Polarized NHE1 and SWELL1 regulate migration direction, efficiency and metastasis

Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. According to the Osmotic Engine Model, polarization of NHE1 at the leading edge of confined cells facilitates water uptake, cell protrusion and motility. The physiological relevance of the Osmotic Engine Mo...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 6128 - 17
Main Authors Zhang, Yuqi, Li, Yizeng, Thompson, Keyata N, Stoletov, Konstantin, Yuan, Qinling, Bera, Kaustav, Lee, Se Jong, Zhao, Runchen, Kiepas, Alexander, Wang, Yao, Mistriotis, Panagiotis, Serra, Selma A, Lewis, John D, Valverde, Miguel A, Martin, Stuart S, Sun, Sean X, Konstantopoulos, Konstantinos
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 17.10.2022
Nature Publishing Group UK
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. According to the Osmotic Engine Model, polarization of NHE1 at the leading edge of confined cells facilitates water uptake, cell protrusion and motility. The physiological relevance of the Osmotic Engine Model and the identity of molecules mediating cell rear shrinkage remain elusive. Here, we demonstrate that NHE1 and SWELL1 preferentially polarize at the cell leading and trailing edges, respectively, mediate cell volume regulation, cell dissemination from spheroids and confined migration. SWELL1 polarization confers migration direction and efficiency, as predicted mathematically and determined experimentally via optogenetic spatiotemporal regulation. Optogenetic RhoA activation at the cell front triggers SWELL1 re-distribution and migration direction reversal in SWELL1-expressing, but not SWELL1-knockdown, cells. Efficient cell reversal also requires Cdc42, which controls NHE1 repolarization. Dual NHE1/SWELL1 knockdown inhibits breast cancer cell extravasation and metastasis in vivo, thereby illustrating the physiological significance of the Osmotic Engine Model.
AbstractList Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. According to the Osmotic Engine Model, polarization of NHE1 at the leading edge of confined cells facilitates water uptake, cell protrusion and motility. The physiological relevance of the Osmotic Engine Model and the identity of molecules mediating cell rear shrinkage remain elusive. Here, we demonstrate that NHE1 and SWELL1 preferentially polarize at the cell leading and trailing edges, respectively, mediate cell volume regulation, cell dissemination from spheroids and confined migration. SWELL1 polarization confers migration direction and efficiency, as predicted mathematically and determined experimentally via optogenetic spatiotemporal regulation. Optogenetic RhoA activation at the cell front triggers SWELL1 re-distribution and migration direction reversal in SWELL1-expressing, but not SWELL1-knockdown, cells. Efficient cell reversal also requires Cdc42, which controls NHE1 repolarization. Dual NHE1/SWELL1 knockdown inhibits breast cancer cell extravasation and metastasis in vivo, thereby illustrating the physiological significance of the Osmotic Engine Model. Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. Here the authors show that the chloride ion channel SWELL1 and the ion exchanger NHE1 are preferentially enriched at the trailing and leading edges, respectively, of migrating cells and regulate cell volume to propel confined cells, favouring breast cancer cell extravasation and metastasis.
Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. Here the authors show that the chloride ion channel SWELL1 and the ion exchanger NHE1 are preferentially enriched at the trailing and leading edges, respectively, of migrating cells and regulate cell volume to propel confined cells, favouring breast cancer cell extravasation and metastasis.
Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. According to the Osmotic Engine Model, polarization of NHE1 at the leading edge of confined cells facilitates water uptake, cell protrusion and motility. The physiological relevance of the Osmotic Engine Model and the identity of molecules mediating cell rear shrinkage remain elusive. Here, we demonstrate that NHE1 and SWELL1 preferentially polarize at the cell leading and trailing edges, respectively, mediate cell volume regulation, cell dissemination from spheroids and confined migration. SWELL1 polarization confers migration direction and efficiency, as predicted mathematically and determined experimentally via optogenetic spatiotemporal regulation. Optogenetic RhoA activation at the cell front triggers SWELL1 re-distribution and migration direction reversal in SWELL1-expressing, but not SWELL1-knockdown, cells. Efficient cell reversal also requires Cdc42, which controls NHE1 repolarization. Dual NHE1/SWELL1 knockdown inhibits breast cancer cell extravasation and metastasis in vivo, thereby illustrating the physiological significance of the Osmotic Engine Model.
Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. According to the Osmotic Engine Model, polarization of NHE1 at the leading edge of confined cells facilitates water uptake, cell protrusion and motility. The physiological relevance of the Osmotic Engine Model and the identity of molecules mediating cell rear shrinkage remain elusive. Here, we demonstrate that NHE1 and SWELL1 preferentially polarize at the cell leading and trailing edges, respectively, mediate cell volume regulation, cell dissemination from spheroids and confined migration. SWELL1 polarization confers migration direction and efficiency, as predicted mathematically and determined experimentally via optogenetic spatiotemporal regulation. Optogenetic RhoA activation at the cell front triggers SWELL1 re-distribution and migration direction reversal in SWELL1-expressing, but not SWELL1-knockdown, cells. Efficient cell reversal also requires Cdc42, which controls NHE1 repolarization. Dual NHE1/SWELL1 knockdown inhibits breast cancer cell extravasation and metastasis in vivo, thereby illustrating the physiological significance of the Osmotic Engine Model.Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. Here the authors show that the chloride ion channel SWELL1 and the ion exchanger NHE1 are preferentially enriched at the trailing and leading edges, respectively, of migrating cells and regulate cell volume to propel confined cells, favouring breast cancer cell extravasation and metastasis.
Abstract Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. According to the Osmotic Engine Model, polarization of NHE1 at the leading edge of confined cells facilitates water uptake, cell protrusion and motility. The physiological relevance of the Osmotic Engine Model and the identity of molecules mediating cell rear shrinkage remain elusive. Here, we demonstrate that NHE1 and SWELL1 preferentially polarize at the cell leading and trailing edges, respectively, mediate cell volume regulation, cell dissemination from spheroids and confined migration. SWELL1 polarization confers migration direction and efficiency, as predicted mathematically and determined experimentally via optogenetic spatiotemporal regulation. Optogenetic RhoA activation at the cell front triggers SWELL1 re-distribution and migration direction reversal in SWELL1-expressing, but not SWELL1-knockdown, cells. Efficient cell reversal also requires Cdc42, which controls NHE1 repolarization. Dual NHE1/SWELL1 knockdown inhibits breast cancer cell extravasation and metastasis in vivo, thereby illustrating the physiological significance of the Osmotic Engine Model.
Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. According to the Osmotic Engine Model, polarization of NHE1 at the leading edge of confined cells facilitates water uptake, cell protrusion and motility. The physiological relevance of the Osmotic Engine Model and the identity of molecules mediating cell rear shrinkage remain elusive. Here, we demonstrate that NHE1 and SWELL1 preferentially polarize at the cell leading and trailing edges, respectively, mediate cell volume regulation, cell dissemination from spheroids and confined migration. SWELL1 polarization confers migration direction and efficiency, as predicted mathematically and determined experimentally via optogenetic spatiotemporal regulation. Optogenetic RhoA activation at the cell front triggers SWELL1 re-distribution and migration direction reversal in SWELL1-expressing, but not SWELL1-knockdown, cells. Efficient cell reversal also requires Cdc42, which controls NHE1 repolarization. Dual NHE1/SWELL1 knockdown inhibits breast cancer cell extravasation and metastasis in vivo, thereby illustrating the physiological significance of the Osmotic Engine Model.Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. According to the Osmotic Engine Model, polarization of NHE1 at the leading edge of confined cells facilitates water uptake, cell protrusion and motility. The physiological relevance of the Osmotic Engine Model and the identity of molecules mediating cell rear shrinkage remain elusive. Here, we demonstrate that NHE1 and SWELL1 preferentially polarize at the cell leading and trailing edges, respectively, mediate cell volume regulation, cell dissemination from spheroids and confined migration. SWELL1 polarization confers migration direction and efficiency, as predicted mathematically and determined experimentally via optogenetic spatiotemporal regulation. Optogenetic RhoA activation at the cell front triggers SWELL1 re-distribution and migration direction reversal in SWELL1-expressing, but not SWELL1-knockdown, cells. Efficient cell reversal also requires Cdc42, which controls NHE1 repolarization. Dual NHE1/SWELL1 knockdown inhibits breast cancer cell extravasation and metastasis in vivo, thereby illustrating the physiological significance of the Osmotic Engine Model.
ArticleNumber 6128
Author Serra, Selma A
Zhang, Yuqi
Yuan, Qinling
Martin, Stuart S
Zhao, Runchen
Sun, Sean X
Stoletov, Konstantin
Wang, Yao
Mistriotis, Panagiotis
Konstantopoulos, Konstantinos
Lee, Se Jong
Kiepas, Alexander
Valverde, Miguel A
Thompson, Keyata N
Lewis, John D
Bera, Kaustav
Li, Yizeng
Author_xml – sequence: 1
  givenname: Yuqi
  surname: Zhang
  fullname: Zhang, Yuqi
  organization: Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
– sequence: 2
  givenname: Yizeng
  surname: Li
  fullname: Li, Yizeng
  organization: Department of Biomedical Engineering, Binghamton University, SUNY, Binghamton, NY, 13902, USA
– sequence: 3
  givenname: Keyata N
  surname: Thompson
  fullname: Thompson, Keyata N
  organization: Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
– sequence: 4
  givenname: Konstantin
  surname: Stoletov
  fullname: Stoletov, Konstantin
  organization: Department of Oncology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
– sequence: 5
  givenname: Qinling
  surname: Yuan
  fullname: Yuan, Qinling
  organization: Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
– sequence: 6
  givenname: Kaustav
  orcidid: 0000-0002-0962-4368
  surname: Bera
  fullname: Bera, Kaustav
  organization: Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
– sequence: 7
  givenname: Se Jong
  surname: Lee
  fullname: Lee, Se Jong
  organization: Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
– sequence: 8
  givenname: Runchen
  surname: Zhao
  fullname: Zhao, Runchen
  organization: Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
– sequence: 9
  givenname: Alexander
  orcidid: 0000-0001-8169-3897
  surname: Kiepas
  fullname: Kiepas, Alexander
  organization: Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
– sequence: 10
  givenname: Yao
  orcidid: 0000-0003-0281-991X
  surname: Wang
  fullname: Wang, Yao
  organization: Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
– sequence: 11
  givenname: Panagiotis
  orcidid: 0000-0002-8069-3278
  surname: Mistriotis
  fullname: Mistriotis, Panagiotis
  organization: Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
– sequence: 12
  givenname: Selma A
  surname: Serra
  fullname: Serra, Selma A
  organization: Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
– sequence: 13
  givenname: John D
  orcidid: 0000-0002-7734-1204
  surname: Lewis
  fullname: Lewis, John D
  organization: Department of Oncology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
– sequence: 14
  givenname: Miguel A
  orcidid: 0000-0002-6961-3361
  surname: Valverde
  fullname: Valverde, Miguel A
  organization: Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
– sequence: 15
  givenname: Stuart S
  orcidid: 0000-0002-4378-4381
  surname: Martin
  fullname: Martin, Stuart S
  organization: Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
– sequence: 16
  givenname: Sean X
  orcidid: 0000-0002-9077-7088
  surname: Sun
  fullname: Sun, Sean X
  email: ssun@jhu.edu, ssun@jhu.edu, ssun@jhu.edu, ssun@jhu.edu
  organization: Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA. ssun@jhu.edu
– sequence: 17
  givenname: Konstantinos
  orcidid: 0000-0003-2623-1459
  surname: Konstantopoulos
  fullname: Konstantopoulos, Konstantinos
  email: konstant@jhu.edu, konstant@jhu.edu, konstant@jhu.edu, konstant@jhu.edu
  organization: Department of Oncology, The Johns Hopkins University, Baltimore, MD, 21205, USA. konstant@jhu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36253369$$D View this record in MEDLINE/PubMed
BookMark eNpdUl1rFDEUDVKxdds_4IMM-OJDR_OdmRdBytYWFrW04mPIJjdrlplJm8wI9debna2lNQRySc45nHtzXqODIQ6A0BuCPxDMmo-ZEy5VjSmtGZMNq8kLdEQxJzVRlB08qQ_RSc5bXBZrScP5K3TIJBWF1R6hq--xMyn8AVd9vViSygyuuv65XK1IlWAzdWaEqg-bZMYQh8qFBHZXnVbgfbABBns_c3oYTS475GP00psuw8nDuUA_zpc3Zxf16tuXy7PPq9ryVo61IIQ6LKmRTDiGW-_XhHEDhHPFBTMKE0-dYcquLXXQMuqUx9Q2nrvWs4Yt0OVe10Wz1bcp9Cbd62iCni9i2miTxmA70ICdaCmVzgrJDWmbMhYQoohavxZFbYE-7bVup3UPzsIwJtM9E33-MoRfehN_61YoqZqdmfcPAineTZBH3YdsoevMAHHKmioqpCiuRYG--w-6jVMayqhmFJeMz93RPcqmmHMC_2iGYL0LgN4HQJcA6DkAmhTS26dtPFL-fTf7C_Pjq88
CitedBy_id crossref_primary_10_1063_5_0185377
crossref_primary_10_1093_biomethods_bpad031
crossref_primary_10_1002_iub_2789
crossref_primary_10_1016_j_tcb_2024_01_001
crossref_primary_10_1152_ajpcell_00079_2024
crossref_primary_10_1111_exd_14983
crossref_primary_10_1007_s10555_024_10166_x
crossref_primary_10_1039_D3NA00478C
crossref_primary_10_3390_ijms241612673
crossref_primary_10_1103_PhysRevResearch_6_023158
crossref_primary_10_1091_mbc_E22_10_0494
crossref_primary_10_1091_mbc_E22_08_0358
crossref_primary_10_7554_eLife_90551
crossref_primary_10_1152_ajpcell_00502_2022
crossref_primary_10_3389_fcell_2022_1047256
crossref_primary_10_1007_s00018_022_04665_9
crossref_primary_10_3389_fcell_2023_1256250
crossref_primary_10_3389_fphar_2023_1234885
crossref_primary_10_7554_eLife_90551_3
Cites_doi 10.1103/PhysRevLett.115.268101
10.1096/fj.12-211441
10.1126/sciadv.aaw7243
10.1038/nrm.2016.29
10.1038/nrm2820
10.1152/physrev.00018.2011
10.1083/jcb.201302132
10.1126/science.aau3301
10.1096/fj.12-203786
10.1016/j.cell.2014.03.024
10.1038/ncb1019
10.1126/sciadv.abh3457
10.1038/srep42088
10.1038/nrc.2016.123
10.1073/pnas.1907625116
10.1073/pnas.2025013118
10.1083/jcb.201902057
10.1038/s41556-017-0012-0
10.1016/j.bpj.2018.04.045
10.1152/ajpcell.00038.2001
10.1021/acs.nanolett.8b04720
10.1111/j.1748-1716.2006.01558.x
10.1038/ncomms14396
10.1016/j.ceb.2015.08.005
10.1126/sciadv.aba6505
10.1016/j.cell.2011.11.016
10.1159/000368521
10.1007/978-1-4939-3801-8_3
10.1586/14737140.2015.1058711
10.1007/s10549-016-4013-7
10.1007/s12013-012-9340-7
10.1038/s41467-019-14160-8
10.1016/j.cell.2014.02.052
10.1016/j.celrep.2016.04.035
10.1038/315063a0
10.1038/355830a0
10.1007/s00424-013-1293-1
10.1126/science.1252826
10.18632/oncotarget.6159
10.1016/j.cell.2013.11.029
10.1007/s10120-021-01187-4
10.1242/jcs.240341
10.1158/0008-5472.CAN-18-3369
10.18632/oncoscience.27
10.1016/j.cell.2015.01.007
10.1016/j.ceb.2014.06.001
10.1126/sciadv.abg4934
10.3390/ijms20112663
10.1091/mbc.7.9.1419
10.1016/j.ebiom.2019.09.007
10.5281/zenodo.7105392
10.1038/s41551-019-0400-9
10.3389/fcell.2021.683686
ContentType Journal Article
Copyright 2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022
Copyright_xml – notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-33683-1
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Publicly Available Content Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 17
ExternalDocumentID oai_doaj_org_article_e0d59226dc564a198172e55e93cfb59f
10_1038_s41467_022_33683_1
36253369
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA254193
– fundername: NIGMS NIH HHS
  grantid: R01 GM134542
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
CGR
CUY
CVF
DIK
EBLON
EBS
ECM
EE.
EIF
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
NPM
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
AAADF
AFGXO
ZA5
ID FETCH-LOGICAL-c496t-5112d062a635d309ffb134ae1447453a701f2da37cbc2de932d7f02c8f4d9f383
IEDL.DBID RPM
ISSN 2041-1723
IngestDate Thu Jul 04 21:09:22 EDT 2024
Tue Sep 17 21:30:52 EDT 2024
Fri Sep 06 20:24:10 EDT 2024
Fri Sep 13 07:21:04 EDT 2024
Fri Aug 23 02:30:43 EDT 2024
Wed Oct 02 05:29:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-5112d062a635d309ffb134ae1447453a701f2da37cbc2de932d7f02c8f4d9f383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0281-991X
0000-0002-8069-3278
0000-0002-0962-4368
0000-0002-7734-1204
0000-0002-6961-3361
0000-0003-2623-1459
0000-0002-4378-4381
0000-0002-9077-7088
0000-0001-8169-3897
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576788/
PMID 36253369
PQID 2725463438
PQPubID 546298
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_e0d59226dc564a198172e55e93cfb59f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9576788
proquest_miscellaneous_2725653835
proquest_journals_2725463438
crossref_primary_10_1038_s41467_022_33683_1
pubmed_primary_36253369
PublicationCentury 2000
PublicationDate 2022-10-17
PublicationDateYYYYMMDD 2022-10-17
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-17
  day: 17
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Nature communications
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group
Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group
– name: Nature Publishing Group UK
– name: Nature Portfolio
References V Pang (33683_CR52) 2012; 63
DC Gadsby (33683_CR48) 1985; 315
Z Qiu (33683_CR8) 2014; 157
KM Stroka (33683_CR6) 2014; 30
MA Valverde (33683_CR42) 1992; 355
YJ Liu (33683_CR21) 2015; 160
WC Hung (33683_CR36) 2013; 202
MR Dallas (33683_CR28) 2012; 26
KN Thompson (33683_CR13) 2015; 6
I Carton (33683_CR24) 2002; 283
E Sahai (33683_CR23) 2003; 5
L Valon (33683_CR17) 2017; 8
EO Wisniewski (33683_CR22) 2020; 6
WC Hung (33683_CR37) 2016; 15
33683_CR27
K Kurashima (33683_CR33) 2021; 24
KM Stroka (33683_CR7) 2014; 157
P Mistriotis (33683_CR10) 2019; 218
BS Wong (33683_CR38) 2019; 79
R Zhao (33683_CR39) 2019; 5
S Dadakhujaev (33683_CR40) 2014; 1
P Lu (33683_CR32) 2019; 48
FK Voss (33683_CR9) 2014; 344
RT Alexander (33683_CR50) 2006; 187
A Schwab (33683_CR5) 2012; 92
SP Carey (33683_CR14) 2017; 7
33683_CR35
33683_CR34
Y Li (33683_CR47) 2015; 115
Y Li (33683_CR16) 2019; 116
CD Paul (33683_CR2) 2017; 17
PG Valles (33683_CR46) 2015; 40
BC Tilly (33683_CR25) 1996; 7
KJ Cheung (33683_CR41) 2013; 155
S van Helvert (33683_CR3) 2018; 20
A Bueno-Orovio (33683_CR49) 2014; 466
Y Li (33683_CR15) 2018; 114
EM Balzer (33683_CR19) 2012; 26
L Willetts (33683_CR30) 2016; 1458
33683_CR44
AW Holle (33683_CR20) 2019; 19
A Lanczky (33683_CR31) 2016; 160
W Deng (33683_CR43) 2020; 11
TJ Jentsch (33683_CR4) 2016; 17
JR Casey (33683_CR51) 2010; 11
P Friedl (33683_CR1) 2011; 147
A Shellard (33683_CR18) 2018; 362
CL Yankaskas (33683_CR12) 2019; 3
K Stoletov (33683_CR29) 2015; 15
AJ Ridley (33683_CR26) 2015; 36
33683_CR53
33683_CR11
Y Li (33683_CR45) 2021; 9
References_xml – volume: 115
  start-page: 268101
  year: 2015
  ident: 33683_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.268101
  contributor:
    fullname: Y Li
– volume: 26
  start-page: 4045
  year: 2012
  ident: 33683_CR19
  publication-title: FASEB J.
  doi: 10.1096/fj.12-211441
  contributor:
    fullname: EM Balzer
– volume: 5
  start-page: eaaw7243
  year: 2019
  ident: 33683_CR39
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw7243
  contributor:
    fullname: R Zhao
– volume: 17
  start-page: 293
  year: 2016
  ident: 33683_CR4
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.29
  contributor:
    fullname: TJ Jentsch
– volume: 11
  start-page: 50
  year: 2010
  ident: 33683_CR51
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2820
  contributor:
    fullname: JR Casey
– volume: 92
  start-page: 1865
  year: 2012
  ident: 33683_CR5
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00018.2011
  contributor:
    fullname: A Schwab
– volume: 202
  start-page: 807
  year: 2013
  ident: 33683_CR36
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201302132
  contributor:
    fullname: WC Hung
– volume: 362
  start-page: 339
  year: 2018
  ident: 33683_CR18
  publication-title: Science
  doi: 10.1126/science.aau3301
  contributor:
    fullname: A Shellard
– volume: 26
  start-page: 2648
  year: 2012
  ident: 33683_CR28
  publication-title: FASEB J.
  doi: 10.1096/fj.12-203786
  contributor:
    fullname: MR Dallas
– volume: 157
  start-page: 447
  year: 2014
  ident: 33683_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.024
  contributor:
    fullname: Z Qiu
– volume: 5
  start-page: 711
  year: 2003
  ident: 33683_CR23
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1019
  contributor:
    fullname: E Sahai
– ident: 33683_CR27
  doi: 10.1126/sciadv.abh3457
– volume: 7
  year: 2017
  ident: 33683_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/srep42088
  contributor:
    fullname: SP Carey
– volume: 17
  start-page: 131
  year: 2017
  ident: 33683_CR2
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.123
  contributor:
    fullname: CD Paul
– volume: 116
  start-page: 23894
  year: 2019
  ident: 33683_CR16
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1907625116
  contributor:
    fullname: Y Li
– ident: 33683_CR35
  doi: 10.1073/pnas.2025013118
– volume: 218
  start-page: 4093
  year: 2019
  ident: 33683_CR10
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201902057
  contributor:
    fullname: P Mistriotis
– volume: 20
  start-page: 8
  year: 2018
  ident: 33683_CR3
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-017-0012-0
  contributor:
    fullname: S van Helvert
– volume: 114
  start-page: 2965
  year: 2018
  ident: 33683_CR15
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2018.04.045
  contributor:
    fullname: Y Li
– volume: 283
  start-page: C115
  year: 2002
  ident: 33683_CR24
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00038.2001
  contributor:
    fullname: I Carton
– volume: 19
  start-page: 2280
  year: 2019
  ident: 33683_CR20
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04720
  contributor:
    fullname: AW Holle
– volume: 187
  start-page: 159
  year: 2006
  ident: 33683_CR50
  publication-title: Acta Physiol. (Oxf.)
  doi: 10.1111/j.1748-1716.2006.01558.x
  contributor:
    fullname: RT Alexander
– volume: 8
  year: 2017
  ident: 33683_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14396
  contributor:
    fullname: L Valon
– volume: 36
  start-page: 103
  year: 2015
  ident: 33683_CR26
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2015.08.005
  contributor:
    fullname: AJ Ridley
– volume: 6
  start-page: eaba6505
  year: 2020
  ident: 33683_CR22
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba6505
  contributor:
    fullname: EO Wisniewski
– volume: 147
  start-page: 992
  year: 2011
  ident: 33683_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.016
  contributor:
    fullname: P Friedl
– volume: 40
  start-page: 452
  year: 2015
  ident: 33683_CR46
  publication-title: Kidney Blood Press Res.
  doi: 10.1159/000368521
  contributor:
    fullname: PG Valles
– volume: 1458
  start-page: 27
  year: 2016
  ident: 33683_CR30
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-3801-8_3
  contributor:
    fullname: L Willetts
– volume: 15
  start-page: 733
  year: 2015
  ident: 33683_CR29
  publication-title: Expert Rev. Anticancer Ther.
  doi: 10.1586/14737140.2015.1058711
  contributor:
    fullname: K Stoletov
– volume: 160
  start-page: 439
  year: 2016
  ident: 33683_CR31
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-016-4013-7
  contributor:
    fullname: A Lanczky
– volume: 63
  start-page: 47
  year: 2012
  ident: 33683_CR52
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-012-9340-7
  contributor:
    fullname: V Pang
– volume: 11
  year: 2020
  ident: 33683_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14160-8
  contributor:
    fullname: W Deng
– volume: 157
  start-page: 611
  year: 2014
  ident: 33683_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.052
  contributor:
    fullname: KM Stroka
– volume: 15
  start-page: 1430
  year: 2016
  ident: 33683_CR37
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.04.035
  contributor:
    fullname: WC Hung
– volume: 315
  start-page: 63
  year: 1985
  ident: 33683_CR48
  publication-title: Nature
  doi: 10.1038/315063a0
  contributor:
    fullname: DC Gadsby
– volume: 355
  start-page: 830
  year: 1992
  ident: 33683_CR42
  publication-title: Nature
  doi: 10.1038/355830a0
  contributor:
    fullname: MA Valverde
– volume: 466
  start-page: 183
  year: 2014
  ident: 33683_CR49
  publication-title: Pflug. Arch.
  doi: 10.1007/s00424-013-1293-1
  contributor:
    fullname: A Bueno-Orovio
– volume: 344
  start-page: 634
  year: 2014
  ident: 33683_CR9
  publication-title: Science
  doi: 10.1126/science.1252826
  contributor:
    fullname: FK Voss
– volume: 6
  start-page: 35231
  year: 2015
  ident: 33683_CR13
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6159
  contributor:
    fullname: KN Thompson
– volume: 155
  start-page: 1639
  year: 2013
  ident: 33683_CR41
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.029
  contributor:
    fullname: KJ Cheung
– volume: 24
  start-page: 1063
  year: 2021
  ident: 33683_CR33
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-021-01187-4
  contributor:
    fullname: K Kurashima
– ident: 33683_CR44
  doi: 10.1242/jcs.240341
– volume: 79
  start-page: 2878
  year: 2019
  ident: 33683_CR38
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-3369
  contributor:
    fullname: BS Wong
– volume: 1
  start-page: 229
  year: 2014
  ident: 33683_CR40
  publication-title: Oncoscience
  doi: 10.18632/oncoscience.27
  contributor:
    fullname: S Dadakhujaev
– volume: 160
  start-page: 659
  year: 2015
  ident: 33683_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.007
  contributor:
    fullname: YJ Liu
– volume: 30
  start-page: 41
  year: 2014
  ident: 33683_CR6
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2014.06.001
  contributor:
    fullname: KM Stroka
– ident: 33683_CR11
  doi: 10.1126/sciadv.abg4934
– ident: 33683_CR34
  doi: 10.3390/ijms20112663
– volume: 7
  start-page: 1419
  year: 1996
  ident: 33683_CR25
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.7.9.1419
  contributor:
    fullname: BC Tilly
– volume: 48
  start-page: 100
  year: 2019
  ident: 33683_CR32
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.09.007
  contributor:
    fullname: P Lu
– ident: 33683_CR53
  doi: 10.5281/zenodo.7105392
– volume: 3
  start-page: 452
  year: 2019
  ident: 33683_CR12
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0400-9
  contributor:
    fullname: CL Yankaskas
– volume: 9
  start-page: 683686
  year: 2021
  ident: 33683_CR45
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2021.683686
  contributor:
    fullname: Y Li
SSID ssj0000391844
Score 2.5286057
Snippet Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. According to the Osmotic Engine Model, polarization of NHE1 at...
Abstract Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. According to the Osmotic Engine Model, polarization of...
Cell migration regulates diverse (patho)physiological processes, including cancer metastasis. Here the authors show that the chloride ion channel SWELL1 and...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 6128
SubjectTerms Breast cancer
Cancer
Cdc42 protein
Cell activation
Cell adhesion & migration
Cell migration
Cell Movement - physiology
Cell Size
Chloride ions
Extravasation
Humans
Ion channels
Ion exchangers
Leading edges
Metastases
Metastasis
Neoplasms
Physiology
Polarization
RhoA protein
Sodium-Hydrogen Exchangers
Spheroids
Trailing edges
Water
Water uptake
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyI365WieBNl-Y7m6OWloeHomiht5BNJvoO3Urf66H9650k28d7UvDiZVk2CSQzSWZ-m8lvCHnPFQCwbHrgUfQqa94PIdg-OrQX2WSJjxJtcWIWp-rLmT7bSvVVYsIaPXAT3AGwpLGdSVEbFRAio8UFrcHJmEftct19ud4CU3UPlg6hi5pvyTA5HKxU3RNq8Lo0g-z5jiWqhP13eZl_B0tuWZ_jR-Th7DbST627j8k9mJ6Q-y2R5PVT8u1rQajLG0j0ZHHEaZgS_V7-SXF62ZLNAz1f_mzaps2M4dtHCpVBoly_rG3OYR3QXVwtV8_I6fHRj8NFPydL6KNyZt0XxykxIwJ6EEkyl_PIpQqAgMkqLYNlPIsUpI1jFAnFJ5LNTMQhq-Qy4tTnZG-6mOAlocA5FCouEGxU2qWRA6I8qaxMmaXoOvLhVnD-d-PE8PUsWw6-idmjmH0Vs-cd-Vxku6lZ-KzrB9Syn7Xs_6XljuzfasbPi2zlha1k_koOHXm3KcblUc48wgQXV62OwU1d6o68aIrc9ARtNzq7Bsdjd1S809Xdkmn5q1JwO4Rpdhhe_Y-xvSYPRJmWJUzG7pO99eUVvEFPZz2-rZP6DwD2-Wc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKERIXxJuUgoLEDayN4_cJAWq14lCBoNLeLMcelz00W3bTA_z6jp3swiLEJYpiJ5rMjD3f2OMZQl4zAQBNUhRYaKlIklHjvabBor1IKnG85GiLMzU_F58WcnFA5tuzMDmscjsnlok6rkJeI5-1umRuF9zMfJdXAcIwe3f1g-b6UXmfdSqmcYvcZi3CCtRsvdC71ZacB90IMZ2aafAjG1HmiBLMzpXhlO1ZppLA_1-o8-_gyT-s0el9cm-CkfX7Ue4PyAH0D8mdsbDkz0fky-fssS5_QazP5ies9n2sv-Y1Klavx-LzUF8uL0bp16NZw7u3NZSMEvk4ZnnnEgaP8HGz3Dwm56cn3z7O6VQ8gQZh1UAzkIqNaj0iisgbm1LHuPCADpQWknvdsNRGz3XoQhsBYVzUqWmDSSLahH7rE3LYr3p4RmpgDHJqLmibTkgbOwbo9XGheUxNDLYib7aMc1djjgxX9ra5cSObHbLZFTY7VpEPmbe7njm_dXmwWl-4abg4aKJEbVExSCU8swZxFkiJZIbUSZsqcryVjJsG3cb9VpGKvNo143DJeyC-h9X12EfhJM9lRZ6OgtxRgrYcwa_C_9F7It4jdb-lX34vKbktum3amKP_k_Wc3G2zwuWAGH1MDof1NbxATDN0L4u63gBZE_TJ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access(OpenAccess)
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_HieCL-G29UyL4ptXmu3kQUbljETwUXbi3kDaTuwWv6-3ugedf7yTpLq7sgy-lNGmbzEfnN81khpAXTAJAE3UNrOe1jIrVrfem7i3ai6ijwEOKtjjRk6n8dKpO98i63NFIwOVO1y7Vk5oufrz-dXn9DhX-bdky3r5ZyqzuOS5d6FbU6A3d4FLIJPGfR7ifv8zCokOTFpp5I1mNtluM-2h2P2bLVuWU_rtw6L_hlH_Zp-M75PYILOn7Igl3yR4M98jNUmry-j75-iVNdPYbAj2ZHDHqh0C_pb9WjC5KOXqgF7OzIg-0GDo8e0Uh55hIGzTzPRew8ggol7PlAzI9Pvr-cVKP5RTqXlq9qhO0Co3mHjFGEI2NsWNCekCXykglvGlY5MEL03c9D4DALpjY8L6NMtiInuxDsj_MB3hMKDAGKVkX8KaTyoaOAfqBQhoRYhN6W5GXa8K5nyVrhsur3aJ1hcwOyewymR2ryIdE203PlPE6X5gvztyoQA6aoFB-dOiVlp7ZFrkHSuEw-9gpGytyuOaMW0uR4yan-5eircjzTTMqUFoV8QPMr0ofjZ99oSryqDByMxK07giHNc7HbLF4a6jbLcPsPCfptujImbZ98h_vPSC3eJK6FCdjDsn-anEFTxHqrLpnWX7_AOs_-B4
  priority: 102
  providerName: Scholars Portal
Title Polarized NHE1 and SWELL1 regulate migration direction, efficiency and metastasis
URI https://www.ncbi.nlm.nih.gov/pubmed/36253369
https://www.proquest.com/docview/2725463438/abstract/
https://www.proquest.com/docview/2725653835/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC9576788
https://doaj.org/article/e0d59226dc564a198172e55e93cfb59f
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9sgEEdtp0l7mfa9bF3kSXvb3BgDxjymVbIoUqNsXaW8IQxHa2lxqiR92P76HdiJmmlPe8GWAel8d3C_g-Mg5BPlAJD5IgVq85R7QdPSGJlahfbCF55hEaItZsXkmk8XYnFExO4sTAzat1V91vxcnjX1bYytvFvawS5ObDC_vFAIktF1GxyTY8nYAxc9Tr9ModfCuwMyGSsHGx6ngxi3zoqSpfTACMVc_f8CmH_HST4wPONn5GmHGJNhS9lzcgTNC_K4vUPy10vybR6c0_o3uGQ2GdHENC65CstRNFm398xDsqxvWkEnrQXDty8JxOQR4eRl7LOErUGkuKk3r8j1ePTjYpJ29ySklqtimwbM5LIiNwgeHMuU9xVl3AD6SpILZmRGfe4Mk7ayuQNEbE76LLel5055dFFfk5Nm1cBbkgClELJwQZ5VXChXUUAHj3HJnM-cVT3yecc4fdemw9BxG5uVumWzRjbryGZNe-Q88HbfMqSyjh9W6xvdCVRD5gQqRuGsKLihqkRIBUIgmdZXQvkeOd1JRnfja6NzGfP4c1b2yMd9NY6MsN1hGljdt20KnM-Z6JE3rSD3lKDZRpxb4P_IAxEfkHpYg8oYs293yvfuv3u-J0_yoIshLEaekpPt-h4-ILLZVn3U54XEshx_7ZNHw-H0aorP89Fs_r0fVwuwvORlP2r8HwfA_zg
link.rule.ids 230,315,733,786,790,870,891,2115,2236,12083,12792,21416,24346,27957,27958,31754,31755,33408,33409,33779,33780,43345,43635,43840,53827,53829,74102,74392,74659
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI9gCLEXxOcoDCgSb1AtaT77hABtOmCcQGzSvUVp4ox7WG-73h7gr8dJeweHEC9V1bRSajv2z45jE_KSCQCgUVXAfF2JKFllnNOVb9BeRBU5XlK2xVRNTsXHmZyNAbd-TKtc68SsqMPCpxj5Qa1z5XbBzZuLyyp1jUq7q2MLjevkhuBcpJQ-PdObGEuqfm6EGM_KUG4OepE1Q05h58rwim3Zo1y2_19Y8--UyT9s0NEdcnsEj-Xbgdt3yTXo7pGbQzvJH_fJ1y_JT53_hFBOJ4esdF0ov6XIFCuXQ8t5KM_nZwPPy8GY4d3rEnIdiXQIM39zDiuHoLGf9w_I6dHhyftJNbZMqLxo1KpK8ClQVTvEEYHTJsaWceEA3SYtJHeaslgHx7VvfR0AwVvQkdbeRBGaiN7qQ7LTLTp4REpgDFJBLqhpK2QTWgbo63GheYg0-KYgr9aEsxdDZQybd7S5sQOZLZLZZjJbVpB3ibabN1NV6_xgsTyz4yKxQINEGVHBSyUcawyiK5ASp-ljK5tYkP01Z-y41Hr7WzAK8mIzjIsk7Xy4DhZXwzsKVTuXBdkbGLmZCVpwhLwK_0dvsXhrqtsj3fx7LsTdoLOmjXn8_2k9J7cmJ5-P7fGH6acnZLdOwpdSYvQ-2Vktr-ApoppV-yyL7i8qrPP8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFYgL4tkGWggSN4gax6_khGjZ1fLQanlU6s1y7HG7h2bLZnuAX8_Y8S4sQlyiKHaiyczY8409niHkJeUAUHpZALVVwb2gRW2MKmyD9sJLz_ASoi2mcnLKP5yJsxT_1KewyvWcGCdqt7BhjfyoUjFzO2f1kU9hEbN34zdX34tQQSrstKZyGjfJruJSoIbvHo-msy-bFZeQC73mPJ2cKfFDPY_zRAxoZ7JmBd2yTjGJ_7-Q598BlH9YpPE9cjdByfztIPv75AZ0D8itobjkj4fk8yx4rfOf4PLpZERz07n8a1inovlyKEAP-eX8fNCAfDBtePc6h5hVIhzJjO9cwsoghOzn_SNyOh59O5kUqYBCYXkjV0UAU66UlUFU4VjZeN9Sxg2gE6W4YEaV1FfOMGVbWzlAKOeULytbe-4aj77rY7LTLTrYJzlQCiE9F1Rly0XjWgro-TGumPOls01GXq0Zp6-GPBk67m-zWg9s1shmHdmsaUaOA283PUOO6_hgsTzXachoKJ1AjZHOCskNbWrEWiAEkml9KxqfkYO1ZHQaeL3-rSYZebFpxiET9kFMB4vroY_EiZ6JjOwNgtxQgvYcAbDE_1FbIt4idbulm1_EtNwNum6qrp_8n6zn5Dbqrf70fvrxKblTBd0L8THqgOysltdwiBBn1T5LuvsL7I75nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polarized+NHE1+and+SWELL1+regulate+migration+direction%2C+efficiency+and+metastasis&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Yuqi&rft.au=Li%2C+Yizeng&rft.au=Thompson%2C+Keyata+N&rft.au=Stoletov%2C+Konstantin&rft.date=2022-10-17&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=6128&rft_id=info:doi/10.1038%2Fs41467-022-33683-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon