Excited state non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential

Light-induced chemical processes are ubiquitous in nature and have widespread technological applications. For example, photoisomerization can allow a drug with a photo-switchable scaffold such as azobenzene to be activated with light. In principle, photoswitches with desired photophysical properties...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 3440 - 11
Main Authors Axelrod, Simon, Shakhnovich, Eugene, Gómez-Bombarelli, Rafael
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 15.06.2022
Nature Publishing Group UK
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Light-induced chemical processes are ubiquitous in nature and have widespread technological applications. For example, photoisomerization can allow a drug with a photo-switchable scaffold such as azobenzene to be activated with light. In principle, photoswitches with desired photophysical properties like high isomerization quantum yields can be identified through virtual screening with reactive simulations. In practice, these simulations are rarely used for screening, since they require hundreds of trajectories and expensive quantum chemical methods to account for non-adiabatic excited state effects. Here we introduce a diabatic artificial neural network (DANN), based on diabatic states, to accelerate such simulations for azobenzene derivatives. The network is six orders of magnitude faster than the quantum chemistry method used for training. DANN is transferable to azobenzene molecules outside the training set, predicting quantum yields for unseen species that are correlated with experiment. We use the model to virtually screen 3100 hypothetical molecules, and identify novel species with high predicted quantum yields. The model predictions are confirmed using high-accuracy non-adiabatic dynamics. Our results pave the way for fast and accurate virtual screening of photoactive compounds.
AbstractList Light-induced chemical processes are ubiquitous in nature and have widespread technological applications. For example, photoisomerization can allow a drug with a photo-switchable scaffold such as azobenzene to be activated with light. In principle, photoswitches with desired photophysical properties like high isomerization quantum yields can be identified through virtual screening with reactive simulations. In practice, these simulations are rarely used for screening, since they require hundreds of trajectories and expensive quantum chemical methods to account for non-adiabatic excited state effects. Here we introduce a diabatic artificial neural network (DANN), based on diabatic states, to accelerate such simulations for azobenzene derivatives. The network is six orders of magnitude faster than the quantum chemistry method used for training. DANN is transferable to azobenzene molecules outside the training set, predicting quantum yields for unseen species that are correlated with experiment. We use the model to virtually screen 3100 hypothetical molecules, and identify novel species with high predicted quantum yields. The model predictions are confirmed using high-accuracy non-adiabatic dynamics. Our results pave the way for fast and accurate virtual screening of photoactive compounds.The authors introduce a diabatic neural network to accelerate excitedstate, non-adiabatic simulations of azobenzene derivatives. The model predicts quantum yields for unseen species that are correlated with experiment.
Light-induced chemical processes are ubiquitous in nature and have widespread technological applications. For example, photoisomerization can allow a drug with a photo-switchable scaffold such as azobenzene to be activated with light. In principle, photoswitches with desired photophysical properties like high isomerization quantum yields can be identified through virtual screening with reactive simulations. In practice, these simulations are rarely used for screening, since they require hundreds of trajectories and expensive quantum chemical methods to account for non-adiabatic excited state effects. Here we introduce a diabatic artificial neural network (DANN), based on diabatic states, to accelerate such simulations for azobenzene derivatives. The network is six orders of magnitude faster than the quantum chemistry method used for training. DANN is transferable to azobenzene molecules outside the training set, predicting quantum yields for unseen species that are correlated with experiment. We use the model to virtually screen 3100 hypothetical molecules, and identify novel species with high predicted quantum yields. The model predictions are confirmed using high-accuracy non-adiabatic dynamics. Our results pave the way for fast and accurate virtual screening of photoactive compounds. The authors introduce a diabatic neural network to accelerate excitedstate, non-adiabatic simulations of azobenzene derivatives. The model predicts quantum yields for unseen species that are correlated with experiment.
The authors introduce a diabatic neural network to accelerate excitedstate, non-adiabatic simulations of azobenzene derivatives. The model predicts quantum yields for unseen species that are correlated with experiment.
Light-induced chemical processes are ubiquitous in nature and have widespread technological applications. For example, photoisomerization can allow a drug with a photo-switchable scaffold such as azobenzene to be activated with light. In principle, photoswitches with desired photophysical properties like high isomerization quantum yields can be identified through virtual screening with reactive simulations. In practice, these simulations are rarely used for screening, since they require hundreds of trajectories and expensive quantum chemical methods to account for non-adiabatic excited state effects. Here we introduce a diabatic artificial neural network (DANN), based on diabatic states, to accelerate such simulations for azobenzene derivatives. The network is six orders of magnitude faster than the quantum chemistry method used for training. DANN is transferable to azobenzene molecules outside the training set, predicting quantum yields for unseen species that are correlated with experiment. We use the model to virtually screen 3100 hypothetical molecules, and identify novel species with high predicted quantum yields. The model predictions are confirmed using high-accuracy non-adiabatic dynamics. Our results pave the way for fast and accurate virtual screening of photoactive compounds.Light-induced chemical processes are ubiquitous in nature and have widespread technological applications. For example, photoisomerization can allow a drug with a photo-switchable scaffold such as azobenzene to be activated with light. In principle, photoswitches with desired photophysical properties like high isomerization quantum yields can be identified through virtual screening with reactive simulations. In practice, these simulations are rarely used for screening, since they require hundreds of trajectories and expensive quantum chemical methods to account for non-adiabatic excited state effects. Here we introduce a diabatic artificial neural network (DANN), based on diabatic states, to accelerate such simulations for azobenzene derivatives. The network is six orders of magnitude faster than the quantum chemistry method used for training. DANN is transferable to azobenzene molecules outside the training set, predicting quantum yields for unseen species that are correlated with experiment. We use the model to virtually screen 3100 hypothetical molecules, and identify novel species with high predicted quantum yields. The model predictions are confirmed using high-accuracy non-adiabatic dynamics. Our results pave the way for fast and accurate virtual screening of photoactive compounds.
Light-induced chemical processes are ubiquitous in nature and have widespread technological applications. For example, photoisomerization can allow a drug with a photo-switchable scaffold such as azobenzene to be activated with light. In principle, photoswitches with desired photophysical properties like high isomerization quantum yields can be identified through virtual screening with reactive simulations. In practice, these simulations are rarely used for screening, since they require hundreds of trajectories and expensive quantum chemical methods to account for non-adiabatic excited state effects. Here we introduce a diabatic artificial neural network (DANN), based on diabatic states, to accelerate such simulations for azobenzene derivatives. The network is six orders of magnitude faster than the quantum chemistry method used for training. DANN is transferable to azobenzene molecules outside the training set, predicting quantum yields for unseen species that are correlated with experiment. We use the model to virtually screen 3100 hypothetical molecules, and identify novel species with high predicted quantum yields. The model predictions are confirmed using high-accuracy non-adiabatic dynamics. Our results pave the way for fast and accurate virtual screening of photoactive compounds.
Abstract Light-induced chemical processes are ubiquitous in nature and have widespread technological applications. For example, photoisomerization can allow a drug with a photo-switchable scaffold such as azobenzene to be activated with light. In principle, photoswitches with desired photophysical properties like high isomerization quantum yields can be identified through virtual screening with reactive simulations. In practice, these simulations are rarely used for screening, since they require hundreds of trajectories and expensive quantum chemical methods to account for non-adiabatic excited state effects. Here we introduce a diabatic artificial neural network (DANN), based on diabatic states, to accelerate such simulations for azobenzene derivatives. The network is six orders of magnitude faster than the quantum chemistry method used for training. DANN is transferable to azobenzene molecules outside the training set, predicting quantum yields for unseen species that are correlated with experiment. We use the model to virtually screen 3100 hypothetical molecules, and identify novel species with high predicted quantum yields. The model predictions are confirmed using high-accuracy non-adiabatic dynamics. Our results pave the way for fast and accurate virtual screening of photoactive compounds.
ArticleNumber 3440
Author Axelrod, Simon
Gómez-Bombarelli, Rafael
Shakhnovich, Eugene
Author_xml – sequence: 1
  givenname: Simon
  surname: Axelrod
  fullname: Axelrod, Simon
  organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
– sequence: 2
  givenname: Eugene
  surname: Shakhnovich
  fullname: Shakhnovich, Eugene
  organization: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
– sequence: 3
  givenname: Rafael
  orcidid: 0000-0002-9495-8599
  surname: Gómez-Bombarelli
  fullname: Gómez-Bombarelli, Rafael
  email: rafagb@mit.edu
  organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. rafagb@mit.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35705543$$D View this record in MEDLINE/PubMed
BookMark eNpdkk9vVCEUxV9Mja21X8CFIXHj5in_Hjw2Jqap2qSJm-4Jj3eZYcLACDzrbP3kMp3atLKBwLm_ew85r7uTmCJ03VuCPxLMxk-FEy5kjyntGVZK9XcvujOKOemJpOzkyfm0uyhlg9tiioycv-pO2SDxMHB21v25-m19hRmVaiqg1qQ3szeTqd6ieR_N1tuCkkPB5BWg3TrVVO58tWszBUDbFMAuAQpaio8rZJBdQysxIexRzSYWB_moNHbtI6AAJseDdJcqxOpNeNO9dCYUuHjYz7vbr1e3l9_7mx_fri-_3PSWK1F7zpVkvJlgmFDOqSMGYzELrih1GEZrBbFUulFNjBACHNPRwjDikTsuCDvvro_YOZmN3mW_NXmvk_H6_iLllTa5uQ6gFR9maexErHDcjXJkfJqFwwSEmrGDxvp8ZO2WaQuzbUayCc-gz1-iX-tV-qUVxVhy2QAfHgA5_VygVL31xUIIJkJaiqZCykEyTA9zv_9PuklLju2nDiohCaNCNRU9qmxOpWRwj8MQrA-B0cfA6BYYfR8YfdeK3j218VjyLx7sL2Xyv1o
CitedBy_id crossref_primary_10_1016_j_cplett_2023_140744
crossref_primary_10_1039_D3CP01936E
crossref_primary_10_1063_5_0159559
crossref_primary_10_1146_annurev_matsci_080921_085947
crossref_primary_10_1039_D4TC00450G
crossref_primary_10_1063_5_0142918
crossref_primary_10_1038_s42256_023_00740_3
crossref_primary_10_1021_acs_jpcc_3c08053
crossref_primary_10_1021_acs_jctc_2c01074
crossref_primary_10_1016_j_aichem_2023_100018
crossref_primary_10_1039_D3CP05685F
crossref_primary_10_1021_acs_accounts_2c00288
crossref_primary_10_1021_acs_jpclett_4c00107
crossref_primary_10_1021_acs_jcim_3c00484
crossref_primary_10_1021_acs_jctc_2c00804
crossref_primary_10_1021_acs_jpclett_3c01649
crossref_primary_10_1038_s43246_022_00315_6
crossref_primary_10_1002_qua_27120
crossref_primary_10_1039_D3CP05201J
crossref_primary_10_1039_D2TC05174E
crossref_primary_10_1063_5_0159247
crossref_primary_10_1021_acscentsci_2c00897
crossref_primary_10_1039_D2SC04306H
crossref_primary_10_1109_TCAD_2024_3355277
crossref_primary_10_1021_acs_jctc_4c00468
crossref_primary_10_1021_acs_jpca_3c02363
crossref_primary_10_1002_adma_202402369
crossref_primary_10_1002_adom_202301093
crossref_primary_10_1021_acs_jpca_3c01036
Cites_doi 10.1039/c0cp01883j
10.1063/1.464304
10.1021/acs.jpca.9b06142
10.1063/1.443853
10.1063/1.1383986
10.1021/jp208574q
10.1063/5.0021955
10.1063/1.4891530
10.1146/annurev.physchem.012809.103324
10.1038/nmat4717
10.1080/00268976.2014.952696
10.1063/5.0007417
10.1002/anie.201916381
10.1021/jz402549p
10.1021/acs.chemrev.0c00749
10.1209/0295-5075/106/33001
10.1063/1.1580111
10.1063/1.464814
10.1002/jcc.25869
10.1063/1.5053664
10.1021/jp994174i
10.1038/s41467-021-27504-0
10.1063/1.444267
10.1063/1.2756540
10.1021/acs.jpclett.8b03026
10.1021/acs.jctc.0c00644
10.1063/5.0007615
10.1021/acs.accounts.5b00129
10.1021/acs.jctc.6b00382
10.1063/5.0003985
10.1103/PhysRevA.31.1695
10.1063/1.2920188
10.1021/acs.jpclett.8b02469
10.1080/0144235X.2015.1051354
10.1063/1.447334
10.1038/s41467-021-25342-8
10.1021/acs.jpclett.7b01249
10.1002/ejoc.201100216
10.1063/5.0035233
10.1021/acs.jpclett.8b00060
10.1063/1.2134705
10.1021/acs.jpclett.7b00594
10.1080/00268970500417762
10.1016/S0021-9614(05)80161-2
10.1063/1.465674
10.1021/acs.jpclett.8b00684
10.1063/1.1545679
10.1063/1.1361246
10.1063/1.3695642
10.1021/jacs.0c09056
10.1063/1.3153302
10.1021/acs.accounts.6b00471
10.1063/1.463368
10.1103/PhysRevLett.105.123002
10.1063/1.479574
10.1002/jcc.26197
10.1021/ja413063e
10.1039/C8CP06598E
10.1002/anie.201601931
10.1039/C1CS15179G
10.1063/1.5044202
10.1021/ct500483t
10.1021/acs.jctc.0c00623
10.1016/S0370-1573(99)00047-2
10.1063/1.3633329
10.1063/1.459170
10.1039/C4CP03498H
10.1016/j.chempr.2020.12.009
10.1021/jo100866m
10.1021/acs.jpclett.9b00981
10.1021/acs.jpclett.7b00043
10.1063/1.1793991
10.1021/acs.jpca.9b03176
10.1007/978-90-481-3830-2
10.1039/D0SC05610C
10.1039/C8CP03851A
10.1039/a801824c
10.1039/C9SC01742A
10.1021/nl201357n
10.1016/S0009-2614(98)00252-8
10.1021/acs.jpclett.0c00527
10.1021/acs.jctc.6b00156
10.1021/acs.jpclett.6b00936
10.1039/D0CC03512B
10.1080/00268979200100231
ContentType Journal Article
Copyright 2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022
Copyright_xml – notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-30999-w
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_945d7acb1c6f4f87834bd6f01e69d0fe
10_1038_s41467_022_30999_w
35705543
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
CGR
CUY
CVF
DIK
EBLON
EBS
ECM
EE.
EIF
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
NPM
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c496t-4497340033012442f1a006d64922f0e8cc61c27f89b3111e4028ce58084f4613
IEDL.DBID RPM
ISSN 2041-1723
IngestDate Thu Sep 05 15:39:31 EDT 2024
Tue Sep 17 21:08:03 EDT 2024
Sat Aug 31 17:07:04 EDT 2024
Fri Sep 13 07:17:11 EDT 2024
Fri Aug 23 02:30:34 EDT 2024
Wed Oct 02 05:22:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-4497340033012442f1a006d64922f0e8cc61c27f89b3111e4028ce58084f4613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9495-8599
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200747/
PMID 35705543
PQID 2676713269
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_945d7acb1c6f4f87834bd6f01e69d0fe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9200747
proquest_miscellaneous_2677573021
proquest_journals_2676713269
crossref_primary_10_1038_s41467_022_30999_w
pubmed_primary_35705543
PublicationCentury 2000
PublicationDate 2022-06-15
PublicationDateYYYYMMDD 2022-06-15
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Nature communications
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group
Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group
– name: Nature Publishing Group UK
– name: Nature Portfolio
References Y Guan (30999_CR66) 2019; 21
T Shiozaki (30999_CR14) 2011; 135
S Mai (30999_CR3) 2020; 59
S Seritan (30999_CR18) 2020; 152
Troy Van Voorhis (30999_CR85) 2010; 61
DV Shalashilin (30999_CR9) 2009; 130
CM Marian (30999_CR21) 2019; 9
30999_CR45
C Song (30999_CR16) 2020; 152
M Inamori (30999_CR35) 2020; 41
AM Kolpak (30999_CR2) 2011; 11
CJ Stein (30999_CR24) 2016; 12
Y Shao (30999_CR87) 2015; 113
H Wang (30999_CR59) 2003; 119
H Nakano (30999_CR10) 1993; 99
H Köppel (30999_CR74) 2001; 115
30999_CR84
30999_CR83
A Toniolo (30999_CR73) 2005; 123
C Zhu (30999_CR62) 1992; 97
HMD Bandara (30999_CR80) 2012; 41
J Westermayr (30999_CR47) 2020; 11
CA Mead (30999_CR71) 1982; 77
KH Marti (30999_CR19) 2011; 13
OT Unke (30999_CR39) 2021; 12
C Bannwarth (30999_CR7) 2020; 153
C Angeli (30999_CR12) 2001; 114
HMD Bandara (30999_CR76) 2010; 75
Willem A Velema (30999_CR79) 2014; 136
30999_CR77
30999_CR38
L Yue (30999_CR75) 2018; 20
PA Malmqvist (30999_CR13) 2008; 128
J-K Ha (30999_CR57) 2018; 9
M Filatov (30999_CR29) 2015; 5
CJ Stein (30999_CR25) 2019; 40
Y Shu (30999_CR31) 2017; 8
A Abedi (30999_CR53) 2010; 105
I Burghardt (30999_CR60) 1999; 111
D Ma (30999_CR15) 2016; 12
H-H Teh (30999_CR33) 2019; 10
Y Shu (30999_CR64) 2020; 16
AR Dias (30999_CR81) 1992; 24
T Cusati (30999_CR34) 2012; 116
SK Min (30999_CR55) 2017; 8
JC Tully (30999_CR8) 1998; 110
J Finley (30999_CR11) 1998; 288
30999_CR22
Y Yang (30999_CR30) 2016; 7
JK Yu (30999_CR27) 2020; 16
R Gómez-Bombarelli (30999_CR78) 2016; 15
DV Makhov (30999_CR50) 2014; 141
BFE Curchod (30999_CR56) 2017; 8
30999_CR1
MM Lerch (30999_CR5) 2016; 55
J Westermayr (30999_CR46) 2019; 10
S Nosé (30999_CR88) 1984; 81
A Abedi (30999_CR54) 2014; 106
L Gagliardi (30999_CR23) 2017; 50
PO Dral (30999_CR43) 2018; 9
M Ben-Nun (30999_CR49) 2000; 104
WG Hoover (30999_CR89) 1985; 31
MM Francl (30999_CR67) 1982; 77
DMG Williams (30999_CR65) 2018; 149
W Wang (30999_CR41) 2020; 56
BG Levine (30999_CR69) 2006; 104
S Lee (30999_CR32) 2018; 149
J Westermayr (30999_CR48) 2020; 121
S Lee (30999_CR70) 2019; 123
MH Beck (30999_CR58) 2000; 324
JC Tully (30999_CR61) 1990; 93
C Zhu (30999_CR63) 1993; 98
W-K Chen (30999_CR42) 2018; 9
AD Becke (30999_CR68) 1993; 98
M de Wergifosse (30999_CR36) 2019; 123
D Hu (30999_CR44) 2018; 9
C Song (30999_CR17) 2021; 154
MS Schuurman (30999_CR86) 2007; 127
SJ Ang (30999_CR40) 2021; 7
GW Richings (30999_CR52) 2015; 34
S Sharma (30999_CR20) 2012; 136
J Broichhagen (30999_CR4) 2015; 48
JK Yu (30999_CR6) 2020; 142
Y Shao (30999_CR26) 2003; 118
SL Li (30999_CR28) 2014; 5
L Yu (30999_CR82) 2014; 16
M Baer (30999_CR72) 1992; 75
C Zhu (30999_CR51) 2004; 121
Z Qiao (30999_CR37) 2020; 153
References_xml – volume: 13
  start-page: 6750
  year: 2011
  ident: 30999_CR19
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp01883j
  contributor:
    fullname: KH Marti
– volume: 98
  start-page: 1372
  year: 1993
  ident: 30999_CR68
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464304
  contributor:
    fullname: AD Becke
– volume: 123
  start-page: 6455
  year: 2019
  ident: 30999_CR70
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.9b06142
  contributor:
    fullname: S Lee
– volume: 77
  start-page: 6090
  year: 1982
  ident: 30999_CR71
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.443853
  contributor:
    fullname: CA Mead
– volume: 115
  start-page: 2377
  year: 2001
  ident: 30999_CR74
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1383986
  contributor:
    fullname: H Köppel
– volume: 116
  start-page: 98
  year: 2012
  ident: 30999_CR34
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp208574q
  contributor:
    fullname: T Cusati
– volume: 153
  start-page: 124111
  year: 2020
  ident: 30999_CR37
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0021955
  contributor:
    fullname: Z Qiao
– volume: 141
  start-page: 054110
  year: 2014
  ident: 30999_CR50
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4891530
  contributor:
    fullname: DV Makhov
– volume: 61
  start-page: 149
  year: 2010
  ident: 30999_CR85
  publication-title: Ann. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.012809.103324
  contributor:
    fullname: Troy Van Voorhis
– volume: 15
  start-page: 1120
  year: 2016
  ident: 30999_CR78
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4717
  contributor:
    fullname: R Gómez-Bombarelli
– volume: 113
  start-page: 184
  year: 2015
  ident: 30999_CR87
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2014.952696
  contributor:
    fullname: Y Shao
– volume: 152
  start-page: 234113
  year: 2020
  ident: 30999_CR16
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0007417
  contributor:
    fullname: C Song
– volume: 59
  start-page: 16832
  year: 2020
  ident: 30999_CR3
  publication-title: Angewandte Chemie Int. Ed
  doi: 10.1002/anie.201916381
  contributor:
    fullname: S Mai
– volume: 5
  start-page: 322
  year: 2014
  ident: 30999_CR28
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz402549p
  contributor:
    fullname: SL Li
– volume: 121
  start-page: 9873
  year: 2020
  ident: 30999_CR48
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00749
  contributor:
    fullname: J Westermayr
– volume: 106
  start-page: 33001
  year: 2014
  ident: 30999_CR54
  publication-title: EPL Europhys. Lett.
  doi: 10.1209/0295-5075/106/33001
  contributor:
    fullname: A Abedi
– volume: 119
  start-page: 1289
  year: 2003
  ident: 30999_CR59
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1580111
  contributor:
    fullname: H Wang
– volume: 98
  start-page: 6208
  year: 1993
  ident: 30999_CR63
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464814
  contributor:
    fullname: C Zhu
– volume: 40
  start-page: 2216
  year: 2019
  ident: 30999_CR25
  publication-title: J. Comput. Chem,
  doi: 10.1002/jcc.25869
  contributor:
    fullname: CJ Stein
– volume: 149
  start-page: 204106
  year: 2018
  ident: 30999_CR65
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5053664
  contributor:
    fullname: DMG Williams
– volume: 104
  start-page: 5161
  year: 2000
  ident: 30999_CR49
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp994174i
  contributor:
    fullname: M Ben-Nun
– volume: 9
  start-page: e1394
  year: 2019
  ident: 30999_CR21
  publication-title: Wiley Interdisciplinary Rev.: Comput. Mol. Sci.
  contributor:
    fullname: CM Marian
– volume: 5
  start-page: 146
  year: 2015
  ident: 30999_CR29
  publication-title: Wiley Interdisciplinary Rev.: Comput. Mol. Sci.
  contributor:
    fullname: M Filatov
– volume: 12
  start-page: 1
  year: 2021
  ident: 30999_CR39
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27504-0
  contributor:
    fullname: OT Unke
– volume: 77
  start-page: 3654
  year: 1982
  ident: 30999_CR67
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.444267
  contributor:
    fullname: MM Francl
– volume: 127
  start-page: 094104
  year: 2007
  ident: 30999_CR86
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2756540
  contributor:
    fullname: MS Schuurman
– volume: 9
  start-page: 6702
  year: 2018
  ident: 30999_CR42
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b03026
  contributor:
    fullname: W-K Chen
– volume: 16
  start-page: 5499
  year: 2020
  ident: 30999_CR27
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.0c00644
  contributor:
    fullname: JK Yu
– volume: 152
  start-page: 224110
  year: 2020
  ident: 30999_CR18
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0007615
  contributor:
    fullname: S Seritan
– volume: 48
  start-page: 1947
  year: 2015
  ident: 30999_CR4
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00129
  contributor:
    fullname: J Broichhagen
– volume: 12
  start-page: 3208
  year: 2016
  ident: 30999_CR15
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b00382
  contributor:
    fullname: D Ma
– volume: 153
  start-page: 024110
  year: 2020
  ident: 30999_CR7
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0003985
  contributor:
    fullname: C Bannwarth
– volume: 31
  start-page: 1695
  year: 1985
  ident: 30999_CR89
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
  contributor:
    fullname: WG Hoover
– volume: 128
  start-page: 204109
  year: 2008
  ident: 30999_CR13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2920188
  contributor:
    fullname: PA Malmqvist
– volume: 9
  start-page: 5660
  year: 2018
  ident: 30999_CR43
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b02469
  contributor:
    fullname: PO Dral
– volume: 34
  start-page: 269
  year: 2015
  ident: 30999_CR52
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235X.2015.1051354
  contributor:
    fullname: GW Richings
– volume: 81
  start-page: 511
  year: 1984
  ident: 30999_CR88
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
  contributor:
    fullname: S Nosé
– ident: 30999_CR84
  doi: 10.1038/s41467-021-25342-8
– volume: 8
  start-page: 3048
  year: 2017
  ident: 30999_CR55
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01249
  contributor:
    fullname: SK Min
– ident: 30999_CR77
  doi: 10.1002/ejoc.201100216
– volume: 154
  start-page: 014103
  year: 2021
  ident: 30999_CR17
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0035233
  contributor:
    fullname: C Song
– volume: 9
  start-page: 1097
  year: 2018
  ident: 30999_CR57
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00060
  contributor:
    fullname: J-K Ha
– volume: 123
  start-page: 234308
  year: 2005
  ident: 30999_CR73
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2134705
  contributor:
    fullname: A Toniolo
– volume: 8
  start-page: 2107
  year: 2017
  ident: 30999_CR31
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00594
  contributor:
    fullname: Y Shu
– volume: 104
  start-page: 1039
  year: 2006
  ident: 30999_CR69
  publication-title: Mol. Phys.
  doi: 10.1080/00268970500417762
  contributor:
    fullname: BG Levine
– volume: 24
  start-page: 439
  year: 1992
  ident: 30999_CR81
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/S0021-9614(05)80161-2
  contributor:
    fullname: AR Dias
– volume: 99
  start-page: 7983
  year: 1993
  ident: 30999_CR10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465674
  contributor:
    fullname: H Nakano
– volume: 9
  start-page: 2725
  year: 2018
  ident: 30999_CR44
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00684
  contributor:
    fullname: D Hu
– volume: 118
  start-page: 4807
  year: 2003
  ident: 30999_CR26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1545679
  contributor:
    fullname: Y Shao
– volume: 114
  start-page: 10252
  year: 2001
  ident: 30999_CR12
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1361246
  contributor:
    fullname: C Angeli
– volume: 136
  start-page: 124121
  year: 2012
  ident: 30999_CR20
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3695642
  contributor:
    fullname: S Sharma
– volume: 142
  start-page: 20680
  year: 2020
  ident: 30999_CR6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09056
  contributor:
    fullname: JK Yu
– volume: 130
  start-page: 244101
  year: 2009
  ident: 30999_CR9
  publication-title: J Chem. Phys.
  doi: 10.1063/1.3153302
  contributor:
    fullname: DV Shalashilin
– volume: 50
  start-page: 66
  year: 2017
  ident: 30999_CR23
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00471
  contributor:
    fullname: L Gagliardi
– volume: 97
  start-page: 8497
  year: 1992
  ident: 30999_CR62
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463368
  contributor:
    fullname: C Zhu
– volume: 105
  start-page: 123002
  year: 2010
  ident: 30999_CR53
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.123002
  contributor:
    fullname: A Abedi
– ident: 30999_CR38
– volume: 111
  start-page: 2927
  year: 1999
  ident: 30999_CR60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479574
  contributor:
    fullname: I Burghardt
– volume: 41
  start-page: 1538
  year: 2020
  ident: 30999_CR35
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.26197
  contributor:
    fullname: M Inamori
– volume: 136
  start-page: 2178
  year: 2014
  ident: 30999_CR79
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja413063e
  contributor:
    fullname: Willem A Velema
– volume: 21
  start-page: 14205
  year: 2019
  ident: 30999_CR66
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP06598E
  contributor:
    fullname: Y Guan
– volume: 55
  start-page: 10978
  year: 2016
  ident: 30999_CR5
  publication-title: Angewandte Chemie Int. Edition
  doi: 10.1002/anie.201601931
  contributor:
    fullname: MM Lerch
– volume: 41
  start-page: 1809
  year: 2012
  ident: 30999_CR80
  publication-title: Chem. Soc. Revi.
  doi: 10.1039/C1CS15179G
  contributor:
    fullname: HMD Bandara
– volume: 149
  start-page: 104101
  year: 2018
  ident: 30999_CR32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5044202
  contributor:
    fullname: S Lee
– ident: 30999_CR83
– ident: 30999_CR22
  doi: 10.1021/ct500483t
– volume: 16
  start-page: 6456
  year: 2020
  ident: 30999_CR64
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.0c00623
  contributor:
    fullname: Y Shu
– volume: 324
  start-page: 1
  year: 2000
  ident: 30999_CR58
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(99)00047-2
  contributor:
    fullname: MH Beck
– volume: 135
  start-page: 081106
  year: 2011
  ident: 30999_CR14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3633329
  contributor:
    fullname: T Shiozaki
– volume: 93
  start-page: 1061
  year: 1990
  ident: 30999_CR61
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.459170
  contributor:
    fullname: JC Tully
– volume: 16
  start-page: 25883
  year: 2014
  ident: 30999_CR82
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP03498H
  contributor:
    fullname: L Yu
– volume: 7
  start-page: 738
  year: 2021
  ident: 30999_CR40
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.12.009
  contributor:
    fullname: SJ Ang
– volume: 75
  start-page: 4817
  year: 2010
  ident: 30999_CR76
  publication-title: J. Organic Chem.
  doi: 10.1021/jo100866m
  contributor:
    fullname: HMD Bandara
– volume: 10
  start-page: 3426
  year: 2019
  ident: 30999_CR33
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00981
  contributor:
    fullname: H-H Teh
– volume: 8
  start-page: 831
  year: 2017
  ident: 30999_CR56
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00043
  contributor:
    fullname: BFE Curchod
– volume: 121
  start-page: 7658
  year: 2004
  ident: 30999_CR51
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1793991
  contributor:
    fullname: C Zhu
– volume: 123
  start-page: 5815
  year: 2019
  ident: 30999_CR36
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.9b03176
  contributor:
    fullname: M de Wergifosse
– ident: 30999_CR1
  doi: 10.1007/978-90-481-3830-2
– ident: 30999_CR45
  doi: 10.1039/D0SC05610C
– volume: 20
  start-page: 24123
  year: 2018
  ident: 30999_CR75
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP03851A
  contributor:
    fullname: L Yue
– volume: 110
  start-page: 407
  year: 1998
  ident: 30999_CR8
  publication-title: Faraday Discussions
  doi: 10.1039/a801824c
  contributor:
    fullname: JC Tully
– volume: 10
  start-page: 8100
  year: 2019
  ident: 30999_CR46
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC01742A
  contributor:
    fullname: J Westermayr
– volume: 11
  start-page: 3156
  year: 2011
  ident: 30999_CR2
  publication-title: Nano Lett.
  doi: 10.1021/nl201357n
  contributor:
    fullname: AM Kolpak
– volume: 288
  start-page: 299
  year: 1998
  ident: 30999_CR11
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(98)00252-8
  contributor:
    fullname: J Finley
– volume: 11
  start-page: 3828
  year: 2020
  ident: 30999_CR47
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c00527
  contributor:
    fullname: J Westermayr
– volume: 12
  start-page: 1760
  year: 2016
  ident: 30999_CR24
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b00156
  contributor:
    fullname: CJ Stein
– volume: 7
  start-page: 2407
  year: 2016
  ident: 30999_CR30
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00936
  contributor:
    fullname: Y Yang
– volume: 56
  start-page: 8920
  year: 2020
  ident: 30999_CR41
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC03512B
  contributor:
    fullname: W Wang
– volume: 75
  start-page: 293
  year: 1992
  ident: 30999_CR72
  publication-title: Mol. Phys.
  doi: 10.1080/00268979200100231
  contributor:
    fullname: M Baer
SSID ssj0000391844
Score 2.5514863
Snippet Light-induced chemical processes are ubiquitous in nature and have widespread technological applications. For example, photoisomerization can allow a drug with...
Abstract Light-induced chemical processes are ubiquitous in nature and have widespread technological applications. For example, photoisomerization can allow a...
The authors introduce a diabatic neural network to accelerate excitedstate, non-adiabatic simulations of azobenzene derivatives. The model predicts quantum...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3440
SubjectTerms Adiabatic
Adiabatic flow
Artificial neural networks
Azo compounds
Chemical reactions
Excitation
Isomerization
Light effects
Machine Learning
Molecular Dynamics Simulation
Neural networks
Neural Networks, Computer
Predictions
Quantum chemistry
Quantum Theory
Screening
Simulation
Training
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlUOil9Ltu0qBCb8XEtka2dGxLQii0pxRyE7Y8SgLb9RI7bHPNL--M5Cy7JdBLr7YwsuZDb9DoPSE-WjSIptV532idQwscUtbkXQN1KJRG4_ly8vcf9elP-Hauz7ekvrgnLNEDp4U7sqD7pvVd6esAwbAuRNfTZ0qsbV8EjNm31FvFVMzBylLpAvMtmUKZoxFiTojN64yK8vXOThQJ-x9CmX83S27tPifPxNMZNsrPabrPxSNcvhCPk5Dk7Utxd_zbM3aU8X6QpJI-Z86BjulYZZ9E50c5BLngxm-5uhymYVxfkcX45pT8lTRycZTcBn8hW-lnHoHFrZwitMXrNDL2XqKcxSYu5GqYuN-oXbwSZyfHZ19P81ldIfdg6ykHsI0C1nIreI-vQtlSBPY12KoKBduoLn3VBGM7RQkRqdA0HrUpDAQgEPBa7NHf4FshKU9hr30ooSoAoTRIiYOQnyfoGFpVZOLT_UK7VeLQcPHsWxmXzOLILC6axa0z8YVtsRnJ_NfxAXmFm73C_csrMnFwb0k3B-XoKiano-q7tpn4sHlN4cRnJO0Sh5s4ptGU9aoyE2-S4TczUZqph0BlotlxiZ2p7r5ZXl1Gym5bRaWCd__j3_bFk4rdmAWU9IHYm65v8D0ho6k7jEHwB2fDDYY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEB7OOwRfxN9WT4ngm5Rt00mbPIkneyyCh8gJ9xbaNNk72Nuu2x7rvfqXm0mzqyvia5uHtN_MZJLMfB_AW2WltbIWaVsJkWKN5FJKpk2FpcsKYaWh5uTPZ-XsG366EBcHMNv2wlBZ5TYmhkDddobOyCecmMX81qlUk7qhUwAzTN6vvqekH0X3rFFM4w4c8RzpwvboZHr25evuvIWY0CVi7JvJCjnpMUSJUM5OeVK62VubAoX_v_LOv8sn_1iPTh_A_ZhIsg8j8g_hwC4fwd1RWvL2Mfyc_jCUTbLQMcT8Jj8lFoKGCFpZO8rQ96xzbEGl4Gx12Q1dv7nyGFIvFbseVXNtz6gwfs5qZiKzwOKWDSHZtetxZKjGtCzKT8zZqhuoAqlePIHz0-n5x1ka9RZSg6ocUkRVFUjqbhmt-tzltffJtkTFucsItTI3vHJSNYUPkdZvPaWxQmYSHfq04Ckc-q-xz4H5yGVbYVyOPEOLubQ-lPhc0Phk0tVFlsC77Y_Wq5FVQ4fb8ELqERbtYdEBFr1J4ISw2I0kRuzwoFvPdXQwrVC0VW2a3JQOnST9kKb15pbbUrWZswkcb5HU0U17_duoEnize-0djG5N6qXtbsKYSvg4yPMEno3A72ZSCCIjwiKBas8k9qa6_2Z5dRlIvBUP2gUv_j-tl3CPk4GSWJI4hsNhfWNf-SxoaF5HA_8FGJEJPA
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access(OpenAccess)
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbGEBIXxPgZGMhI3FAgsZ8T-4CmMW2akMZpk3azEsfuJpWmNJm6XvnLec9JK4p64NpYber3w9-T3_s-xj4ar73XlUqbUqkUKqCQMjqtSyhCJpXXjoaTL34U51fw_Vpd77G13NG4gd3O0o70pK4W08_3v1ZHGPBfh5Fx_aWDGO6xL50AT7p8wB4KkEAefzHC_ZiZpcGChi6aRQZ5ime3HOdodn_N1lkVKf134dB_2yn_Op_OnrInI7Dkx4MnHLA9P3vGHg1Sk6vn7PfpvSN0yeMEEceiPyVWgpoIW3kzyNJ3vA18Sq3hfH7T9m23vEWb0mwV_zmo6PqOU6P8hFfcjUwD0xXvI_j1i2Fl7M70fJSjmPB521NHUjV9wS7PTi9PztNRfyF1YIo-BTClBFJ7ywgFiJBXGKNNAUaIkJEVi9yJMmhTS0yZHktR7bzSmYYACBNesn38N_4145jJfKNcyAE33kOuPaYWxIYOwWWoZJawT-uNtvOBZcPG23Gp7WAWi2ax0Sx2mbBvZIvNSmLIjh-0i4kdA84aUE1ZuTp3RYCgSU-kbtD9cl-YJgs-YYdrS9q111lB9HVYnxcmYR82jzHg6Balmvn2Lq4pFeZFkSfs1WD4zZtIReREIBNWbrnE1qtuP5nd3kRSbyOilsGb__jdt-yxIC8lBSV1yPb7xZ1_h9Cor99Hf_8DtGoLaA
  priority: 102
  providerName: Scholars Portal
Title Excited state non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential
URI https://www.ncbi.nlm.nih.gov/pubmed/35705543
https://www.proquest.com/docview/2676713269/abstract/
https://www.proquest.com/docview/2677573021/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC9200747
https://doaj.org/article/945d7acb1c6f4f87834bd6f01e69d0fe
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFH60HRu9jP2ety5osNtwY1uSLR3TkqwEUsrWQW7ClqU0kMQhdsl63V--J9kJzdhpFwdiBZS8H_pe_L3vAXyRRhgjch6WGechy5kLKSnCImOpjSg3Qrvm5Ml1evWTjad8egR81wvjSfu6mJ-vFsvz1fzOcyvXS93f8cT6N5NLmXjd9_4xHGeUPirRffqlEqsW1jXIRFT0a-bTgeetO0AUbk_hGeVOR4bRg_PIy_b_C2v-TZl8dAaNXsDzDjySQbvJl3BkVq_gaTtO8uE1_B7-0g5BEt8lRLCwD53yQOFEWUnZjp6vSWXJwtG_yfquaqp6O0e7uf4psmwn5ZqaODL8jOREd2oCiwfSeIBrNu1Kz8A0pBs5MSPrqnGso3zxBm5Hw9vLq7CbsRBqJtMmZExmlLmJbpE76RMb5xiHZcpkktjIWSqNdZJZIQuKadFguSm04SISzDKEAm_hBL-NeQ8Es5UpubYxSyJmWCwMpg_EfxoBpM1pFMDX3Q-t1q2ShvJPwKlQrYUUWkh5C6ltABfOFvuVTgXbv1FtZqrzBSUZL7NcF7FOLbPCzQwpSnSx2KSyjKwJ4GxnSdWFZq0SJ1GHNXgqA_i8v41B5Z6U5CtT3fs1Gcfcl8QBvGsNv9_JznECyA5c4mCrh3fQj71wd-e3H_77kx_hNHFu7GYn8TM4aTb35hOCoqboYShMM7yK0bcePBkMxj_G-HoxvL753vN_NOB1wkTPB8sfTH8Tww
link.rule.ids 230,315,733,786,790,870,891,2115,2236,12083,12792,21416,24346,27957,27958,31754,31755,33408,33409,33779,33780,43345,43635,43840,53827,53829,74102,74392,74659
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BEYIL4rMEChiJG4qaxOPEPiFArQq0PS3S3qzEsbeVls2ySbX0yi_H43gXFiGuiQ9O3sx4bM-8B_BGWWmtrEXaVkKkWCO5lJJpU2HpMi6sNNScfHZennzFz1MxjQdufSyr3MTEEKjbztAZ-WFBzGJ-61Sqd8vvKalG0e1qlNC4CbeQc6SSvmpabc9YiP1cIsZemYzLwx5DZAgl7JQbpeud9SjQ9v8r1_y7ZPKPNej4PtyLySN7P6L9AG7YxUO4PcpJXj-Cn0c_DGWQLHQJMb-xT4l5oCFSVtaO0vM96xybU_k3W150Q9evLz1u1D_Fvo1KubZnVAw_YzUzkU1gfs2GkODa1TgyVGBaFiUnZmzZDVR1VM8fw-T4aPLxJI0aC6lBVQ4poqo4kqJbRit94fLa-2FboioKlxFSZW6KyknVcB8Wrd9uSmOFzCQ69KnAE9jzX2OfAvPRyrbCuByLDC3m0vrw4fM_4xNIV_MsgbebH62XI5OGDjfgXOoRFu1h0QEWvU7gA2GxHUks2OFBt5rp6FRaoWir2jS5KR06SZohTetNLLelajNnEzjYIKmja_b6tyEl8Hr72jsV3ZTUC9tdhTGV8LGvyBPYH4HfzoQLIiBCnkC1YxI7U919s7i8CMTdqgh6Bc_-P61XcOdkcnaqTz-df3kOdwsyVhJLEgewN6yu7AufBQ3Ny2DqvwC3jgcJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwGP0EQyBepnEbGQOMxBuKmsvnxH5C7FKN28TDkPpmJY7dTSpNaTKVvfLL8ee4hSLEa-MHp9_Fx_HxOQCvpRHGiIrHTcl5jBVSSUkR1yUWNsm5EZouJ38-L86-4ocJnwT-Uxdoleue6Bt102r6Rj7KSFnMbZ0KObKBFvHlZPx28T0mByk6aQ12GrfhjlslE3IzKCfl5nsLKaELxHBvJsnFqEPfJTydnXBSvNpam7yE_79w59_0yT_Wo_Ee7AYgyd4NkX8At8z8IdwdrCVvHsHP0x-a0CTzN4aY2-THpEJQk0ArawYb-o61ls2ICs4Wl23fdqsrF0O6S8W-Da65pmNEjJ-yiumgLDC7Yb0Hu2Y5jPRsTMOC_cSULdqeGEjV7DFcjE8vjs_i4LcQa5RFHyPKMkdyd0to1c9sWrmabAqUWWYTilqR6qy0Qta5a5HGbT2FNlwkAi06WPAEdtzbmKfAXOcyDdc2xSxBg6kwrpU4LKgdmLRVnkTwZv1Hq8WgqqH8aXgu1BAW5cKifFjUKoIjisVmJCli-x_a5VSFAlMSeVNWuk51YdEK8g-pG5duqSlkk1gTweE6kiqUaad-J1UErzaPXYHRqUk1N-21H1Ny1wezNIL9IfCbmeScxIgwj6DcSomtqW4_mV9dehFvmXnvgoP_T-sl3HNZrj69P__4DO5nlKvkm8QPYadfXpvnDhD19Quf6b8A3qQLNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excited+state+non-adiabatic+dynamics+of+large+photoswitchable+molecules+using+a+chemically+transferable+machine+learning+potential&rft.jtitle=Nature+communications&rft.au=Axelrod%2C+Simon&rft.au=Shakhnovich%2C+Eugene&rft.au=G%C3%B3mez-Bombarelli%2C+Rafael&rft.date=2022-06-15&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=3440&rft_id=info:doi/10.1038%2Fs41467-022-30999-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon