Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study

We aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE adopts the radiomic strategy for quantitative analysis of the heterogeneity in two-dimensional shear wave elastography (2D-SWE) images. A prospective m...

Full description

Saved in:
Bibliographic Details
Published inGut Vol. 68; no. 4; pp. 729 - 741
Main Authors Wang, Kun, Lu, Xue, Zhou, Hui, Gao, Yongyan, Zheng, Jian, Tong, Minghui, Wu, Changjun, Liu, Changzhu, Huang, Liping, Jiang, Tian’an, Meng, Fankun, Lu, Yongping, Ai, Hong, Xie, Xiao-Yan, Yin, Li-ping, Liang, Ping, Tian, Jie, Zheng, Rongqin
Format Journal Article
LanguageEnglish
Published England BMJ Publishing Group LTD 01.04.2019
BMJ Publishing Group
SeriesOriginal article
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE adopts the radiomic strategy for quantitative analysis of the heterogeneity in two-dimensional shear wave elastography (2D-SWE) images. A prospective multicentre study was conducted to assess its accuracy in patients with chronic hepatitis B, in comparison with 2D-SWE, aspartate transaminase-to-platelet ratio index and fibrosis index based on four factors, by using liver biopsy as the reference standard. Its accuracy and robustness were also investigated by applying different number of acquisitions and different training cohorts, respectively. Data of 654 potentially eligible patients were prospectively enrolled from 12 hospitals, and finally 398 patients with 1990 images were included. Analysis of receiver operating characteristic (ROC) curves was performed to calculate the optimal area under the ROC curve (AUC) for cirrhosis (F4), advanced fibrosis (≥F3) and significance fibrosis (≥F2). AUCs of DLRE were 0.97 for F4 (95% CI 0.94 to 0.99), 0.98 for ≥F3 (95% CI 0.96 to 1.00) and 0.85 (95% CI 0.81 to 0.89) for ≥F2, which were significantly better than other methods except 2D-SWE in ≥F2. Its diagnostic accuracy improved as more images (especially ≥3 images) were acquired from each individual. No significant variation of the performance was found if different training cohorts were applied. DLRE shows the best overall performance in predicting liver fibrosis stages compared with 2D-SWE and biomarkers. It is valuable and practical for the non-invasive accurate diagnosis of liver fibrosis stages in HBV-infected patients. NCT02313649; Post-results.
AbstractList We aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE adopts the radiomic strategy for quantitative analysis of the heterogeneity in two-dimensional shear wave elastography (2D-SWE) images. A prospective multicentre study was conducted to assess its accuracy in patients with chronic hepatitis B, in comparison with 2D-SWE, aspartate transaminase-to-platelet ratio index and fibrosis index based on four factors, by using liver biopsy as the reference standard. Its accuracy and robustness were also investigated by applying different number of acquisitions and different training cohorts, respectively. Data of 654 potentially eligible patients were prospectively enrolled from 12 hospitals, and finally 398 patients with 1990 images were included. Analysis of receiver operating characteristic (ROC) curves was performed to calculate the optimal area under the ROC curve (AUC) for cirrhosis (F4), advanced fibrosis (≥F3) and significance fibrosis (≥F2). AUCs of DLRE were 0.97 for F4 (95% CI 0.94 to 0.99), 0.98 for ≥F3 (95% CI 0.96 to 1.00) and 0.85 (95% CI 0.81 to 0.89) for ≥F2, which were significantly better than other methods except 2D-SWE in ≥F2. Its diagnostic accuracy improved as more images (especially ≥3 images) were acquired from each individual. No significant variation of the performance was found if different training cohorts were applied. DLRE shows the best overall performance in predicting liver fibrosis stages compared with 2D-SWE and biomarkers. It is valuable and practical for the non-invasive accurate diagnosis of liver fibrosis stages in HBV-infected patients. NCT02313649; Post-results.
We aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE adopts the radiomic strategy for quantitative analysis of the heterogeneity in two-dimensional shear wave elastography (2D-SWE) images.OBJECTIVEWe aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE adopts the radiomic strategy for quantitative analysis of the heterogeneity in two-dimensional shear wave elastography (2D-SWE) images.A prospective multicentre study was conducted to assess its accuracy in patients with chronic hepatitis B, in comparison with 2D-SWE, aspartate transaminase-to-platelet ratio index and fibrosis index based on four factors, by using liver biopsy as the reference standard. Its accuracy and robustness were also investigated by applying different number of acquisitions and different training cohorts, respectively. Data of 654 potentially eligible patients were prospectively enrolled from 12 hospitals, and finally 398 patients with 1990 images were included. Analysis of receiver operating characteristic (ROC) curves was performed to calculate the optimal area under the ROC curve (AUC) for cirrhosis (F4), advanced fibrosis (≥F3) and significance fibrosis (≥F2).DESIGNA prospective multicentre study was conducted to assess its accuracy in patients with chronic hepatitis B, in comparison with 2D-SWE, aspartate transaminase-to-platelet ratio index and fibrosis index based on four factors, by using liver biopsy as the reference standard. Its accuracy and robustness were also investigated by applying different number of acquisitions and different training cohorts, respectively. Data of 654 potentially eligible patients were prospectively enrolled from 12 hospitals, and finally 398 patients with 1990 images were included. Analysis of receiver operating characteristic (ROC) curves was performed to calculate the optimal area under the ROC curve (AUC) for cirrhosis (F4), advanced fibrosis (≥F3) and significance fibrosis (≥F2).AUCs of DLRE were 0.97 for F4 (95% CI 0.94 to 0.99), 0.98 for ≥F3 (95% CI 0.96 to 1.00) and 0.85 (95% CI 0.81 to 0.89) for ≥F2, which were significantly better than other methods except 2D-SWE in ≥F2. Its diagnostic accuracy improved as more images (especially ≥3 images) were acquired from each individual. No significant variation of the performance was found if different training cohorts were applied.RESULTSAUCs of DLRE were 0.97 for F4 (95% CI 0.94 to 0.99), 0.98 for ≥F3 (95% CI 0.96 to 1.00) and 0.85 (95% CI 0.81 to 0.89) for ≥F2, which were significantly better than other methods except 2D-SWE in ≥F2. Its diagnostic accuracy improved as more images (especially ≥3 images) were acquired from each individual. No significant variation of the performance was found if different training cohorts were applied.DLRE shows the best overall performance in predicting liver fibrosis stages compared with 2D-SWE and biomarkers. It is valuable and practical for the non-invasive accurate diagnosis of liver fibrosis stages in HBV-infected patients.CONCLUSIONDLRE shows the best overall performance in predicting liver fibrosis stages compared with 2D-SWE and biomarkers. It is valuable and practical for the non-invasive accurate diagnosis of liver fibrosis stages in HBV-infected patients.NCT02313649; Post-results.TRIAL REGISTRATION NUMBERNCT02313649; Post-results.
ObjectiveWe aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE adopts the radiomic strategy for quantitative analysis of the heterogeneity in two-dimensional shear wave elastography (2D-SWE) images.DesignA prospective multicentre study was conducted to assess its accuracy in patients with chronic hepatitis B, in comparison with 2D-SWE, aspartate transaminase-to-platelet ratio index and fibrosis index based on four factors, by using liver biopsy as the reference standard. Its accuracy and robustness were also investigated by applying different number of acquisitions and different training cohorts, respectively. Data of 654 potentially eligible patients were prospectively enrolled from 12 hospitals, and finally 398 patients with 1990 images were included. Analysis of receiver operating characteristic (ROC) curves was performed to calculate the optimal area under the ROC curve (AUC) for cirrhosis (F4), advanced fibrosis (≥F3) and significance fibrosis (≥F2).ResultsAUCs of DLRE were 0.97 for F4 (95% CI 0.94 to 0.99), 0.98 for ≥F3 (95% CI 0.96 to 1.00) and 0.85 (95% CI 0.81 to 0.89) for ≥F2, which were significantly better than other methods except 2D-SWE in ≥F2. Its diagnostic accuracy improved as more images (especially ≥3 images) were acquired from each individual. No significant variation of the performance was found if different training cohorts were applied.ConclusionDLRE shows the best overall performance in predicting liver fibrosis stages compared with 2D-SWE and biomarkers. It is valuable and practical for the non-invasive accurate diagnosis of liver fibrosis stages in HBV-infected patients.Trial registration numberNCT02313649; Post-results.
Author Huang, Liping
Jiang, Tian’an
Ai, Hong
Zhou, Hui
Zheng, Jian
Yin, Li-ping
Wang, Kun
Wu, Changjun
Tian, Jie
Gao, Yongyan
Liu, Changzhu
Meng, Fankun
Liang, Ping
Tong, Minghui
Lu, Xue
Zheng, Rongqin
Xie, Xiao-Yan
Lu, Yongping
AuthorAffiliation 11 Function Diagnosis Center , Beijing Youan Hospital, Affiliated to Capital Medical University , Beijing , China
13 Ultrasound Department , The First Affiliated Hospital of Xi’an Jiaotong University , Xi’an , China
10 Department of Ultrasonography , The First Affiliated Hospital, Medical College of Zhejiang University , Hangzhou , China
8 Ultrasound Department , Guangzhou Eighth People’s Hospital , Guangzhou , China
4 Department of Interventional Ultrasound , Chinese PLA General Hospital , Beijing , China
12 Ultrasound Department , The Second People’s Hospital of Yunnan Province , Kunming , China
3 Department of the Artificial Intelligence Technology , University of Chinese Academy of Sciences , Beijing , China
14 Department of Medical Ultrasonics , Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
9 Department of Ultrasound , Shengjing Hospital of China Medical University , Shenyang , China
15 Department of Ultra
AuthorAffiliation_xml – name: 6 Functional Examination Department of Children’s Hospital , Lanzhou University Second Hospital , Lanzhou , China
– name: 4 Department of Interventional Ultrasound , Chinese PLA General Hospital , Beijing , China
– name: 7 Ultrasound Department , The First Affiliated Hospital of Harbin Medical University , Harbin , China
– name: 9 Department of Ultrasound , Shengjing Hospital of China Medical University , Shenyang , China
– name: 11 Function Diagnosis Center , Beijing Youan Hospital, Affiliated to Capital Medical University , Beijing , China
– name: 1 Guangdong Key Laboratory of Liver Disease Research, Department of Medical Ultrasound , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
– name: 15 Department of Ultrasound , Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of TCM , Nanjing , China
– name: 13 Ultrasound Department , The First Affiliated Hospital of Xi’an Jiaotong University , Xi’an , China
– name: 14 Department of Medical Ultrasonics , Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
– name: 12 Ultrasound Department , The Second People’s Hospital of Yunnan Province , Kunming , China
– name: 5 Department of Medical Ultrasonics , Third Hospital of Longgang , Shenzhen , China
– name: 8 Ultrasound Department , Guangzhou Eighth People’s Hospital , Guangzhou , China
– name: 10 Department of Ultrasonography , The First Affiliated Hospital, Medical College of Zhejiang University , Hangzhou , China
– name: 2 CAS Key Laboratory of Molecular Imaging, Institute of Automation , Chinese Academy of Sciences , Beijing , China
– name: 3 Department of the Artificial Intelligence Technology , University of Chinese Academy of Sciences , Beijing , China
Author_xml – sequence: 1
  givenname: Kun
  surname: Wang
  fullname: Wang, Kun
– sequence: 2
  givenname: Xue
  surname: Lu
  fullname: Lu, Xue
– sequence: 3
  givenname: Hui
  surname: Zhou
  fullname: Zhou, Hui
– sequence: 4
  givenname: Yongyan
  surname: Gao
  fullname: Gao, Yongyan
– sequence: 5
  givenname: Jian
  surname: Zheng
  fullname: Zheng, Jian
– sequence: 6
  givenname: Minghui
  surname: Tong
  fullname: Tong, Minghui
– sequence: 7
  givenname: Changjun
  surname: Wu
  fullname: Wu, Changjun
– sequence: 8
  givenname: Changzhu
  surname: Liu
  fullname: Liu, Changzhu
– sequence: 9
  givenname: Liping
  surname: Huang
  fullname: Huang, Liping
– sequence: 10
  givenname: Tian’an
  surname: Jiang
  fullname: Jiang, Tian’an
– sequence: 11
  givenname: Fankun
  surname: Meng
  fullname: Meng, Fankun
– sequence: 12
  givenname: Yongping
  surname: Lu
  fullname: Lu, Yongping
– sequence: 13
  givenname: Hong
  surname: Ai
  fullname: Ai, Hong
– sequence: 14
  givenname: Xiao-Yan
  surname: Xie
  fullname: Xie, Xiao-Yan
– sequence: 15
  givenname: Li-ping
  surname: Yin
  fullname: Yin, Li-ping
– sequence: 16
  givenname: Ping
  surname: Liang
  fullname: Liang, Ping
– sequence: 17
  givenname: Jie
  surname: Tian
  fullname: Tian, Jie
– sequence: 18
  givenname: Rongqin
  surname: Zheng
  fullname: Zheng, Rongqin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29730602$$D View this record in MEDLINE/PubMed
BookMark eNp9UsuOFCEUrZgxTs_oD7gwJG7clAL1AFyY6PhMJjExuiYU3KqmQ0EJVJv-MP9P2p4xOgvZAJdzDofLuajOfPBQVY8Jfk5I07-Y1rzzrqaY8LohPcXtvWpD2r7sKOdn1QZjwuqOteK8ukhphzHmXJAH1TkVrME9ppvq51uABTlQ0Vs_oS_K2DBbnVAYUdqWMvqh9oDAqZTDFNWyPaBkJ29Hq5XP7oDsvMSwB4OMVZMPKVuNFohjiLPyGlBZIJUSpHS8wNk9RDTaIYZkE7Ie6W0MvnC2sKhscym-eYkUKqJpAZ0LHs2rK6rgcwSU8moOD6v7o3IJHt3Ml9W39---Xn2srz9_-HT1-rrWrehz3XUKt2wcFJTRd8M4KmIwoS0zoAXFHHdgBjOOWDWN6LXg0HSCMU5Fb1hrmsvq1Ul3WYcZzG8Lyskl2lnFgwzKyn9PvN3KKexl33HMmCgCz24EYvi-QspytkmDc8pDWJOkuOkYbpqeFujTO9BdWKMvz5OUcM5bQXBbUE_-dvTHyu2PFgA_AXRpYIowSm1zaWw4GrROEiyP4ZGn8MhjeOQpPIVK71Bv1f9D-gXKtdBt
CitedBy_id crossref_primary_10_1016_j_eclinm_2024_102808
crossref_primary_10_3389_fonc_2020_01736
crossref_primary_10_1007_s11605_023_05635_7
crossref_primary_10_1186_s42492_023_00147_2
crossref_primary_10_1016_j_ultrasmedbio_2019_11_001
crossref_primary_10_1364_BOE_10_004999
crossref_primary_10_1007_s00261_023_03840_1
crossref_primary_10_3233_CBM_230219
crossref_primary_10_1016_j_ultrasmedbio_2023_08_007
crossref_primary_10_1109_JBHI_2020_3043236
crossref_primary_10_3389_fonc_2022_965773
crossref_primary_10_1002_VIW_20240010
crossref_primary_10_1007_s11154_021_09681_x
crossref_primary_10_3348_kjr_2019_0752
crossref_primary_10_1038_s41416_022_02134_5
crossref_primary_10_1053_j_gastro_2019_08_058
crossref_primary_10_1109_JBHI_2019_2923773
crossref_primary_10_1002_mp_15856
crossref_primary_10_1016_j_jceh_2022_06_009
crossref_primary_10_2169_naika_111_22
crossref_primary_10_3390_s21062202
crossref_primary_10_3390_cancers16061130
crossref_primary_10_1016_j_imed_2024_09_008
crossref_primary_10_11569_wcjd_v28_i12_460
crossref_primary_10_1016_j_dld_2021_06_011
crossref_primary_10_1186_s41747_021_00250_0
crossref_primary_10_1002_jum_16006
crossref_primary_10_1016_j_jacr_2019_06_004
crossref_primary_10_1159_000505694
crossref_primary_10_1155_2021_7538984
crossref_primary_10_2147_JMDH_S439629
crossref_primary_10_3389_fendo_2023_1144812
crossref_primary_10_1007_s12072_020_10017_1
crossref_primary_10_1186_s12916_022_02469_z
crossref_primary_10_35712_aig_v3_i2_46
crossref_primary_10_1007_s11604_024_01702_4
crossref_primary_10_1016_j_crad_2022_08_149
crossref_primary_10_1080_17474124_2020_1779589
crossref_primary_10_3389_fonc_2024_1298516
crossref_primary_10_1002_eng2_13100
crossref_primary_10_1016_j_eml_2019_01_009
crossref_primary_10_1016_j_ejrad_2024_111347
crossref_primary_10_14366_usg_20085
crossref_primary_10_1016_j_eng_2023_06_013
crossref_primary_10_3389_fonc_2021_672055
crossref_primary_10_1111_jgh_15385
crossref_primary_10_1016_j_iliver_2023_02_003
crossref_primary_10_1007_s11255_025_04366_9
crossref_primary_10_1186_s43556_023_00133_3
crossref_primary_10_3389_fonc_2020_01719
crossref_primary_10_1007_s00330_021_08198_w
crossref_primary_10_1097_JS9_0000000000000995
crossref_primary_10_1016_j_ejrad_2020_108991
crossref_primary_10_1002_poh2_38
crossref_primary_10_1016_j_compmedimag_2023_102290
crossref_primary_10_1016_j_ejrad_2020_108992
crossref_primary_10_1371_journal_pone_0262291
crossref_primary_10_2139_ssrn_4128904
crossref_primary_10_3390_applbiosci3010002
crossref_primary_10_1016_S2468_1253_18_30232_2
crossref_primary_10_1166_jmihi_2021_3564
crossref_primary_10_1002_hep_32779
crossref_primary_10_1016_j_clinimag_2025_110442
crossref_primary_10_2196_28114
crossref_primary_10_1016_j_eclinm_2024_102718
crossref_primary_10_1016_j_ultrasmedbio_2024_03_013
crossref_primary_10_1111_den_13880
crossref_primary_10_3390_bioengineering11121243
crossref_primary_10_3389_fonc_2022_873524
crossref_primary_10_1001_jamanetworkopen_2022_17854
crossref_primary_10_1111_ajco_13397
crossref_primary_10_3390_bioengineering11030252
crossref_primary_10_1097_RCT_0000000000001169
crossref_primary_10_3390_v13112216
crossref_primary_10_1016_j_cgh_2020_03_034
crossref_primary_10_1016_j_displa_2024_102703
crossref_primary_10_1097_CM9_0000000000001136
crossref_primary_10_1002_jum_15819
crossref_primary_10_1007_s11042_023_14876_2
crossref_primary_10_1038_s41598_024_84338_8
crossref_primary_10_1007_s00330_023_09990_6
crossref_primary_10_1002_ajum_12244
crossref_primary_10_1007_s00330_019_06595_w
crossref_primary_10_3748_wjg_v29_i9_1427
crossref_primary_10_1038_s41467_020_15027_z
crossref_primary_10_1186_s12876_020_01585_5
crossref_primary_10_1007_s12072_023_10630_w
crossref_primary_10_3390_cancers13123077
crossref_primary_10_2147_JHC_S313879
crossref_primary_10_3390_diagnostics11020292
crossref_primary_10_4103_jcrt_jcrt_1394_22
crossref_primary_10_3389_fonc_2021_721460
crossref_primary_10_3389_fonc_2021_616027
crossref_primary_10_1109_TCBB_2019_2963867
crossref_primary_10_1002_mp_13521
crossref_primary_10_3350_cmh_2024_0246
crossref_primary_10_1186_s12916_022_02258_8
crossref_primary_10_3389_fimag_2025_1436275
crossref_primary_10_1007_s13755_023_00217_y
crossref_primary_10_1111_jvh_13578
crossref_primary_10_7717_peerj_18780
crossref_primary_10_1109_ACCESS_2023_3289403
crossref_primary_10_3389_fonc_2023_1197447
crossref_primary_10_12677_aam_2025_141035
crossref_primary_10_1136_bmjopen_2020_047528
crossref_primary_10_1186_s12957_021_02459_0
crossref_primary_10_3390_biom11020307
crossref_primary_10_1038_s41523_024_00628_4
crossref_primary_10_1007_s00330_024_10796_3
crossref_primary_10_1111_liv_14999
crossref_primary_10_1177_01617346231220000
crossref_primary_10_1007_s00330_022_08799_z
crossref_primary_10_1109_JBHI_2022_3216031
crossref_primary_10_1088_1361_6560_abf2f8
crossref_primary_10_1016_j_jmps_2020_103896
crossref_primary_10_1093_gastro_goz024
crossref_primary_10_1111_liv_15046
crossref_primary_10_1155_2021_5530004
crossref_primary_10_1007_s40336_021_00474_5
crossref_primary_10_2147_JHC_S319639
crossref_primary_10_3748_wjg_v28_i38_5530
crossref_primary_10_1016_j_tige_2021_09_006
crossref_primary_10_1016_j_compbiomed_2021_104382
crossref_primary_10_35712_aig_v2_i5_133
crossref_primary_10_1002_cld_1071
crossref_primary_10_1007_s13246_023_01358_w
crossref_primary_10_1016_j_acra_2020_05_040
crossref_primary_10_1111_liv_14966
crossref_primary_10_3390_biology13020098
crossref_primary_10_1136_gutjnl_2020_323419
crossref_primary_10_3389_fonc_2024_1332188
crossref_primary_10_1002_jmri_28787
crossref_primary_10_3389_fonc_2022_763842
crossref_primary_10_1016_j_ultrasmedbio_2024_12_009
crossref_primary_10_22328_2079_5343_2023_14_2_83_92
crossref_primary_10_1007_s11901_018_0439_1
crossref_primary_10_1007_s12072_019_09937_4
crossref_primary_10_2957_kanzo_61_623
crossref_primary_10_1007_s00405_023_08362_6
crossref_primary_10_1111_1759_7714_14924
crossref_primary_10_1007_s00330_025_11368_9
crossref_primary_10_1055_s_0040_1705097
crossref_primary_10_1007_s12072_022_10303_0
crossref_primary_10_1109_TMI_2022_3175461
crossref_primary_10_1016_j_ejrad_2021_109717
crossref_primary_10_1038_s41598_024_83347_x
crossref_primary_10_1097_HEP_0000000000000566
crossref_primary_10_3748_wjg_v28_i46_6512
crossref_primary_10_3389_fmed_2021_745931
crossref_primary_10_3389_fendo_2024_1323452
crossref_primary_10_1093_bib_bbac432
crossref_primary_10_1016_j_acra_2024_07_029
crossref_primary_10_1007_s00330_021_07934_6
crossref_primary_10_1007_s00330_023_09613_0
crossref_primary_10_1002_mp_16127
crossref_primary_10_1007_s12262_022_03506_0
crossref_primary_10_3390_cancers13102368
crossref_primary_10_3390_ani13223446
crossref_primary_10_3389_fonc_2021_544979
crossref_primary_10_1016_j_csbj_2023_05_029
crossref_primary_10_1183_13993003_00986_2018
crossref_primary_10_1109_JBHI_2024_3515995
crossref_primary_10_1016_j_rbmo_2023_03_015
crossref_primary_10_1097_DCR_0000000000003468
crossref_primary_10_1016_j_mric_2021_05_011
crossref_primary_10_1002_adma_202201608
crossref_primary_10_1016_j_ultrasmedbio_2023_03_024
crossref_primary_10_1007_s00261_024_04225_8
crossref_primary_10_1038_s41467_021_21466_z
crossref_primary_10_3748_wjg_v28_i18_2021
crossref_primary_10_1148_ryai_220185
crossref_primary_10_1016_j_ejrad_2024_111749
crossref_primary_10_1186_s12938_021_00927_y
crossref_primary_10_3748_wjg_v27_i16_1664
crossref_primary_10_2174_0929867328666210405114938
crossref_primary_10_3390_diagnostics15030303
crossref_primary_10_1007_s00261_024_04202_1
crossref_primary_10_1088_1757_899X_1022_1_012029
crossref_primary_10_3389_fonc_2019_01203
crossref_primary_10_1002_ird3_24
crossref_primary_10_3390_app13085080
crossref_primary_10_1080_24699322_2022_2063760
crossref_primary_10_1007_s00261_020_02619_y
crossref_primary_10_3390_s20113085
crossref_primary_10_1016_j_compmedimag_2023_102239
crossref_primary_10_1109_ACCESS_2019_2940645
crossref_primary_10_1007_s00330_023_09568_2
crossref_primary_10_1002_jum_16419
crossref_primary_10_1016_j_jhepr_2022_100443
crossref_primary_10_37015_AUDT_2023_230049
crossref_primary_10_12998_wjcc_v7_i15_2022
crossref_primary_10_1016_j_ultrasmedbio_2019_05_028
crossref_primary_10_1016_j_acra_2023_11_027
crossref_primary_10_3389_fnagi_2021_764872
crossref_primary_10_3389_fonc_2020_594580
crossref_primary_10_1186_s13014_022_02154_8
crossref_primary_10_1007_s12325_024_02781_5
crossref_primary_10_1007_s00330_021_08293_y
crossref_primary_10_1007_s00261_020_02717_x
crossref_primary_10_1016_j_cmpb_2023_107436
crossref_primary_10_1111_liv_14555
crossref_primary_10_1145_3453657
crossref_primary_10_1007_s10396_021_01153_8
crossref_primary_10_1007_s00330_024_10985_0
crossref_primary_10_1055_s_0041_1731706
crossref_primary_10_3389_fonc_2021_565755
crossref_primary_10_3748_wjg_v28_i27_3398
crossref_primary_10_1088_1361_6560_ad4c4e
crossref_primary_10_1080_17474124_2022_2104711
crossref_primary_10_1016_j_ctro_2022_11_011
crossref_primary_10_3748_wjg_v25_i6_672
crossref_primary_10_1002_jbio_201900216
crossref_primary_10_37349_etat_2023_00158
crossref_primary_10_1016_j_aohep_2024_101754
crossref_primary_10_1097_CM9_0000000000001536
crossref_primary_10_3390_s23052520
crossref_primary_10_1016_j_ultrasmedbio_2020_05_016
crossref_primary_10_14309_ctg_0000000000000070
crossref_primary_10_1007_s12072_021_10294_4
crossref_primary_10_1002_hep_31603
crossref_primary_10_1016_j_wneu_2021_11_038
crossref_primary_10_1080_0886022X_2023_2202755
crossref_primary_10_1016_j_heliyon_2024_e35115
crossref_primary_10_1016_j_iliver_2022_11_001
crossref_primary_10_3350_cmh_2024_0506
crossref_primary_10_1080_17474124_2021_1880894
crossref_primary_10_1016_j_heliyon_2024_e34150
crossref_primary_10_1016_j_acra_2020_08_029
crossref_primary_10_1136_neurintsurg_2020_016808
crossref_primary_10_3390_diagnostics12020256
crossref_primary_10_1186_s12957_023_03140_4
crossref_primary_10_1016_j_knosys_2020_106445
crossref_primary_10_1109_TMI_2023_3338178
crossref_primary_10_1089_thy_2020_0305
crossref_primary_10_3389_fonc_2020_598721
crossref_primary_10_1002_mp_15901
crossref_primary_10_1111_jgh_15409
crossref_primary_10_1186_s12916_023_03099_9
crossref_primary_10_14366_usg_20102
crossref_primary_10_1007_s00330_019_06360_z
crossref_primary_10_1016_j_acra_2024_09_067
crossref_primary_10_2139_ssrn_3900665
crossref_primary_10_1002_jcu_23577
crossref_primary_10_1016_j_acra_2024_09_065
crossref_primary_10_1016_j_ejrad_2019_03_010
crossref_primary_10_3748_wjg_v27_i40_6794
crossref_primary_10_1186_s12880_024_01272_x
crossref_primary_10_3748_wjg_v27_i34_5715
crossref_primary_10_1016_j_ultrasmedbio_2024_10_016
crossref_primary_10_1186_s12880_023_00977_9
crossref_primary_10_3389_fonc_2022_1012724
crossref_primary_10_1016_j_medengphy_2023_104090
crossref_primary_10_1053_j_gastro_2022_04_025
crossref_primary_10_1109_ACCESS_2021_3071466
crossref_primary_10_23736_S2723_9284_23_00252_0
crossref_primary_10_1016_j_compbiomed_2020_103960
crossref_primary_10_3389_fonc_2020_00680
crossref_primary_10_14366_usg_22110
crossref_primary_10_35712_aig_v1_i1_5
crossref_primary_10_1016_j_xcrm_2022_100563
crossref_primary_10_1111_jog_15788
crossref_primary_10_1002_jmri_27391
crossref_primary_10_1038_s41598_024_75993_y
crossref_primary_10_3389_fonc_2022_800787
crossref_primary_10_1007_s11548_022_02573_8
crossref_primary_10_3390_biomedinformatics3010002
crossref_primary_10_1016_j_ajg_2021_04_003
crossref_primary_10_1007_s12072_021_10229_z
crossref_primary_10_1093_gastro_goaa011
crossref_primary_10_1097_CLD_0000000000000164
crossref_primary_10_1002_jum_15196
crossref_primary_10_1002_mp_14563
crossref_primary_10_4240_wjgs_v16_i8_2494
crossref_primary_10_1080_17474124_2019_1579641
crossref_primary_10_1002_jum_15070
crossref_primary_10_3389_fonc_2021_631813
crossref_primary_10_1016_j_ejrad_2019_108658
crossref_primary_10_1016_j_placenta_2022_11_016
crossref_primary_10_1007_s00259_019_04372_x
crossref_primary_10_1109_ACCESS_2020_3005829
crossref_primary_10_1016_j_gastha_2022_02_025
crossref_primary_10_1097_SCS_0000000000005765
crossref_primary_10_3348_kjr_2020_0492
crossref_primary_10_1259_dmfr_20230051
crossref_primary_10_3389_fbioe_2022_872044
crossref_primary_10_1007_s11548_020_02206_y
crossref_primary_10_1109_TBME_2020_2971065
crossref_primary_10_1007_s00330_019_06553_6
crossref_primary_10_14309_ajg_0000000000000971
crossref_primary_10_1007_s00261_023_04018_5
crossref_primary_10_3233_CH_221511
crossref_primary_10_1007_s00330_023_09436_z
crossref_primary_10_1016_j_giec_2020_12_009
crossref_primary_10_1088_1361_6560_abae06
crossref_primary_10_3389_fonc_2021_654685
crossref_primary_10_35712_aig_v2_i1_1
crossref_primary_10_1055_a_1675_1941
crossref_primary_10_3390_nu12061576
crossref_primary_10_1016_j_acra_2023_03_036
crossref_primary_10_1186_s12885_024_12277_8
crossref_primary_10_3390_medicina59050992
crossref_primary_10_1093_bioinformatics_btaa056
crossref_primary_10_3390_diagnostics11091719
crossref_primary_10_1186_s13058_025_01971_5
crossref_primary_10_1007_s10072_023_07154_4
crossref_primary_10_1002_jmri_29474
crossref_primary_10_1177_1742271X211072473
crossref_primary_10_1093_bjr_tqad030
crossref_primary_10_1016_j_acra_2024_11_045
crossref_primary_10_1007_s00586_024_08609_8
crossref_primary_10_1142_S0219622022500559
crossref_primary_10_1186_s40364_020_00219_y
crossref_primary_10_14309_ctg_0000000000000712
crossref_primary_10_3389_fonc_2024_1361694
crossref_primary_10_4240_wjgs_v16_i4_988
crossref_primary_10_1259_bjr_20210188
crossref_primary_10_1016_j_crad_2022_06_003
crossref_primary_10_1016_j_ebiom_2023_104706
crossref_primary_10_1016_j_kint_2021_05_031
crossref_primary_10_21869_2223_1536_2024_14_1_104_113
crossref_primary_10_1007_s00261_021_03269_4
crossref_primary_10_1016_j_heliyon_2024_e28769
crossref_primary_10_1016_j_eclinm_2021_101201
crossref_primary_10_1007_s00261_020_02614_3
crossref_primary_10_3390_cancers12102778
crossref_primary_10_1111_jgh_15327
crossref_primary_10_1136_bmjopen_2023_081015
crossref_primary_10_1007_s00330_022_09137_z
crossref_primary_10_1007_s40620_022_01521_8
crossref_primary_10_1002_jmv_29380
crossref_primary_10_1016_j_dld_2022_12_015
crossref_primary_10_1016_j_ejrad_2020_108839
Cites_doi 10.1055/s-0043-103952
10.1038/nature14539
10.1148/radiol.2016160131
10.1148/radiol.2015151169
10.1613/jair.953
10.1148/radiol.2015150619
10.1002/hep.510240201
10.1002/hep.25936
10.1111/jgh.12220
10.1016/j.jhep.2014.04.044
10.1200/JCO.2015.65.9128
10.1109/ACCESS.2017.2689058
10.1016/j.ultrasmedbio.2017.05.002
10.3748/wjg.v20.i28.9578
10.1002/hep.29179
10.1007/s00330-014-3292-9
10.1016/j.jhep.2015.11.012
10.1158/1078-0432.CCR-15-2997
10.1109/TMI.2016.2535302
10.1053/jhep.2003.50346
10.1056/NEJM200102153440706
10.1109/TMI.2016.2528162
10.1148/radiol.14140839
10.1016/j.jhep.2010.05.035
10.1002/hep.21178
10.1016/j.compbiomed.2017.07.012
10.1148/radiol.14131164
10.1002/hep.29800
10.1148/radiol.14140828
10.1148/radiol.13130128
10.1016/j.jhep.2017.03.021
10.1016/j.cgh.2014.12.014
10.3390/s17010149
ContentType Journal Article
Copyright Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
2019 Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted.This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See:http://creativecommons.org/licenses/by-nc/4.0
Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted. 2019
Copyright_xml – notice: Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
– notice: 2019 Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted.This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See:http://creativecommons.org/licenses/by-nc/4.0
– notice: Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8AF
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BTHHO
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1136/gutjnl-2018-316204
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
BMJ Journals
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
BMJ Journals
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1468-3288
EndPage 741
ExternalDocumentID PMC6580779
29730602
10_1136_gutjnl_2018_316204
Genre Research Support, Non-U.S. Gov't
Multicenter Study
Journal Article
GeographicLocations China
Beijing China
GeographicLocations_xml – name: China
– name: Beijing China
GroupedDBID ---
.55
.GJ
.VT
08G
0R~
18M
29I
2WC
354
39C
3O-
4.4
40O
53G
5GY
5VS
7X7
7~S
88E
88I
8AF
8F7
8FE
8FH
8FI
8FJ
8R4
8R5
AAHLL
AAKAS
AAOJX
AAUVZ
AAWJN
AAYEP
AAYXX
ABAAH
ABKDF
ABMQD
ABOCM
ABTFR
ABUWG
ABVAJ
ACGFO
ACGFS
ACGOD
ACGTL
ACHTP
ACMFJ
ACOAB
ACOFX
ACQHZ
ACQSR
ACTZY
ADBBV
ADCEG
ADFRT
ADGHP
ADUGQ
ADZCM
AENEX
AERUA
AFKRA
AFWFF
AGQPQ
AHMBA
AHNKE
AHQMW
AI.
AJYBZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZQEC
BAWUL
BBNVY
BENPR
BHPHI
BLJBA
BOMFT
BPHCQ
BTFSW
BTHHO
BVXVI
C1A
C45
CAG
CCPQU
CITATION
COF
CS3
CXRWF
DIK
DU5
DWQXO
E3Z
EBS
EJD
F5P
FD8
FEDTE
FYUFA
GNUQQ
GX1
H13
HAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
IAO
IEA
IH2
IHR
INH
INR
IOF
ITC
J5H
KQ8
L7B
LK8
M1P
M2P
M7P
N9A
NTWIH
NXWIF
O9-
OK1
OVD
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
R53
RHI
RMJ
RPM
RV8
TEORI
TR2
UKHRP
UYXKK
V24
VH1
VM9
VVN
W8F
WH7
WOQ
X7M
YFH
YOC
YQY
ZGI
ZXP
ZY1
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c496t-55a047fbaeeee65bffa1d01247dec920805edbdff0a3396c98e359778296d74d3
IEDL.DBID 7X7
ISSN 0017-5749
1468-3288
IngestDate Thu Aug 21 14:06:47 EDT 2025
Wed Jul 30 10:55:14 EDT 2025
Fri Jul 25 09:18:18 EDT 2025
Thu Apr 03 07:01:00 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Tue Jul 01 02:49:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords hepatitis B
ultrasonography
cirrhosis
Language English
License Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-55a047fbaeeee65bffa1d01247dec920805edbdff0a3396c98e359778296d74d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6580779
PMID 29730602
PQID 2188849104
PQPubID 2041069
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6580779
proquest_miscellaneous_2035703362
proquest_journals_2188849104
pubmed_primary_29730602
crossref_citationtrail_10_1136_gutjnl_2018_316204
crossref_primary_10_1136_gutjnl_2018_316204
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: BMA House, Tavistock Square, London, WC1H 9JR
PublicationSeriesTitle Original article
PublicationTitle Gut
PublicationTitleAlternate Gut
PublicationYear 2019
Publisher BMJ Publishing Group LTD
BMJ Publishing Group
Publisher_xml – name: BMJ Publishing Group LTD
– name: BMJ Publishing Group
References Lu (2020050721341777000_68.4.729.8) 2015; 275
Meng (2020050721341777000_68.4.729.18) 2017; 5
Zeng (2020050721341777000_68.4.729.24) 2014; 24
Nitesh (2020050721341777000_68.4.729.28) 2002; 16
2020050721341777000_68.4.729.4
2020050721341777000_68.4.729.3
2020050721341777000_68.4.729.2
Liu (2020050721341777000_68.4.729.21) 2017; 17
Cassinotto (2020050721341777000_68.4.729.9) 2014; 61
2020050721341777000_68.4.729.5
Tajbakhsh (2020050721341777000_68.4.729.23) 2016; 35
Gatos (2020050721341777000_68.4.729.20) 2017; 43
Cui (2020050721341777000_68.4.729.1) 2013; 28 Suppl 1
2020050721341777000_68.4.729.27
Zhuang (2020050721341777000_68.4.729.12) 2017; 283
Barr (2020050721341777000_68.4.729.7) 2015; 276
2020050721341777000_68.4.729.25
2020050721341777000_68.4.729.26
Zheng (2020050721341777000_68.4.729.13) 2015; 275
Afdhal (2020050721341777000_68.4.729.30) 2015; 13
Samir (2020050721341777000_68.4.729.14) 2015; 274
2020050721341777000_68.4.729.22
Herrmann (2020050721341777000_68.4.729.31) 2018; 67
Huang (2020050721341777000_68.4.729.33) 2014; 20
2020050721341777000_68.4.729.29
Dietrich (2020050721341777000_68.4.729.6) 2017; 38
Chen (2020050721341777000_68.4.729.19) 2017; 89
2020050721341777000_68.4.729.16
2020050721341777000_68.4.729.17
2020050721341777000_68.4.729.15
2020050721341777000_68.4.729.10
2020050721341777000_68.4.729.32
2020050721341777000_68.4.729.11
References_xml – volume: 38
  start-page: e16
  year: 2017
  ident: 2020050721341777000_68.4.729.6
  article-title: EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version)
  publication-title: Ultraschall Med
  doi: 10.1055/s-0043-103952
– ident: 2020050721341777000_68.4.729.22
  doi: 10.1038/nature14539
– volume: 283
  start-page: 873
  year: 2017
  ident: 2020050721341777000_68.4.729.12
  article-title: Two-dimensional Shear-Wave Elastography Performance in the Noninvasive Evaluation of Liver Fibrosis in Patients with Chronic Hepatitis B: Comparison with Serum Fibrosis Indexes
  publication-title: Radiology
  doi: 10.1148/radiol.2016160131
– ident: 2020050721341777000_68.4.729.15
  doi: 10.1148/radiol.2015151169
– volume: 16
  start-page: 321
  year: 2002
  ident: 2020050721341777000_68.4.729.28
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– volume: 276
  start-page: 845
  year: 2015
  ident: 2020050721341777000_68.4.729.7
  article-title: Elastography Assessment of Liver Fibrosis: Society of Radiologists in Ultrasound Consensus Conference Statement
  publication-title: Radiology
  doi: 10.1148/radiol.2015150619
– ident: 2020050721341777000_68.4.729.25
  doi: 10.1002/hep.510240201
– ident: 2020050721341777000_68.4.729.10
  doi: 10.1002/hep.25936
– volume: 28 Suppl 1
  start-page: 7
  issue: Suppl 1
  year: 2013
  ident: 2020050721341777000_68.4.729.1
  article-title: Update on epidemiology of hepatitis B and C in China
  publication-title: J Gastroenterol Hepatol
  doi: 10.1111/jgh.12220
– volume: 61
  start-page: 550
  year: 2014
  ident: 2020050721341777000_68.4.729.9
  article-title: Non-invasive assessment of liver fibrosis with impulse elastography: comparison of Supersonic Shear Imaging with ARFI and FibroScan®
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2014.04.044
– ident: 2020050721341777000_68.4.729.16
  doi: 10.1200/JCO.2015.65.9128
– volume: 5
  start-page: 1
  year: 2017
  ident: 2020050721341777000_68.4.729.18
  article-title: Liver fibrosis classification based on transfer learning and FCNet for ultrasound images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2689058
– volume: 43
  start-page: 1797
  year: 2017
  ident: 2020050721341777000_68.4.729.20
  article-title: A Machine-Learning Algorithm Toward Color Analysis for Chronic Liver Disease Classification, Employing Ultrasound Shear Wave Elastography
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2017.05.002
– volume: 20
  start-page: 9578
  year: 2014
  ident: 2020050721341777000_68.4.729.33
  article-title: Study of detection times for liver stiffness evaluation by shear wave elastography
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v20.i28.9578
– volume: 67
  start-page: 260
  year: 2018
  ident: 2020050721341777000_68.4.729.31
  article-title: Assessment of biopsy-proven liver fibrosis by two-dimensional shear wave elastography: An individual patient data-based meta-analysis
  publication-title: Hepatology
  doi: 10.1002/hep.29179
– volume: 24
  start-page: 2572
  year: 2014
  ident: 2020050721341777000_68.4.729.24
  article-title: Diagnostic accuracy of two-dimensional shear wave elastography for the non-invasive staging of hepatic fibrosis in chronic hepatitis B: a cohort study with internal validation
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3292-9
– ident: 2020050721341777000_68.4.729.4
  doi: 10.1016/j.jhep.2015.11.012
– ident: 2020050721341777000_68.4.729.17
  doi: 10.1158/1078-0432.CCR-15-2997
– volume: 35
  start-page: 1299
  year: 2016
  ident: 2020050721341777000_68.4.729.23
  article-title: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535302
– ident: 2020050721341777000_68.4.729.26
  doi: 10.1053/jhep.2003.50346
– ident: 2020050721341777000_68.4.729.3
  doi: 10.1056/NEJM200102153440706
– ident: 2020050721341777000_68.4.729.29
  doi: 10.1109/TMI.2016.2528162
– volume: 274
  start-page: 888
  year: 2015
  ident: 2020050721341777000_68.4.729.14
  article-title: Shear-wave elastography for the estimation of liver fibrosis in chronic liver disease: determining accuracy and ideal site for measurement
  publication-title: Radiology
  doi: 10.1148/radiol.14140839
– ident: 2020050721341777000_68.4.729.32
  doi: 10.1016/j.jhep.2010.05.035
– ident: 2020050721341777000_68.4.729.27
  doi: 10.1002/hep.21178
– volume: 89
  start-page: 18
  year: 2017
  ident: 2020050721341777000_68.4.729.19
  article-title: Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.07.012
– volume: 275
  start-page: 880
  year: 2015
  ident: 2020050721341777000_68.4.729.8
  article-title: Hepatocellular carcinoma: stiffness value and ratio to discriminate malignant from benign focal liver lesions
  publication-title: Radiology
  doi: 10.1148/radiol.14131164
– ident: 2020050721341777000_68.4.729.2
  doi: 10.1002/hep.29800
– volume: 275
  start-page: 290
  year: 2015
  ident: 2020050721341777000_68.4.729.13
  article-title: Two-dimensional shear-wave elastography and conventional US: the optimal evaluation of liver fibrosis and cirrhosis
  publication-title: Radiology
  doi: 10.1148/radiol.14140828
– ident: 2020050721341777000_68.4.729.11
  doi: 10.1148/radiol.13130128
– ident: 2020050721341777000_68.4.729.5
  doi: 10.1016/j.jhep.2017.03.021
– volume: 13
  start-page: 772
  year: 2015
  ident: 2020050721341777000_68.4.729.30
  article-title: Accuracy of fibroscan, compared with histology, in analysis of liver fibrosis in patients with hepatitis B or C: a United States multicenter study
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2014.12.014
– volume: 17
  start-page: 149
  year: 2017
  ident: 2020050721341777000_68.4.729.21
  article-title: Learning to Diagnose Cirrhosis with Liver Capsule Guided Ultrasound Image Classification
  publication-title: Sensors
  doi: 10.3390/s17010149
SSID ssj0008891
Score 2.6846821
Snippet We aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE adopts the...
ObjectiveWe aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 729
SubjectTerms Accuracy
Adult
Aspartate transaminase
Automation
Bile
Biomarkers
Biopsy
China
Cirrhosis
Classification
Deep Learning
Diagnosis, Differential
Elasticity Imaging Techniques - methods
Female
Fibrosis
Hepatitis
Hepatitis B
Hepatitis B, Chronic - complications
Hepatology
Histology
Humans
Interferon
Laboratories
Liver
Liver cirrhosis
Liver Cirrhosis - diagnostic imaging
Liver Cirrhosis - pathology
Liver diseases
Male
Methods
Neural networks
Patients
Prospective Studies
Quantitative analysis
Radiomics
Studies
Surveillance
Transaminase
Ultrasonic imaging
Title Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study
URI https://www.ncbi.nlm.nih.gov/pubmed/29730602
https://www.proquest.com/docview/2188849104
https://www.proquest.com/docview/2035703362
https://pubmed.ncbi.nlm.nih.gov/PMC6580779
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgkxAviN8UxnRIvKFoSePEMS-IwaYJaROamNS3yLEvW1CVFJKC-MP4_7hznI6CtD5FtRM3vbPvzv7uOyFeG1lkxtYYOYs2InucRSZJMTImqQyFG7HxWfynZ_nJhfy0yBZhw60PsMppTfQLtess75EfkCkqCknGTb5bfYu4ahSfroYSGrfFLlOXsVarxSbgYgRPMq3EmZJ6SppJ84PL9fC1XZKOJLw9yKTs24bpP2_zX9DkX1bo-L64F9xHeD_K-4G4he1Dcec0HJA_Er8_Iq4glIK4hHPjGk477qGroefi1fDT_EBA8pmHQFYNDOFgwBD9x8tf0PhdBnTgRhAeDQSr6-wCoAsw_qSYB1gyrANqirm7vumhacGObLtwhYzVHujLw7dggB46JXWCBzH6F0Tw9LaPxcXx0ZcPJ1GozBBZqfMhyjITS1VXBumTZ1Vdm8SRqZPKodVz8kIzdJWr69ikqc6tLjBlortirnOnpEufiJ22a_GZgCJBNHNZWYr9ZK1clSijUc8VPSyNMZmJZBJLaQNtOVfPWJY-fEnzchRlyaIsR1HOxJvNPauRtOPG3nuTtMswgfvyWt1m4tWmmaYen6eYFrs19YlT5i8jF2Amno7KsRmOS4LFeUwtakttNh2Y1nu7pW2uPL03-YSxUvr5zT_rhbhL76BHENGe2Bm-r_El-UdDte8nwb7YPTw6-3z-B-vlGEI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4lm2FBgkOKGoeThxgoQQUKot7faAWmlvwbEnbdAquzRZqv4pbvw_ZvIqC1Jv3dNq7bUTzdgzY3_zjRCvtIxDbXJ0rEHjkD0OHe0F6GjtZZrCDVc3WfyTw2h8LL9Mw-ma-NXnwjCsst8Tm43azg2fkW-TKYpjScZNvl_8cLhqFN-u9iU0WrXYx4tzCtmqd3s7JN_Xvr_7-ejT2OmqCjhGJlHthKF2pcozjfSJwizPtWdpm5bKokl88qBCtJnNc1cHQRKZJMaASdpiP4mskjagcW-Im2R4XQ721HQI8Bgx5PU7f6hk0ifpBNH2ybL-Xs5IJz0-jmQS-FVD-J93-y9I8y-rt3tP3O3cVfjQ6td9sYblA3Fr0l3IPxS_dxAX0JWeOIGv2hac5lzBPIeKi2XDuf6JgOSj1x05NjBkhAFKJNPZBRTNqQZasC3ojyaCxWU2A9AX0M3NNE8wYxgJ5BTjz6uigqIE07L7wikyNrymHz--BQ00aJ9ECg1osnlBhIZO95E4vhaZPRbr5bzEJwJiD1H7MjMUa8pc2cxTOsHEVzRY4KI3El4vltR0NOlcrWOWNuFSEKWtKFMWZdqKciTeDP9ZtCQhV_be6qWddhtGlV6q90i8HJppqfP9jS5xvqQ-bsB8aeRyjMRGqxzDdFyCzI1calErajN0YBrx1ZayOG3oxMkHdZVKNq9-rBfi9vhocpAe7B3uPxV36H2SFsC0JdbrsyU-I9-szp43CwLEt-tegX8ABK1UnQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVKq4IMqrgQKDBCdkxY-110ZCiJJGLaVRVVGpN7P2jlujyA7YoeoP48Kv64wfKQGpt-YUZTe7tmZ2Z2b3m2-EeK1l6Os0Q8ukmFpkj31LOx5aWjuJpnDD1k0W_-E02DuRn0_90zXxp8-FYVhlvyc2G7UpUz4jH5EpCkNJxk2Osg4WcTSefJj_sLiCFN-09uU0WhU5wMsLCt-q9_tjkvUb153sfv20Z3UVBqxURkFt-b62pcoSjfQJ_CTLtGNoy5bKYBq55E35aBKTZbb2vChIoxA9JmwL3SgwShqPxr0j1hVHRQOxvrM7PTpe2oGwr9dHdsBXMupTdrxgdLaovxcz0lCHDyeZEn7VLP7n6_4L2fzLBk7ui3ud8wofW23bFGtYPBAbh931_EPxe4w4h64QxRkca5Nz0nMFZQYVl86GC_0LAcljrzuqbGAACcOVSMKzS8ibMw40YFoIIE0E8-vcBqAvoJt7ap5gxqASyCjiL6u8gryAtOX6hXNkpHhNP-68Aw00aJ9SCg2EsnlBhIZc95E4uRWpPRaDoixwS0DoIGpXJilFnjJTJnGUjjByFQ3m2egMhdOLJU470nSu3TGLm-DJC-JWlDGLMm5FORRvl_-Zt5QhN_be7qUdd9tHFV8r-1C8WjbTwufbHF1guaA-tsfsaeSADMWTVjmW03FBMjuwqUWtqM2yA5OKr7YU-XlDLk4eqa1U9PTmx3opNmj1xV_2pwfPxF16nahFM22LQf1zgc_JUauTF92KAPHtthfhFTD9Wjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+Radiomics+of+shear+wave+elastography+significantly+improved+diagnostic+performance+for+assessing+liver+fibrosis+in+chronic+hepatitis+B%3A+a+prospective+multicentre+study&rft.jtitle=Gut&rft.au=Wang%2C+Kun&rft.au=Lu%2C+Xue&rft.au=Zhou%2C+Hui&rft.au=Gao%2C+Yongyan&rft.date=2019-04-01&rft.pub=BMJ+Publishing+Group+LTD&rft.issn=0017-5749&rft.eissn=1468-3288&rft.volume=68&rft.issue=4&rft.spage=729&rft_id=info:doi/10.1136%2Fgutjnl-2018-316204&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-5749&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-5749&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-5749&client=summon