Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces
For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic pr...
Saved in:
Published in | Computational optimization and applications Vol. 78; no. 3; pp. 705 - 740 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Springer US
01.04.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation. |
---|---|
AbstractList | For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^1$$\end{document}
L
1
-penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation. For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation. For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a L 1 -penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation.For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a L 1 -penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation. For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a $$L^1$$ L 1 -penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation. For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a L 1 -penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation. For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a -penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation. For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a L1-penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation. |
Author | Geiersbach, Caroline Scarinci, Teresa |
Author_xml | – sequence: 1 givenname: Caroline surname: Geiersbach fullname: Geiersbach, Caroline – sequence: 2 givenname: Teresa surname: Scarinci fullname: Scarinci, Teresa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33707813$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3DAUha2KqjzaP1CpVaRuukl7_Uhsbyoh1AISiAXdWx7nZsYoiae2BzH_vp4GKLBgZcv-zvHxPYdkbwoTEvKRwjcKIL8nCo3SNTCoAVij6-0bckAbyWumtNh7st8nhyndAICWnL0j-5xLkIryA3J5nYNb2ZS9q9Yx3PnRDtUy2s7jlKsR8yp0qepDrMrjLky3eLfjFgOOqfJTdeaHBcZcpbV1mN6Tt70dEn64X4_I9a-fv0_O6our0_OT44vaCd3mWlDb9k2HCG5hgbVcas2EtK3oAKUFpZXtHKNSKdY1qHVnFesbhiDKKT8iP2bX9WYxYudK0mgHs44lfNyaYL15fjP5lVmGWyM1SGiaYvD13iCGPxtM2Yw-ORwGO2HYJMMaoKxllIqCfnmB3oRNnMrnDBOal6lLYIX6_DTRY5SHORdAzYCLIaWIvXE-2-zDLqAfDAWzq9TMlZpSqflXqdkWKXshfXB_VcRnUSrwtMT4P_arqk-zCkvTPpndknKIhikpBOd_AZFIvt8 |
CitedBy_id | crossref_primary_10_1137_22M1503889 crossref_primary_10_1016_j_cam_2024_116199 crossref_primary_10_1016_j_jde_2023_04_034 crossref_primary_10_1007_s11590_022_01888_4 crossref_primary_10_1287_moor_2022_0200 crossref_primary_10_1007_s00245_023_09967_3 crossref_primary_10_1137_20M1381381 crossref_primary_10_1080_10556788_2023_2189717 crossref_primary_10_1137_21M1402467 crossref_primary_10_1016_j_physd_2024_134216 crossref_primary_10_1137_22M1512636 crossref_primary_10_1137_23M1600608 crossref_primary_10_1007_s10589_021_00308_0 crossref_primary_10_1137_20M134664X |
Cites_doi | 10.1137/070704277 10.1137/1.9781611971309 10.1137/15M1041390 10.1137/110835438 10.1214/aoms/1177699145 10.1007/BF02060944 10.1007/s10107-014-0846-1 10.1093/oso/9780198502777.001.0001 10.1137/130915960 10.1051/m2an/2018025 10.1287/moor.21.3.615 10.1137/17M1155892 10.1137/0328072 10.1016/j.cma.2017.01.019 10.1137/1.9781611974997 10.1137/16M109870X 10.1007/978-1-4419-9467-7 10.1142/9789812792822_0005 10.1137/16M1080173 10.1007/978-3-8348-9357-4 10.1007/978-1-4684-9352-8 10.1016/0047-259X(84)90030-7 10.1007/BF00941830 10.1109/TAC.1977.1101561 10.1017/CBO9780511813658 10.1016/0047-259X(90)90064-O 10.1137/18M1200208 10.1109/TAC.1983.1103184 10.1137/19M1263297 10.1214/aoms/1177729586 10.1016/j.cma.2011.11.026 10.1287/moor.1070.0253 10.1017/CBO9781316480588 10.1090/S0002-9939-1965-0182024-4 10.1007/BF01046934 10.1007/978-3-319-13395-9 10.1214/aoms/1177729392 10.1137/120892362 10.1137/140954556 10.3792/pjaa.60.246 10.1137/17M1135086 10.1051/cocv/2019061 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | OT2 C6C AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 5PM |
DOI | 10.1007/s10589-020-00259-y |
DatabaseName | EconStor Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection (ProQuest) ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (ProQuest) ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (UHCL Subscription) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest : ProQuest One Business [unlimited simultaneous users] ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics Mathematics |
EISSN | 1573-2894 |
EndPage | 740 |
ExternalDocumentID | PMC7907055 33707813 10_1007_s10589_020_00259_y 287443 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Projekt DEAL – fundername: Austrian Science Fund (FWF) grantid: W1260-N35 – fundername: ; – fundername: ; grantid: W1260-N35 |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHQJS AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OT2 OVD P19 P2P P62 P9R PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 PTHSS PUEGO Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR ZWQNP ~8M ~EX -52 -5D -5G -BR -EM 3V. ADINQ C6C GQ6 GROUPED_ABI_INFORM_COMPLETE M0N Z7R Z7S Z7X Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8U Z8W Z92 AAYXX CITATION NPM 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c496t-41a6f5dee0cba0263799247a64d0e7a0898adc217882d5e99da82f52e04c213 |
IEDL.DBID | C6C |
ISSN | 1573-2894 0926-6003 |
IngestDate | Thu Aug 21 18:20:16 EDT 2025 Mon Jul 21 09:50:00 EDT 2025 Sat Aug 23 12:43:55 EDT 2025 Wed Feb 19 02:28:20 EST 2025 Tue Jul 01 00:44:26 EDT 2025 Thu Apr 24 23:07:24 EDT 2025 Fri Feb 21 02:49:31 EST 2025 Fri Aug 29 12:45:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Differential inclusions Optimal control problems involving partial differential equations Partial differential equations with randomness Nonsmooth and nonconvex optimization Mathematical programming methods Stochastic programming |
Language | English |
License | The Author(s) 2021. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-41a6f5dee0cba0263799247a64d0e7a0898adc217882d5e99da82f52e04c213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doi.org/10.1007/s10589-020-00259-y |
PMID | 33707813 |
PQID | 2493259702 |
PQPubID | 30811 |
PageCount | 36 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7907055 proquest_miscellaneous_2501262114 proquest_journals_2493259702 pubmed_primary_33707813 crossref_citationtrail_10_1007_s10589_020_00259_y crossref_primary_10_1007_s10589_020_00259_y springer_journals_10_1007_s10589_020_00259_y econis_econstor_287443 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York – name: United States |
PublicationSubtitle | An International Journal |
PublicationTitle | Computational optimization and applications |
PublicationTitleAbbrev | Comput Optim Appl |
PublicationTitleAlternate | Comput Optim Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | De Los Reyes (CR14) 2015 Kunoth, Schwab (CR30) 2016; 4 Duchi, Ruan (CR15) 2018; 28 Clarke (CR11) 1990 Venter (CR55) 1966; 37 CR37 CR35 Robbins, Siegmund (CR46) 1971 Bauschke, Combettes (CR4) 2011 Lee, Lee (CR34) 2013; 14 Geiersbach, Wollner (CR20) 2020; 42 Bottou, Curtis, Nocedal (CR7) 2018; 60 Kiefer, Wolfowitz (CR25) 1952; 23 Kouri, Heinkenschloss, Ridzal, Van Bloemen Waanders (CR28) 2013; 35 Kushner, Clark (CR33) 1978 Kushner, Yin (CR32) 2003 Rosseel, Wells (CR47) 2012; 213 CR2 Uryasev (CR53) 1992; 39 Nemirovski, Juditsky, Lan, Shapiro (CR39) 2009; 19 CR5 CR8 Kouri, Surowiec (CR27) 2019; 26 Ljung (CR36) 1977; 22 Barty, Roy, Strugarek (CR3) 2007; 32 Davis, Drusvyatskiy, Kakade, Lee (CR13) 2018; 20 Geiersbach, Pflug (CR19) 2019; 29 Tiesler, Kirby, Xiu, Preusser (CR51) 2012; 50 Okada (CR42) 1984; 60 Van Barel, Vandewalle (CR54) 2019; 7 Yin, Zhu (CR58) 1990; 34 Goldstein (CR22) 1988; 1 Smale (CR50) 2000 Robbins, Monro (CR45) 1951; 22 Nixdorf (CR40) 1984; 15 CR18 Duflo (CR16) 2013 Kupka (CR31) 1965; 16 Culioli, Cohen (CR12) 1990; 28 CR52 Bottou (CR6) 1998; 17 Ghadimi, Lan, Zhang (CR21) 2016; 155 Métivier (CR38) 2011 Ermoliev (CR17) 1969; 2 Reddi, Sra, Poczos, Smola (CR44) 2016; 29 Ruszczynski, Syski (CR48) 1983; 28 Chen, White (CR10) 2002; 6 Kouri, Surowiec (CR26) 2016; 26 Shapiro, Wardi (CR49) 1996; 21 Keshavarzzadeh, Fernandez, Tortorelli (CR24) 2017; 318 Kouri (CR29) 2014; 2 Pisier (CR43) 2016 Williams (CR57) 1991 Ali, Ullmann, Hinze (CR1) 2017; 5 Nouy, Pled (CR41) 2018; 52 Hinze, Pinnau, Ulbrich, Ulbrich (CR23) 2009 Cazenave, Haraux (CR9) 1998 Wardi (CR56) 1989; 61 Y Ermoliev (259_CR17) 1969; 2 N Okada (259_CR42) 1984; 60 J Duchi (259_CR15) 2018; 28 S Smale (259_CR50) 2000 259_CR5 C Geiersbach (259_CR20) 2020; 42 H Kushner (259_CR32) 2003 259_CR2 L Goldstein (259_CR22) 1988; 1 D Kouri (259_CR28) 2013; 35 C Geiersbach (259_CR19) 2019; 29 D Kouri (259_CR26) 2016; 26 SP Uryasev (259_CR53) 1992; 39 A Ali (259_CR1) 2017; 5 K Barty (259_CR3) 2007; 32 259_CR35 H Robbins (259_CR46) 1971 259_CR37 D Davis (259_CR13) 2018; 20 V Keshavarzzadeh (259_CR24) 2017; 318 A Shapiro (259_CR49) 1996; 21 G Pisier (259_CR43) 2016 J-C Culioli (259_CR12) 1990; 28 M Duflo (259_CR16) 2013 A Nouy (259_CR41) 2018; 52 X Chen (259_CR10) 2002; 6 E Rosseel (259_CR47) 2012; 213 F Clarke (259_CR11) 1990 S Ghadimi (259_CR21) 2016; 155 D Kouri (259_CR27) 2019; 26 I Kupka (259_CR31) 1965; 16 M Métivier (259_CR38) 2011 A Nemirovski (259_CR39) 2009; 19 L Bottou (259_CR6) 1998; 17 G Yin (259_CR58) 1990; 34 H Robbins (259_CR45) 1951; 22 D Kouri (259_CR29) 2014; 2 259_CR52 D Williams (259_CR57) 1991 H Kushner (259_CR33) 1978 L Bottou (259_CR7) 2018; 60 259_CR18 M Hinze (259_CR23) 2009 L Ljung (259_CR36) 1977; 22 H Bauschke (259_CR4) 2011 H Tiesler (259_CR51) 2012; 50 T Cazenave (259_CR9) 1998 JH Venter (259_CR55) 1966; 37 H-C Lee (259_CR34) 2013; 14 R Nixdorf (259_CR40) 1984; 15 S Reddi (259_CR44) 2016; 29 J De Los Reyes (259_CR14) 2015 A Van Barel (259_CR54) 2019; 7 A Ruszczynski (259_CR48) 1983; 28 259_CR8 J Kiefer (259_CR25) 1952; 23 A Kunoth (259_CR30) 2016; 4 Y Wardi (259_CR56) 1989; 61 |
References_xml | – volume: 32 start-page: 551 issue: 3 year: 2007 end-page: 562 ident: CR3 article-title: Hilbert-valued perturbed subgradient algorithms publication-title: Math. Oper. Res. – volume: 29 start-page: 1145 year: 2016 end-page: 1153 ident: CR44 article-title: Proximal stochastic methods for nonsmooth nonconvex finite-sum optimization publication-title: Adv. Neural Inf. Process. Syst. – volume: 1 start-page: 189 issue: 2 year: 1988 end-page: 204 ident: CR22 article-title: Minimizing noisy functionals in Hilbert space: an extension of the Kiefer–Wolfowitz procedure publication-title: J. Theor. Probab. – year: 2015 ident: CR14 publication-title: Numerical PDE-Constrained Optimization – year: 1978 ident: CR33 publication-title: Stochastic Approximation Methods for Constrained and Unconstrained Systems – ident: CR35 – volume: 34 start-page: 116 year: 1990 end-page: 140 ident: CR58 article-title: On -valued Robbins–Monro processes publication-title: J. Multivar. Anal. – ident: CR8 – volume: 2 start-page: 72 year: 1969 end-page: 83 ident: CR17 article-title: On the stochastic quasi-gradient method and stochastic quasi-Feyer sequences publication-title: Kibernetika – start-page: 233 year: 1971 end-page: 257 ident: CR46 article-title: A convergence theorem for non negative almost supermartingales and some applications publication-title: Optimizing Methods in Statistics – volume: 28 start-page: 1372 issue: 6 year: 1990 end-page: 1403 ident: CR12 article-title: Decomposition/coordination algorithms in stochastic optimization publication-title: SIAM J. Control Optim. – volume: 155 start-page: 267 issue: 1–2 year: 2016 end-page: 305 ident: CR21 article-title: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization publication-title: Math. Program. – year: 2016 ident: CR43 publication-title: Martingales in Banach Spaces – volume: 35 start-page: A1847 issue: 4 year: 2013 end-page: A1879 ident: CR28 article-title: A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty publication-title: SIAM J. Sci. Comput. – volume: 14 start-page: 77 issue: 1 year: 2013 end-page: 106 ident: CR34 article-title: A stochastic Galerkin method for stochastic control problems publication-title: Commun. Comput. Phys. – volume: 2 start-page: 55 issue: 1 year: 2014 end-page: 81 ident: CR29 article-title: A multilevel stochastic collocation algorithm for optimization of PDEs with uncertain coefficients publication-title: SIAM/ASA J. Uncertain. Quantif. – volume: 4 start-page: 1034 issue: 1 year: 2016 end-page: 1059 ident: CR30 article-title: Sparse adaptive tensor Galerkin approximations of stochastic PDE-constrained control problems publication-title: SIAM/ASA J. Uncertain. Quantif. – volume: 15 start-page: 252 year: 1984 end-page: 260 ident: CR40 article-title: An invariance principle for a finite dimensional stochastic approximation method in a Hilbert space publication-title: J. Multivar. Anal. – volume: 22 start-page: 400 issue: 3 year: 1951 end-page: 407 ident: CR45 article-title: A stochastic approximation method publication-title: Ann. Math. Stat. – volume: 26 start-page: 53 year: 2019 ident: CR27 article-title: Risk-averse optimal control of semilinear elliptic PDEs publication-title: ESAIM Control Optim. Calc. Var. – volume: 52 start-page: 1763 issue: 5 year: 2018 end-page: 1802 ident: CR41 article-title: A multiscale method for semi-linear elliptic equations with localized uncertainties and non-linearities publication-title: ESAIM: Math. Model. Numer. – ident: CR5 – year: 2013 ident: CR16 publication-title: Random Iterative Models – start-page: 529 year: 2000 end-page: 534 ident: CR50 article-title: An infinite dimensional version of Sard’s theorem publication-title: The Collected Papers of Stephen Smale – ident: CR18 – volume: 23 start-page: 462 issue: 3 year: 1952 end-page: 466 ident: CR25 article-title: Stochastic estimation of the maximum of a regression function publication-title: Ann. Math. Stat. – volume: 7 start-page: 174 issue: 1 year: 2019 end-page: 202 ident: CR54 article-title: Robust optimization of PDE constrained systems using a multilevel Monte Carlo method publication-title: SIAM/ASA J. Uncertain. Quantif. – volume: 42 start-page: A2750 issue: 5 year: 2020 end-page: A2772 ident: CR20 article-title: A stochastic gradient method with mesh refinement for PDE-constrained optimization under uncertainty publication-title: SIAM/ASA J. Sci. Comput. – year: 2011 ident: CR38 publication-title: Semimartingales: A Course on Stochastic Processes – year: 1991 ident: CR57 publication-title: Probability with Martingales – ident: CR2 – volume: 17 start-page: 142 issue: 9 year: 1998 ident: CR6 article-title: Online learning and stochastic approximations publication-title: On-line Learn. Neural Netw. – year: 1998 ident: CR9 publication-title: An Introduction to Semilinear Evolution Equations – ident: CR37 – volume: 37 start-page: 1534 year: 1966 end-page: 1544 ident: CR55 article-title: On Dvoretzky stochastic approximation theorems publication-title: Ann. Math. Stat. – volume: 213 start-page: 152 year: 2012 end-page: 167 ident: CR47 article-title: Optimal control with stochastic PDE constraints and uncertain controls publication-title: Comput. Methods Appl. Mech. Eng. – volume: 28 start-page: 3229 issue: 4 year: 2018 end-page: 3259 ident: CR15 article-title: Stochastic methods for composite and weakly convex optimization problems publication-title: SIAM J. Optim. – volume: 60 start-page: 246 issue: 7 year: 1984 end-page: 248 ident: CR42 article-title: On the Banach–Saks property publication-title: Proc. Jpn. Acad. Ser. A Math. Sci. – volume: 39 start-page: 251 issue: 1 year: 1992 end-page: 267 ident: CR53 article-title: A stochastic quasigradient algorithm with variable metric publication-title: Ann. Oper. Res. – volume: 20 start-page: 1 year: 2018 end-page: 36 ident: CR13 article-title: Stochastic subgradient method converges on tame functions publication-title: Found. Comput. Math. – volume: 19 start-page: 1574 issue: 4 year: 2009 end-page: 1609 ident: CR39 article-title: Robust stochastic approximation approach to stochastic programming publication-title: SIAM J. Optim. – year: 1990 ident: CR11 publication-title: Optimization and Nonsmooth Analysis – volume: 61 start-page: 473 issue: 3 year: 1989 end-page: 485 ident: CR56 article-title: A stochastic algorithm using one sample point per iteration and diminishing stepsizes publication-title: J. Optim. Theory Appl. – year: 2011 ident: CR4 publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces – year: 2003 ident: CR32 publication-title: Stochastic Approximation and Recursive Algorithms and Applications – volume: 318 start-page: 120 year: 2017 end-page: 147 ident: CR24 article-title: Topology optimization under uncertainty via non-intrusive polynomial chaos expansion publication-title: Comput. Methods Appl. Mech. – volume: 29 start-page: 2079 issue: 3 year: 2019 end-page: 2099 ident: CR19 article-title: Projected stochastic gradients for convex constrained problems in Hilbert spaces publication-title: SIAM J. Optim. – volume: 26 start-page: 365 issue: 1 year: 2016 end-page: 396 ident: CR26 article-title: Risk-averse PDE-constrained optimization using the conditional value-at-risk publication-title: SIAM J. Optim. – volume: 16 start-page: 954 issue: 5 year: 1965 end-page: 957 ident: CR31 article-title: Counterexample to the Morse–Sard theorem in the case of infinite-dimensional manifolds publication-title: Proc. Am. Math. Soc. – volume: 6 start-page: 1 year: 2002 end-page: 53 ident: CR10 article-title: Asymptotic properties of some projection-based Robbins–Monro procedures in a Hilbert space publication-title: Stud. Nonlinear Dyn. Econom. – volume: 5 start-page: 466 issue: 1 year: 2017 end-page: 492 ident: CR1 article-title: Multilevel Monte Carlo analysis for optimal control of elliptic PDEs with random coefficients publication-title: SIAM/ASA J. Uncertain. Quantif. – ident: CR52 – volume: 21 start-page: 615 issue: 3 year: 1996 end-page: 628 ident: CR49 article-title: Convergence analysis of stochastic algorithms publication-title: Math. Oper. Res. – volume: 28 start-page: 1097 issue: 12 year: 1983 end-page: 1105 ident: CR48 article-title: Stochastic approximation method with gradient averaging for unconstrained problems publication-title: IEEE Trans. Autom. Control – volume: 50 start-page: 2659 issue: 5 year: 2012 end-page: 2682 ident: CR51 article-title: Stochastic collocation for optimal control problems with stochastic PDE constraints publication-title: SIAM J. Control Optim. – volume: 60 start-page: 223 issue: 2 year: 2018 end-page: 311 ident: CR7 article-title: Optimization methods for large-scale machine learning publication-title: SIAM Rev. – year: 2009 ident: CR23 publication-title: Optimization with PDE Constraints – volume: 22 start-page: 551 issue: 4 year: 1977 end-page: 575 ident: CR36 article-title: Analysis of recursive stochastic algorithms publication-title: IEEE Trans. Autom. Control – volume: 19 start-page: 1574 issue: 4 year: 2009 ident: 259_CR39 publication-title: SIAM J. Optim. doi: 10.1137/070704277 – volume-title: Optimization and Nonsmooth Analysis year: 1990 ident: 259_CR11 doi: 10.1137/1.9781611971309 – volume-title: Optimization with PDE Constraints year: 2009 ident: 259_CR23 – volume: 4 start-page: 1034 issue: 1 year: 2016 ident: 259_CR30 publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/15M1041390 – volume: 50 start-page: 2659 issue: 5 year: 2012 ident: 259_CR51 publication-title: SIAM J. Control Optim. doi: 10.1137/110835438 – volume: 37 start-page: 1534 year: 1966 ident: 259_CR55 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177699145 – volume: 39 start-page: 251 issue: 1 year: 1992 ident: 259_CR53 publication-title: Ann. Oper. Res. doi: 10.1007/BF02060944 – volume: 155 start-page: 267 issue: 1–2 year: 2016 ident: 259_CR21 publication-title: Math. Program. doi: 10.1007/s10107-014-0846-1 – ident: 259_CR2 – volume: 6 start-page: 1 year: 2002 ident: 259_CR10 publication-title: Stud. Nonlinear Dyn. Econom. – ident: 259_CR35 – volume-title: An Introduction to Semilinear Evolution Equations year: 1998 ident: 259_CR9 doi: 10.1093/oso/9780198502777.001.0001 – volume: 2 start-page: 55 issue: 1 year: 2014 ident: 259_CR29 publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/130915960 – volume: 52 start-page: 1763 issue: 5 year: 2018 ident: 259_CR41 publication-title: ESAIM: Math. Model. Numer. doi: 10.1051/m2an/2018025 – volume: 21 start-page: 615 issue: 3 year: 1996 ident: 259_CR49 publication-title: Math. Oper. Res. doi: 10.1287/moor.21.3.615 – volume: 20 start-page: 1 year: 2018 ident: 259_CR13 publication-title: Found. Comput. Math. – volume: 7 start-page: 174 issue: 1 year: 2019 ident: 259_CR54 publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/17M1155892 – volume: 28 start-page: 1372 issue: 6 year: 1990 ident: 259_CR12 publication-title: SIAM J. Control Optim. doi: 10.1137/0328072 – volume: 318 start-page: 120 year: 2017 ident: 259_CR24 publication-title: Comput. Methods Appl. Mech. doi: 10.1016/j.cma.2017.01.019 – ident: 259_CR5 doi: 10.1137/1.9781611974997 – volume: 5 start-page: 466 issue: 1 year: 2017 ident: 259_CR1 publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/16M109870X – volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces year: 2011 ident: 259_CR4 doi: 10.1007/978-1-4419-9467-7 – start-page: 529 volume-title: The Collected Papers of Stephen Smale year: 2000 ident: 259_CR50 doi: 10.1142/9789812792822_0005 – volume: 60 start-page: 223 issue: 2 year: 2018 ident: 259_CR7 publication-title: SIAM Rev. doi: 10.1137/16M1080173 – ident: 259_CR52 doi: 10.1007/978-3-8348-9357-4 – start-page: 233 volume-title: Optimizing Methods in Statistics year: 1971 ident: 259_CR46 – volume-title: Stochastic Approximation Methods for Constrained and Unconstrained Systems year: 1978 ident: 259_CR33 doi: 10.1007/978-1-4684-9352-8 – volume: 15 start-page: 252 year: 1984 ident: 259_CR40 publication-title: J. Multivar. Anal. doi: 10.1016/0047-259X(84)90030-7 – volume: 14 start-page: 77 issue: 1 year: 2013 ident: 259_CR34 publication-title: Commun. Comput. Phys. – volume: 61 start-page: 473 issue: 3 year: 1989 ident: 259_CR56 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00941830 – ident: 259_CR8 – volume: 22 start-page: 551 issue: 4 year: 1977 ident: 259_CR36 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1977.1101561 – volume-title: Probability with Martingales year: 1991 ident: 259_CR57 doi: 10.1017/CBO9780511813658 – volume: 34 start-page: 116 year: 1990 ident: 259_CR58 publication-title: J. Multivar. Anal. doi: 10.1016/0047-259X(90)90064-O – ident: 259_CR37 – volume: 29 start-page: 2079 issue: 3 year: 2019 ident: 259_CR19 publication-title: SIAM J. Optim. doi: 10.1137/18M1200208 – volume: 28 start-page: 1097 issue: 12 year: 1983 ident: 259_CR48 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1983.1103184 – volume: 42 start-page: A2750 issue: 5 year: 2020 ident: 259_CR20 publication-title: SIAM/ASA J. Sci. Comput. doi: 10.1137/19M1263297 – volume: 22 start-page: 400 issue: 3 year: 1951 ident: 259_CR45 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729586 – ident: 259_CR18 – volume-title: Semimartingales: A Course on Stochastic Processes year: 2011 ident: 259_CR38 – volume: 213 start-page: 152 year: 2012 ident: 259_CR47 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2011.11.026 – volume: 32 start-page: 551 issue: 3 year: 2007 ident: 259_CR3 publication-title: Math. Oper. Res. doi: 10.1287/moor.1070.0253 – volume-title: Martingales in Banach Spaces year: 2016 ident: 259_CR43 doi: 10.1017/CBO9781316480588 – volume: 16 start-page: 954 issue: 5 year: 1965 ident: 259_CR31 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1965-0182024-4 – volume: 29 start-page: 1145 year: 2016 ident: 259_CR44 publication-title: Adv. Neural Inf. Process. Syst. – volume: 1 start-page: 189 issue: 2 year: 1988 ident: 259_CR22 publication-title: J. Theor. Probab. doi: 10.1007/BF01046934 – volume-title: Stochastic Approximation and Recursive Algorithms and Applications year: 2003 ident: 259_CR32 – volume-title: Numerical PDE-Constrained Optimization year: 2015 ident: 259_CR14 doi: 10.1007/978-3-319-13395-9 – volume: 23 start-page: 462 issue: 3 year: 1952 ident: 259_CR25 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729392 – volume: 35 start-page: A1847 issue: 4 year: 2013 ident: 259_CR28 publication-title: SIAM J. Sci. Comput. doi: 10.1137/120892362 – volume: 26 start-page: 365 issue: 1 year: 2016 ident: 259_CR26 publication-title: SIAM J. Optim. doi: 10.1137/140954556 – volume-title: Random Iterative Models year: 2013 ident: 259_CR16 – volume: 2 start-page: 72 year: 1969 ident: 259_CR17 publication-title: Kibernetika – volume: 60 start-page: 246 issue: 7 year: 1984 ident: 259_CR42 publication-title: Proc. Jpn. Acad. Ser. A Math. Sci. doi: 10.3792/pjaa.60.246 – volume: 17 start-page: 142 issue: 9 year: 1998 ident: 259_CR6 publication-title: On-line Learn. Neural Netw. – volume: 28 start-page: 3229 issue: 4 year: 2018 ident: 259_CR15 publication-title: SIAM J. Optim. doi: 10.1137/17M1135086 – volume: 26 start-page: 53 year: 2019 ident: 259_CR27 publication-title: ESAIM Control Optim. Calc. Var. doi: 10.1051/cocv/2019061 |
SSID | ssj0009732 |
Score | 2.4003203 |
Snippet | For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to... |
SourceID | pubmedcentral proquest pubmed crossref springer econis |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 705 |
SubjectTerms | Algorithms Approximation Constraints Continuity (mathematics) Convergence Convex and Discrete Geometry Differential inclusions Hilbert space Management Science Mathematical programming methods Mathematics Mathematics and Statistics Nonsmooth and nonconvex optimization Operations Research Operations Research/Decision Theory Optimal control problems involving partial differential equations Optimization Partial differential equations Partial differential equations with randomness Statistics Stochastic programming |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BlgMcEK9CoCAjcQOLrO3EzgkBarVCaoUoSL1ZTuzQSJAtTSrRf8-M491lefQUKbEdx2PPI_78DcCLQnsjGzHnja4LrrTAJWXamkvvtECDjzabzjsfHpWLL-rDSXGSfrgNCVa50olRUftlQ__IX2OYINFV17l4c_aDU9Yo2l1NKTSuww6qYGNmsPNu_-jjpw3tro4pyvJKlBxNu0zHZtLhuYLgQoJOVmPL_HLLNN2geLQb_uV4_o2f_GMTNdqmgztwOzmV7O00C-7CtdDfg1u_UQ3eh8PjcdmcOmJlZgRd6b5jha_nEfA1simP9MDQg2X9so9Q9J8sJZsZWNezRUdkWCNDBYSa5QEcH-x_fr_gKZUCb1RVjlzNXdkWPoS8qR2GXVJXGHhpVyqfB-1yUxnnUWQYEAtfhKryzoi2ECFXeFfuwgxfHh4Bw3BT-6Db1lRBzXPj0EGSda2C9KZ1jcxgvhpD2ySWcUp28c1u-JFp3C2Ou43jbi8zeLmuczZxbFxZencSjaULQUht5PDHV--tRGXTQhzsZtpk8Hz9GJcQ7Yu4PiwvsEyBVrrESFhl8HCS7LofUkY6JGxcb8l8XYDoubef9N1ppOnWVU5URRm8Ws2OTbf-_3mPr_6KJ3BTEKomYof2YDaeX4Sn6BaN9bM0938BJ4IJdA priority: 102 providerName: ProQuest |
Title | Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces |
URI | https://www.econstor.eu/handle/10419/287443 https://link.springer.com/article/10.1007/s10589-020-00259-y https://www.ncbi.nlm.nih.gov/pubmed/33707813 https://www.proquest.com/docview/2493259702 https://www.proquest.com/docview/2501262114 https://pubmed.ncbi.nlm.nih.gov/PMC7907055 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xjYfxgGAwCIzKSLxBpMR24uSxlHYV0AlRJo0ny0mcLRKkaMkk9t9z56QpHQOJl1iOP5OzfXfy3e8AXkWqSETOQz9XWeRLxXFLJWXmi8IojgwfeTb5Oy9O4vmpfH8WnfUwOeQLc-P-nlzcIjLq4eT_jKK6f70De1EoFIVpmMSTDcCucsHIgpTHPjJx0TvI3N7HFhO6S5pn1dwmYv5pKXnjutRxodkDuN-Lj2zc0fsh3LH1Adz7DVQQc4sBibU5gH2SJjsw5kewWLar_MJQjpH9SvUd-zq_dFZfLeuCSTcMxVhWr2pnj_6T9RFnGlbVbF4RIlbL8BTC4-UxLGfTL5O538dT8HOZxq0vQxOXUWFtkGcGdS-hUtS-lIllEVhlgiRNTIF0Q62YF5FN08IkvIy4DSS-FYewi4Pbp8BQ51SFVWWZpFaGQWJQShJZJq0oktLkwoNw_Xt13kONU8SLb3oDkkwk0UgS7Uiirz14PbT50QFt_LP2YUc1TQnZkWoH5I9DH62pqPvd2GhUMQU2UwH34OVQjPuILkdMbVdXWCdCVh2jOiw9eNIRfZiHEA4TCTtXW8thqEAY3dsldXXhsLpVGhBekQdv1gtnM62_f96z_6v-HPY5mdo4g6Ij2G0vr-wLlJXabAQ7yex4BHvjd4uPS0qPv36YYvp2evLp88htIXye8vEvFtoQxA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VggQcEK9CoICR4AQRWduJkwNCCFi2tNtLi9QTlhM7NFKbLU0q2P_Ej2TGSXZZHr31FCmxE3vG45mJZ74BeBYrm4qCj8JC5XEoFUeRSss8FNYojgofdTblO093k8ln-ekgPliDn0MuDIVVDnui36jtrKB_5K_QTRBoqquIvzn5FlLVKDpdHUpodMti282_o8vWvN56j_x9zvn4w_67SdhXFQgLmSVtKEcmKWPrXFTkBj0QoTL0QZRJpI2cMlGapcbi6NE35DZ2WWZNysuYu0jiXYFvvQSXpUA9Tnnp449LiF_ly6FFGU9CNCNEn6LTJ-rFFJrEKYsbZxHOV9TgFfJ9q-ZfRu7fsZp_HNh6PTi-CTd6A5a97VbcLVhz9W24_hus4R2Y7rWz4tAQAjSjMJnqGDt8PfXBZS3ralY3DK1lVs9qH_b-g_WFbRpW1WxSEfBWy3Czw13sLuxdAIE3YB0_7u4DQ9dWWafKMs2cHEWpQWNM5Ll0wqalKUQAo4GGuugRzamwxpFeYjET3TXSXXu663kALxZ9Tjo8j3Nbb3Ss0XShcFXt6wXgpzcHVule6Bu9XKIBPF08RnGlMxhTu9kZtonRIkjQ65YB3Os4uxiHEB56CV-uVni-aEBQ4KtP6urQQ4KrLCJYpABeDqtjOaz_T-_B-bN4Alcn-9MdvbO1u_0QrnGK5vExS5uw3p6euUdojrX5Yy8FDL5crND9AiaZQzo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VLUJwQLxKAwWMBCeImrWTODkgBLSrLaWrioLUUy0ndtpIkC1NKth_xs9jxkl2WR699RQpcR6e8dgz8TffADyLpElEzod-LrPIDyVHk0qKzBdGS44LPq7ZlO-8N4nHn8P3h9HhCvzsc2EIVtnPiW6iNtOc_pFvYpgg0FWXAd8sOljE_tbo9ek3nypI0U5rX06jHSK7dvYdw7f61c4W6vo556PtT-_GfldhwM_DNG78cKjjIjLWBnmmMRoRMsV4ROo4NIGVOkjSRBvsCcaJ3EQ2TY1OeBFxG4R4VuBTr8CqpJhoAKtvtyf7HxeEv9IVRwtSHvvoVIguYadL24sIqMQppxv75M-WFsWrFAmX9b9c3r-Rm39s37pVcXQLbnbuLHvTjr_bsGKrO3DjN5LDu7B30EzzE0180IxAM-VXvOH4zEHNGtZWsK4Z-s6smlYOBP-DdWVualZWbFwSDVfDcOrDOe0eHFyCiNdggC-368Aw0JXGyqJIUhsOg0SjayayLLTCJIXOhQfDXoYq7_jNqczGF7VgZia5K5S7cnJXMw9ezO85bdk9Lmy91qpG0YHAq8pVD8BXb_SqUt0UUKvFgPXg6fwyGi_tyOjKTs-xTYT-QYwxeOjB_Vaz8-8QwhEx4cPlks7nDYgYfPlKVZ44gnCZBkSS5MHLfnQsPuv_3XtwcS-ewDU0OPVhZ7L7EK5zgvY4ANMGDJqzc_sIfbMme9yZAYOjy7W7X7-NSMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+proximal+gradient+methods+for+nonconvex+problems+in+Hilbert+spaces&rft.jtitle=Computational+optimization+and+applications&rft.au=Geiersbach%2C+Caroline&rft.au=Scarinci%2C+Teresa&rft.date=2021-04-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=78&rft.issue=3&rft.spage=705&rft.epage=740&rft_id=info:doi/10.1007%2Fs10589-020-00259-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_020_00259_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-2894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-2894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-2894&client=summon |