehTs9nmSTNOR7cBDaI7iZKkxeHcGt6VDQ7T58Tkm5sffSsVVk7eoyLNmH-YQ1XSQHqynLhZwAa-avWL3cEo8CWjeGOJENDnPqwCdr_prIrtesdwQ9gLPTV5-mM96XV-C1NOWGaxV11I3HHZesfOVyX2dZdIVRjW4yR9jDVDqPioy6rEydaS90E6pa5FqEvHgIh-2qDY-BBcSB3gmvSo1wITgnRMyDLKOPOhOxGkExzKqte-5xKoGxtEOQ2VebZGFJFjbJYgR81-sicW9c014PArN7OmTRPFzT8_kgX4tCoTMT14bVdm1zYkhUxKHzjzZSkzMIN18jeJR0Yjfeghj1tNE4tj1t2TUgeu_9N-3iS0fzTTxMiP6O__urnsBtukuBbU_hcPNtG54hhNr4k-4fOYEbkzfvZvMfOWYbqA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6lNG9jK77ytZ1GuxVxLIty3oMYW36lYethT5NSLZEM4JTlmTQ_346S06Xja7QN2NLIOuku59Od78D-OysdKZmGc24rmnOrKM6sdqvZclqr5QLyTHB-XxSjC_zkyt-tQWjLhcGwyqj7g86vdXW8c0gzubgZjodfMNLPQ8neOofvKUpnsA2slPxHmwPj0_HkzuFzNviK9ieYocug64N8zLG71skQk2RaUHyLL_PQv2LQP8OpPzDMh3uwvMIKckwjPoFbNlmD56GIpO3e7Az6mq6vYTvIS_XRUcdmTvSzH_ZGfk6GZK6DeYgFSa6oB9gQcwtqWYrpFLwBo54qEg6nzl2oMMFPUK-6wWJvqBXcHn45WI0prHCAq1yWSyp4E44URt_6MpLU-rUVEnidCZ5LepEI_yQpUgdR7uel7JKhGGitmXFUsFsmr2GXjNv7Fsg1kNBo5nhhfCIwWrNmEttXjjjRMJc2Yesm1VVRfpxrIIxU12c2Q8VZKFQFirIog903esm0G880F50AlMby0h5C_FAz0-dfJUXCl6b6MbOVwuVIkkiRxqd_7TJBfqD_PmrD2_CmliPN0NSPSGFH9vGalk3QIbvzS_N9Lpl-kYqJg8A3z36rz7Czvji_EydHU9O38Mz_BLi3Paht_y5sh88olqag7hjfgPhIx5Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Novel+RNA+Design+Candidates+by+Clustering+the+Extended+RNA-As-Graphs+Library&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Jain%2C+Swati&rft.au=Zhu%2C+Qiyao&rft.au=Paz%2C+Amiel+S.P.&rft.au=Schlick%2C+Tamar&rft.date=2020-06-01&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1864&rft.issue=6&rft.spage=129534&rft.epage=129534&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129534&rft_id=info%3Apmid%2F31954797&rft.externalDocID=PMC7078028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon