Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study
We aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE adopts the radiomic strategy for quantitative analysis of the heterogeneity in two-dimensional shear wave elastography (2D-SWE) images. A prospective m...
Saved in:
Published in | Gut Vol. 68; no. 4; pp. 729 - 741 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BMJ Publishing Group LTD
01.04.2019
BMJ Publishing Group |
Series | Original article |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE adopts the radiomic strategy for quantitative analysis of the heterogeneity in two-dimensional shear wave elastography (2D-SWE) images.
A prospective multicentre study was conducted to assess its accuracy in patients with chronic hepatitis B, in comparison with 2D-SWE, aspartate transaminase-to-platelet ratio index and fibrosis index based on four factors, by using liver biopsy as the reference standard. Its accuracy and robustness were also investigated by applying different number of acquisitions and different training cohorts, respectively. Data of 654 potentially eligible patients were prospectively enrolled from 12 hospitals, and finally 398 patients with 1990 images were included. Analysis of receiver operating characteristic (ROC) curves was performed to calculate the optimal area under the ROC curve (AUC) for cirrhosis (F4), advanced fibrosis (≥F3) and significance fibrosis (≥F2).
AUCs of DLRE were 0.97 for F4 (95% CI 0.94 to 0.99), 0.98 for ≥F3 (95% CI 0.96 to 1.00) and 0.85 (95% CI 0.81 to 0.89) for ≥F2, which were significantly better than other methods except 2D-SWE in ≥F2. Its diagnostic accuracy improved as more images (especially ≥3 images) were acquired from each individual. No significant variation of the performance was found if different training cohorts were applied.
DLRE shows the best overall performance in predicting liver fibrosis stages compared with 2D-SWE and biomarkers. It is valuable and practical for the non-invasive accurate diagnosis of liver fibrosis stages in HBV-infected patients.
NCT02313649; Post-results. |
---|---|
AbstractList | We aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE adopts the radiomic strategy for quantitative analysis of the heterogeneity in two-dimensional shear wave elastography (2D-SWE) images.
A prospective multicentre study was conducted to assess its accuracy in patients with chronic hepatitis B, in comparison with 2D-SWE, aspartate transaminase-to-platelet ratio index and fibrosis index based on four factors, by using liver biopsy as the reference standard. Its accuracy and robustness were also investigated by applying different number of acquisitions and different training cohorts, respectively. Data of 654 potentially eligible patients were prospectively enrolled from 12 hospitals, and finally 398 patients with 1990 images were included. Analysis of receiver operating characteristic (ROC) curves was performed to calculate the optimal area under the ROC curve (AUC) for cirrhosis (F4), advanced fibrosis (≥F3) and significance fibrosis (≥F2).
AUCs of DLRE were 0.97 for F4 (95% CI 0.94 to 0.99), 0.98 for ≥F3 (95% CI 0.96 to 1.00) and 0.85 (95% CI 0.81 to 0.89) for ≥F2, which were significantly better than other methods except 2D-SWE in ≥F2. Its diagnostic accuracy improved as more images (especially ≥3 images) were acquired from each individual. No significant variation of the performance was found if different training cohorts were applied.
DLRE shows the best overall performance in predicting liver fibrosis stages compared with 2D-SWE and biomarkers. It is valuable and practical for the non-invasive accurate diagnosis of liver fibrosis stages in HBV-infected patients.
NCT02313649; Post-results. We aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE adopts the radiomic strategy for quantitative analysis of the heterogeneity in two-dimensional shear wave elastography (2D-SWE) images.OBJECTIVEWe aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE adopts the radiomic strategy for quantitative analysis of the heterogeneity in two-dimensional shear wave elastography (2D-SWE) images.A prospective multicentre study was conducted to assess its accuracy in patients with chronic hepatitis B, in comparison with 2D-SWE, aspartate transaminase-to-platelet ratio index and fibrosis index based on four factors, by using liver biopsy as the reference standard. Its accuracy and robustness were also investigated by applying different number of acquisitions and different training cohorts, respectively. Data of 654 potentially eligible patients were prospectively enrolled from 12 hospitals, and finally 398 patients with 1990 images were included. Analysis of receiver operating characteristic (ROC) curves was performed to calculate the optimal area under the ROC curve (AUC) for cirrhosis (F4), advanced fibrosis (≥F3) and significance fibrosis (≥F2).DESIGNA prospective multicentre study was conducted to assess its accuracy in patients with chronic hepatitis B, in comparison with 2D-SWE, aspartate transaminase-to-platelet ratio index and fibrosis index based on four factors, by using liver biopsy as the reference standard. Its accuracy and robustness were also investigated by applying different number of acquisitions and different training cohorts, respectively. Data of 654 potentially eligible patients were prospectively enrolled from 12 hospitals, and finally 398 patients with 1990 images were included. Analysis of receiver operating characteristic (ROC) curves was performed to calculate the optimal area under the ROC curve (AUC) for cirrhosis (F4), advanced fibrosis (≥F3) and significance fibrosis (≥F2).AUCs of DLRE were 0.97 for F4 (95% CI 0.94 to 0.99), 0.98 for ≥F3 (95% CI 0.96 to 1.00) and 0.85 (95% CI 0.81 to 0.89) for ≥F2, which were significantly better than other methods except 2D-SWE in ≥F2. Its diagnostic accuracy improved as more images (especially ≥3 images) were acquired from each individual. No significant variation of the performance was found if different training cohorts were applied.RESULTSAUCs of DLRE were 0.97 for F4 (95% CI 0.94 to 0.99), 0.98 for ≥F3 (95% CI 0.96 to 1.00) and 0.85 (95% CI 0.81 to 0.89) for ≥F2, which were significantly better than other methods except 2D-SWE in ≥F2. Its diagnostic accuracy improved as more images (especially ≥3 images) were acquired from each individual. No significant variation of the performance was found if different training cohorts were applied.DLRE shows the best overall performance in predicting liver fibrosis stages compared with 2D-SWE and biomarkers. It is valuable and practical for the non-invasive accurate diagnosis of liver fibrosis stages in HBV-infected patients.CONCLUSIONDLRE shows the best overall performance in predicting liver fibrosis stages compared with 2D-SWE and biomarkers. It is valuable and practical for the non-invasive accurate diagnosis of liver fibrosis stages in HBV-infected patients.NCT02313649; Post-results.TRIAL REGISTRATION NUMBERNCT02313649; Post-results. ObjectiveWe aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE adopts the radiomic strategy for quantitative analysis of the heterogeneity in two-dimensional shear wave elastography (2D-SWE) images.DesignA prospective multicentre study was conducted to assess its accuracy in patients with chronic hepatitis B, in comparison with 2D-SWE, aspartate transaminase-to-platelet ratio index and fibrosis index based on four factors, by using liver biopsy as the reference standard. Its accuracy and robustness were also investigated by applying different number of acquisitions and different training cohorts, respectively. Data of 654 potentially eligible patients were prospectively enrolled from 12 hospitals, and finally 398 patients with 1990 images were included. Analysis of receiver operating characteristic (ROC) curves was performed to calculate the optimal area under the ROC curve (AUC) for cirrhosis (F4), advanced fibrosis (≥F3) and significance fibrosis (≥F2).ResultsAUCs of DLRE were 0.97 for F4 (95% CI 0.94 to 0.99), 0.98 for ≥F3 (95% CI 0.96 to 1.00) and 0.85 (95% CI 0.81 to 0.89) for ≥F2, which were significantly better than other methods except 2D-SWE in ≥F2. Its diagnostic accuracy improved as more images (especially ≥3 images) were acquired from each individual. No significant variation of the performance was found if different training cohorts were applied.ConclusionDLRE shows the best overall performance in predicting liver fibrosis stages compared with 2D-SWE and biomarkers. It is valuable and practical for the non-invasive accurate diagnosis of liver fibrosis stages in HBV-infected patients.Trial registration numberNCT02313649; Post-results. |
Author | Huang, Liping Jiang, Tian’an Ai, Hong Zhou, Hui Zheng, Jian Yin, Li-ping Wang, Kun Wu, Changjun Tian, Jie Gao, Yongyan Liu, Changzhu Meng, Fankun Liang, Ping Tong, Minghui Lu, Xue Zheng, Rongqin Xie, Xiao-Yan Lu, Yongping |
AuthorAffiliation | 11 Function Diagnosis Center , Beijing Youan Hospital, Affiliated to Capital Medical University , Beijing , China 13 Ultrasound Department , The First Affiliated Hospital of Xi’an Jiaotong University , Xi’an , China 10 Department of Ultrasonography , The First Affiliated Hospital, Medical College of Zhejiang University , Hangzhou , China 8 Ultrasound Department , Guangzhou Eighth People’s Hospital , Guangzhou , China 4 Department of Interventional Ultrasound , Chinese PLA General Hospital , Beijing , China 12 Ultrasound Department , The Second People’s Hospital of Yunnan Province , Kunming , China 3 Department of the Artificial Intelligence Technology , University of Chinese Academy of Sciences , Beijing , China 14 Department of Medical Ultrasonics , Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China 9 Department of Ultrasound , Shengjing Hospital of China Medical University , Shenyang , China 15 Department of Ultra |
AuthorAffiliation_xml | – name: 6 Functional Examination Department of Children’s Hospital , Lanzhou University Second Hospital , Lanzhou , China – name: 4 Department of Interventional Ultrasound , Chinese PLA General Hospital , Beijing , China – name: 7 Ultrasound Department , The First Affiliated Hospital of Harbin Medical University , Harbin , China – name: 9 Department of Ultrasound , Shengjing Hospital of China Medical University , Shenyang , China – name: 11 Function Diagnosis Center , Beijing Youan Hospital, Affiliated to Capital Medical University , Beijing , China – name: 1 Guangdong Key Laboratory of Liver Disease Research, Department of Medical Ultrasound , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China – name: 15 Department of Ultrasound , Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of TCM , Nanjing , China – name: 13 Ultrasound Department , The First Affiliated Hospital of Xi’an Jiaotong University , Xi’an , China – name: 14 Department of Medical Ultrasonics , Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China – name: 12 Ultrasound Department , The Second People’s Hospital of Yunnan Province , Kunming , China – name: 5 Department of Medical Ultrasonics , Third Hospital of Longgang , Shenzhen , China – name: 8 Ultrasound Department , Guangzhou Eighth People’s Hospital , Guangzhou , China – name: 10 Department of Ultrasonography , The First Affiliated Hospital, Medical College of Zhejiang University , Hangzhou , China – name: 2 CAS Key Laboratory of Molecular Imaging, Institute of Automation , Chinese Academy of Sciences , Beijing , China – name: 3 Department of the Artificial Intelligence Technology , University of Chinese Academy of Sciences , Beijing , China |
Author_xml | – sequence: 1 givenname: Kun surname: Wang fullname: Wang, Kun – sequence: 2 givenname: Xue surname: Lu fullname: Lu, Xue – sequence: 3 givenname: Hui surname: Zhou fullname: Zhou, Hui – sequence: 4 givenname: Yongyan surname: Gao fullname: Gao, Yongyan – sequence: 5 givenname: Jian surname: Zheng fullname: Zheng, Jian – sequence: 6 givenname: Minghui surname: Tong fullname: Tong, Minghui – sequence: 7 givenname: Changjun surname: Wu fullname: Wu, Changjun – sequence: 8 givenname: Changzhu surname: Liu fullname: Liu, Changzhu – sequence: 9 givenname: Liping surname: Huang fullname: Huang, Liping – sequence: 10 givenname: Tian’an surname: Jiang fullname: Jiang, Tian’an – sequence: 11 givenname: Fankun surname: Meng fullname: Meng, Fankun – sequence: 12 givenname: Yongping surname: Lu fullname: Lu, Yongping – sequence: 13 givenname: Hong surname: Ai fullname: Ai, Hong – sequence: 14 givenname: Xiao-Yan surname: Xie fullname: Xie, Xiao-Yan – sequence: 15 givenname: Li-ping surname: Yin fullname: Yin, Li-ping – sequence: 16 givenname: Ping surname: Liang fullname: Liang, Ping – sequence: 17 givenname: Jie surname: Tian fullname: Tian, Jie – sequence: 18 givenname: Rongqin surname: Zheng fullname: Zheng, Rongqin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29730602$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UsuOFCEUrZgxTs_oD7gwJG7clAL1AFyY6PhMJjExuiYU3KqmQ0EJVJv-MP9P2p4xOgvZAJdzDofLuajOfPBQVY8Jfk5I07-Y1rzzrqaY8LohPcXtvWpD2r7sKOdn1QZjwuqOteK8ukhphzHmXJAH1TkVrME9ppvq51uABTlQ0Vs_oS_K2DBbnVAYUdqWMvqh9oDAqZTDFNWyPaBkJ29Hq5XP7oDsvMSwB4OMVZMPKVuNFohjiLPyGlBZIJUSpHS8wNk9RDTaIYZkE7Ie6W0MvnC2sKhscym-eYkUKqJpAZ0LHs2rK6rgcwSU8moOD6v7o3IJHt3Ml9W39---Xn2srz9_-HT1-rrWrehz3XUKt2wcFJTRd8M4KmIwoS0zoAXFHHdgBjOOWDWN6LXg0HSCMU5Fb1hrmsvq1Ul3WYcZzG8Lyskl2lnFgwzKyn9PvN3KKexl33HMmCgCz24EYvi-QspytkmDc8pDWJOkuOkYbpqeFujTO9BdWKMvz5OUcM5bQXBbUE_-dvTHyu2PFgA_AXRpYIowSm1zaWw4GrROEiyP4ZGn8MhjeOQpPIVK71Bv1f9D-gXKtdBt |
CitedBy_id | crossref_primary_10_1016_j_eclinm_2024_102808 crossref_primary_10_3389_fonc_2020_01736 crossref_primary_10_1007_s11605_023_05635_7 crossref_primary_10_1186_s42492_023_00147_2 crossref_primary_10_1016_j_ultrasmedbio_2019_11_001 crossref_primary_10_1364_BOE_10_004999 crossref_primary_10_1007_s00261_023_03840_1 crossref_primary_10_3233_CBM_230219 crossref_primary_10_1016_j_ultrasmedbio_2023_08_007 crossref_primary_10_1109_JBHI_2020_3043236 crossref_primary_10_3389_fonc_2022_965773 crossref_primary_10_1002_VIW_20240010 crossref_primary_10_1007_s11154_021_09681_x crossref_primary_10_3348_kjr_2019_0752 crossref_primary_10_1038_s41416_022_02134_5 crossref_primary_10_1053_j_gastro_2019_08_058 crossref_primary_10_1109_JBHI_2019_2923773 crossref_primary_10_1002_mp_15856 crossref_primary_10_1016_j_jceh_2022_06_009 crossref_primary_10_2169_naika_111_22 crossref_primary_10_3390_s21062202 crossref_primary_10_3390_cancers16061130 crossref_primary_10_1016_j_imed_2024_09_008 crossref_primary_10_11569_wcjd_v28_i12_460 crossref_primary_10_1016_j_dld_2021_06_011 crossref_primary_10_1186_s41747_021_00250_0 crossref_primary_10_1002_jum_16006 crossref_primary_10_1016_j_jacr_2019_06_004 crossref_primary_10_1159_000505694 crossref_primary_10_1155_2021_7538984 crossref_primary_10_2147_JMDH_S439629 crossref_primary_10_3389_fendo_2023_1144812 crossref_primary_10_1007_s12072_020_10017_1 crossref_primary_10_1186_s12916_022_02469_z crossref_primary_10_35712_aig_v3_i2_46 crossref_primary_10_1007_s11604_024_01702_4 crossref_primary_10_1016_j_crad_2022_08_149 crossref_primary_10_1080_17474124_2020_1779589 crossref_primary_10_3389_fonc_2024_1298516 crossref_primary_10_1002_eng2_13100 crossref_primary_10_1016_j_eml_2019_01_009 crossref_primary_10_1016_j_ejrad_2024_111347 crossref_primary_10_14366_usg_20085 crossref_primary_10_1016_j_eng_2023_06_013 crossref_primary_10_3389_fonc_2021_672055 crossref_primary_10_1111_jgh_15385 crossref_primary_10_1016_j_iliver_2023_02_003 crossref_primary_10_1007_s11255_025_04366_9 crossref_primary_10_1186_s43556_023_00133_3 crossref_primary_10_3389_fonc_2020_01719 crossref_primary_10_1007_s00330_021_08198_w crossref_primary_10_1097_JS9_0000000000000995 crossref_primary_10_1016_j_ejrad_2020_108991 crossref_primary_10_1002_poh2_38 crossref_primary_10_1016_j_compmedimag_2023_102290 crossref_primary_10_1016_j_ejrad_2020_108992 crossref_primary_10_1371_journal_pone_0262291 crossref_primary_10_2139_ssrn_4128904 crossref_primary_10_3390_applbiosci3010002 crossref_primary_10_1016_S2468_1253_18_30232_2 crossref_primary_10_1166_jmihi_2021_3564 crossref_primary_10_1002_hep_32779 crossref_primary_10_1016_j_clinimag_2025_110442 crossref_primary_10_2196_28114 crossref_primary_10_1016_j_eclinm_2024_102718 crossref_primary_10_1016_j_ultrasmedbio_2024_03_013 crossref_primary_10_1111_den_13880 crossref_primary_10_3390_bioengineering11121243 crossref_primary_10_3389_fonc_2022_873524 crossref_primary_10_1001_jamanetworkopen_2022_17854 crossref_primary_10_1111_ajco_13397 crossref_primary_10_3390_bioengineering11030252 crossref_primary_10_1097_RCT_0000000000001169 crossref_primary_10_3390_v13112216 crossref_primary_10_1016_j_cgh_2020_03_034 crossref_primary_10_1016_j_displa_2024_102703 crossref_primary_10_1097_CM9_0000000000001136 crossref_primary_10_1002_jum_15819 crossref_primary_10_1007_s11042_023_14876_2 crossref_primary_10_1038_s41598_024_84338_8 crossref_primary_10_1007_s00330_023_09990_6 crossref_primary_10_1002_ajum_12244 crossref_primary_10_1007_s00330_019_06595_w crossref_primary_10_3748_wjg_v29_i9_1427 crossref_primary_10_1038_s41467_020_15027_z crossref_primary_10_1186_s12876_020_01585_5 crossref_primary_10_1007_s12072_023_10630_w crossref_primary_10_3390_cancers13123077 crossref_primary_10_2147_JHC_S313879 crossref_primary_10_3390_diagnostics11020292 crossref_primary_10_4103_jcrt_jcrt_1394_22 crossref_primary_10_3389_fonc_2021_721460 crossref_primary_10_3389_fonc_2021_616027 crossref_primary_10_1109_TCBB_2019_2963867 crossref_primary_10_1002_mp_13521 crossref_primary_10_3350_cmh_2024_0246 crossref_primary_10_1186_s12916_022_02258_8 crossref_primary_10_3389_fimag_2025_1436275 crossref_primary_10_1007_s13755_023_00217_y crossref_primary_10_1111_jvh_13578 crossref_primary_10_7717_peerj_18780 crossref_primary_10_1109_ACCESS_2023_3289403 crossref_primary_10_3389_fonc_2023_1197447 crossref_primary_10_12677_aam_2025_141035 crossref_primary_10_1136_bmjopen_2020_047528 crossref_primary_10_1186_s12957_021_02459_0 crossref_primary_10_3390_biom11020307 crossref_primary_10_1038_s41523_024_00628_4 crossref_primary_10_1007_s00330_024_10796_3 crossref_primary_10_1111_liv_14999 crossref_primary_10_1177_01617346231220000 crossref_primary_10_1007_s00330_022_08799_z crossref_primary_10_1109_JBHI_2022_3216031 crossref_primary_10_1088_1361_6560_abf2f8 crossref_primary_10_1016_j_jmps_2020_103896 crossref_primary_10_1093_gastro_goz024 crossref_primary_10_1111_liv_15046 crossref_primary_10_1155_2021_5530004 crossref_primary_10_1007_s40336_021_00474_5 crossref_primary_10_2147_JHC_S319639 crossref_primary_10_3748_wjg_v28_i38_5530 crossref_primary_10_1016_j_tige_2021_09_006 crossref_primary_10_1016_j_compbiomed_2021_104382 crossref_primary_10_35712_aig_v2_i5_133 crossref_primary_10_1002_cld_1071 crossref_primary_10_1007_s13246_023_01358_w crossref_primary_10_1016_j_acra_2020_05_040 crossref_primary_10_1111_liv_14966 crossref_primary_10_3390_biology13020098 crossref_primary_10_1136_gutjnl_2020_323419 crossref_primary_10_3389_fonc_2024_1332188 crossref_primary_10_1002_jmri_28787 crossref_primary_10_3389_fonc_2022_763842 crossref_primary_10_1016_j_ultrasmedbio_2024_12_009 crossref_primary_10_22328_2079_5343_2023_14_2_83_92 crossref_primary_10_1007_s11901_018_0439_1 crossref_primary_10_1007_s12072_019_09937_4 crossref_primary_10_2957_kanzo_61_623 crossref_primary_10_1007_s00405_023_08362_6 crossref_primary_10_1111_1759_7714_14924 crossref_primary_10_1007_s00330_025_11368_9 crossref_primary_10_1055_s_0040_1705097 crossref_primary_10_1007_s12072_022_10303_0 crossref_primary_10_1109_TMI_2022_3175461 crossref_primary_10_1016_j_ejrad_2021_109717 crossref_primary_10_1038_s41598_024_83347_x crossref_primary_10_1097_HEP_0000000000000566 crossref_primary_10_3748_wjg_v28_i46_6512 crossref_primary_10_3389_fmed_2021_745931 crossref_primary_10_3389_fendo_2024_1323452 crossref_primary_10_1093_bib_bbac432 crossref_primary_10_1016_j_acra_2024_07_029 crossref_primary_10_1007_s00330_021_07934_6 crossref_primary_10_1007_s00330_023_09613_0 crossref_primary_10_1002_mp_16127 crossref_primary_10_1007_s12262_022_03506_0 crossref_primary_10_3390_cancers13102368 crossref_primary_10_3390_ani13223446 crossref_primary_10_3389_fonc_2021_544979 crossref_primary_10_1016_j_csbj_2023_05_029 crossref_primary_10_1183_13993003_00986_2018 crossref_primary_10_1109_JBHI_2024_3515995 crossref_primary_10_1016_j_rbmo_2023_03_015 crossref_primary_10_1097_DCR_0000000000003468 crossref_primary_10_1016_j_mric_2021_05_011 crossref_primary_10_1002_adma_202201608 crossref_primary_10_1016_j_ultrasmedbio_2023_03_024 crossref_primary_10_1007_s00261_024_04225_8 crossref_primary_10_1038_s41467_021_21466_z crossref_primary_10_3748_wjg_v28_i18_2021 crossref_primary_10_1148_ryai_220185 crossref_primary_10_1016_j_ejrad_2024_111749 crossref_primary_10_1186_s12938_021_00927_y crossref_primary_10_3748_wjg_v27_i16_1664 crossref_primary_10_2174_0929867328666210405114938 crossref_primary_10_3390_diagnostics15030303 crossref_primary_10_1007_s00261_024_04202_1 crossref_primary_10_1088_1757_899X_1022_1_012029 crossref_primary_10_3389_fonc_2019_01203 crossref_primary_10_1002_ird3_24 crossref_primary_10_3390_app13085080 crossref_primary_10_1080_24699322_2022_2063760 crossref_primary_10_1007_s00261_020_02619_y crossref_primary_10_3390_s20113085 crossref_primary_10_1016_j_compmedimag_2023_102239 crossref_primary_10_1109_ACCESS_2019_2940645 crossref_primary_10_1007_s00330_023_09568_2 crossref_primary_10_1002_jum_16419 crossref_primary_10_1016_j_jhepr_2022_100443 crossref_primary_10_37015_AUDT_2023_230049 crossref_primary_10_12998_wjcc_v7_i15_2022 crossref_primary_10_1016_j_ultrasmedbio_2019_05_028 crossref_primary_10_1016_j_acra_2023_11_027 crossref_primary_10_3389_fnagi_2021_764872 crossref_primary_10_3389_fonc_2020_594580 crossref_primary_10_1186_s13014_022_02154_8 crossref_primary_10_1007_s12325_024_02781_5 crossref_primary_10_1007_s00330_021_08293_y crossref_primary_10_1007_s00261_020_02717_x crossref_primary_10_1016_j_cmpb_2023_107436 crossref_primary_10_1111_liv_14555 crossref_primary_10_1145_3453657 crossref_primary_10_1007_s10396_021_01153_8 crossref_primary_10_1007_s00330_024_10985_0 crossref_primary_10_1055_s_0041_1731706 crossref_primary_10_3389_fonc_2021_565755 crossref_primary_10_3748_wjg_v28_i27_3398 crossref_primary_10_1088_1361_6560_ad4c4e crossref_primary_10_1080_17474124_2022_2104711 crossref_primary_10_1016_j_ctro_2022_11_011 crossref_primary_10_3748_wjg_v25_i6_672 crossref_primary_10_1002_jbio_201900216 crossref_primary_10_37349_etat_2023_00158 crossref_primary_10_1016_j_aohep_2024_101754 crossref_primary_10_1097_CM9_0000000000001536 crossref_primary_10_3390_s23052520 crossref_primary_10_1016_j_ultrasmedbio_2020_05_016 crossref_primary_10_14309_ctg_0000000000000070 crossref_primary_10_1007_s12072_021_10294_4 crossref_primary_10_1002_hep_31603 crossref_primary_10_1016_j_wneu_2021_11_038 crossref_primary_10_1080_0886022X_2023_2202755 crossref_primary_10_1016_j_heliyon_2024_e35115 crossref_primary_10_1016_j_iliver_2022_11_001 crossref_primary_10_3350_cmh_2024_0506 crossref_primary_10_1080_17474124_2021_1880894 crossref_primary_10_1016_j_heliyon_2024_e34150 crossref_primary_10_1016_j_acra_2020_08_029 crossref_primary_10_1136_neurintsurg_2020_016808 crossref_primary_10_3390_diagnostics12020256 crossref_primary_10_1186_s12957_023_03140_4 crossref_primary_10_1016_j_knosys_2020_106445 crossref_primary_10_1109_TMI_2023_3338178 crossref_primary_10_1089_thy_2020_0305 crossref_primary_10_3389_fonc_2020_598721 crossref_primary_10_1002_mp_15901 crossref_primary_10_1111_jgh_15409 crossref_primary_10_1186_s12916_023_03099_9 crossref_primary_10_14366_usg_20102 crossref_primary_10_1007_s00330_019_06360_z crossref_primary_10_1016_j_acra_2024_09_067 crossref_primary_10_2139_ssrn_3900665 crossref_primary_10_1002_jcu_23577 crossref_primary_10_1016_j_acra_2024_09_065 crossref_primary_10_1016_j_ejrad_2019_03_010 crossref_primary_10_3748_wjg_v27_i40_6794 crossref_primary_10_1186_s12880_024_01272_x crossref_primary_10_3748_wjg_v27_i34_5715 crossref_primary_10_1016_j_ultrasmedbio_2024_10_016 crossref_primary_10_1186_s12880_023_00977_9 crossref_primary_10_3389_fonc_2022_1012724 crossref_primary_10_1016_j_medengphy_2023_104090 crossref_primary_10_1053_j_gastro_2022_04_025 crossref_primary_10_1109_ACCESS_2021_3071466 crossref_primary_10_23736_S2723_9284_23_00252_0 crossref_primary_10_1016_j_compbiomed_2020_103960 crossref_primary_10_3389_fonc_2020_00680 crossref_primary_10_14366_usg_22110 crossref_primary_10_35712_aig_v1_i1_5 crossref_primary_10_1016_j_xcrm_2022_100563 crossref_primary_10_1111_jog_15788 crossref_primary_10_1002_jmri_27391 crossref_primary_10_1038_s41598_024_75993_y crossref_primary_10_3389_fonc_2022_800787 crossref_primary_10_1007_s11548_022_02573_8 crossref_primary_10_3390_biomedinformatics3010002 crossref_primary_10_1016_j_ajg_2021_04_003 crossref_primary_10_1007_s12072_021_10229_z crossref_primary_10_1093_gastro_goaa011 crossref_primary_10_1097_CLD_0000000000000164 crossref_primary_10_1002_jum_15196 crossref_primary_10_1002_mp_14563 crossref_primary_10_4240_wjgs_v16_i8_2494 crossref_primary_10_1080_17474124_2019_1579641 crossref_primary_10_1002_jum_15070 crossref_primary_10_3389_fonc_2021_631813 crossref_primary_10_1016_j_ejrad_2019_108658 crossref_primary_10_1016_j_placenta_2022_11_016 crossref_primary_10_1007_s00259_019_04372_x crossref_primary_10_1109_ACCESS_2020_3005829 crossref_primary_10_1016_j_gastha_2022_02_025 crossref_primary_10_1097_SCS_0000000000005765 crossref_primary_10_3348_kjr_2020_0492 crossref_primary_10_1259_dmfr_20230051 crossref_primary_10_3389_fbioe_2022_872044 crossref_primary_10_1007_s11548_020_02206_y crossref_primary_10_1109_TBME_2020_2971065 crossref_primary_10_1007_s00330_019_06553_6 crossref_primary_10_14309_ajg_0000000000000971 crossref_primary_10_1007_s00261_023_04018_5 crossref_primary_10_3233_CH_221511 crossref_primary_10_1007_s00330_023_09436_z crossref_primary_10_1016_j_giec_2020_12_009 crossref_primary_10_1088_1361_6560_abae06 crossref_primary_10_3389_fonc_2021_654685 crossref_primary_10_35712_aig_v2_i1_1 crossref_primary_10_1055_a_1675_1941 crossref_primary_10_3390_nu12061576 crossref_primary_10_1016_j_acra_2023_03_036 crossref_primary_10_1186_s12885_024_12277_8 crossref_primary_10_3390_medicina59050992 crossref_primary_10_1093_bioinformatics_btaa056 crossref_primary_10_3390_diagnostics11091719 crossref_primary_10_1186_s13058_025_01971_5 crossref_primary_10_1007_s10072_023_07154_4 crossref_primary_10_1002_jmri_29474 crossref_primary_10_1177_1742271X211072473 crossref_primary_10_1093_bjr_tqad030 crossref_primary_10_1016_j_acra_2024_11_045 crossref_primary_10_1007_s00586_024_08609_8 crossref_primary_10_1142_S0219622022500559 crossref_primary_10_1186_s40364_020_00219_y crossref_primary_10_14309_ctg_0000000000000712 crossref_primary_10_3389_fonc_2024_1361694 crossref_primary_10_4240_wjgs_v16_i4_988 crossref_primary_10_1259_bjr_20210188 crossref_primary_10_1016_j_crad_2022_06_003 crossref_primary_10_1016_j_ebiom_2023_104706 crossref_primary_10_1016_j_kint_2021_05_031 crossref_primary_10_21869_2223_1536_2024_14_1_104_113 crossref_primary_10_1007_s00261_021_03269_4 crossref_primary_10_1016_j_heliyon_2024_e28769 crossref_primary_10_1016_j_eclinm_2021_101201 crossref_primary_10_1007_s00261_020_02614_3 crossref_primary_10_3390_cancers12102778 crossref_primary_10_1111_jgh_15327 crossref_primary_10_1136_bmjopen_2023_081015 crossref_primary_10_1007_s00330_022_09137_z crossref_primary_10_1007_s40620_022_01521_8 crossref_primary_10_1002_jmv_29380 crossref_primary_10_1016_j_dld_2022_12_015 crossref_primary_10_1016_j_ejrad_2020_108839 |
Cites_doi | 10.1055/s-0043-103952 10.1038/nature14539 10.1148/radiol.2016160131 10.1148/radiol.2015151169 10.1613/jair.953 10.1148/radiol.2015150619 10.1002/hep.510240201 10.1002/hep.25936 10.1111/jgh.12220 10.1016/j.jhep.2014.04.044 10.1200/JCO.2015.65.9128 10.1109/ACCESS.2017.2689058 10.1016/j.ultrasmedbio.2017.05.002 10.3748/wjg.v20.i28.9578 10.1002/hep.29179 10.1007/s00330-014-3292-9 10.1016/j.jhep.2015.11.012 10.1158/1078-0432.CCR-15-2997 10.1109/TMI.2016.2535302 10.1053/jhep.2003.50346 10.1056/NEJM200102153440706 10.1109/TMI.2016.2528162 10.1148/radiol.14140839 10.1016/j.jhep.2010.05.035 10.1002/hep.21178 10.1016/j.compbiomed.2017.07.012 10.1148/radiol.14131164 10.1002/hep.29800 10.1148/radiol.14140828 10.1148/radiol.13130128 10.1016/j.jhep.2017.03.021 10.1016/j.cgh.2014.12.014 10.3390/s17010149 |
ContentType | Journal Article |
Copyright | Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted. 2019 Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted.This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See:http://creativecommons.org/licenses/by-nc/4.0 Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted. 2019 |
Copyright_xml | – notice: Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted. – notice: 2019 Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted.This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See:http://creativecommons.org/licenses/by-nc/4.0 – notice: Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8AF 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI BTHHO CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1136/gutjnl-2018-316204 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection BMJ Journals ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition BMJ Journals ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1468-3288 |
EndPage | 741 |
ExternalDocumentID | PMC6580779 29730602 10_1136_gutjnl_2018_316204 |
Genre | Research Support, Non-U.S. Gov't Multicenter Study Journal Article |
GeographicLocations | China Beijing China |
GeographicLocations_xml | – name: China – name: Beijing China |
GroupedDBID | --- .55 .GJ .VT 08G 0R~ 18M 29I 2WC 354 39C 3O- 4.4 40O 53G 5GY 5VS 7X7 7~S 88E 88I 8AF 8F7 8FE 8FH 8FI 8FJ 8R4 8R5 AAHLL AAKAS AAOJX AAUVZ AAWJN AAYEP AAYXX ABAAH ABKDF ABMQD ABOCM ABTFR ABUWG ABVAJ ACGFO ACGFS ACGOD ACGTL ACHTP ACMFJ ACOAB ACOFX ACQHZ ACQSR ACTZY ADBBV ADCEG ADFRT ADGHP ADUGQ ADZCM AENEX AERUA AFKRA AFWFF AGQPQ AHMBA AHNKE AHQMW AI. AJYBZ ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZQEC BAWUL BBNVY BENPR BHPHI BLJBA BOMFT BPHCQ BTFSW BTHHO BVXVI C1A C45 CAG CCPQU CITATION COF CS3 CXRWF DIK DU5 DWQXO E3Z EBS EJD F5P FD8 FEDTE FYUFA GNUQQ GX1 H13 HAJ HCIFZ HMCUK HVGLF HYE HZ~ IAO IEA IH2 IHR INH INR IOF ITC J5H KQ8 L7B LK8 M1P M2P M7P N9A NTWIH NXWIF O9- OK1 OVD P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X R53 RHI RMJ RPM RV8 TEORI TR2 UKHRP UYXKK V24 VH1 VM9 VVN W8F WH7 WOQ X7M YFH YOC YQY ZGI ZXP ZY1 CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c496t-55a047fbaeeee65bffa1d01247dec920805edbdff0a3396c98e359778296d74d3 |
IEDL.DBID | 7X7 |
ISSN | 0017-5749 1468-3288 |
IngestDate | Thu Aug 21 14:06:47 EDT 2025 Wed Jul 30 10:55:14 EDT 2025 Fri Jul 25 09:18:18 EDT 2025 Thu Apr 03 07:01:00 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Tue Jul 01 02:49:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | hepatitis B ultrasonography cirrhosis |
Language | English |
License | Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-55a047fbaeeee65bffa1d01247dec920805edbdff0a3396c98e359778296d74d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6580779 |
PMID | 29730602 |
PQID | 2188849104 |
PQPubID | 2041069 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6580779 proquest_miscellaneous_2035703362 proquest_journals_2188849104 pubmed_primary_29730602 crossref_citationtrail_10_1136_gutjnl_2018_316204 crossref_primary_10_1136_gutjnl_2018_316204 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: BMA House, Tavistock Square, London, WC1H 9JR |
PublicationSeriesTitle | Original article |
PublicationTitle | Gut |
PublicationTitleAlternate | Gut |
PublicationYear | 2019 |
Publisher | BMJ Publishing Group LTD BMJ Publishing Group |
Publisher_xml | – name: BMJ Publishing Group LTD – name: BMJ Publishing Group |
References | Lu (2020050721341777000_68.4.729.8) 2015; 275 Meng (2020050721341777000_68.4.729.18) 2017; 5 Zeng (2020050721341777000_68.4.729.24) 2014; 24 Nitesh (2020050721341777000_68.4.729.28) 2002; 16 2020050721341777000_68.4.729.4 2020050721341777000_68.4.729.3 2020050721341777000_68.4.729.2 Liu (2020050721341777000_68.4.729.21) 2017; 17 Cassinotto (2020050721341777000_68.4.729.9) 2014; 61 2020050721341777000_68.4.729.5 Tajbakhsh (2020050721341777000_68.4.729.23) 2016; 35 Gatos (2020050721341777000_68.4.729.20) 2017; 43 Cui (2020050721341777000_68.4.729.1) 2013; 28 Suppl 1 2020050721341777000_68.4.729.27 Zhuang (2020050721341777000_68.4.729.12) 2017; 283 Barr (2020050721341777000_68.4.729.7) 2015; 276 2020050721341777000_68.4.729.25 2020050721341777000_68.4.729.26 Zheng (2020050721341777000_68.4.729.13) 2015; 275 Afdhal (2020050721341777000_68.4.729.30) 2015; 13 Samir (2020050721341777000_68.4.729.14) 2015; 274 2020050721341777000_68.4.729.22 Herrmann (2020050721341777000_68.4.729.31) 2018; 67 Huang (2020050721341777000_68.4.729.33) 2014; 20 2020050721341777000_68.4.729.29 Dietrich (2020050721341777000_68.4.729.6) 2017; 38 Chen (2020050721341777000_68.4.729.19) 2017; 89 2020050721341777000_68.4.729.16 2020050721341777000_68.4.729.17 2020050721341777000_68.4.729.15 2020050721341777000_68.4.729.10 2020050721341777000_68.4.729.32 2020050721341777000_68.4.729.11 |
References_xml | – volume: 38 start-page: e16 year: 2017 ident: 2020050721341777000_68.4.729.6 article-title: EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version) publication-title: Ultraschall Med doi: 10.1055/s-0043-103952 – ident: 2020050721341777000_68.4.729.22 doi: 10.1038/nature14539 – volume: 283 start-page: 873 year: 2017 ident: 2020050721341777000_68.4.729.12 article-title: Two-dimensional Shear-Wave Elastography Performance in the Noninvasive Evaluation of Liver Fibrosis in Patients with Chronic Hepatitis B: Comparison with Serum Fibrosis Indexes publication-title: Radiology doi: 10.1148/radiol.2016160131 – ident: 2020050721341777000_68.4.729.15 doi: 10.1148/radiol.2015151169 – volume: 16 start-page: 321 year: 2002 ident: 2020050721341777000_68.4.729.28 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J Artif Intell Res doi: 10.1613/jair.953 – volume: 276 start-page: 845 year: 2015 ident: 2020050721341777000_68.4.729.7 article-title: Elastography Assessment of Liver Fibrosis: Society of Radiologists in Ultrasound Consensus Conference Statement publication-title: Radiology doi: 10.1148/radiol.2015150619 – ident: 2020050721341777000_68.4.729.25 doi: 10.1002/hep.510240201 – ident: 2020050721341777000_68.4.729.10 doi: 10.1002/hep.25936 – volume: 28 Suppl 1 start-page: 7 issue: Suppl 1 year: 2013 ident: 2020050721341777000_68.4.729.1 article-title: Update on epidemiology of hepatitis B and C in China publication-title: J Gastroenterol Hepatol doi: 10.1111/jgh.12220 – volume: 61 start-page: 550 year: 2014 ident: 2020050721341777000_68.4.729.9 article-title: Non-invasive assessment of liver fibrosis with impulse elastography: comparison of Supersonic Shear Imaging with ARFI and FibroScan® publication-title: J Hepatol doi: 10.1016/j.jhep.2014.04.044 – ident: 2020050721341777000_68.4.729.16 doi: 10.1200/JCO.2015.65.9128 – volume: 5 start-page: 1 year: 2017 ident: 2020050721341777000_68.4.729.18 article-title: Liver fibrosis classification based on transfer learning and FCNet for ultrasound images publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2689058 – volume: 43 start-page: 1797 year: 2017 ident: 2020050721341777000_68.4.729.20 article-title: A Machine-Learning Algorithm Toward Color Analysis for Chronic Liver Disease Classification, Employing Ultrasound Shear Wave Elastography publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2017.05.002 – volume: 20 start-page: 9578 year: 2014 ident: 2020050721341777000_68.4.729.33 article-title: Study of detection times for liver stiffness evaluation by shear wave elastography publication-title: World J Gastroenterol doi: 10.3748/wjg.v20.i28.9578 – volume: 67 start-page: 260 year: 2018 ident: 2020050721341777000_68.4.729.31 article-title: Assessment of biopsy-proven liver fibrosis by two-dimensional shear wave elastography: An individual patient data-based meta-analysis publication-title: Hepatology doi: 10.1002/hep.29179 – volume: 24 start-page: 2572 year: 2014 ident: 2020050721341777000_68.4.729.24 article-title: Diagnostic accuracy of two-dimensional shear wave elastography for the non-invasive staging of hepatic fibrosis in chronic hepatitis B: a cohort study with internal validation publication-title: Eur Radiol doi: 10.1007/s00330-014-3292-9 – ident: 2020050721341777000_68.4.729.4 doi: 10.1016/j.jhep.2015.11.012 – ident: 2020050721341777000_68.4.729.17 doi: 10.1158/1078-0432.CCR-15-2997 – volume: 35 start-page: 1299 year: 2016 ident: 2020050721341777000_68.4.729.23 article-title: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2535302 – ident: 2020050721341777000_68.4.729.26 doi: 10.1053/jhep.2003.50346 – ident: 2020050721341777000_68.4.729.3 doi: 10.1056/NEJM200102153440706 – ident: 2020050721341777000_68.4.729.29 doi: 10.1109/TMI.2016.2528162 – volume: 274 start-page: 888 year: 2015 ident: 2020050721341777000_68.4.729.14 article-title: Shear-wave elastography for the estimation of liver fibrosis in chronic liver disease: determining accuracy and ideal site for measurement publication-title: Radiology doi: 10.1148/radiol.14140839 – ident: 2020050721341777000_68.4.729.32 doi: 10.1016/j.jhep.2010.05.035 – ident: 2020050721341777000_68.4.729.27 doi: 10.1002/hep.21178 – volume: 89 start-page: 18 year: 2017 ident: 2020050721341777000_68.4.729.19 article-title: Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.07.012 – volume: 275 start-page: 880 year: 2015 ident: 2020050721341777000_68.4.729.8 article-title: Hepatocellular carcinoma: stiffness value and ratio to discriminate malignant from benign focal liver lesions publication-title: Radiology doi: 10.1148/radiol.14131164 – ident: 2020050721341777000_68.4.729.2 doi: 10.1002/hep.29800 – volume: 275 start-page: 290 year: 2015 ident: 2020050721341777000_68.4.729.13 article-title: Two-dimensional shear-wave elastography and conventional US: the optimal evaluation of liver fibrosis and cirrhosis publication-title: Radiology doi: 10.1148/radiol.14140828 – ident: 2020050721341777000_68.4.729.11 doi: 10.1148/radiol.13130128 – ident: 2020050721341777000_68.4.729.5 doi: 10.1016/j.jhep.2017.03.021 – volume: 13 start-page: 772 year: 2015 ident: 2020050721341777000_68.4.729.30 article-title: Accuracy of fibroscan, compared with histology, in analysis of liver fibrosis in patients with hepatitis B or C: a United States multicenter study publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2014.12.014 – volume: 17 start-page: 149 year: 2017 ident: 2020050721341777000_68.4.729.21 article-title: Learning to Diagnose Cirrhosis with Liver Capsule Guided Ultrasound Image Classification publication-title: Sensors doi: 10.3390/s17010149 |
SSID | ssj0008891 |
Score | 2.6846821 |
Snippet | We aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE adopts the... ObjectiveWe aimed to evaluate the performance of the newly developed deep learning Radiomics of elastography (DLRE) for assessing liver fibrosis stages. DLRE... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 729 |
SubjectTerms | Accuracy Adult Aspartate transaminase Automation Bile Biomarkers Biopsy China Cirrhosis Classification Deep Learning Diagnosis, Differential Elasticity Imaging Techniques - methods Female Fibrosis Hepatitis Hepatitis B Hepatitis B, Chronic - complications Hepatology Histology Humans Interferon Laboratories Liver Liver cirrhosis Liver Cirrhosis - diagnostic imaging Liver Cirrhosis - pathology Liver diseases Male Methods Neural networks Patients Prospective Studies Quantitative analysis Radiomics Studies Surveillance Transaminase Ultrasonic imaging |
Title | Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29730602 https://www.proquest.com/docview/2188849104 https://www.proquest.com/docview/2035703362 https://pubmed.ncbi.nlm.nih.gov/PMC6580779 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgkxAviN8UxnRIvKFoSePEMS-IwaYJaROamNS3yLEvW1CVFJKC-MP4_7hznI6CtD5FtRM3vbPvzv7uOyFeG1lkxtYYOYs2InucRSZJMTImqQyFG7HxWfynZ_nJhfy0yBZhw60PsMppTfQLtess75EfkCkqCknGTb5bfYu4ahSfroYSGrfFLlOXsVarxSbgYgRPMq3EmZJ6SppJ84PL9fC1XZKOJLw9yKTs24bpP2_zX9DkX1bo-L64F9xHeD_K-4G4he1Dcec0HJA_Er8_Iq4glIK4hHPjGk477qGroefi1fDT_EBA8pmHQFYNDOFgwBD9x8tf0PhdBnTgRhAeDQSr6-wCoAsw_qSYB1gyrANqirm7vumhacGObLtwhYzVHujLw7dggB46JXWCBzH6F0Tw9LaPxcXx0ZcPJ1GozBBZqfMhyjITS1VXBumTZ1Vdm8SRqZPKodVz8kIzdJWr69ikqc6tLjBlortirnOnpEufiJ22a_GZgCJBNHNZWYr9ZK1clSijUc8VPSyNMZmJZBJLaQNtOVfPWJY-fEnzchRlyaIsR1HOxJvNPauRtOPG3nuTtMswgfvyWt1m4tWmmaYen6eYFrs19YlT5i8jF2Amno7KsRmOS4LFeUwtakttNh2Y1nu7pW2uPL03-YSxUvr5zT_rhbhL76BHENGe2Bm-r_El-UdDte8nwb7YPTw6-3z-B-vlGEI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4lm2FBgkOKGoeThxgoQQUKot7faAWmlvwbEnbdAquzRZqv4pbvw_ZvIqC1Jv3dNq7bUTzdgzY3_zjRCvtIxDbXJ0rEHjkD0OHe0F6GjtZZrCDVc3WfyTw2h8LL9Mw-ma-NXnwjCsst8Tm43azg2fkW-TKYpjScZNvl_8cLhqFN-u9iU0WrXYx4tzCtmqd3s7JN_Xvr_7-ejT2OmqCjhGJlHthKF2pcozjfSJwizPtWdpm5bKokl88qBCtJnNc1cHQRKZJMaASdpiP4mskjagcW-Im2R4XQ721HQI8Bgx5PU7f6hk0ifpBNH2ybL-Xs5IJz0-jmQS-FVD-J93-y9I8y-rt3tP3O3cVfjQ6td9sYblA3Fr0l3IPxS_dxAX0JWeOIGv2hac5lzBPIeKi2XDuf6JgOSj1x05NjBkhAFKJNPZBRTNqQZasC3ojyaCxWU2A9AX0M3NNE8wYxgJ5BTjz6uigqIE07L7wikyNrymHz--BQ00aJ9ECg1osnlBhIZO95E4vhaZPRbr5bzEJwJiD1H7MjMUa8pc2cxTOsHEVzRY4KI3El4vltR0NOlcrWOWNuFSEKWtKFMWZdqKciTeDP9ZtCQhV_be6qWddhtGlV6q90i8HJppqfP9jS5xvqQ-bsB8aeRyjMRGqxzDdFyCzI1calErajN0YBrx1ZayOG3oxMkHdZVKNq9-rBfi9vhocpAe7B3uPxV36H2SFsC0JdbrsyU-I9-szp43CwLEt-tegX8ABK1UnQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVKq4IMqrgQKDBCdkxY-110ZCiJJGLaVRVVGpN7P2jlujyA7YoeoP48Kv64wfKQGpt-YUZTe7tmZ2Z2b3m2-EeK1l6Os0Q8ukmFpkj31LOx5aWjuJpnDD1k0W_-E02DuRn0_90zXxp8-FYVhlvyc2G7UpUz4jH5EpCkNJxk2Osg4WcTSefJj_sLiCFN-09uU0WhU5wMsLCt-q9_tjkvUb153sfv20Z3UVBqxURkFt-b62pcoSjfQJ_CTLtGNoy5bKYBq55E35aBKTZbb2vChIoxA9JmwL3SgwShqPxr0j1hVHRQOxvrM7PTpe2oGwr9dHdsBXMupTdrxgdLaovxcz0lCHDyeZEn7VLP7n6_4L2fzLBk7ui3ud8wofW23bFGtYPBAbh931_EPxe4w4h64QxRkca5Nz0nMFZQYVl86GC_0LAcljrzuqbGAACcOVSMKzS8ibMw40YFoIIE0E8-vcBqAvoJt7ap5gxqASyCjiL6u8gryAtOX6hXNkpHhNP-68Aw00aJ9SCg2EsnlBhIZc95E4uRWpPRaDoixwS0DoIGpXJilFnjJTJnGUjjByFQ3m2egMhdOLJU470nSu3TGLm-DJC-JWlDGLMm5FORRvl_-Zt5QhN_be7qUdd9tHFV8r-1C8WjbTwufbHF1guaA-tsfsaeSADMWTVjmW03FBMjuwqUWtqM2yA5OKr7YU-XlDLk4eqa1U9PTmx3opNmj1xV_2pwfPxF16nahFM22LQf1zgc_JUauTF92KAPHtthfhFTD9Wjg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+Radiomics+of+shear+wave+elastography+significantly+improved+diagnostic+performance+for+assessing+liver+fibrosis+in+chronic+hepatitis+B%3A+a+prospective+multicentre+study&rft.jtitle=Gut&rft.au=Wang%2C+Kun&rft.au=Lu%2C+Xue&rft.au=Zhou%2C+Hui&rft.au=Gao%2C+Yongyan&rft.date=2019-04-01&rft.pub=BMJ+Publishing+Group+LTD&rft.issn=0017-5749&rft.eissn=1468-3288&rft.volume=68&rft.issue=4&rft.spage=729&rft_id=info:doi/10.1136%2Fgutjnl-2018-316204&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-5749&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-5749&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-5749&client=summon |