Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes

In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control crop losses. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different env...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 151; no. 1; pp. 71 - 77
Main Authors Ahmad, A.L., Tan, L.S., Shukor, S.R. Abd
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 28.02.2008
Elsevier
Subjects
Online AccessGet full text
ISSN0304-3894
1873-3336
DOI10.1016/j.jhazmat.2007.05.047

Cover

Loading…
Abstract In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control crop losses. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different environmental sections. This eventually leads to contamination of drinking water source especially for rivers located near active agriculture practices. This paper studied the application of nanofiltration membrane in the removal of dimethoate and atrazine in aqueous solution. Dimethoate was selected as the subject of study since it is being listed as one of the pesticides in guidelines for drinking water by World Health Organization. Nevertheless, data on effectiveness of dimethoate rejection using membranes has not been found so far. Meanwhile, atrazine is classified as one of the most commonly used pesticides in Malaysia. Separation was done using a small batch-type membrane separation cell with integrated magnetic stirrer while concentration of dimethoate and atrazine in aqueous solution was analyzed using high performance liquid chromatography (HPLC). Four nanofiltration membranes NF90, NF200, NF270 and DK were tested for their respective performance to separate dimethoate and atrazine. Of all four membranes, NF90 showed the best performance in retention of dimethoate and atrazine in water.
AbstractList In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control crop losses. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different environmental sections. This eventually leads to contamination of drinking water source especially for rivers located near active agriculture practices. This paper studied the application of nanofiltration membrane in the removal of dimethoate and atrazine in aqueous solution. Dimethoate was selected as the subject of study since it is being listed as one of the pesticides in guidelines for drinking water by World Health Organization. Nevertheless, data on effectiveness of dimethoate rejection using membranes has not been found so far. Meanwhile, atrazine is classified as one of the most commonly used pesticides in Malaysia. Separation was done using a small batch-type membrane separation cell with integrated magnetic stirrer while concentration of dimethoate and atrazine in aqueous solution was analyzed using high performance liquid chromatography (HPLC). Four nanofiltration membranes NF90, NF200, NF270 and DK were tested for their respective performance to separate dimethoate and atrazine. Of all four membranes, NF90 showed the best performance in retention of dimethoate and atrazine in water.
In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control crop losses. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different environmental sections. This eventually leads to contamination of drinking water source especially for rivers located near active agriculture practices. This paper studied the application of nanofiltration membrane in the removal of dimethoate and atrazine in aqueous solution. Dimethoate was selected as the subject of study since it is being listed as one of the pesticides in guidelines for drinking water by World Health Organization. Nevertheless, data on effectiveness of dimethoate rejection using membranes has not been found so far. Meanwhile, atrazine is classified as one of the most commonly used pesticides in Malaysia. Separation was done using a small batch-type membrane separation cell with integrated magnetic stirrer while concentration of dimethoate and atrazine in aqueous solution was analyzed using high performance liquid chromatography (HPLC). Four nanofiltration membranes NF90, NF200, NF270 and DK were tested for their respective performance to separate dimethoate and atrazine. Of all four membranes, NF90 showed the best performance in retention of dimethoate and atrazine in water.In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control crop losses. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different environmental sections. This eventually leads to contamination of drinking water source especially for rivers located near active agriculture practices. This paper studied the application of nanofiltration membrane in the removal of dimethoate and atrazine in aqueous solution. Dimethoate was selected as the subject of study since it is being listed as one of the pesticides in guidelines for drinking water by World Health Organization. Nevertheless, data on effectiveness of dimethoate rejection using membranes has not been found so far. Meanwhile, atrazine is classified as one of the most commonly used pesticides in Malaysia. Separation was done using a small batch-type membrane separation cell with integrated magnetic stirrer while concentration of dimethoate and atrazine in aqueous solution was analyzed using high performance liquid chromatography (HPLC). Four nanofiltration membranes NF90, NF200, NF270 and DK were tested for their respective performance to separate dimethoate and atrazine. Of all four membranes, NF90 showed the best performance in retention of dimethoate and atrazine in water.
Author Tan, L.S.
Ahmad, A.L.
Shukor, S.R. Abd
Author_xml – sequence: 1
  givenname: A.L.
  surname: Ahmad
  fullname: Ahmad, A.L.
  email: chlatif@eng.usm.my
– sequence: 2
  givenname: L.S.
  surname: Tan
  fullname: Tan, L.S.
  email: tan.liansee@gmail.com
– sequence: 3
  givenname: S.R. Abd
  surname: Shukor
  fullname: Shukor, S.R. Abd
  email: chsyamrizal@eng.usm.my
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20068856$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17587496$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhi1EVRbanwDKpdySjuMkdsShqoB-SEg9QM-WY0-EV4kNtrcS_Hq8HxSJy55GGj3vzGieY3LovENCTilUFGj3dVkt79XzrFJVA_AK2goafkAWVHBWMsa6Q7IABk3JRN8ckeMYlwBAedt8JEe5CN703YLcXtkZ071XCQvlTKFSUM_WYREwoUvWu2IMfi7U4wr9KhbRT6tNd3gqnHJ-tFNObDozzkNQDuMn8mFUU8TPu3pC_v64vrv8Vd78-fn78vtNqfPqVLai1xpBD0DFyFDzWnDT4NC3PTBmNB2N5oNAQ7WpmaHIeIYEV0gHw_TITsj5du5D8Pm8mORso8ZpykfkWyWHmtW9qPeCjHLWiXY_WIPoa85EBs924GqY0ciHYGcVnuTrYzPwZQeoqNU05sdoG_9z2VknRLvm2i2ng48x4Pg2CuRatFzKneh1iEtoZRadcxfvctqmjYesw05709-2acx6_lkMMmqLTqOxAXWSxts9E14AlrvJOw
CODEN JHMAD9
CitedBy_id crossref_primary_10_1007_s10854_016_5457_6
crossref_primary_10_1016_j_cej_2023_146876
crossref_primary_10_1016_j_cclet_2024_110438
crossref_primary_10_1080_03601234_2018_1501143
crossref_primary_10_1016_j_watres_2008_09_033
crossref_primary_10_1002_jccs_201000201
crossref_primary_10_1016_j_arabjc_2012_04_047
crossref_primary_10_1080_09593330_2017_1329356
crossref_primary_10_3390_w14192937
crossref_primary_10_1002_pen_25805
crossref_primary_10_1016_j_jwpe_2023_103730
crossref_primary_10_1016_j_memsci_2014_12_008
crossref_primary_10_1007_s11356_018_3327_x
crossref_primary_10_1007_s13762_017_1512_y
crossref_primary_10_1016_j_molliq_2018_06_041
crossref_primary_10_3923_jest_2019_65_80
crossref_primary_10_1016_j_cej_2016_09_082
crossref_primary_10_1016_j_jhazmat_2009_10_014
crossref_primary_10_1016_j_seppur_2023_123662
crossref_primary_10_1016_j_cej_2015_05_125
crossref_primary_10_1038_nnano_2017_72
crossref_primary_10_3390_w15071260
crossref_primary_10_1080_19443994_2016_1156580
crossref_primary_10_1111_wej_12756
crossref_primary_10_15446_ga_v23n1_84034
crossref_primary_10_1007_s11814_015_0010_5
crossref_primary_10_1016_j_jhazmat_2023_131099
crossref_primary_10_1016_j_cej_2021_132010
crossref_primary_10_1007_s10811_019_01800_1
crossref_primary_10_1016_j_cej_2021_133069
crossref_primary_10_1021_cr300020c
crossref_primary_10_3390_molecules27051477
crossref_primary_10_1016_j_indcrop_2012_02_020
crossref_primary_10_1016_j_jwpe_2014_11_003
crossref_primary_10_1080_19443994_2013_774130
crossref_primary_10_1016_j_eti_2020_101026
crossref_primary_10_1016_j_indcrop_2015_01_032
crossref_primary_10_1016_j_molliq_2017_03_069
crossref_primary_10_1016_j_scitotenv_2024_170064
crossref_primary_10_5004_dwt_2009_579
crossref_primary_10_1007_s10098_013_0665_8
crossref_primary_10_1016_j_chemosphere_2020_127965
crossref_primary_10_1021_acs_jafc_3c05241
crossref_primary_10_1002_rem_21757
crossref_primary_10_1016_j_chemosphere_2021_129648
crossref_primary_10_1016_j_poly_2021_115161
crossref_primary_10_1016_j_desal_2011_01_033
crossref_primary_10_1155_2022_4184809
crossref_primary_10_1039_C7RA08098K
crossref_primary_10_1016_j_seppur_2018_09_003
crossref_primary_10_1016_j_cej_2022_136865
crossref_primary_10_1016_j_jece_2015_06_003
crossref_primary_10_1039_C5NJ02284C
crossref_primary_10_1016_j_cattod_2019_04_067
crossref_primary_10_5004_dwt_2011_1453
crossref_primary_10_1016_j_jhazmat_2009_09_139
crossref_primary_10_1039_C5RA00890E
crossref_primary_10_1080_10590501_2010_525782
crossref_primary_10_1080_19443994_2014_943054
crossref_primary_10_1007_s11270_024_07400_1
