Identification of novel RNA design candidates by clustering the extended RNA-As-Graphs library
We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA h...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 6; p. 129534 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2020.129534 |
Cover
Loading…
Abstract | We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA helices and loops. The graph theoretical framework facilitates graph enumeration, partitioning, and clustering approaches to study RNA structure and its applications.
Clustering graph topologies based on features derived from graph Laplacian matrices and known RNA structures allows us to classify topologies into ‘existing’ or hypothetical, and the latter into, ‘RNA-like’ or ‘non RNA-like’ topologies. Here we update our list of existing tree graph topologies and RAG-3D database of atomic fragments to include newly determined RNA structures. We then use linear and quadratic regression, optionally with dimensionality reduction, to derive graph features and apply several clustering algorithms on our tree-graph library and recently expanded dual-graph library to classify them into the three groups.
The unsupervised PAM and K-means clustering approaches correctly classify 72–77% of all existing graph topologies and 75–82% of newly added ones as RNA-like. For supervised k-NN clustering, the cross-validation accuracy ranges from 57 to 81%.
Using linear regression with unsupervised clustering, or quadratic regression with supervised clustering, provides better accuracies than supervised/linear clustering. All accuracies are better than random, especially for newly added existing topologies, thus lending credibility to our approach.
Our updated RAG-3D database and motif classification by clustering present new RNA substructures and RNA-like motifs as novel design candidates.
•Updated the list of tree graph topologies and RAG-3D fragment database using newly solved RNA structures•Identified novel RNA-like motifs, with high accuracy, using unsupervised and supervised clustering algorithms•Updated database and motif classification present new RNA substructures and RNA-like motifs as novel design candidates |
---|---|
AbstractList | We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA helices and loops. The graph theoretical framework facilitates graph enumeration, partitioning, and clustering approaches to study RNA structure and its applications.Clustering graph topologies based on features derived from graph Laplacian matrices and known RNA structures allows us to classify topologies into ‘existing’ or hypothetical, and the latter into, ‘RNA-like’ or ‘non RNA-like’ topologies. Here we update our list of existing tree graph topologies and RAG-3D database of atomic fragments to include newly determined RNA structures. We then use linear and quadratic regression, optionally with dimensionality reduction, to derive graph features and apply several clustering algorithms on our tree-graph library and recently expanded dual-graph library to classify them into the three groups.The unsupervised PAM and K-means clustering approaches correctly classify 72–77% of all existing graph topologies and 75–82% of newly added ones as RNA-like. For supervised k-NN clustering, the cross-validation accuracy ranges from 57 to 81%.Using linear regression with unsupervised clustering, or quadratic regression with supervised clustering, provides better accuracies than supervised/linear clustering. All accuracies are better than random, especially for newly added existing topologies, thus lending credibility to our approach.Our updated RAG-3D database and motif classification by clustering present new RNA substructures and RNA-like motifs as novel design candidates. We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA helices and loops. The graph theoretical framework facilitates graph enumeration, partitioning, and clustering approaches to study RNA structure and its applications. Clustering graph topologies based on features derived from graph Laplacian matrices and known RNA structures allows us to classify topologies into ‘existing’ or hypothetical, and the latter into, ‘RNA-like’ or ‘non RNA-like’ topologies. Here we update our list of existing tree graph topologies and RAG-3D database of atomic fragments to include newly determined RNA structures. We then use linear and quadratic regression, optionally with dimensionality reduction, to derive graph features and apply several clustering algorithms on our tree-graph library and recently expanded dual-graph library to classify them into the three groups. The unsupervised PAM and K-means clustering approaches correctly classify 72–77% of all existing graph topologies and 75–82% of newly added ones as RNA-like. For supervised k-NN clustering, the cross-validation accuracy ranges from 57 to 81%. Using linear regression with unsupervised clustering, or quadratic regression with supervised clustering, provides better accuracies than supervised/linear clustering. All accuracies are better than random, especially for newly added existing topologies, thus lending credibility to our approach. Our updated RAG-3D database and motif classification by clustering present new RNA substructures and RNA-like motifs as novel design candidates. •Updated the list of tree graph topologies and RAG-3D fragment database using newly solved RNA structures•Identified novel RNA-like motifs, with high accuracy, using unsupervised and supervised clustering algorithms•Updated database and motif classification present new RNA substructures and RNA-like motifs as novel design candidates We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA helices and loops. The graph theoretical framework facilitates graph enumeration, partitioning, and clustering approaches to study RNA structure and its applications. Clustering graph topologies based on features derived from graph Laplacian matrices and known RNA structures allows us to classify topologies into 'existing' or hypothetical, and the latter into, 'RNA-like' or 'non RNA-like' topologies. Here we update our list of existing tree graph topologies and RAG-3D database of atomic fragments to include newly determined RNA structures. We then use linear and quadratic regression, optionally with dimensionality reduction, to derive graph features and apply several clustering algorithms on our tree-graph library and recently expanded dual-graph library to classify them into the three groups. The unsupervised PAM and K-means clustering approaches correctly classify 72-77% of all existing graph topologies and 75-82% of newly added ones as RNA-like. For supervised k-NN clustering, the cross-validation accuracy ranges from 57 to 81%. Using linear regression with unsupervised clustering, or quadratic regression with supervised clustering, provides better accuracies than supervised/linear clustering. All accuracies are better than random, especially for newly added existing topologies, thus lending credibility to our approach. Our updated RAG-3D database and motif classification by clustering present new RNA substructures and RNA-like motifs as novel design candidates. We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA helices and loops. The graph theoretical framework facilitates graph enumeration, partitioning, and clustering approaches to study RNA structure and its applications.BACKGROUNDWe re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA helices and loops. The graph theoretical framework facilitates graph enumeration, partitioning, and clustering approaches to study RNA structure and its applications.Clustering graph topologies based on features derived from graph Laplacian matrices and known RNA structures allows us to classify topologies into 'existing' or hypothetical, and the latter into, 'RNA-like' or 'non RNA-like' topologies. Here we update our list of existing tree graph topologies and RAG-3D database of atomic fragments to include newly determined RNA structures. We then use linear and quadratic regression, optionally with dimensionality reduction, to derive graph features and apply several clustering algorithms on our tree-graph library and recently expanded dual-graph library to classify them into the three groups.METHODSClustering graph topologies based on features derived from graph Laplacian matrices and known RNA structures allows us to classify topologies into 'existing' or hypothetical, and the latter into, 'RNA-like' or 'non RNA-like' topologies. Here we update our list of existing tree graph topologies and RAG-3D database of atomic fragments to include newly determined RNA structures. We then use linear and quadratic regression, optionally with dimensionality reduction, to derive graph features and apply several clustering algorithms on our tree-graph library and recently expanded dual-graph library to classify them into the three groups.The unsupervised PAM and K-means clustering approaches correctly classify 72-77% of all existing graph topologies and 75-82% of newly added ones as RNA-like. For supervised k-NN clustering, the cross-validation accuracy ranges from 57 to 81%.RESULTSThe unsupervised PAM and K-means clustering approaches correctly classify 72-77% of all existing graph topologies and 75-82% of newly added ones as RNA-like. For supervised k-NN clustering, the cross-validation accuracy ranges from 57 to 81%.Using linear regression with unsupervised clustering, or quadratic regression with supervised clustering, provides better accuracies than supervised/linear clustering. All accuracies are better than random, especially for newly added existing topologies, thus lending credibility to our approach.CONCLUSIONSUsing linear regression with unsupervised clustering, or quadratic regression with supervised clustering, provides better accuracies than supervised/linear clustering. All accuracies are better than random, especially for newly added existing topologies, thus lending credibility to our approach.Our updated RAG-3D database and motif classification by clustering present new RNA substructures and RNA-like motifs as novel design candidates.GENERAL SIGNIFICANCEOur updated RAG-3D database and motif classification by clustering present new RNA substructures and RNA-like motifs as novel design candidates. |
ArticleNumber | 129534 |
Author | Zhu, Qiyao Schlick, Tamar Jain, Swati Paz, Amiel S.P. |
AuthorAffiliation | 2 Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA 4 NYU-ECNU Center for Computational Chemistry, NYU Shanghai, 3663 Zhongshang Road North, Shanghai 200062, China 1 Department of Chemistry, New York University, 1021 4 Silver, 100 Washington Square East, New York, NY 10003, USA 3 NYU Shanghai, 1555 Century Avenue, Shanghai 200135, China |
AuthorAffiliation_xml | – name: 3 NYU Shanghai, 1555 Century Avenue, Shanghai 200135, China – name: 1 Department of Chemistry, New York University, 1021 4 Silver, 100 Washington Square East, New York, NY 10003, USA – name: 2 Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA – name: 4 NYU-ECNU Center for Computational Chemistry, NYU Shanghai, 3663 Zhongshang Road North, Shanghai 200062, China |
Author_xml | – sequence: 1 givenname: Swati surname: Jain fullname: Jain, Swati organization: Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY 10003, USA – sequence: 2 givenname: Qiyao surname: Zhu fullname: Zhu, Qiyao organization: Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA – sequence: 3 givenname: Amiel S.P. surname: Paz fullname: Paz, Amiel S.P. organization: NYU Shanghai, 1555 Century Avenue, Shanghai 200135, China – sequence: 4 givenname: Tamar surname: Schlick fullname: Schlick, Tamar email: schlick@nyu.edu organization: Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY 10003, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31954797$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVGPEyEUhYlZ43ZX_4ExPPoyFRhmAB9Mmo2um2w0MfoqYeBOSzOFCrTZ_fdS2zXqg8sLCZxzcu79LtBZiAEQeknJnBLav1nPh8EsIcwZYfWJqa7lT9CMSsEaSUh_hmakJbzhtO_O0UXOa1JPp7pn6LylquNCiRn6fuMgFD96a4qPAccRh7iHCX_5tMAOsl8GbE1w3pkCGQ_32E67XCD5sMRlBRjuCgQH7mBoFrm5Tma7ynjyQzLp_jl6Opopw4vTfYm-fXj_9epjc_v5-uZqcdtYrvrSiG4Uo3CDVIrLQRo2WEJG06rOCUcMEZSoOtfYtZJKLpUlYqDCgbSUCQqsvUTvjrnb3bABZ-tMyUx6m_ymttDReP33T_ArvYx7LYiQhMka8PoUkOKPHeSiNz5bmCYTIO6yZlyInqqW9I9LW87ajtdJqvTVn7V-93nYfxW8PQpsijknGLX15ReJ2tJPmhJ9gK3X-ghbH2DrI-xq5v-YH_IfsZ12BRXI3kPS2XoIFpxPYIt20f8_4CfnMcS4 |
CitedBy_id | crossref_primary_10_1016_j_bpj_2020_08_026 crossref_primary_10_1016_j_bbagen_2021_129888 crossref_primary_10_1146_annurev_biophys_091720_102019 crossref_primary_10_1021_acs_jpcb_0c10685 |
Cites_doi | 10.1073/pnas.77.11.6309 10.1093/bioinformatics/bth084 10.1016/j.jmb.2015.10.009 10.1093/bioinformatics/6.4.309 10.1093/nar/gky524 10.1186/1471-2105-5-88 10.1016/j.jmb.2004.06.054 10.1093/nar/gkg365 10.1016/0010-4809(89)90039-6 10.1038/80729 10.1098/rstb.2011.0132 10.1371/journal.pone.0106074 10.1093/nar/gkx045 10.1093/bioinformatics/btm439 10.1016/j.ymeth.2019.03.022 10.1016/j.ymeth.2018.03.009 10.1089/oli.2009.0199 10.1186/1471-2105-12-219 10.1261/rna.374907 10.1016/j.ymeth.2016.04.026 10.1016/j.bpj.2016.12.037 10.3109/10409238.2013.844092 10.1073/pnas.1318893111 10.21136/CMJ.1973.101168 10.1093/bioinformatics/btz611 10.1093/nar/gkv823 10.3390/genes9080371 10.1016/j.jmb.2017.09.017 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.bbagen.2020.129534 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 129534 |
ExternalDocumentID | PMC7078028 31954797 10_1016_j_bbagen_2020_129534 S0304416520300246 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM122562 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM EFKBS |
ID | FETCH-LOGICAL-c496t-75f7f7db89948b8a2bc00fa395d7d0a07109872f53818489c07b17de8c1271e23 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Thu Aug 21 18:32:01 EDT 2025 Fri Jul 11 10:01:40 EDT 2025 Fri Jul 11 11:03:57 EDT 2025 Wed Feb 19 02:29:18 EST 2025 Tue Jul 01 00:22:13 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Fri Feb 23 02:48:25 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Graph clustering F-RAG Tree and dual graph topologies RAG-3D database RNA design RNA RNA-like motifs LOO PDB PCA RAG-IF 3D 2D k-NN RAG PAM MSE |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-75f7f7db89948b8a2bc00fa395d7d0a07109872f53818489c07b17de8c1271e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7078028 |
PMID | 31954797 |
PQID | 2342354948 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7078028 proquest_miscellaneous_2477619306 proquest_miscellaneous_2342354948 pubmed_primary_31954797 crossref_citationtrail_10_1016_j_bbagen_2020_129534 crossref_primary_10_1016_j_bbagen_2020_129534 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129534 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jain, Saju, Petingi, Schlick (bb0080) 2019; 162–163 Jain, Bayrak, Petingi, Schlick (bb0075) 2018; 9 Lilley (bb0005) 2011; 366 Kim, Zheng, Elmetwaly, Schlick (bb0065) 2014; 9 Zahran, Bayrak, Elmetwaly, Schlick (bb0070) 2015; 43 Jain, Laederach, Ramos, Schlick (bb0110) 2018; 46 Schlick (bb0125) 2018; 143 Gan, Fera, Zorn, Shiffeldrim, Tang, Laserson, Kim, Schlick (bb0055) 2004; 20 Nussinov, Jacobson (bb0035) 1980; 77 Izzo, Kim, Elmetwaly, Schlick (bb0135) 2011; 12 Kim, Shin, Elmetwaly, Gan, Schlick (bb0085) 2007; 23 Kim, Gan, Schlick (bb0090) 2007; 13 Jain, Schlick (bb0105) 2017; 429 Bayrak, Kim, Schlick (bb0100) 2017; 45 Kim, Shiffeldrim, Gan, Schlick (bb0145) 2004; 341 Patil, Zhou, Rana (bb0010) 2014; 49 Le, Nussinov, Maizel (bb0040) 1989; 22 Meng, Tariq, Jain, Elmetwaly, Schlick (bb0115) 2019 Dawson, Maciejczyk, Jankowska, Bujnicki (bb0120) 2016; 103 Jain, Tao, Schlick (bb9029) 2019 Doudna (bb0015) 2000; 7 Schlick, Pyle (bb0025) 2017; 113 Baba, Elmetwaly, Kim, Schlick (bb0130) 2016; 428 Fiedler (bb0140) 1973; 23 Kim, Laing, Elmetwaly, Jung, Curuksu, Schlick (bb0095) 2014; 111 Waterman (bb0030) 1978; 1 Shapiro, Zhang (bb0045) 1990; 6 Gan, Pasquali, Schlick (bb0050) 2003; 31 Thiel, Giangrande (bb0020) 2009; 19 Fera, Kim, Shiffeldrim, Zorn, Laserson, Gan, Schlick (bb0060) 2004; 5 Jain (10.1016/j.bbagen.2020.129534_bb0080) 2019; 162–163 Le (10.1016/j.bbagen.2020.129534_bb0040) 1989; 22 Dawson (10.1016/j.bbagen.2020.129534_bb0120) 2016; 103 Gan (10.1016/j.bbagen.2020.129534_bb0055) 2004; 20 Schlick (10.1016/j.bbagen.2020.129534_bb0125) 2018; 143 Schlick (10.1016/j.bbagen.2020.129534_bb0025) 2017; 113 Baba (10.1016/j.bbagen.2020.129534_bb0130) 2016; 428 Fiedler (10.1016/j.bbagen.2020.129534_bb0140) 1973; 23 Shapiro (10.1016/j.bbagen.2020.129534_bb0045) 1990; 6 Kim (10.1016/j.bbagen.2020.129534_bb0095) 2014; 111 Jain (10.1016/j.bbagen.2020.129534_bb0110) 2018; 46 Izzo (10.1016/j.bbagen.2020.129534_bb0135) 2011; 12 Waterman (10.1016/j.bbagen.2020.129534_bb0030) 1978; 1 Lilley (10.1016/j.bbagen.2020.129534_bb0005) 2011; 366 Gan (10.1016/j.bbagen.2020.129534_bb0050) 2003; 31 Nussinov (10.1016/j.bbagen.2020.129534_bb0035) 1980; 77 Bayrak (10.1016/j.bbagen.2020.129534_bb0100) 2017; 45 Fera (10.1016/j.bbagen.2020.129534_bb0060) 2004; 5 Patil (10.1016/j.bbagen.2020.129534_bb0010) 2014; 49 Kim (10.1016/j.bbagen.2020.129534_bb0065) 2014; 9 Meng (10.1016/j.bbagen.2020.129534_bb0115) 2019 Jain (10.1016/j.bbagen.2020.129534_bb9029) 2019 Doudna (10.1016/j.bbagen.2020.129534_bb0015) 2000; 7 Zahran (10.1016/j.bbagen.2020.129534_bb0070) 2015; 43 Jain (10.1016/j.bbagen.2020.129534_bb0075) 2018; 9 Kim (10.1016/j.bbagen.2020.129534_bb0090) 2007; 13 Kim (10.1016/j.bbagen.2020.129534_bb0145) 2004; 341 Kim (10.1016/j.bbagen.2020.129534_bb0085) 2007; 23 Thiel (10.1016/j.bbagen.2020.129534_bb0020) 2009; 19 Jain (10.1016/j.bbagen.2020.129534_bb0105) 2017; 429 |
References_xml | – volume: 20 start-page: 1285 year: 2004 end-page: 1291 ident: bb0055 article-title: RAG: RNA-As-Graphs database|concepts, analysis, and features publication-title: Bioinformatics – volume: 143 start-page: 16 year: 2018 end-page: 33 ident: bb0125 article-title: Adventures with RNA graphs publication-title: Methods – volume: 9 start-page: 371 year: 2018 ident: bb0075 article-title: Dual graph partitioning highlights a small group of Pseudoknot-containing RNA submotifs publication-title: Genes – volume: 162–163 start-page: 74 year: 2019 end-page: 84 ident: bb0080 article-title: An extended dual graph library and partitioning algorithm applicable to Pseudoknotted RNA structures publication-title: Methods – volume: 46 start-page: 7040 year: 2018 end-page: 7051 ident: bb0110 article-title: A pipeline for computational design of novel RNA-like topologies publication-title: Nucleic Acids Res. – volume: 113 start-page: 225 year: 2017 end-page: 234 ident: bb0025 article-title: Opportunities and challenges in RNA structural modeling and design publication-title: Biophys. J. – volume: 22 start-page: 461 year: 1989 end-page: 473 ident: bb0040 article-title: Tree graphs of RNA secondary structures and their comparisons publication-title: Comput. Biomed. Res. – volume: 429 start-page: 3587 year: 2017 end-page: 3605 ident: bb0105 article-title: F-RAG: generating atomic models from RNA graphs using fragment assembly publication-title: J. Mol. Biol. – volume: 19 start-page: 209 year: 2009 end-page: 222 ident: bb0020 article-title: Therapeutic applications of DNA and RNA aptamers publication-title: Oligonucleotides – volume: 103 start-page: 138 year: 2016 end-page: 156 ident: bb0120 article-title: Coarse-grained modeling of RNA 3D structure publication-title: Methods – volume: 45 start-page: 5414 year: 2017 end-page: 5422 ident: bb0100 article-title: Using sequence signatures and kink-turn motifs in knowledge-based statistical potentials for RNA structure prediction publication-title: Nucleic Acids Res. – volume: 12 start-page: 219 year: 2011 ident: bb0135 article-title: RAG: an update to the RNA-As-Graphs resource publication-title: BMC Bioinformatics – volume: 31 start-page: 2926 year: 2003 end-page: 2943 ident: bb0050 article-title: Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design publication-title: Nucleic Acids Res. – volume: 366 start-page: 2910 year: 2011 end-page: 2917 ident: bb0005 article-title: Mechanisms of RNA catalysis publication-title: Philos. Trans. R. Soc. B Biol. Sci. – volume: 77 start-page: 6309 year: 1980 end-page: 6313 ident: bb0035 article-title: Fast algorithm for predicting the secondary structure of single-stranded RNA publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 1 start-page: 167 year: 1978 end-page: 212 ident: bb0030 article-title: Secondary structure of single-stranded nucleic acids publication-title: Adv. Math. Suppl. Stud. – volume: 111 start-page: 4079 year: 2014 end-page: 4084 ident: bb0095 article-title: Graph-based sampling for approximating global helical topologies of RNA publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 43 start-page: 9474 year: 2015 end-page: 9488 ident: bb0070 article-title: RAG-3D: a search tool for RNA 3D substructures publication-title: Nucleic Acids Res. – volume: 23 start-page: 298 year: 1973 end-page: 305 ident: bb0140 article-title: Algebraic connectivity of graphs publication-title: Czechoslov. Math. J. – volume: 5 start-page: 88 year: 2004 ident: bb0060 article-title: RAG: RNA-As-Graphs web resource publication-title: BMC Bioinformatics – volume: 7 start-page: 954 year: 2000 end-page: 956 ident: bb0015 article-title: Structural genomics of RNA publication-title: Nat. Struct. Mol. Biol. – volume: 23 start-page: 2959 year: 2007 end-page: 2960 ident: bb0085 article-title: RAGPOOLS: RNA-As-Graph-Pools–a web server for assisting the design of structured RNA pools for in vitro selection publication-title: Bioinformatics – start-page: btz611 year: 2019 ident: bb0115 article-title: RAG-Web: RNA structure prediction/design using RNA-As-Graphs publication-title: Bioinformatics – volume: 49 start-page: 16 year: 2014 end-page: 32 ident: bb0010 article-title: Gene regulation by non-coding RNAs publication-title: Crit. Rev. Biochem. Mol. Biol. – start-page: 107438 year: 2019 ident: bb9029 article-title: Inverse folding with RNA-As-Graphs produces a large pool of candidate sequences with target topologies publication-title: J. Struct. Biol. – volume: 6 start-page: 309 year: 1990 end-page: 318 ident: bb0045 article-title: Comparing multiple RNA secondary structures using tree comparisons publication-title: Bioinformatics – volume: 13 start-page: 478 year: 2007 end-page: 492 ident: bb0090 article-title: A computational proposal for designing structured RNA pools for in vitro selection of RNAs publication-title: RNA – volume: 9 year: 2014 ident: bb0065 article-title: RNA graph partitioning for the discovery of RNA modularity: a novel application of graph partition algorithm to biology publication-title: PLoS One – volume: 341 start-page: 1129 year: 2004 end-page: 1144 ident: bb0145 article-title: Candidates for novel RNA topologies publication-title: J. Mol. Biol. – volume: 428 start-page: 811 year: 2016 end-page: 821 ident: bb0130 article-title: Predicting large RNA-like topologies by a knowledge-based clustering approach publication-title: J. Mol. Biol. – volume: 77 start-page: 6309 issue: 11 year: 1980 ident: 10.1016/j.bbagen.2020.129534_bb0035 article-title: Fast algorithm for predicting the secondary structure of single-stranded RNA publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.77.11.6309 – volume: 20 start-page: 1285 issue: 8 year: 2004 ident: 10.1016/j.bbagen.2020.129534_bb0055 article-title: RAG: RNA-As-Graphs database|concepts, analysis, and features publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth084 – start-page: 107438 year: 2019 ident: 10.1016/j.bbagen.2020.129534_bb9029 article-title: Inverse folding with RNA-As-Graphs produces a large pool of candidate sequences with target topologies publication-title: J. Struct. Biol. – volume: 428 start-page: 811 issue: 5 year: 2016 ident: 10.1016/j.bbagen.2020.129534_bb0130 article-title: Predicting large RNA-like topologies by a knowledge-based clustering approach publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2015.10.009 – volume: 6 start-page: 309 issue: 4 year: 1990 ident: 10.1016/j.bbagen.2020.129534_bb0045 article-title: Comparing multiple RNA secondary structures using tree comparisons publication-title: Bioinformatics doi: 10.1093/bioinformatics/6.4.309 – volume: 46 start-page: 7040 issue: 14 year: 2018 ident: 10.1016/j.bbagen.2020.129534_bb0110 article-title: A pipeline for computational design of novel RNA-like topologies publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky524 – volume: 5 start-page: 88 issue: 1 year: 2004 ident: 10.1016/j.bbagen.2020.129534_bb0060 article-title: RAG: RNA-As-Graphs web resource publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-5-88 – volume: 341 start-page: 1129 issue: 5 year: 2004 ident: 10.1016/j.bbagen.2020.129534_bb0145 article-title: Candidates for novel RNA topologies publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.06.054 – volume: 31 start-page: 2926 issue: 11 year: 2003 ident: 10.1016/j.bbagen.2020.129534_bb0050 article-title: Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg365 – volume: 22 start-page: 461 issue: 5 year: 1989 ident: 10.1016/j.bbagen.2020.129534_bb0040 article-title: Tree graphs of RNA secondary structures and their comparisons publication-title: Comput. Biomed. Res. doi: 10.1016/0010-4809(89)90039-6 – volume: 7 start-page: 954 year: 2000 ident: 10.1016/j.bbagen.2020.129534_bb0015 article-title: Structural genomics of RNA publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/80729 – volume: 1 start-page: 167 year: 1978 ident: 10.1016/j.bbagen.2020.129534_bb0030 article-title: Secondary structure of single-stranded nucleic acids publication-title: Adv. Math. Suppl. Stud. – volume: 366 start-page: 2910 issue: 1580 year: 2011 ident: 10.1016/j.bbagen.2020.129534_bb0005 article-title: Mechanisms of RNA catalysis publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2011.0132 – volume: 9 issue: 9 year: 2014 ident: 10.1016/j.bbagen.2020.129534_bb0065 article-title: RNA graph partitioning for the discovery of RNA modularity: a novel application of graph partition algorithm to biology publication-title: PLoS One doi: 10.1371/journal.pone.0106074 – volume: 45 start-page: 5414 issue: 9 year: 2017 ident: 10.1016/j.bbagen.2020.129534_bb0100 article-title: Using sequence signatures and kink-turn motifs in knowledge-based statistical potentials for RNA structure prediction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx045 – volume: 23 start-page: 2959 issue: 21 year: 2007 ident: 10.1016/j.bbagen.2020.129534_bb0085 article-title: RAGPOOLS: RNA-As-Graph-Pools–a web server for assisting the design of structured RNA pools for in vitro selection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm439 – volume: 162–163 start-page: 74 year: 2019 ident: 10.1016/j.bbagen.2020.129534_bb0080 article-title: An extended dual graph library and partitioning algorithm applicable to Pseudoknotted RNA structures publication-title: Methods doi: 10.1016/j.ymeth.2019.03.022 – volume: 143 start-page: 16 issue: 1 year: 2018 ident: 10.1016/j.bbagen.2020.129534_bb0125 article-title: Adventures with RNA graphs publication-title: Methods doi: 10.1016/j.ymeth.2018.03.009 – volume: 19 start-page: 209 issue: 3 year: 2009 ident: 10.1016/j.bbagen.2020.129534_bb0020 article-title: Therapeutic applications of DNA and RNA aptamers publication-title: Oligonucleotides doi: 10.1089/oli.2009.0199 – volume: 12 start-page: 219 year: 2011 ident: 10.1016/j.bbagen.2020.129534_bb0135 article-title: RAG: an update to the RNA-As-Graphs resource publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-219 – volume: 13 start-page: 478 issue: 4 year: 2007 ident: 10.1016/j.bbagen.2020.129534_bb0090 article-title: A computational proposal for designing structured RNA pools for in vitro selection of RNAs publication-title: RNA doi: 10.1261/rna.374907 – volume: 103 start-page: 138 year: 2016 ident: 10.1016/j.bbagen.2020.129534_bb0120 article-title: Coarse-grained modeling of RNA 3D structure publication-title: Methods doi: 10.1016/j.ymeth.2016.04.026 – volume: 113 start-page: 225 issue: 2 year: 2017 ident: 10.1016/j.bbagen.2020.129534_bb0025 article-title: Opportunities and challenges in RNA structural modeling and design publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.12.037 – volume: 49 start-page: 16 issue: 1 year: 2014 ident: 10.1016/j.bbagen.2020.129534_bb0010 article-title: Gene regulation by non-coding RNAs publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.3109/10409238.2013.844092 – volume: 111 start-page: 4079 issue: 11 year: 2014 ident: 10.1016/j.bbagen.2020.129534_bb0095 article-title: Graph-based sampling for approximating global helical topologies of RNA publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1318893111 – volume: 23 start-page: 298 issue: 2 year: 1973 ident: 10.1016/j.bbagen.2020.129534_bb0140 article-title: Algebraic connectivity of graphs publication-title: Czechoslov. Math. J. doi: 10.21136/CMJ.1973.101168 – start-page: btz611 year: 2019 ident: 10.1016/j.bbagen.2020.129534_bb0115 article-title: RAG-Web: RNA structure prediction/design using RNA-As-Graphs publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz611 – volume: 43 start-page: 9474 issue: 19 year: 2015 ident: 10.1016/j.bbagen.2020.129534_bb0070 article-title: RAG-3D: a search tool for RNA 3D substructures publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv823 – volume: 9 start-page: 371 issue: 8 year: 2018 ident: 10.1016/j.bbagen.2020.129534_bb0075 article-title: Dual graph partitioning highlights a small group of Pseudoknot-containing RNA submotifs publication-title: Genes doi: 10.3390/genes9080371 – volume: 429 start-page: 3587 issue: 23 year: 2017 ident: 10.1016/j.bbagen.2020.129534_bb0105 article-title: F-RAG: generating atomic models from RNA graphs using fragment assembly publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.09.017 |
SSID | ssj0000595 |
Score | 2.3374357 |
Snippet | We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129534 |
SubjectTerms | Algorithms Cluster Analysis Computational Biology Databases, Factual Gene Library Graph clustering graphs Humans Linear Models Models, Molecular Nucleic Acid Conformation RAG-3D database regression analysis RNA RNA - genetics RNA - ultrastructure RNA design RNA-like motifs topology Tree and dual graph topologies |
Title | Identification of novel RNA design candidates by clustering the extended RNA-As-Graphs library |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129534 https://www.ncbi.nlm.nih.gov/pubmed/31954797 https://www.proquest.com/docview/2342354948 https://www.proquest.com/docview/2477619306 https://pubmed.ncbi.nlm.nih.gov/PMC7078028 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6tFiG4IFheXWBlJK6mcWLH8bGqWAqIHoCV9oRlJ7YoqtIVbVfaC7-dmTgpFAQrccvDlhzPxPN5PPMNwIsYTPSNKHihXMOlCJG7LDjUZSMaXJRLoyjB-f28nJ3Jt-fq_ACmQy4MhVX2a39a07vVun8y7mdzfLFYjD_SoR7CCZXjBVoaot2WUpOWv_z-M8wD4YNKJwmSU-shfa6L8fIef1piQc2JZsGoQv7NPP0JP3-PovzFLJ3ehTs9nmSTNOR7cBDaI7iZKkxeHcGt6VDQ7T58Tkm5sffSsVVk7eoyLNmH-YQ1XSQHqynLhZwAa-avWL3cEo8CWjeGOJENDnPqwCdr_prIrtesdwQ9gLPTV5-mM96XV-C1NOWGaxV11I3HHZesfOVyX2dZdIVRjW4yR9jDVDqPioy6rEydaS90E6pa5FqEvHgIh-2qDY-BBcSB3gmvSo1wITgnRMyDLKOPOhOxGkExzKqte-5xKoGxtEOQ2VebZGFJFjbJYgR81-sicW9c014PArN7OmTRPFzT8_kgX4tCoTMT14bVdm1zYkhUxKHzjzZSkzMIN18jeJR0Yjfeghj1tNE4tj1t2TUgeu_9N-3iS0fzTTxMiP6O__urnsBtukuBbU_hcPNtG54hhNr4k-4fOYEbkzfvZvMfOWYbqA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6lNG9jK77ytZ1GuxVxLIty3oMYW36lYethT5NSLZEM4JTlmTQ_346S06Xja7QN2NLIOuku59Od78D-OysdKZmGc24rmnOrKM6sdqvZclqr5QLyTHB-XxSjC_zkyt-tQWjLhcGwyqj7g86vdXW8c0gzubgZjodfMNLPQ8neOofvKUpnsA2slPxHmwPj0_HkzuFzNviK9ieYocug64N8zLG71skQk2RaUHyLL_PQv2LQP8OpPzDMh3uwvMIKckwjPoFbNlmD56GIpO3e7Az6mq6vYTvIS_XRUcdmTvSzH_ZGfk6GZK6DeYgFSa6oB9gQcwtqWYrpFLwBo54qEg6nzl2oMMFPUK-6wWJvqBXcHn45WI0prHCAq1yWSyp4E44URt_6MpLU-rUVEnidCZ5LepEI_yQpUgdR7uel7JKhGGitmXFUsFsmr2GXjNv7Fsg1kNBo5nhhfCIwWrNmEttXjjjRMJc2Yesm1VVRfpxrIIxU12c2Q8VZKFQFirIog903esm0G880F50AlMby0h5C_FAz0-dfJUXCl6b6MbOVwuVIkkiRxqd_7TJBfqD_PmrD2_CmliPN0NSPSGFH9vGalk3QIbvzS_N9Lpl-kYqJg8A3z36rz7Czvji_EydHU9O38Mz_BLi3Paht_y5sh88olqag7hjfgPhIx5Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Novel+RNA+Design+Candidates+by+Clustering+the+Extended+RNA-As-Graphs+Library&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Jain%2C+Swati&rft.au=Zhu%2C+Qiyao&rft.au=Paz%2C+Amiel+S.P.&rft.au=Schlick%2C+Tamar&rft.date=2020-06-01&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1864&rft.issue=6&rft.spage=129534&rft.epage=129534&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129534&rft_id=info%3Apmid%2F31954797&rft.externalDocID=PMC7078028 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |