Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces

For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic pr...

Full description

Saved in:
Bibliographic Details
Published inComputational optimization and applications Vol. 78; no. 3; pp. 705 - 740
Main Authors Geiersbach, Caroline, Scarinci, Teresa
Format Journal Article
LanguageEnglish
Published New York, NY Springer US 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation.
AbstractList For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} L 1 -penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation.
For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation.
For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a L 1 -penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation.For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a L 1 -penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation.
For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a $$L^1$$ L 1 -penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation.
For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a L 1 -penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation.
For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a -penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation.
For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a L1-penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation.
Author Geiersbach, Caroline
Scarinci, Teresa
Author_xml – sequence: 1
  givenname: Caroline
  surname: Geiersbach
  fullname: Geiersbach, Caroline
– sequence: 2
  givenname: Teresa
  surname: Scarinci
  fullname: Scarinci, Teresa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33707813$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAUha2KqjzaP1CpVaRuukl7_Uhsbyoh1AISiAXdWx7nZsYoiae2BzH_vp4GKLBgZcv-zvHxPYdkbwoTEvKRwjcKIL8nCo3SNTCoAVij6-0bckAbyWumtNh7st8nhyndAICWnL0j-5xLkIryA3J5nYNb2ZS9q9Yx3PnRDtUy2s7jlKsR8yp0qepDrMrjLky3eLfjFgOOqfJTdeaHBcZcpbV1mN6Tt70dEn64X4_I9a-fv0_O6our0_OT44vaCd3mWlDb9k2HCG5hgbVcas2EtK3oAKUFpZXtHKNSKdY1qHVnFesbhiDKKT8iP2bX9WYxYudK0mgHs44lfNyaYL15fjP5lVmGWyM1SGiaYvD13iCGPxtM2Yw-ORwGO2HYJMMaoKxllIqCfnmB3oRNnMrnDBOal6lLYIX6_DTRY5SHORdAzYCLIaWIvXE-2-zDLqAfDAWzq9TMlZpSqflXqdkWKXshfXB_VcRnUSrwtMT4P_arqk-zCkvTPpndknKIhikpBOd_AZFIvt8
CitedBy_id crossref_primary_10_1137_22M1503889
crossref_primary_10_1016_j_cam_2024_116199
crossref_primary_10_1016_j_jde_2023_04_034
crossref_primary_10_1007_s11590_022_01888_4
crossref_primary_10_1287_moor_2022_0200
crossref_primary_10_1007_s00245_023_09967_3
crossref_primary_10_1137_20M1381381
crossref_primary_10_1080_10556788_2023_2189717
crossref_primary_10_1137_21M1402467
crossref_primary_10_1016_j_physd_2024_134216
crossref_primary_10_1137_22M1512636
crossref_primary_10_1137_23M1600608
crossref_primary_10_1007_s10589_021_00308_0
crossref_primary_10_1137_20M134664X
Cites_doi 10.1137/070704277
10.1137/1.9781611971309
10.1137/15M1041390
10.1137/110835438
10.1214/aoms/1177699145
10.1007/BF02060944
10.1007/s10107-014-0846-1
10.1093/oso/9780198502777.001.0001
10.1137/130915960
10.1051/m2an/2018025
10.1287/moor.21.3.615
10.1137/17M1155892
10.1137/0328072
10.1016/j.cma.2017.01.019
10.1137/1.9781611974997
10.1137/16M109870X
10.1007/978-1-4419-9467-7
10.1142/9789812792822_0005
10.1137/16M1080173
10.1007/978-3-8348-9357-4
10.1007/978-1-4684-9352-8
10.1016/0047-259X(84)90030-7
10.1007/BF00941830
10.1109/TAC.1977.1101561
10.1017/CBO9780511813658
10.1016/0047-259X(90)90064-O
10.1137/18M1200208
10.1109/TAC.1983.1103184
10.1137/19M1263297
10.1214/aoms/1177729586
10.1016/j.cma.2011.11.026
10.1287/moor.1070.0253
10.1017/CBO9781316480588
10.1090/S0002-9939-1965-0182024-4
10.1007/BF01046934
10.1007/978-3-319-13395-9
10.1214/aoms/1177729392
10.1137/120892362
10.1137/140954556
10.3792/pjaa.60.246
10.1137/17M1135086
10.1051/cocv/2019061
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021.
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021.
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID OT2
C6C
AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
5PM
DOI 10.1007/s10589-020-00259-y
DatabaseName EconStor
Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection (ProQuest)
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (UHCL Subscription)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest : ProQuest One Business [unlimited simultaneous users]
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef

PubMed
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 740
ExternalDocumentID PMC7907055
33707813
10_1007_s10589_020_00259_y
287443
Genre Journal Article
GrantInformation_xml – fundername: Projekt DEAL
– fundername: Austrian Science Fund (FWF)
  grantid: W1260-N35
– fundername: ;
– fundername: ;
  grantid: W1260-N35
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OT2
OVD
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
PUEGO
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
ZWQNP
~8M
~EX
-52
-5D
-5G
-BR
-EM
3V.
ADINQ
C6C
GQ6
GROUPED_ABI_INFORM_COMPLETE
M0N
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
AAYXX
CITATION
NPM
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c496t-41a6f5dee0cba0263799247a64d0e7a0898adc217882d5e99da82f52e04c213
IEDL.DBID C6C
ISSN 1573-2894
0926-6003
IngestDate Thu Aug 21 18:20:16 EDT 2025
Mon Jul 21 09:50:00 EDT 2025
Sat Aug 23 12:43:55 EDT 2025
Wed Feb 19 02:28:20 EST 2025
Tue Jul 01 00:44:26 EDT 2025
Thu Apr 24 23:07:24 EDT 2025
Fri Feb 21 02:49:31 EST 2025
Fri Aug 29 12:45:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Differential inclusions
Optimal control problems involving partial differential equations
Partial differential equations with randomness
Nonsmooth and nonconvex optimization
Mathematical programming methods
Stochastic programming
Language English
License The Author(s) 2021.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-41a6f5dee0cba0263799247a64d0e7a0898adc217882d5e99da82f52e04c213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1007/s10589-020-00259-y
PMID 33707813
PQID 2493259702
PQPubID 30811
PageCount 36
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7907055
proquest_miscellaneous_2501262114
proquest_journals_2493259702
pubmed_primary_33707813
crossref_citationtrail_10_1007_s10589_020_00259_y
crossref_primary_10_1007_s10589_020_00259_y
springer_journals_10_1007_s10589_020_00259_y
econis_econstor_287443
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
– name: United States
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationTitleAlternate Comput Optim Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References De Los Reyes (CR14) 2015
Kunoth, Schwab (CR30) 2016; 4
Duchi, Ruan (CR15) 2018; 28
Clarke (CR11) 1990
Venter (CR55) 1966; 37
CR37
CR35
Robbins, Siegmund (CR46) 1971
Bauschke, Combettes (CR4) 2011
Lee, Lee (CR34) 2013; 14
Geiersbach, Wollner (CR20) 2020; 42
Bottou, Curtis, Nocedal (CR7) 2018; 60
Kiefer, Wolfowitz (CR25) 1952; 23
Kouri, Heinkenschloss, Ridzal, Van Bloemen Waanders (CR28) 2013; 35
Kushner, Clark (CR33) 1978
Kushner, Yin (CR32) 2003
Rosseel, Wells (CR47) 2012; 213
CR2
Uryasev (CR53) 1992; 39
Nemirovski, Juditsky, Lan, Shapiro (CR39) 2009; 19
CR5
CR8
Kouri, Surowiec (CR27) 2019; 26
Ljung (CR36) 1977; 22
Barty, Roy, Strugarek (CR3) 2007; 32
Davis, Drusvyatskiy, Kakade, Lee (CR13) 2018; 20
Geiersbach, Pflug (CR19) 2019; 29
Tiesler, Kirby, Xiu, Preusser (CR51) 2012; 50
Okada (CR42) 1984; 60
Van Barel, Vandewalle (CR54) 2019; 7
Yin, Zhu (CR58) 1990; 34
Goldstein (CR22) 1988; 1
Smale (CR50) 2000
Robbins, Monro (CR45) 1951; 22
Nixdorf (CR40) 1984; 15
CR18
Duflo (CR16) 2013
Kupka (CR31) 1965; 16
Culioli, Cohen (CR12) 1990; 28
CR52
Bottou (CR6) 1998; 17
Ghadimi, Lan, Zhang (CR21) 2016; 155
Métivier (CR38) 2011
Ermoliev (CR17) 1969; 2
Reddi, Sra, Poczos, Smola (CR44) 2016; 29
Ruszczynski, Syski (CR48) 1983; 28
Chen, White (CR10) 2002; 6
Kouri, Surowiec (CR26) 2016; 26
Shapiro, Wardi (CR49) 1996; 21
Keshavarzzadeh, Fernandez, Tortorelli (CR24) 2017; 318
Kouri (CR29) 2014; 2
Pisier (CR43) 2016
Williams (CR57) 1991
Ali, Ullmann, Hinze (CR1) 2017; 5
Nouy, Pled (CR41) 2018; 52
Hinze, Pinnau, Ulbrich, Ulbrich (CR23) 2009
Cazenave, Haraux (CR9) 1998
Wardi (CR56) 1989; 61
Y Ermoliev (259_CR17) 1969; 2
N Okada (259_CR42) 1984; 60
J Duchi (259_CR15) 2018; 28
S Smale (259_CR50) 2000
259_CR5
C Geiersbach (259_CR20) 2020; 42
H Kushner (259_CR32) 2003
259_CR2
L Goldstein (259_CR22) 1988; 1
D Kouri (259_CR28) 2013; 35
C Geiersbach (259_CR19) 2019; 29
D Kouri (259_CR26) 2016; 26
SP Uryasev (259_CR53) 1992; 39
A Ali (259_CR1) 2017; 5
K Barty (259_CR3) 2007; 32
259_CR35
H Robbins (259_CR46) 1971
259_CR37
D Davis (259_CR13) 2018; 20
V Keshavarzzadeh (259_CR24) 2017; 318
A Shapiro (259_CR49) 1996; 21
G Pisier (259_CR43) 2016
J-C Culioli (259_CR12) 1990; 28
M Duflo (259_CR16) 2013
A Nouy (259_CR41) 2018; 52
X Chen (259_CR10) 2002; 6
E Rosseel (259_CR47) 2012; 213
F Clarke (259_CR11) 1990
S Ghadimi (259_CR21) 2016; 155
D Kouri (259_CR27) 2019; 26
I Kupka (259_CR31) 1965; 16
M Métivier (259_CR38) 2011
A Nemirovski (259_CR39) 2009; 19
L Bottou (259_CR6) 1998; 17
G Yin (259_CR58) 1990; 34
H Robbins (259_CR45) 1951; 22
D Kouri (259_CR29) 2014; 2
259_CR52
D Williams (259_CR57) 1991
H Kushner (259_CR33) 1978
L Bottou (259_CR7) 2018; 60
259_CR18
M Hinze (259_CR23) 2009
L Ljung (259_CR36) 1977; 22
H Bauschke (259_CR4) 2011
H Tiesler (259_CR51) 2012; 50
T Cazenave (259_CR9) 1998
JH Venter (259_CR55) 1966; 37
H-C Lee (259_CR34) 2013; 14
R Nixdorf (259_CR40) 1984; 15
S Reddi (259_CR44) 2016; 29
J De Los Reyes (259_CR14) 2015
A Van Barel (259_CR54) 2019; 7
A Ruszczynski (259_CR48) 1983; 28
259_CR8
J Kiefer (259_CR25) 1952; 23
A Kunoth (259_CR30) 2016; 4
Y Wardi (259_CR56) 1989; 61
References_xml – volume: 32
  start-page: 551
  issue: 3
  year: 2007
  end-page: 562
  ident: CR3
  article-title: Hilbert-valued perturbed subgradient algorithms
  publication-title: Math. Oper. Res.
– volume: 29
  start-page: 1145
  year: 2016
  end-page: 1153
  ident: CR44
  article-title: Proximal stochastic methods for nonsmooth nonconvex finite-sum optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: 189
  issue: 2
  year: 1988
  end-page: 204
  ident: CR22
  article-title: Minimizing noisy functionals in Hilbert space: an extension of the Kiefer–Wolfowitz procedure
  publication-title: J. Theor. Probab.
– year: 2015
  ident: CR14
  publication-title: Numerical PDE-Constrained Optimization
– year: 1978
  ident: CR33
  publication-title: Stochastic Approximation Methods for Constrained and Unconstrained Systems
– ident: CR35
– volume: 34
  start-page: 116
  year: 1990
  end-page: 140
  ident: CR58
  article-title: On -valued Robbins–Monro processes
  publication-title: J. Multivar. Anal.
– ident: CR8
– volume: 2
  start-page: 72
  year: 1969
  end-page: 83
  ident: CR17
  article-title: On the stochastic quasi-gradient method and stochastic quasi-Feyer sequences
  publication-title: Kibernetika
– start-page: 233
  year: 1971
  end-page: 257
  ident: CR46
  article-title: A convergence theorem for non negative almost supermartingales and some applications
  publication-title: Optimizing Methods in Statistics
– volume: 28
  start-page: 1372
  issue: 6
  year: 1990
  end-page: 1403
  ident: CR12
  article-title: Decomposition/coordination algorithms in stochastic optimization
  publication-title: SIAM J. Control Optim.
– volume: 155
  start-page: 267
  issue: 1–2
  year: 2016
  end-page: 305
  ident: CR21
  article-title: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization
  publication-title: Math. Program.
– year: 2016
  ident: CR43
  publication-title: Martingales in Banach Spaces
– volume: 35
  start-page: A1847
  issue: 4
  year: 2013
  end-page: A1879
  ident: CR28
  article-title: A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty
  publication-title: SIAM J. Sci. Comput.
– volume: 14
  start-page: 77
  issue: 1
  year: 2013
  end-page: 106
  ident: CR34
  article-title: A stochastic Galerkin method for stochastic control problems
  publication-title: Commun. Comput. Phys.
– volume: 2
  start-page: 55
  issue: 1
  year: 2014
  end-page: 81
  ident: CR29
  article-title: A multilevel stochastic collocation algorithm for optimization of PDEs with uncertain coefficients
  publication-title: SIAM/ASA J. Uncertain. Quantif.
– volume: 4
  start-page: 1034
  issue: 1
  year: 2016
  end-page: 1059
  ident: CR30
  article-title: Sparse adaptive tensor Galerkin approximations of stochastic PDE-constrained control problems
  publication-title: SIAM/ASA J. Uncertain. Quantif.
– volume: 15
  start-page: 252
  year: 1984
  end-page: 260
  ident: CR40
  article-title: An invariance principle for a finite dimensional stochastic approximation method in a Hilbert space
  publication-title: J. Multivar. Anal.
– volume: 22
  start-page: 400
  issue: 3
  year: 1951
  end-page: 407
  ident: CR45
  article-title: A stochastic approximation method
  publication-title: Ann. Math. Stat.
– volume: 26
  start-page: 53
  year: 2019
  ident: CR27
  article-title: Risk-averse optimal control of semilinear elliptic PDEs
  publication-title: ESAIM Control Optim. Calc. Var.
– volume: 52
  start-page: 1763
  issue: 5
  year: 2018
  end-page: 1802
  ident: CR41
  article-title: A multiscale method for semi-linear elliptic equations with localized uncertainties and non-linearities
  publication-title: ESAIM: Math. Model. Numer.
– ident: CR5
– year: 2013
  ident: CR16
  publication-title: Random Iterative Models
– start-page: 529
  year: 2000
  end-page: 534
  ident: CR50
  article-title: An infinite dimensional version of Sard’s theorem
  publication-title: The Collected Papers of Stephen Smale
– ident: CR18
– volume: 23
  start-page: 462
  issue: 3
  year: 1952
  end-page: 466
  ident: CR25
  article-title: Stochastic estimation of the maximum of a regression function
  publication-title: Ann. Math. Stat.
– volume: 7
  start-page: 174
  issue: 1
  year: 2019
  end-page: 202
  ident: CR54
  article-title: Robust optimization of PDE constrained systems using a multilevel Monte Carlo method
  publication-title: SIAM/ASA J. Uncertain. Quantif.
– volume: 42
  start-page: A2750
  issue: 5
  year: 2020
  end-page: A2772
  ident: CR20
  article-title: A stochastic gradient method with mesh refinement for PDE-constrained optimization under uncertainty
  publication-title: SIAM/ASA J. Sci. Comput.
– year: 2011
  ident: CR38
  publication-title: Semimartingales: A Course on Stochastic Processes
– year: 1991
  ident: CR57
  publication-title: Probability with Martingales
– ident: CR2
– volume: 17
  start-page: 142
  issue: 9
  year: 1998
  ident: CR6
  article-title: Online learning and stochastic approximations
  publication-title: On-line Learn. Neural Netw.
– year: 1998
  ident: CR9
  publication-title: An Introduction to Semilinear Evolution Equations
– ident: CR37
– volume: 37
  start-page: 1534
  year: 1966
  end-page: 1544
  ident: CR55
  article-title: On Dvoretzky stochastic approximation theorems
  publication-title: Ann. Math. Stat.
– volume: 213
  start-page: 152
  year: 2012
  end-page: 167
  ident: CR47
  article-title: Optimal control with stochastic PDE constraints and uncertain controls
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 28
  start-page: 3229
  issue: 4
  year: 2018
  end-page: 3259
  ident: CR15
  article-title: Stochastic methods for composite and weakly convex optimization problems
  publication-title: SIAM J. Optim.
– volume: 60
  start-page: 246
  issue: 7
  year: 1984
  end-page: 248
  ident: CR42
  article-title: On the Banach–Saks property
  publication-title: Proc. Jpn. Acad. Ser. A Math. Sci.
– volume: 39
  start-page: 251
  issue: 1
  year: 1992
  end-page: 267
  ident: CR53
  article-title: A stochastic quasigradient algorithm with variable metric
  publication-title: Ann. Oper. Res.
– volume: 20
  start-page: 1
  year: 2018
  end-page: 36
  ident: CR13
  article-title: Stochastic subgradient method converges on tame functions
  publication-title: Found. Comput. Math.
– volume: 19
  start-page: 1574
  issue: 4
  year: 2009
  end-page: 1609
  ident: CR39
  article-title: Robust stochastic approximation approach to stochastic programming
  publication-title: SIAM J. Optim.
– year: 1990
  ident: CR11
  publication-title: Optimization and Nonsmooth Analysis
– volume: 61
  start-page: 473
  issue: 3
  year: 1989
  end-page: 485
  ident: CR56
  article-title: A stochastic algorithm using one sample point per iteration and diminishing stepsizes
  publication-title: J. Optim. Theory Appl.
– year: 2011
  ident: CR4
  publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
– year: 2003
  ident: CR32
  publication-title: Stochastic Approximation and Recursive Algorithms and Applications
– volume: 318
  start-page: 120
  year: 2017
  end-page: 147
  ident: CR24
  article-title: Topology optimization under uncertainty via non-intrusive polynomial chaos expansion
  publication-title: Comput. Methods Appl. Mech.
– volume: 29
  start-page: 2079
  issue: 3
  year: 2019
  end-page: 2099
  ident: CR19
  article-title: Projected stochastic gradients for convex constrained problems in Hilbert spaces
  publication-title: SIAM J. Optim.
– volume: 26
  start-page: 365
  issue: 1
  year: 2016
  end-page: 396
  ident: CR26
  article-title: Risk-averse PDE-constrained optimization using the conditional value-at-risk
  publication-title: SIAM J. Optim.
– volume: 16
  start-page: 954
  issue: 5
  year: 1965
  end-page: 957
  ident: CR31
  article-title: Counterexample to the Morse–Sard theorem in the case of infinite-dimensional manifolds
  publication-title: Proc. Am. Math. Soc.
– volume: 6
  start-page: 1
  year: 2002
  end-page: 53
  ident: CR10
  article-title: Asymptotic properties of some projection-based Robbins–Monro procedures in a Hilbert space
  publication-title: Stud. Nonlinear Dyn. Econom.
– volume: 5
  start-page: 466
  issue: 1
  year: 2017
  end-page: 492
  ident: CR1
  article-title: Multilevel Monte Carlo analysis for optimal control of elliptic PDEs with random coefficients
  publication-title: SIAM/ASA J. Uncertain. Quantif.
– ident: CR52
– volume: 21
  start-page: 615
  issue: 3
  year: 1996
  end-page: 628
  ident: CR49
  article-title: Convergence analysis of stochastic algorithms
  publication-title: Math. Oper. Res.
– volume: 28
  start-page: 1097
  issue: 12
  year: 1983
  end-page: 1105
  ident: CR48
  article-title: Stochastic approximation method with gradient averaging for unconstrained problems
  publication-title: IEEE Trans. Autom. Control
– volume: 50
  start-page: 2659
  issue: 5
  year: 2012
  end-page: 2682
  ident: CR51
  article-title: Stochastic collocation for optimal control problems with stochastic PDE constraints
  publication-title: SIAM J. Control Optim.
– volume: 60
  start-page: 223
  issue: 2
  year: 2018
  end-page: 311
  ident: CR7
  article-title: Optimization methods for large-scale machine learning
  publication-title: SIAM Rev.
– year: 2009
  ident: CR23
  publication-title: Optimization with PDE Constraints
– volume: 22
  start-page: 551
  issue: 4
  year: 1977
  end-page: 575
  ident: CR36
  article-title: Analysis of recursive stochastic algorithms
  publication-title: IEEE Trans. Autom. Control
– volume: 19
  start-page: 1574
  issue: 4
  year: 2009
  ident: 259_CR39
  publication-title: SIAM J. Optim.
  doi: 10.1137/070704277
– volume-title: Optimization and Nonsmooth Analysis
  year: 1990
  ident: 259_CR11
  doi: 10.1137/1.9781611971309
– volume-title: Optimization with PDE Constraints
  year: 2009
  ident: 259_CR23
– volume: 4
  start-page: 1034
  issue: 1
  year: 2016
  ident: 259_CR30
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/15M1041390
– volume: 50
  start-page: 2659
  issue: 5
  year: 2012
  ident: 259_CR51
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/110835438
– volume: 37
  start-page: 1534
  year: 1966
  ident: 259_CR55
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177699145
– volume: 39
  start-page: 251
  issue: 1
  year: 1992
  ident: 259_CR53
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02060944
– volume: 155
  start-page: 267
  issue: 1–2
  year: 2016
  ident: 259_CR21
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0846-1
– ident: 259_CR2
– volume: 6
  start-page: 1
  year: 2002
  ident: 259_CR10
  publication-title: Stud. Nonlinear Dyn. Econom.
– ident: 259_CR35
– volume-title: An Introduction to Semilinear Evolution Equations
  year: 1998
  ident: 259_CR9
  doi: 10.1093/oso/9780198502777.001.0001
– volume: 2
  start-page: 55
  issue: 1
  year: 2014
  ident: 259_CR29
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/130915960
– volume: 52
  start-page: 1763
  issue: 5
  year: 2018
  ident: 259_CR41
  publication-title: ESAIM: Math. Model. Numer.
  doi: 10.1051/m2an/2018025
– volume: 21
  start-page: 615
  issue: 3
  year: 1996
  ident: 259_CR49
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.21.3.615
– volume: 20
  start-page: 1
  year: 2018
  ident: 259_CR13
  publication-title: Found. Comput. Math.
– volume: 7
  start-page: 174
  issue: 1
  year: 2019
  ident: 259_CR54
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/17M1155892
– volume: 28
  start-page: 1372
  issue: 6
  year: 1990
  ident: 259_CR12
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0328072
– volume: 318
  start-page: 120
  year: 2017
  ident: 259_CR24
  publication-title: Comput. Methods Appl. Mech.
  doi: 10.1016/j.cma.2017.01.019
– ident: 259_CR5
  doi: 10.1137/1.9781611974997
– volume: 5
  start-page: 466
  issue: 1
  year: 2017
  ident: 259_CR1
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/16M109870X
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2011
  ident: 259_CR4
  doi: 10.1007/978-1-4419-9467-7
– start-page: 529
  volume-title: The Collected Papers of Stephen Smale
  year: 2000
  ident: 259_CR50
  doi: 10.1142/9789812792822_0005
– volume: 60
  start-page: 223
  issue: 2
  year: 2018
  ident: 259_CR7
  publication-title: SIAM Rev.
  doi: 10.1137/16M1080173
– ident: 259_CR52
  doi: 10.1007/978-3-8348-9357-4
– start-page: 233
  volume-title: Optimizing Methods in Statistics
  year: 1971
  ident: 259_CR46
– volume-title: Stochastic Approximation Methods for Constrained and Unconstrained Systems
  year: 1978
  ident: 259_CR33
  doi: 10.1007/978-1-4684-9352-8
– volume: 15
  start-page: 252
  year: 1984
  ident: 259_CR40
  publication-title: J. Multivar. Anal.
  doi: 10.1016/0047-259X(84)90030-7
– volume: 14
  start-page: 77
  issue: 1
  year: 2013
  ident: 259_CR34
  publication-title: Commun. Comput. Phys.
– volume: 61
  start-page: 473
  issue: 3
  year: 1989
  ident: 259_CR56
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00941830
– ident: 259_CR8
– volume: 22
  start-page: 551
  issue: 4
  year: 1977
  ident: 259_CR36
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1977.1101561
– volume-title: Probability with Martingales
  year: 1991
  ident: 259_CR57
  doi: 10.1017/CBO9780511813658
– volume: 34
  start-page: 116
  year: 1990
  ident: 259_CR58
  publication-title: J. Multivar. Anal.
  doi: 10.1016/0047-259X(90)90064-O
– ident: 259_CR37
– volume: 29
  start-page: 2079
  issue: 3
  year: 2019
  ident: 259_CR19
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1200208
– volume: 28
  start-page: 1097
  issue: 12
  year: 1983
  ident: 259_CR48
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1983.1103184
– volume: 42
  start-page: A2750
  issue: 5
  year: 2020
  ident: 259_CR20
  publication-title: SIAM/ASA J. Sci. Comput.
  doi: 10.1137/19M1263297
– volume: 22
  start-page: 400
  issue: 3
  year: 1951
  ident: 259_CR45
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729586
– ident: 259_CR18
– volume-title: Semimartingales: A Course on Stochastic Processes
  year: 2011
  ident: 259_CR38
– volume: 213
  start-page: 152
  year: 2012
  ident: 259_CR47
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2011.11.026
– volume: 32
  start-page: 551
  issue: 3
  year: 2007
  ident: 259_CR3
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1070.0253
– volume-title: Martingales in Banach Spaces
  year: 2016
  ident: 259_CR43
  doi: 10.1017/CBO9781316480588
– volume: 16
  start-page: 954
  issue: 5
  year: 1965
  ident: 259_CR31
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1965-0182024-4
– volume: 29
  start-page: 1145
  year: 2016
  ident: 259_CR44
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: 189
  issue: 2
  year: 1988
  ident: 259_CR22
  publication-title: J. Theor. Probab.
  doi: 10.1007/BF01046934
– volume-title: Stochastic Approximation and Recursive Algorithms and Applications
  year: 2003
  ident: 259_CR32
– volume-title: Numerical PDE-Constrained Optimization
  year: 2015
  ident: 259_CR14
  doi: 10.1007/978-3-319-13395-9
– volume: 23
  start-page: 462
  issue: 3
  year: 1952
  ident: 259_CR25
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729392
– volume: 35
  start-page: A1847
  issue: 4
  year: 2013
  ident: 259_CR28
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/120892362
– volume: 26
  start-page: 365
  issue: 1
  year: 2016
  ident: 259_CR26
  publication-title: SIAM J. Optim.
  doi: 10.1137/140954556
– volume-title: Random Iterative Models
  year: 2013
  ident: 259_CR16
– volume: 2
  start-page: 72
  year: 1969
  ident: 259_CR17
  publication-title: Kibernetika
– volume: 60
  start-page: 246
  issue: 7
  year: 1984
  ident: 259_CR42
  publication-title: Proc. Jpn. Acad. Ser. A Math. Sci.
  doi: 10.3792/pjaa.60.246
– volume: 17
  start-page: 142
  issue: 9
  year: 1998
  ident: 259_CR6
  publication-title: On-line Learn. Neural Netw.
– volume: 28
  start-page: 3229
  issue: 4
  year: 2018
  ident: 259_CR15
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1135086
– volume: 26
  start-page: 53
  year: 2019
  ident: 259_CR27
  publication-title: ESAIM Control Optim. Calc. Var.
  doi: 10.1051/cocv/2019061
SSID ssj0009732
Score 2.4003203
Snippet For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
econis
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 705
SubjectTerms Algorithms
Approximation
Constraints
Continuity (mathematics)
Convergence
Convex and Discrete Geometry
Differential inclusions
Hilbert space
Management Science
Mathematical programming methods
Mathematics
Mathematics and Statistics
Nonsmooth and nonconvex optimization
Operations Research
Operations Research/Decision Theory
Optimal control problems involving partial differential equations
Optimization
Partial differential equations
Partial differential equations with randomness
Statistics
Stochastic programming
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BlgMcEK9CoCAjcQOLrO3EzgkBarVCaoUoSL1ZTuzQSJAtTSrRf8-M491lefQUKbEdx2PPI_78DcCLQnsjGzHnja4LrrTAJWXamkvvtECDjzabzjsfHpWLL-rDSXGSfrgNCVa50olRUftlQ__IX2OYINFV17l4c_aDU9Yo2l1NKTSuww6qYGNmsPNu_-jjpw3tro4pyvJKlBxNu0zHZtLhuYLgQoJOVmPL_HLLNN2geLQb_uV4_o2f_GMTNdqmgztwOzmV7O00C-7CtdDfg1u_UQ3eh8PjcdmcOmJlZgRd6b5jha_nEfA1simP9MDQg2X9so9Q9J8sJZsZWNezRUdkWCNDBYSa5QEcH-x_fr_gKZUCb1RVjlzNXdkWPoS8qR2GXVJXGHhpVyqfB-1yUxnnUWQYEAtfhKryzoi2ECFXeFfuwgxfHh4Bw3BT-6Db1lRBzXPj0EGSda2C9KZ1jcxgvhpD2ySWcUp28c1u-JFp3C2Ou43jbi8zeLmuczZxbFxZencSjaULQUht5PDHV--tRGXTQhzsZtpk8Hz9GJcQ7Yu4PiwvsEyBVrrESFhl8HCS7LofUkY6JGxcb8l8XYDoubef9N1ppOnWVU5URRm8Ws2OTbf-_3mPr_6KJ3BTEKomYof2YDaeX4Sn6BaN9bM0938BJ4IJdA
  priority: 102
  providerName: ProQuest
Title Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces
URI https://www.econstor.eu/handle/10419/287443
https://link.springer.com/article/10.1007/s10589-020-00259-y
https://www.ncbi.nlm.nih.gov/pubmed/33707813
https://www.proquest.com/docview/2493259702
https://www.proquest.com/docview/2501262114
https://pubmed.ncbi.nlm.nih.gov/PMC7907055
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xjYfxgGAwCIzKSLxBpMR24uSxlHYV0AlRJo0ny0mcLRKkaMkk9t9z56QpHQOJl1iOP5OzfXfy3e8AXkWqSETOQz9XWeRLxXFLJWXmi8IojgwfeTb5Oy9O4vmpfH8WnfUwOeQLc-P-nlzcIjLq4eT_jKK6f70De1EoFIVpmMSTDcCucsHIgpTHPjJx0TvI3N7HFhO6S5pn1dwmYv5pKXnjutRxodkDuN-Lj2zc0fsh3LH1Adz7DVQQc4sBibU5gH2SJjsw5kewWLar_MJQjpH9SvUd-zq_dFZfLeuCSTcMxVhWr2pnj_6T9RFnGlbVbF4RIlbL8BTC4-UxLGfTL5O538dT8HOZxq0vQxOXUWFtkGcGdS-hUtS-lIllEVhlgiRNTIF0Q62YF5FN08IkvIy4DSS-FYewi4Pbp8BQ51SFVWWZpFaGQWJQShJZJq0oktLkwoNw_Xt13kONU8SLb3oDkkwk0UgS7Uiirz14PbT50QFt_LP2YUc1TQnZkWoH5I9DH62pqPvd2GhUMQU2UwH34OVQjPuILkdMbVdXWCdCVh2jOiw9eNIRfZiHEA4TCTtXW8thqEAY3dsldXXhsLpVGhBekQdv1gtnM62_f96z_6v-HPY5mdo4g6Ij2G0vr-wLlJXabAQ7yex4BHvjd4uPS0qPv36YYvp2evLp88htIXye8vEvFtoQxA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VggQcEK9CoICR4AQRWduJkwNCCFi2tNtLi9QTlhM7NFKbLU0q2P_Ej2TGSXZZHr31FCmxE3vG45mJZ74BeBYrm4qCj8JC5XEoFUeRSss8FNYojgofdTblO093k8ln-ekgPliDn0MuDIVVDnui36jtrKB_5K_QTRBoqquIvzn5FlLVKDpdHUpodMti282_o8vWvN56j_x9zvn4w_67SdhXFQgLmSVtKEcmKWPrXFTkBj0QoTL0QZRJpI2cMlGapcbi6NE35DZ2WWZNysuYu0jiXYFvvQSXpUA9Tnnp449LiF_ly6FFGU9CNCNEn6LTJ-rFFJrEKYsbZxHOV9TgFfJ9q-ZfRu7fsZp_HNh6PTi-CTd6A5a97VbcLVhz9W24_hus4R2Y7rWz4tAQAjSjMJnqGDt8PfXBZS3ralY3DK1lVs9qH_b-g_WFbRpW1WxSEfBWy3Czw13sLuxdAIE3YB0_7u4DQ9dWWafKMs2cHEWpQWNM5Ll0wqalKUQAo4GGuugRzamwxpFeYjET3TXSXXu663kALxZ9Tjo8j3Nbb3Ss0XShcFXt6wXgpzcHVule6Bu9XKIBPF08RnGlMxhTu9kZtonRIkjQ65YB3Os4uxiHEB56CV-uVni-aEBQ4KtP6urQQ4KrLCJYpABeDqtjOaz_T-_B-bN4Alcn-9MdvbO1u_0QrnGK5vExS5uw3p6euUdojrX5Yy8FDL5crND9AiaZQzo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VLUJwQLxKAwWMBCeImrWTODkgBLSrLaWrioLUUy0ndtpIkC1NKth_xs9jxkl2WR699RQpcR6e8dgz8TffADyLpElEzod-LrPIDyVHk0qKzBdGS44LPq7ZlO-8N4nHn8P3h9HhCvzsc2EIVtnPiW6iNtOc_pFvYpgg0FWXAd8sOljE_tbo9ek3nypI0U5rX06jHSK7dvYdw7f61c4W6vo556PtT-_GfldhwM_DNG78cKjjIjLWBnmmMRoRMsV4ROo4NIGVOkjSRBvsCcaJ3EQ2TY1OeBFxG4R4VuBTr8CqpJhoAKtvtyf7HxeEv9IVRwtSHvvoVIguYadL24sIqMQppxv75M-WFsWrFAmX9b9c3r-Rm39s37pVcXQLbnbuLHvTjr_bsGKrO3DjN5LDu7B30EzzE0180IxAM-VXvOH4zEHNGtZWsK4Z-s6smlYOBP-DdWVualZWbFwSDVfDcOrDOe0eHFyCiNdggC-368Aw0JXGyqJIUhsOg0SjayayLLTCJIXOhQfDXoYq7_jNqczGF7VgZia5K5S7cnJXMw9ezO85bdk9Lmy91qpG0YHAq8pVD8BXb_SqUt0UUKvFgPXg6fwyGi_tyOjKTs-xTYT-QYwxeOjB_Vaz8-8QwhEx4cPlks7nDYgYfPlKVZ44gnCZBkSS5MHLfnQsPuv_3XtwcS-ewDU0OPVhZ7L7EK5zgvY4ANMGDJqzc_sIfbMme9yZAYOjy7W7X7-NSMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+proximal+gradient+methods+for+nonconvex+problems+in+Hilbert+spaces&rft.jtitle=Computational+optimization+and+applications&rft.au=Geiersbach%2C+Caroline&rft.au=Scarinci%2C+Teresa&rft.date=2021-04-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=78&rft.issue=3&rft.spage=705&rft.epage=740&rft_id=info:doi/10.1007%2Fs10589-020-00259-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_020_00259_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-2894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-2894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-2894&client=summon