crossref_primary_10_1080_07011784_2024_2445585
crossref_primary_10_1016_j_jece_2024_112414
crossref_primary_10_1186_2052_336X_12_28
crossref_primary_10_1038_s41598_022_16459_x
crossref_primary_10_1016_j_jclepro_2021_126451
crossref_primary_10_1080_09064710_2014_992939
crossref_primary_10_1080_10643389_2011_604263
crossref_primary_10_1016_j_jwpe_2015_06_007
crossref_primary_10_1002_clen_201100209
crossref_primary_10_1016_j_cej_2021_130081
crossref_primary_10_1016_j_aca_2010_08_026
crossref_primary_10_5004_dwt_2011_1960
crossref_primary_10_1016_j_jece_2021_105566
crossref_primary_10_1002_jctb_2260
crossref_primary_10_1002_clen_201000306
crossref_primary_10_5004_dwt_2010_986
crossref_primary_10_1016_j_heliyon_2019_e01153
crossref_primary_10_1016_j_apsusc_2016_02_172
crossref_primary_10_1016_j_wri_2023_100220
crossref_primary_10_1016_j_cej_2018_06_133
crossref_primary_10_1016_j_jhazmat_2008_06_069
crossref_primary_10_1016_j_matpr_2020_12_1036
crossref_primary_10_1016_j_jece_2021_105571
crossref_primary_10_1080_21655979_2020_1788353
crossref_primary_10_1016_j_cej_2017_09_061
crossref_primary_10_1016_j_jhazmat_2009_04_061
crossref_primary_10_1016_j_jiec_2015_10_031
crossref_primary_10_5004_dwt_2011_2886
crossref_primary_10_3390_molecules29215108
crossref_primary_10_1016_j_watres_2019_05_088
crossref_primary_10_1002_pen_26648
crossref_primary_10_1002_jobm_202100365
crossref_primary_10_1016_j_jenvman_2023_119674
crossref_primary_10_1016_j_ccr_2020_213180
crossref_primary_10_1016_j_cej_2020_126722
crossref_primary_10_1016_j_chemosphere_2022_133538
crossref_primary_10_1039_D3MA00255A
crossref_primary_10_1080_19443994_2014_919610
crossref_primary_10_1016_j_jwpe_2024_104852
crossref_primary_10_1016_j_chemosphere_2016_05_022
crossref_primary_10_3390_ijerph17010226
crossref_primary_10_1016_j_gsd_2018_03_004
crossref_primary_10_1016_j_optmat_2014_03_040
crossref_primary_10_1016_j_cej_2010_07_060
crossref_primary_10_1016_j_desal_2011_08_003
crossref_primary_10_1007_s00284_024_03624_w
crossref_primary_10_1016_j_jece_2021_106714
crossref_primary_10_1007_s10904_020_01873_3
crossref_primary_10_1016_j_apsusc_2015_10_194
crossref_primary_10_1002_app_56065
crossref_primary_10_1016_j_seppur_2008_11_003
crossref_primary_10_1016_j_apcatb_2019_118056
crossref_primary_10_1016_j_jwpe_2022_102761
crossref_primary_10_1007_s40710_020_00445_4
crossref_primary_10_1016_j_jece_2024_113754
crossref_primary_10_1080_19443994_2012_734720
crossref_primary_10_1080_19443994_2015_1055520
crossref_primary_10_1016_j_jiec_2014_02_006
crossref_primary_10_1080_10601325_2012_714325
crossref_primary_10_1016_j_jiec_2016_01_011
crossref_primary_10_1016_j_cej_2008_07_015
crossref_primary_10_1016_j_rser_2025_115490
crossref_primary_10_1016_j_envpol_2016_05_032
crossref_primary_10_2166_wst_2018_467
crossref_primary_10_1016_j_jmst_2021_09_057
crossref_primary_10_1038_s41598_018_26655_3
crossref_primary_10_1080_00986445_2020_1719079
crossref_primary_10_1002_jctb_2600
crossref_primary_10_1016_j_jhazmat_2020_124163
crossref_primary_10_1016_j_jhazmat_2007_10_073
Cites_doi 10.1016/S0011-9164(98)00081-2
10.1016/S0011-9164(98)00180-5
10.1016/j.watres.2004.12.039
10.1016/S0011-9164(02)00578-7
10.1016/S0011-9164(04)90000-8
10.1016/S0011-9164(00)00148-X
10.1016/S0011-9164(97)00131-8
10.1016/j.memsci.2006.07.054
10.1016/j.seppur.2004.07.003
10.1016/j.desal.2004.12.008
10.1016/S0376-7388(00)00305-7
10.1016/S1383-5866(03)00076-5
10.1016/j.watres.2004.03.034
10.2166/wst.2005.0654
10.1016/j.seppur.2005.11.015
10.1016/j.pestbp.2004.06.003
10.1016/j.seppur.2003.11.003
10.1016/S0376-7388(01)00411-2
ContentType Journal Article
Copyright 2007 Elsevier B.V.
2008 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier B.V.
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TV
7U7
7UA
C1K
8FD
FR3
KR7
7X8
DOI 10.1016/j.jhazmat.2007.05.047
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Pollution Abstracts
Toxicology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Pollution Abstracts
Toxicology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList Pollution Abstracts
MEDLINE
Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
Applied Sciences
EISSN 1873-3336
EndPage 77
ExternalDocumentID 17587496
20068856
10_1016_j_jhazmat_2007_05_047
S0304389407007698
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Malaysia
GeographicLocations_xml – name: Malaysia
GroupedDBID ---
--K
--M
-~X
..I
.DC
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLECG
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
T9H
TAE
UAO
VH1
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TV
7U7
7UA
C1K
8FD
FR3
KR7
7X8
ID FETCH-LOGICAL-c496t-589cce0cb018f3ec7287d4eb959033dc1fdc7b8ed1cd23d1e37ec787ae1bd3cf3
IEDL.DBID AIKHN
ISSN 0304-3894
IngestDate Fri Jul 11 03:23:31 EDT 2025
Fri Jul 11 07:16:03 EDT 2025
Fri Jul 11 00:49:45 EDT 2025
Mon Jul 21 05:54:10 EDT 2025
Mon Jul 21 09:13:31 EDT 2025
Tue Jul 01 03:29:50 EDT 2025
Thu Apr 24 23:05:41 EDT 2025
Fri Feb 23 02:30:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nanofiltration
Dimethoate
Membrane technology
Pesticides
Atrazine
Human
Drinking water
HPLC chromatography
Agitator
Retention
Contamination
Rejection
Membrane separation
Pollution
Health and environment
Batchwise
Food industry
Surface water
Agriculture
Stream
Aqueous solution
Public health
Organic compounds
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-589cce0cb018f3ec7287d4eb959033dc1fdc7b8ed1cd23d1e37ec787ae1bd3cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 17587496
PQID 20892738
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_70232982
proquest_miscellaneous_31736852
proquest_miscellaneous_20892738
pubmed_primary_17587496
pascalfrancis_primary_20068856
crossref_primary_10_1016_j_jhazmat_2007_05_047
crossref_citationtrail_10_1016_j_jhazmat_2007_05_047
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2007_05_047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-02-28
PublicationDateYYYYMMDD 2008-02-28
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-28
  day: 28
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2008
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Plakas, Karabelas, Wintgens, Melin (bib5) 2006; 284
Malaysian CropLife and Public Health Association.
van der Bruggen, Schaep, Maes, Wilms, Vandecasteele (bib7) 1998; 117
Wittmann, Cote, Medici, Leech, Turner (bib11) 1998; 119
Hilal, Al-Zoubi, Darwish, Mohammed (bib19) 2005; 177
Kiso, Nishimura, Kitao, Nishimura (bib16) 2000; 171
The Dow Chemical Company, nanofiltration products, Filmtec™ membranes
Accessed on 16 June 2005.
Cyna, Chagneaub, Bablon, Tanghe (bib8) 2002; 147
Accessed on 2 June 2006.
Kosutic, Furac, Sipos, Kunst (bib18) 2005; 42
Kim, Amy, Drewes (bib21) 2005; 51
Hofman, Beerendonk, Folmer, Kruithof (bib10) 1997; 113
Bellona, Drewes, Xu, Amy (bib15) 2004; 38
Kiso, Sugiura, Kitao, Nishimura (bib17) 2001; 192
Doull (bib4) 1989
World Health Organization. Guidelines for drinking-water quality 2004, third ed.
Causserand, Aimar, Cravedi, Singlande (bib13) 2005; 39
Bonne, Beerendonk, van der Hoek, Hofman (bib9) 2000; 132
Lefebvre, Palmeri, Sandeaux, Sandeaux, David, Maleyre, Guizard, Amblard, Diaz, Lamaze (bib20) 2003; 32
Santos, Beukelaar, Vankelecom, Velizarov, Crespo (bib22) 2006; 50
Kamrin (bib2) 1997
Accessed on 20 November 2006.
Chen, James, Mulford, Norris (bib12) 2004; 160
Zhang, van der Bruggen, Chen, Braeken, Vandecasteele (bib14) 2004; 38
Anderson, Zhu (bib6) 2004; 80
Chen (10.1016/j.jhazmat.2007.05.047_bib12) 2004; 160
Kosutic (10.1016/j.jhazmat.2007.05.047_bib18) 2005; 42
Kamrin (10.1016/j.jhazmat.2007.05.047_bib2) 1997
Hofman (10.1016/j.jhazmat.2007.05.047_bib10) 1997; 113
10.1016/j.jhazmat.2007.05.047_bib3
van der Bruggen (10.1016/j.jhazmat.2007.05.047_bib7) 1998; 117
Santos (10.1016/j.jhazmat.2007.05.047_bib22) 2006; 50
Doull (10.1016/j.jhazmat.2007.05.047_bib4) 1989
Kim (10.1016/j.jhazmat.2007.05.047_bib21) 2005; 51
10.1016/j.jhazmat.2007.05.047_bib1
Kiso (10.1016/j.jhazmat.2007.05.047_bib16) 2000; 171
Plakas (10.1016/j.jhazmat.2007.05.047_bib5) 2006; 284
Anderson (10.1016/j.jhazmat.2007.05.047_bib6) 2004; 80
Bonne (10.1016/j.jhazmat.2007.05.047_bib9) 2000; 132
Causserand (10.1016/j.jhazmat.2007.05.047_bib13) 2005; 39
Bellona (10.1016/j.jhazmat.2007.05.047_bib15) 2004; 38
Kiso (10.1016/j.jhazmat.2007.05.047_bib17) 2001; 192
Cyna (10.1016/j.jhazmat.2007.05.047_bib8) 2002; 147
Lefebvre (10.1016/j.jhazmat.2007.05.047_bib20) 2003; 32
10.1016/j.jhazmat.2007.05.047_bib23
Hilal (10.1016/j.jhazmat.2007.05.047_bib19) 2005; 177
Zhang (10.1016/j.jhazmat.2007.05.047_bib14) 2004; 38
Wittmann (10.1016/j.jhazmat.2007.05.047_bib11) 1998; 119
References_xml – volume: 284
  start-page: 291
  year: 2006
  end-page: 300
  ident: bib5
  article-title: A study of selected herbicides retention by nanofiltration membranes–the role of organic fouling
  publication-title: J. Membr. Sci.
– volume: 50
  start-page: 122
  year: 2006
  end-page: 131
  ident: bib22
  article-title: Effect of solute geometry and orientation on the rejection of uncharged compounds by nanofiltration
  publication-title: Sep. Purif. Technol.
– volume: 132
  start-page: 189
  year: 2000
  end-page: 193
  ident: bib9
  article-title: Retention of herbicides and pesticides in relation to aging RO membranes
  publication-title: Desalination
– volume: 38
  start-page: 2795
  year: 2004
  end-page: 2809
  ident: bib15
  article-title: Factors affecting the rejection of organic solutes during NF/RO treatment - a literature review
  publication-title: Water Res.
– year: 1997
  ident: bib2
  article-title: Pesticide Profiles: Toxicity, Environmental Impact and Fate
– reference: World Health Organization. Guidelines for drinking-water quality 2004, third ed.
– start-page: 1
  year: 1989
  end-page: 5
  ident: bib4
  article-title: Pesticide Carcinogenicity
  publication-title: Carcinogenicity and Pesticides: Principles, Issues and Relationship
– reference: Malaysian CropLife and Public Health Association.
– volume: 113
  start-page: 209
  year: 1997
  end-page: 214
  ident: bib10
  article-title: Removal of pesticides and other micropollutants with cellulose acetate, polyamide and ultra-low pressure reverse osmosis membranes
  publication-title: Desalination
– volume: 38
  start-page: 163
  year: 2004
  end-page: 172
  ident: bib14
  article-title: Removal of pesticides by nanofiltration: effect of the water matrix
  publication-title: Sep. Purif. Technol.
– reference: . Accessed on 2 June 2006.
– reference: . Accessed on 16 June 2005.
– volume: 171
  start-page: 229
  year: 2000
  end-page: 237
  ident: bib16
  article-title: Rejection properties of non-phenylic pesticides with nanofiltration membranes
  publication-title: J. Membr. Sci.
– volume: 32
  start-page: 117
  year: 2003
  end-page: 126
  ident: bib20
  article-title: Nanofiltration modeling: a comparative study of the salt filtration performance of a charged ceramic membrane and an organic nanofilter using the computer simulation program NANOFLUX
  publication-title: Sep. Purif. Technol.
– volume: 119
  start-page: 347
  year: 1998
  end-page: 352
  ident: bib11
  article-title: Treatment of a hard borehole water containing low levels of pesticide by nanofiltration
  publication-title: Desalination
– volume: 42
  start-page: 137
  year: 2005
  end-page: 144
  ident: bib18
  article-title: Removal of arsenic and pesticides from drinking water by nanofiltration membranes
  publication-title: Sep. Purif. Technol.
– volume: 117
  start-page: 139
  year: 1998
  end-page: 147
  ident: bib7
  article-title: Nanofiltration as treatment method for the removal of pesticides from ground waters
  publication-title: Desalination
– volume: 51
  start-page: 335
  year: 2005
  end-page: 344
  ident: bib21
  article-title: Rejection of trace organic compounds by high-pressure membranes
  publication-title: Water Sci. Technol.
– volume: 192
  start-page: 1
  year: 2001
  end-page: 10
  ident: bib17
  article-title: Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes
  publication-title: J. Membr. Sci.
– reference: . Accessed on 20 November 2006.
– volume: 39
  start-page: 1594
  year: 2005
  end-page: 1600
  ident: bib13
  article-title: Dichloroaniline retention by nanofiltration membranes
  publication-title: Water Res.
– reference: The Dow Chemical Company, nanofiltration products, Filmtec™ membranes,
– volume: 80
  start-page: 54
  year: 2004
  end-page: 64
  ident: bib6
  article-title: Synergistic and antagonistic effects of atrazine on the toxicity of organophosphorodithioate and organophosphorothioate insecticides to Chironomustentans (Diptera: Chironomidae)
  publication-title: Pestic. Biochem. Physiol.
– volume: 147
  start-page: 69
  year: 2002
  end-page: 75
  ident: bib8
  article-title: Two years of nanofiltration at the Mery-sur-Oise plant, France
  publication-title: Desalination
– volume: 160
  start-page: 103
  year: 2004
  end-page: 111
  ident: bib12
  article-title: Influences of molecular weight, molecular size, flux, and recovery for aromatic pesticide removal by nanofiltration membranes
  publication-title: Desalination
– volume: 177
  start-page: 187
  year: 2005
  end-page: 199
  ident: bib19
  article-title: Characterisation of nanofiltration membranes using atomic force microscopy
  publication-title: Desalination
– volume: 117
  start-page: 139
  year: 1998
  ident: 10.1016/j.jhazmat.2007.05.047_bib7
  article-title: Nanofiltration as treatment method for the removal of pesticides from ground waters
  publication-title: Desalination
  doi: 10.1016/S0011-9164(98)00081-2
– ident: 10.1016/j.jhazmat.2007.05.047_bib23
– volume: 119
  start-page: 347
  year: 1998
  ident: 10.1016/j.jhazmat.2007.05.047_bib11
  article-title: Treatment of a hard borehole water containing low levels of pesticide by nanofiltration
  publication-title: Desalination
  doi: 10.1016/S0011-9164(98)00180-5
– ident: 10.1016/j.jhazmat.2007.05.047_bib3
– volume: 39
  start-page: 1594
  year: 2005
  ident: 10.1016/j.jhazmat.2007.05.047_bib13
  article-title: Dichloroaniline retention by nanofiltration membranes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.12.039
– volume: 147
  start-page: 69
  year: 2002
  ident: 10.1016/j.jhazmat.2007.05.047_bib8
  article-title: Two years of nanofiltration at the Mery-sur-Oise plant, France
  publication-title: Desalination
  doi: 10.1016/S0011-9164(02)00578-7
– volume: 160
  start-page: 103
  year: 2004
  ident: 10.1016/j.jhazmat.2007.05.047_bib12
  article-title: Influences of molecular weight, molecular size, flux, and recovery for aromatic pesticide removal by nanofiltration membranes
  publication-title: Desalination
  doi: 10.1016/S0011-9164(04)90000-8
– volume: 132
  start-page: 189
  year: 2000
  ident: 10.1016/j.jhazmat.2007.05.047_bib9
  article-title: Retention of herbicides and pesticides in relation to aging RO membranes
  publication-title: Desalination
  doi: 10.1016/S0011-9164(00)00148-X
– volume: 113
  start-page: 209
  year: 1997
  ident: 10.1016/j.jhazmat.2007.05.047_bib10
  article-title: Removal of pesticides and other micropollutants with cellulose acetate, polyamide and ultra-low pressure reverse osmosis membranes
  publication-title: Desalination
  doi: 10.1016/S0011-9164(97)00131-8
– volume: 284
  start-page: 291
  year: 2006
  ident: 10.1016/j.jhazmat.2007.05.047_bib5
  article-title: A study of selected herbicides retention by nanofiltration membranes–the role of organic fouling
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.07.054
– volume: 42
  start-page: 137
  year: 2005
  ident: 10.1016/j.jhazmat.2007.05.047_bib18
  article-title: Removal of arsenic and pesticides from drinking water by nanofiltration membranes
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2004.07.003
– volume: 177
  start-page: 187
  year: 2005
  ident: 10.1016/j.jhazmat.2007.05.047_bib19
  article-title: Characterisation of nanofiltration membranes using atomic force microscopy
  publication-title: Desalination
  doi: 10.1016/j.desal.2004.12.008
– volume: 171
  start-page: 229
  year: 2000
  ident: 10.1016/j.jhazmat.2007.05.047_bib16
  article-title: Rejection properties of non-phenylic pesticides with nanofiltration membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)00305-7
– volume: 32
  start-page: 117
  year: 2003
  ident: 10.1016/j.jhazmat.2007.05.047_bib20
  article-title: Nanofiltration modeling: a comparative study of the salt filtration performance of a charged ceramic membrane and an organic nanofilter using the computer simulation program NANOFLUX
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/S1383-5866(03)00076-5
– volume: 38
  start-page: 2795
  year: 2004
  ident: 10.1016/j.jhazmat.2007.05.047_bib15
  article-title: Factors affecting the rejection of organic solutes during NF/RO treatment - a literature review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.03.034
– volume: 51
  start-page: 335
  year: 2005
  ident: 10.1016/j.jhazmat.2007.05.047_bib21
  article-title: Rejection of trace organic compounds by high-pressure membranes
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2005.0654
– volume: 50
  start-page: 122
  year: 2006
  ident: 10.1016/j.jhazmat.2007.05.047_bib22
  article-title: Effect of solute geometry and orientation on the rejection of uncharged compounds by nanofiltration
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2005.11.015
– start-page: 1
  year: 1989
  ident: 10.1016/j.jhazmat.2007.05.047_bib4
  article-title: Pesticide Carcinogenicity
– ident: 10.1016/j.jhazmat.2007.05.047_bib1
– volume: 80
  start-page: 54
  year: 2004
  ident: 10.1016/j.jhazmat.2007.05.047_bib6
  article-title: Synergistic and antagonistic effects of atrazine on the toxicity of organophosphorodithioate and organophosphorothioate insecticides to Chironomustentans (Diptera: Chironomidae)
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2004.06.003
– year: 1997
  ident: 10.1016/j.jhazmat.2007.05.047_bib2
– volume: 38
  start-page: 163
  year: 2004
  ident: 10.1016/j.jhazmat.2007.05.047_bib14
  article-title: Removal of pesticides by nanofiltration: effect of the water matrix
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2003.11.003
– volume: 192
  start-page: 1
  year: 2001
  ident: 10.1016/j.jhazmat.2007.05.047_bib17
  article-title: Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(01)00411-2
SSID ssj0001754
Score 2.3133936
Snippet In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 71
SubjectTerms Applied sciences
Atrazine
Atrazine - isolation & purification
Biological and medical sciences
Chemical engineering
Continental surface waters
Dimethoate
Dimethoate - isolation & purification
Drinking water and swimming-pool water. Desalination
Exact sciences and technology
Filtration - instrumentation
Filtration - methods
Food engineering
Food industries
Fundamental and applied biological sciences. Psychology
General aspects
Herbicides - isolation & purification
Insecticides - isolation & purification
Membrane separation (reverse osmosis, dialysis...)
Membrane technology
Nanofiltration
Natural water pollution
Pesticides
Pollution
Water Pollutants, Chemical - isolation & purification
Water treatment and pollution
Title Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes
URI https://dx.doi.org/10.1016/j.jhazmat.2007.05.047
https://www.ncbi.nlm.nih.gov/pubmed/17587496
https://www.proquest.com/docview/20892738
https://www.proquest.com/docview/31736852
https://www.proquest.com/docview/70232982
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4RuFBViEIfKTTdA1cntnft3T0iWpQ-xAWQuFn7spqomCgEIXrob-9MvA5FaoTUqzWjtWdm5-Hd-QbgSCphhQ8-qTH-JaL2OjHB1YkVQosiN4TgQrctzsrxpfh6VVxtwEnXC0PXKqPvb3360lvHJ6MozdFsMhmd06EehlusSOg4SasebOVcl2jaW8dfvo3PVg4ZI2SLIkWHAMjw2Mgzmg6nP8wvzA0jmGExTGnQyr9D1MuZuUXB1e3Ei_Up6TI0ne7CTswp2XH72q9gIzR78OIvpME96H039_tw_mmynBiN-SUzjWdmMV-iS7M5pc6kIkbtJszgejd3t6yzS2YfWGMamu4dUXbZdbjGOhv95Gu4PP18cTJO4lSFxAldLpJCaedC6myaqZoHJ7Fm8iJYXeiUc--y2jtpVfCZ8zn3WeASiZQ0IbOeu5q_gc3mpgnvgNlUYTVprHVSCJfmVhYlqjgPgktVO9EH0QmychFynCZf_Ky6u2XTKsqfxmHKKi0qlH8fhiu2WYu58RyD6rRUPTGeCuPCc6yDJ1pdLUi_WpQqyj587NRc4c6j4xQULuoAKZSmxqb1FJibEb5_vp5CYsqUa4UUb1sLevxgLOQkKuz9_3_bAWy3t1uoAf8QNhfzu_ABU6iFHUBv-DsbxI3yBzKzHb4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxtBDLaAHtoKVS19pQ-YQ6-b7GM2M3NEFJS2KRdA4jaa14pEZYlCUAUHfjv27iwpEhFSryuPZtcej-21_Rngm5Dcch98UqH9S3jlVWKCqxLLueJlbgjBhaotDoejE_7ztDxdg72uF4bKKuPd397pzW0dnwwiNwezyWRwREk9NLcYkVA6Scl1eMZRfUk7-7fLOg-0jy2GFKUAkHzZxjOY9qdn5gY9wwhlWPZTGrPyuIHanJlLZFvVzrtY7ZA2hungNbyKHiXbbV_6DayFegte_oMzuAXrY_P3LRx9nzTzotG7ZKb2zCzmDbY0m5PjTAJi1GzCDO53cXXJulPJ7DWrTU2zvSPGLjsP5xhl4y35Dk4O9o_3RkmcqZA4roaLpJTKuZA6m2ayKoITGDF5HqwqVVoU3mWVd8LK4DPn88JnoRBIJIUJmfWFq4r3sFFf1OEjMJtKjCWNtU5w7tLcinKIAs4DL4SsHO8B7xipXQQcp7kXf3RXWTbVkf80DFPotNTI_x7075fNWsSNpxbITkr6wdHRaBWeWrr9QKr3G9KPFinLYQ92OjFr1DtKpiBzUQZIIRW1Na2mQM-M0P3z1RQCHaZcSaT40J6g5QdjGCdQYJ_-_9t24Pno-PdYj38c_voML9o6F2rF_wIbi_lV-IrO1MJuN8pyB5A0HoI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimethoate+and+atrazine+retention+from+aqueous+solution+by+nanofiltration+membranes&rft.jtitle=Journal+of+hazardous+materials&rft.au=Ahmad%2C+A.L.&rft.au=Tan%2C+L.S.&rft.au=Shukor%2C+S.R.+Abd&rft.date=2008-02-28&rft.pub=Elsevier+B.V&rft.issn=0304-3894&rft.eissn=1873-3336&rft.volume=151&rft.issue=1&rft.spage=71&rft.epage=77&rft_id=info:doi/10.1016%2Fj.jhazmat.2007.05.047&rft.externalDocID=S0304389407007698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon