Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes
In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control crop losses. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different env...
Saved in:
Published in | Journal of hazardous materials Vol. 151; no. 1; pp. 71 - 77 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
28.02.2008
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0304-3894 1873-3336 |
DOI | 10.1016/j.jhazmat.2007.05.047 |
Cover
Loading…
Abstract | In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control crop losses. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different environmental sections. This eventually leads to contamination of drinking water source especially for rivers located near active agriculture practices. This paper studied the application of nanofiltration membrane in the removal of dimethoate and atrazine in aqueous solution. Dimethoate was selected as the subject of study since it is being listed as one of the pesticides in guidelines for drinking water by World Health Organization. Nevertheless, data on effectiveness of dimethoate rejection using membranes has not been found so far. Meanwhile, atrazine is classified as one of the most commonly used pesticides in Malaysia. Separation was done using a small batch-type membrane separation cell with integrated magnetic stirrer while concentration of dimethoate and atrazine in aqueous solution was analyzed using high performance liquid chromatography (HPLC). Four nanofiltration membranes NF90, NF200, NF270 and DK were tested for their respective performance to separate dimethoate and atrazine. Of all four membranes, NF90 showed the best performance in retention of dimethoate and atrazine in water. |
---|---|
AbstractList | In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control crop losses. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different environmental sections. This eventually leads to contamination of drinking water source especially for rivers located near active agriculture practices. This paper studied the application of nanofiltration membrane in the removal of dimethoate and atrazine in aqueous solution. Dimethoate was selected as the subject of study since it is being listed as one of the pesticides in guidelines for drinking water by World Health Organization. Nevertheless, data on effectiveness of dimethoate rejection using membranes has not been found so far. Meanwhile, atrazine is classified as one of the most commonly used pesticides in Malaysia. Separation was done using a small batch-type membrane separation cell with integrated magnetic stirrer while concentration of dimethoate and atrazine in aqueous solution was analyzed using high performance liquid chromatography (HPLC). Four nanofiltration membranes NF90, NF200, NF270 and DK were tested for their respective performance to separate dimethoate and atrazine. Of all four membranes, NF90 showed the best performance in retention of dimethoate and atrazine in water. In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control crop losses. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different environmental sections. This eventually leads to contamination of drinking water source especially for rivers located near active agriculture practices. This paper studied the application of nanofiltration membrane in the removal of dimethoate and atrazine in aqueous solution. Dimethoate was selected as the subject of study since it is being listed as one of the pesticides in guidelines for drinking water by World Health Organization. Nevertheless, data on effectiveness of dimethoate rejection using membranes has not been found so far. Meanwhile, atrazine is classified as one of the most commonly used pesticides in Malaysia. Separation was done using a small batch-type membrane separation cell with integrated magnetic stirrer while concentration of dimethoate and atrazine in aqueous solution was analyzed using high performance liquid chromatography (HPLC). Four nanofiltration membranes NF90, NF200, NF270 and DK were tested for their respective performance to separate dimethoate and atrazine. Of all four membranes, NF90 showed the best performance in retention of dimethoate and atrazine in water.In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control crop losses. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different environmental sections. This eventually leads to contamination of drinking water source especially for rivers located near active agriculture practices. This paper studied the application of nanofiltration membrane in the removal of dimethoate and atrazine in aqueous solution. Dimethoate was selected as the subject of study since it is being listed as one of the pesticides in guidelines for drinking water by World Health Organization. Nevertheless, data on effectiveness of dimethoate rejection using membranes has not been found so far. Meanwhile, atrazine is classified as one of the most commonly used pesticides in Malaysia. Separation was done using a small batch-type membrane separation cell with integrated magnetic stirrer while concentration of dimethoate and atrazine in aqueous solution was analyzed using high performance liquid chromatography (HPLC). Four nanofiltration membranes NF90, NF200, NF270 and DK were tested for their respective performance to separate dimethoate and atrazine. Of all four membranes, NF90 showed the best performance in retention of dimethoate and atrazine in water. |
Author | Tan, L.S. Ahmad, A.L. Shukor, S.R. Abd |
Author_xml | – sequence: 1 givenname: A.L. surname: Ahmad fullname: Ahmad, A.L. email: chlatif@eng.usm.my – sequence: 2 givenname: L.S. surname: Tan fullname: Tan, L.S. email: tan.liansee@gmail.com – sequence: 3 givenname: S.R. Abd surname: Shukor fullname: Shukor, S.R. Abd email: chsyamrizal@eng.usm.my |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20068856$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17587496$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P3DAQhi1EVRbanwDKpdySjuMkdsShqoB-SEg9QM-WY0-EV4kNtrcS_Hq8HxSJy55GGj3vzGieY3LovENCTilUFGj3dVkt79XzrFJVA_AK2goafkAWVHBWMsa6Q7IABk3JRN8ckeMYlwBAedt8JEe5CN703YLcXtkZ071XCQvlTKFSUM_WYREwoUvWu2IMfi7U4wr9KhbRT6tNd3gqnHJ-tFNObDozzkNQDuMn8mFUU8TPu3pC_v64vrv8Vd78-fn78vtNqfPqVLai1xpBD0DFyFDzWnDT4NC3PTBmNB2N5oNAQ7WpmaHIeIYEV0gHw_TITsj5du5D8Pm8mORso8ZpykfkWyWHmtW9qPeCjHLWiXY_WIPoa85EBs924GqY0ciHYGcVnuTrYzPwZQeoqNU05sdoG_9z2VknRLvm2i2ng48x4Pg2CuRatFzKneh1iEtoZRadcxfvctqmjYesw05709-2acx6_lkMMmqLTqOxAXWSxts9E14AlrvJOw |
CODEN | JHMAD9 |
CitedBy_id | crossref_primary_10_1007_s10854_016_5457_6 crossref_primary_10_1016_j_cej_2023_146876 crossref_primary_10_1016_j_cclet_2024_110438 crossref_primary_10_1080_03601234_2018_1501143 crossref_primary_10_1016_j_watres_2008_09_033 crossref_primary_10_1002_jccs_201000201 crossref_primary_10_1016_j_arabjc_2012_04_047 crossref_primary_10_1080_09593330_2017_1329356 crossref_primary_10_3390_w14192937 crossref_primary_10_1002_pen_25805 crossref_primary_10_1016_j_jwpe_2023_103730 crossref_primary_10_1016_j_memsci_2014_12_008 crossref_primary_10_1007_s11356_018_3327_x crossref_primary_10_1007_s13762_017_1512_y crossref_primary_10_1016_j_molliq_2018_06_041 crossref_primary_10_3923_jest_2019_65_80 crossref_primary_10_1016_j_cej_2016_09_082 crossref_primary_10_1016_j_jhazmat_2009_10_014 crossref_primary_10_1016_j_seppur_2023_123662 crossref_primary_10_1016_j_cej_2015_05_125 crossref_primary_10_1038_nnano_2017_72 crossref_primary_10_3390_w15071260 crossref_primary_10_1080_19443994_2016_1156580 crossref_primary_10_1111_wej_12756 crossref_primary_10_15446_ga_v23n1_84034 crossref_primary_10_1007_s11814_015_0010_5 crossref_primary_10_1016_j_jhazmat_2023_131099 crossref_primary_10_1016_j_cej_2021_132010 crossref_primary_10_1007_s10811_019_01800_1 crossref_primary_10_1016_j_cej_2021_133069 crossref_primary_10_1021_cr300020c crossref_primary_10_3390_molecules27051477 crossref_primary_10_1016_j_indcrop_2012_02_020 crossref_primary_10_1016_j_jwpe_2014_11_003 crossref_primary_10_1080_19443994_2013_774130 crossref_primary_10_1016_j_eti_2020_101026 crossref_primary_10_1016_j_indcrop_2015_01_032 crossref_primary_10_1016_j_molliq_2017_03_069 crossref_primary_10_1016_j_scitotenv_2024_170064 crossref_primary_10_5004_dwt_2009_579 crossref_primary_10_1007_s10098_013_0665_8 crossref_primary_10_1016_j_chemosphere_2020_127965 crossref_primary_10_1021_acs_jafc_3c05241 crossref_primary_10_1002_rem_21757 crossref_primary_10_1016_j_chemosphere_2021_129648 crossref_primary_10_1016_j_poly_2021_115161 crossref_primary_10_1016_j_desal_2011_01_033 crossref_primary_10_1155_2022_4184809 crossref_primary_10_1039_C7RA08098K crossref_primary_10_1016_j_seppur_2018_09_003 crossref_primary_10_1016_j_cej_2022_136865 crossref_primary_10_1016_j_jece_2015_06_003 crossref_primary_10_1039_C5NJ02284C crossref_primary_10_1016_j_cattod_2019_04_067 crossref_primary_10_5004_dwt_2011_1453 crossref_primary_10_1016_j_jhazmat_2009_09_139 crossref_primary_10_1039_C5RA00890E crossref_primary_10_1080_10590501_2010_525782 crossref_primary_10_1080_19443994_2014_943054 crossref_primary_10_1007_s11270_024_07400_1 crossref_primary_10_1080_07011784_2024_2445585 crossref_primary_10_1016_j_jece_2024_112414 crossref_primary_10_1186_2052_336X_12_28 crossref_primary_10_1038_s41598_022_16459_x crossref_primary_10_1016_j_jclepro_2021_126451 crossref_primary_10_1080_09064710_2014_992939 crossref_primary_10_1080_10643389_2011_604263 crossref_primary_10_1016_j_jwpe_2015_06_007 crossref_primary_10_1002_clen_201100209 crossref_primary_10_1016_j_cej_2021_130081 crossref_primary_10_1016_j_aca_2010_08_026 crossref_primary_10_5004_dwt_2011_1960 crossref_primary_10_1016_j_jece_2021_105566 crossref_primary_10_1002_jctb_2260 crossref_primary_10_1002_clen_201000306 crossref_primary_10_5004_dwt_2010_986 crossref_primary_10_1016_j_heliyon_2019_e01153 crossref_primary_10_1016_j_apsusc_2016_02_172 crossref_primary_10_1016_j_wri_2023_100220 crossref_primary_10_1016_j_cej_2018_06_133 crossref_primary_10_1016_j_jhazmat_2008_06_069 crossref_primary_10_1016_j_matpr_2020_12_1036 crossref_primary_10_1016_j_jece_2021_105571 crossref_primary_10_1080_21655979_2020_1788353 crossref_primary_10_1016_j_cej_2017_09_061 crossref_primary_10_1016_j_jhazmat_2009_04_061 crossref_primary_10_1016_j_jiec_2015_10_031 crossref_primary_10_5004_dwt_2011_2886 crossref_primary_10_3390_molecules29215108 crossref_primary_10_1016_j_watres_2019_05_088 crossref_primary_10_1002_pen_26648 crossref_primary_10_1002_jobm_202100365 crossref_primary_10_1016_j_jenvman_2023_119674 crossref_primary_10_1016_j_ccr_2020_213180 crossref_primary_10_1016_j_cej_2020_126722 crossref_primary_10_1016_j_chemosphere_2022_133538 crossref_primary_10_1039_D3MA00255A crossref_primary_10_1080_19443994_2014_919610 crossref_primary_10_1016_j_jwpe_2024_104852 crossref_primary_10_1016_j_chemosphere_2016_05_022 crossref_primary_10_3390_ijerph17010226 crossref_primary_10_1016_j_gsd_2018_03_004 crossref_primary_10_1016_j_optmat_2014_03_040 crossref_primary_10_1016_j_cej_2010_07_060 crossref_primary_10_1016_j_desal_2011_08_003 crossref_primary_10_1007_s00284_024_03624_w crossref_primary_10_1016_j_jece_2021_106714 crossref_primary_10_1007_s10904_020_01873_3 crossref_primary_10_1016_j_apsusc_2015_10_194 crossref_primary_10_1002_app_56065 crossref_primary_10_1016_j_seppur_2008_11_003 crossref_primary_10_1016_j_apcatb_2019_118056 crossref_primary_10_1016_j_jwpe_2022_102761 crossref_primary_10_1007_s40710_020_00445_4 crossref_primary_10_1016_j_jece_2024_113754 crossref_primary_10_1080_19443994_2012_734720 crossref_primary_10_1080_19443994_2015_1055520 crossref_primary_10_1016_j_jiec_2014_02_006 crossref_primary_10_1080_10601325_2012_714325 crossref_primary_10_1016_j_jiec_2016_01_011 crossref_primary_10_1016_j_cej_2008_07_015 crossref_primary_10_1016_j_rser_2025_115490 crossref_primary_10_1016_j_envpol_2016_05_032 crossref_primary_10_2166_wst_2018_467 crossref_primary_10_1016_j_jmst_2021_09_057 crossref_primary_10_1038_s41598_018_26655_3 crossref_primary_10_1080_00986445_2020_1719079 crossref_primary_10_1002_jctb_2600 crossref_primary_10_1016_j_jhazmat_2020_124163 crossref_primary_10_1016_j_jhazmat_2007_10_073 |
Cites_doi | 10.1016/S0011-9164(98)00081-2 10.1016/S0011-9164(98)00180-5 10.1016/j.watres.2004.12.039 10.1016/S0011-9164(02)00578-7 10.1016/S0011-9164(04)90000-8 10.1016/S0011-9164(00)00148-X 10.1016/S0011-9164(97)00131-8 10.1016/j.memsci.2006.07.054 10.1016/j.seppur.2004.07.003 10.1016/j.desal.2004.12.008 10.1016/S0376-7388(00)00305-7 10.1016/S1383-5866(03)00076-5 10.1016/j.watres.2004.03.034 10.2166/wst.2005.0654 10.1016/j.seppur.2005.11.015 10.1016/j.pestbp.2004.06.003 10.1016/j.seppur.2003.11.003 10.1016/S0376-7388(01)00411-2 |
ContentType | Journal Article |
Copyright | 2007 Elsevier B.V. 2008 INIST-CNRS |
Copyright_xml | – notice: 2007 Elsevier B.V. – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TV 7U7 7UA C1K 8FD FR3 KR7 7X8 |
DOI | 10.1016/j.jhazmat.2007.05.047 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Pollution Abstracts Toxicology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Engineering Research Database Civil Engineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Pollution Abstracts Toxicology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database MEDLINE - Academic |
DatabaseTitleList | Pollution Abstracts MEDLINE Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law Applied Sciences |
EISSN | 1873-3336 |
EndPage | 77 |
ExternalDocumentID | 17587496 20068856 10_1016_j_jhazmat_2007_05_047 S0304389407007698 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Malaysia |
GeographicLocations_xml | – name: Malaysia |
GroupedDBID | --- --K --M -~X ..I .DC .HR .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLECG BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HMC HVGLF HZ~ IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SDP SEN SES SEW SPC SPCBC SSG SSJ SSZ T5K T9H TAE UAO VH1 WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW CGR CUY CVF ECM EIF NPM 7TV 7U7 7UA C1K 8FD FR3 KR7 7X8 |
ID | FETCH-LOGICAL-c496t-589cce0cb018f3ec7287d4eb959033dc1fdc7b8ed1cd23d1e37ec787ae1bd3cf3 |
IEDL.DBID | AIKHN |
ISSN | 0304-3894 |
IngestDate | Fri Jul 11 03:23:31 EDT 2025 Fri Jul 11 07:16:03 EDT 2025 Fri Jul 11 00:49:45 EDT 2025 Mon Jul 21 05:54:10 EDT 2025 Mon Jul 21 09:13:31 EDT 2025 Tue Jul 01 03:29:50 EDT 2025 Thu Apr 24 23:05:41 EDT 2025 Fri Feb 23 02:30:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Nanofiltration Dimethoate Membrane technology Pesticides Atrazine Human Drinking water HPLC chromatography Agitator Retention Contamination Rejection Membrane separation Pollution Health and environment Batchwise Food industry Surface water Agriculture Stream Aqueous solution Public health Organic compounds |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-589cce0cb018f3ec7287d4eb959033dc1fdc7b8ed1cd23d1e37ec787ae1bd3cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 17587496 |
PQID | 20892738 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_70232982 proquest_miscellaneous_31736852 proquest_miscellaneous_20892738 pubmed_primary_17587496 pascalfrancis_primary_20068856 crossref_primary_10_1016_j_jhazmat_2007_05_047 crossref_citationtrail_10_1016_j_jhazmat_2007_05_047 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2007_05_047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-02-28 |
PublicationDateYYYYMMDD | 2008-02-28 |
PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-28 day: 28 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2008 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Plakas, Karabelas, Wintgens, Melin (bib5) 2006; 284 Malaysian CropLife and Public Health Association. van der Bruggen, Schaep, Maes, Wilms, Vandecasteele (bib7) 1998; 117 Wittmann, Cote, Medici, Leech, Turner (bib11) 1998; 119 Hilal, Al-Zoubi, Darwish, Mohammed (bib19) 2005; 177 Kiso, Nishimura, Kitao, Nishimura (bib16) 2000; 171 The Dow Chemical Company, nanofiltration products, Filmtec™ membranes Accessed on 16 June 2005. Cyna, Chagneaub, Bablon, Tanghe (bib8) 2002; 147 Accessed on 2 June 2006. Kosutic, Furac, Sipos, Kunst (bib18) 2005; 42 Kim, Amy, Drewes (bib21) 2005; 51 Hofman, Beerendonk, Folmer, Kruithof (bib10) 1997; 113 Bellona, Drewes, Xu, Amy (bib15) 2004; 38 Kiso, Sugiura, Kitao, Nishimura (bib17) 2001; 192 Doull (bib4) 1989 World Health Organization. Guidelines for drinking-water quality 2004, third ed. Causserand, Aimar, Cravedi, Singlande (bib13) 2005; 39 Bonne, Beerendonk, van der Hoek, Hofman (bib9) 2000; 132 Lefebvre, Palmeri, Sandeaux, Sandeaux, David, Maleyre, Guizard, Amblard, Diaz, Lamaze (bib20) 2003; 32 Santos, Beukelaar, Vankelecom, Velizarov, Crespo (bib22) 2006; 50 Kamrin (bib2) 1997 Accessed on 20 November 2006. Chen, James, Mulford, Norris (bib12) 2004; 160 Zhang, van der Bruggen, Chen, Braeken, Vandecasteele (bib14) 2004; 38 Anderson, Zhu (bib6) 2004; 80 Chen (10.1016/j.jhazmat.2007.05.047_bib12) 2004; 160 Kosutic (10.1016/j.jhazmat.2007.05.047_bib18) 2005; 42 Kamrin (10.1016/j.jhazmat.2007.05.047_bib2) 1997 Hofman (10.1016/j.jhazmat.2007.05.047_bib10) 1997; 113 10.1016/j.jhazmat.2007.05.047_bib3 van der Bruggen (10.1016/j.jhazmat.2007.05.047_bib7) 1998; 117 Santos (10.1016/j.jhazmat.2007.05.047_bib22) 2006; 50 Doull (10.1016/j.jhazmat.2007.05.047_bib4) 1989 Kim (10.1016/j.jhazmat.2007.05.047_bib21) 2005; 51 10.1016/j.jhazmat.2007.05.047_bib1 Kiso (10.1016/j.jhazmat.2007.05.047_bib16) 2000; 171 Plakas (10.1016/j.jhazmat.2007.05.047_bib5) 2006; 284 Anderson (10.1016/j.jhazmat.2007.05.047_bib6) 2004; 80 Bonne (10.1016/j.jhazmat.2007.05.047_bib9) 2000; 132 Causserand (10.1016/j.jhazmat.2007.05.047_bib13) 2005; 39 Bellona (10.1016/j.jhazmat.2007.05.047_bib15) 2004; 38 Kiso (10.1016/j.jhazmat.2007.05.047_bib17) 2001; 192 Cyna (10.1016/j.jhazmat.2007.05.047_bib8) 2002; 147 Lefebvre (10.1016/j.jhazmat.2007.05.047_bib20) 2003; 32 10.1016/j.jhazmat.2007.05.047_bib23 Hilal (10.1016/j.jhazmat.2007.05.047_bib19) 2005; 177 Zhang (10.1016/j.jhazmat.2007.05.047_bib14) 2004; 38 Wittmann (10.1016/j.jhazmat.2007.05.047_bib11) 1998; 119 |
References_xml | – volume: 284 start-page: 291 year: 2006 end-page: 300 ident: bib5 article-title: A study of selected herbicides retention by nanofiltration membranes–the role of organic fouling publication-title: J. Membr. Sci. – volume: 50 start-page: 122 year: 2006 end-page: 131 ident: bib22 article-title: Effect of solute geometry and orientation on the rejection of uncharged compounds by nanofiltration publication-title: Sep. Purif. Technol. – volume: 132 start-page: 189 year: 2000 end-page: 193 ident: bib9 article-title: Retention of herbicides and pesticides in relation to aging RO membranes publication-title: Desalination – volume: 38 start-page: 2795 year: 2004 end-page: 2809 ident: bib15 article-title: Factors affecting the rejection of organic solutes during NF/RO treatment - a literature review publication-title: Water Res. – year: 1997 ident: bib2 article-title: Pesticide Profiles: Toxicity, Environmental Impact and Fate – reference: World Health Organization. Guidelines for drinking-water quality 2004, third ed. – start-page: 1 year: 1989 end-page: 5 ident: bib4 article-title: Pesticide Carcinogenicity publication-title: Carcinogenicity and Pesticides: Principles, Issues and Relationship – reference: Malaysian CropLife and Public Health Association. – volume: 113 start-page: 209 year: 1997 end-page: 214 ident: bib10 article-title: Removal of pesticides and other micropollutants with cellulose acetate, polyamide and ultra-low pressure reverse osmosis membranes publication-title: Desalination – volume: 38 start-page: 163 year: 2004 end-page: 172 ident: bib14 article-title: Removal of pesticides by nanofiltration: effect of the water matrix publication-title: Sep. Purif. Technol. – reference: . Accessed on 2 June 2006. – reference: . Accessed on 16 June 2005. – volume: 171 start-page: 229 year: 2000 end-page: 237 ident: bib16 article-title: Rejection properties of non-phenylic pesticides with nanofiltration membranes publication-title: J. Membr. Sci. – volume: 32 start-page: 117 year: 2003 end-page: 126 ident: bib20 article-title: Nanofiltration modeling: a comparative study of the salt filtration performance of a charged ceramic membrane and an organic nanofilter using the computer simulation program NANOFLUX publication-title: Sep. Purif. Technol. – volume: 119 start-page: 347 year: 1998 end-page: 352 ident: bib11 article-title: Treatment of a hard borehole water containing low levels of pesticide by nanofiltration publication-title: Desalination – volume: 42 start-page: 137 year: 2005 end-page: 144 ident: bib18 article-title: Removal of arsenic and pesticides from drinking water by nanofiltration membranes publication-title: Sep. Purif. Technol. – volume: 117 start-page: 139 year: 1998 end-page: 147 ident: bib7 article-title: Nanofiltration as treatment method for the removal of pesticides from ground waters publication-title: Desalination – volume: 51 start-page: 335 year: 2005 end-page: 344 ident: bib21 article-title: Rejection of trace organic compounds by high-pressure membranes publication-title: Water Sci. Technol. – volume: 192 start-page: 1 year: 2001 end-page: 10 ident: bib17 article-title: Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes publication-title: J. Membr. Sci. – reference: . Accessed on 20 November 2006. – volume: 39 start-page: 1594 year: 2005 end-page: 1600 ident: bib13 article-title: Dichloroaniline retention by nanofiltration membranes publication-title: Water Res. – reference: The Dow Chemical Company, nanofiltration products, Filmtec™ membranes, – volume: 80 start-page: 54 year: 2004 end-page: 64 ident: bib6 article-title: Synergistic and antagonistic effects of atrazine on the toxicity of organophosphorodithioate and organophosphorothioate insecticides to Chironomustentans (Diptera: Chironomidae) publication-title: Pestic. Biochem. Physiol. – volume: 147 start-page: 69 year: 2002 end-page: 75 ident: bib8 article-title: Two years of nanofiltration at the Mery-sur-Oise plant, France publication-title: Desalination – volume: 160 start-page: 103 year: 2004 end-page: 111 ident: bib12 article-title: Influences of molecular weight, molecular size, flux, and recovery for aromatic pesticide removal by nanofiltration membranes publication-title: Desalination – volume: 177 start-page: 187 year: 2005 end-page: 199 ident: bib19 article-title: Characterisation of nanofiltration membranes using atomic force microscopy publication-title: Desalination – volume: 117 start-page: 139 year: 1998 ident: 10.1016/j.jhazmat.2007.05.047_bib7 article-title: Nanofiltration as treatment method for the removal of pesticides from ground waters publication-title: Desalination doi: 10.1016/S0011-9164(98)00081-2 – ident: 10.1016/j.jhazmat.2007.05.047_bib23 – volume: 119 start-page: 347 year: 1998 ident: 10.1016/j.jhazmat.2007.05.047_bib11 article-title: Treatment of a hard borehole water containing low levels of pesticide by nanofiltration publication-title: Desalination doi: 10.1016/S0011-9164(98)00180-5 – ident: 10.1016/j.jhazmat.2007.05.047_bib3 – volume: 39 start-page: 1594 year: 2005 ident: 10.1016/j.jhazmat.2007.05.047_bib13 article-title: Dichloroaniline retention by nanofiltration membranes publication-title: Water Res. doi: 10.1016/j.watres.2004.12.039 – volume: 147 start-page: 69 year: 2002 ident: 10.1016/j.jhazmat.2007.05.047_bib8 article-title: Two years of nanofiltration at the Mery-sur-Oise plant, France publication-title: Desalination doi: 10.1016/S0011-9164(02)00578-7 – volume: 160 start-page: 103 year: 2004 ident: 10.1016/j.jhazmat.2007.05.047_bib12 article-title: Influences of molecular weight, molecular size, flux, and recovery for aromatic pesticide removal by nanofiltration membranes publication-title: Desalination doi: 10.1016/S0011-9164(04)90000-8 – volume: 132 start-page: 189 year: 2000 ident: 10.1016/j.jhazmat.2007.05.047_bib9 article-title: Retention of herbicides and pesticides in relation to aging RO membranes publication-title: Desalination doi: 10.1016/S0011-9164(00)00148-X – volume: 113 start-page: 209 year: 1997 ident: 10.1016/j.jhazmat.2007.05.047_bib10 article-title: Removal of pesticides and other micropollutants with cellulose acetate, polyamide and ultra-low pressure reverse osmosis membranes publication-title: Desalination doi: 10.1016/S0011-9164(97)00131-8 – volume: 284 start-page: 291 year: 2006 ident: 10.1016/j.jhazmat.2007.05.047_bib5 article-title: A study of selected herbicides retention by nanofiltration membranes–the role of organic fouling publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.07.054 – volume: 42 start-page: 137 year: 2005 ident: 10.1016/j.jhazmat.2007.05.047_bib18 article-title: Removal of arsenic and pesticides from drinking water by nanofiltration membranes publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2004.07.003 – volume: 177 start-page: 187 year: 2005 ident: 10.1016/j.jhazmat.2007.05.047_bib19 article-title: Characterisation of nanofiltration membranes using atomic force microscopy publication-title: Desalination doi: 10.1016/j.desal.2004.12.008 – volume: 171 start-page: 229 year: 2000 ident: 10.1016/j.jhazmat.2007.05.047_bib16 article-title: Rejection properties of non-phenylic pesticides with nanofiltration membranes publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)00305-7 – volume: 32 start-page: 117 year: 2003 ident: 10.1016/j.jhazmat.2007.05.047_bib20 article-title: Nanofiltration modeling: a comparative study of the salt filtration performance of a charged ceramic membrane and an organic nanofilter using the computer simulation program NANOFLUX publication-title: Sep. Purif. Technol. doi: 10.1016/S1383-5866(03)00076-5 – volume: 38 start-page: 2795 year: 2004 ident: 10.1016/j.jhazmat.2007.05.047_bib15 article-title: Factors affecting the rejection of organic solutes during NF/RO treatment - a literature review publication-title: Water Res. doi: 10.1016/j.watres.2004.03.034 – volume: 51 start-page: 335 year: 2005 ident: 10.1016/j.jhazmat.2007.05.047_bib21 article-title: Rejection of trace organic compounds by high-pressure membranes publication-title: Water Sci. Technol. doi: 10.2166/wst.2005.0654 – volume: 50 start-page: 122 year: 2006 ident: 10.1016/j.jhazmat.2007.05.047_bib22 article-title: Effect of solute geometry and orientation on the rejection of uncharged compounds by nanofiltration publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2005.11.015 – start-page: 1 year: 1989 ident: 10.1016/j.jhazmat.2007.05.047_bib4 article-title: Pesticide Carcinogenicity – ident: 10.1016/j.jhazmat.2007.05.047_bib1 – volume: 80 start-page: 54 year: 2004 ident: 10.1016/j.jhazmat.2007.05.047_bib6 article-title: Synergistic and antagonistic effects of atrazine on the toxicity of organophosphorodithioate and organophosphorothioate insecticides to Chironomustentans (Diptera: Chironomidae) publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2004.06.003 – year: 1997 ident: 10.1016/j.jhazmat.2007.05.047_bib2 – volume: 38 start-page: 163 year: 2004 ident: 10.1016/j.jhazmat.2007.05.047_bib14 article-title: Removal of pesticides by nanofiltration: effect of the water matrix publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2003.11.003 – volume: 192 start-page: 1 year: 2001 ident: 10.1016/j.jhazmat.2007.05.047_bib17 article-title: Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(01)00411-2 |
SSID | ssj0001754 |
Score | 2.3133936 |
Snippet | In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 71 |
SubjectTerms | Applied sciences Atrazine Atrazine - isolation & purification Biological and medical sciences Chemical engineering Continental surface waters Dimethoate Dimethoate - isolation & purification Drinking water and swimming-pool water. Desalination Exact sciences and technology Filtration - instrumentation Filtration - methods Food engineering Food industries Fundamental and applied biological sciences. Psychology General aspects Herbicides - isolation & purification Insecticides - isolation & purification Membrane separation (reverse osmosis, dialysis...) Membrane technology Nanofiltration Natural water pollution Pesticides Pollution Water Pollutants, Chemical - isolation & purification Water treatment and pollution |
Title | Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes |
URI | https://dx.doi.org/10.1016/j.jhazmat.2007.05.047 https://www.ncbi.nlm.nih.gov/pubmed/17587496 https://www.proquest.com/docview/20892738 https://www.proquest.com/docview/31736852 https://www.proquest.com/docview/70232982 |
Volume | 151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4RuFBViEIfKTTdA1cntnft3T0iWpQ-xAWQuFn7spqomCgEIXrob-9MvA5FaoTUqzWjtWdm5-Hd-QbgSCphhQ8-qTH-JaL2OjHB1YkVQosiN4TgQrctzsrxpfh6VVxtwEnXC0PXKqPvb3360lvHJ6MozdFsMhmd06EehlusSOg4SasebOVcl2jaW8dfvo3PVg4ZI2SLIkWHAMjw2Mgzmg6nP8wvzA0jmGExTGnQyr9D1MuZuUXB1e3Ei_Up6TI0ne7CTswp2XH72q9gIzR78OIvpME96H039_tw_mmynBiN-SUzjWdmMV-iS7M5pc6kIkbtJszgejd3t6yzS2YfWGMamu4dUXbZdbjGOhv95Gu4PP18cTJO4lSFxAldLpJCaedC6myaqZoHJ7Fm8iJYXeiUc--y2jtpVfCZ8zn3WeASiZQ0IbOeu5q_gc3mpgnvgNlUYTVprHVSCJfmVhYlqjgPgktVO9EH0QmychFynCZf_Ky6u2XTKsqfxmHKKi0qlH8fhiu2WYu58RyD6rRUPTGeCuPCc6yDJ1pdLUi_WpQqyj587NRc4c6j4xQULuoAKZSmxqb1FJibEb5_vp5CYsqUa4UUb1sLevxgLOQkKuz9_3_bAWy3t1uoAf8QNhfzu_ABU6iFHUBv-DsbxI3yBzKzHb4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxtBDLaAHtoKVS19pQ-YQ6-b7GM2M3NEFJS2KRdA4jaa14pEZYlCUAUHfjv27iwpEhFSryuPZtcej-21_Rngm5Dcch98UqH9S3jlVWKCqxLLueJlbgjBhaotDoejE_7ztDxdg72uF4bKKuPd397pzW0dnwwiNwezyWRwREk9NLcYkVA6Scl1eMZRfUk7-7fLOg-0jy2GFKUAkHzZxjOY9qdn5gY9wwhlWPZTGrPyuIHanJlLZFvVzrtY7ZA2hungNbyKHiXbbV_6DayFegte_oMzuAXrY_P3LRx9nzTzotG7ZKb2zCzmDbY0m5PjTAJi1GzCDO53cXXJulPJ7DWrTU2zvSPGLjsP5xhl4y35Dk4O9o_3RkmcqZA4roaLpJTKuZA6m2ayKoITGDF5HqwqVVoU3mWVd8LK4DPn88JnoRBIJIUJmfWFq4r3sFFf1OEjMJtKjCWNtU5w7tLcinKIAs4DL4SsHO8B7xipXQQcp7kXf3RXWTbVkf80DFPotNTI_x7075fNWsSNpxbITkr6wdHRaBWeWrr9QKr3G9KPFinLYQ92OjFr1DtKpiBzUQZIIRW1Na2mQM-M0P3z1RQCHaZcSaT40J6g5QdjGCdQYJ_-_9t24Pno-PdYj38c_voML9o6F2rF_wIbi_lV-IrO1MJuN8pyB5A0HoI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimethoate+and+atrazine+retention+from+aqueous+solution+by+nanofiltration+membranes&rft.jtitle=Journal+of+hazardous+materials&rft.au=Ahmad%2C+A.L.&rft.au=Tan%2C+L.S.&rft.au=Shukor%2C+S.R.+Abd&rft.date=2008-02-28&rft.pub=Elsevier+B.V&rft.issn=0304-3894&rft.eissn=1873-3336&rft.volume=151&rft.issue=1&rft.spage=71&rft.epage=77&rft_id=info:doi/10.1016%2Fj.jhazmat.2007.05.047&rft.externalDocID=S0304389407007698 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |