TALEN-Mediated Gene Editing of HBG in Human Hematopoietic Stem Cells Leads to Therapeutic Fetal Hemoglobin Induction
Elements within the γ-hemoglobin promoters ( and ) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH...
Saved in:
Published in | Molecular therapy. Methods & clinical development Vol. 12; pp. 175 - 183 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Limited
15.03.2019
American Society of Gene & Cell Therapy Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2329-0501 2329-0501 |
DOI | 10.1016/j.omtm.2018.12.008 |
Cover
Abstract | Elements within the γ-hemoglobin promoters (
and
) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the
promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous
promoters to de-repress fetal hemoglobin. Transfection of human CD34
cells with TALEN mRNA resulted in indel generation in
(43%) and
(74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34
cells
in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression
and
, suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia. |
---|---|
AbstractList | Elements within the γ-hemoglobin promoters (
and
) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the
promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous
promoters to de-repress fetal hemoglobin. Transfection of human CD34
cells with TALEN mRNA resulted in indel generation in
(43%) and
(74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34
cells
in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression
and
, suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia. Elements within the γ-hemoglobin promoters (HBG1 and HBG2) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the HBG1 promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous HBG promoters to de-repress fetal hemoglobin. Transfection of human CD34+ cells with TALEN mRNA resulted in indel generation in HBG1 (43%) and HBG2 (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34+ cells in vivo in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression in vitro and in vivo, suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia. Elements within the γ-hemoglobin promoters ( HBG1 and HBG2 ) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the HBG1 promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous HBG promoters to de-repress fetal hemoglobin. Transfection of human CD34 + cells with TALEN mRNA resulted in indel generation in HBG1 (43%) and HBG2 (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34 + cells in vivo in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression in vitro and in vivo , suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia. Elements within the γ-hemoglobin promoters (HBG1 and HBG2) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the HBG1 promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous HBG promoters to de-repress fetal hemoglobin. Transfection of human CD34+ cells with TALEN mRNA resulted in indel generation in HBG1 (43%) and HBG2 (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34+ cells in vivo in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression in vitro and in vivo, suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia.Elements within the γ-hemoglobin promoters (HBG1 and HBG2) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the HBG1 promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous HBG promoters to de-repress fetal hemoglobin. Transfection of human CD34+ cells with TALEN mRNA resulted in indel generation in HBG1 (43%) and HBG2 (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34+ cells in vivo in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression in vitro and in vivo, suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia. Elements within the γ-hemoglobin promoters (HBG1 and HBG2) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the HBG1 promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous HBG promoters to de-repress fetal hemoglobin. Transfection of human CD34+ cells with TALEN mRNA resulted in indel generation in HBG1 (43%) and HBG2 (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34+ cells in vivo in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression in vitro and in vivo, suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia. Keywords: TALEN, hemoglobinopathy, HBG, hemoglobin, HPFH, SCD, sickle cell disease, thalassemia, gene editing, HSC |
Author | Jacoby, Kyle Rawlings, David J. Scharenberg, Andrew Flowers, David A. Pattabhi, Sowmya Humbert, Olivier Bernstein, Irwin Lux, Christopher T. Yang, Julia G. Lee, Calvin Berger, Mason Nourigat, Cynthia Negre, Olivier Kiem, Hans-Peter |
AuthorAffiliation | 2 Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA 6 Department of Pediatrics, University of Washington, Seattle, WA 98195, USA 4 Department of Medicine, University of Washington, Seattle, WA 98195, USA 7 Department of Immunology, University of Washington, Seattle, WA 98195, USA 1 Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA 3 bluebird bio, Inc., Cambridge MA 02142, USA 5 Department of Pathology, University of Washington, Seattle, WA 98195, USA |
AuthorAffiliation_xml | – name: 2 Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA – name: 1 Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA – name: 6 Department of Pediatrics, University of Washington, Seattle, WA 98195, USA – name: 3 bluebird bio, Inc., Cambridge MA 02142, USA – name: 5 Department of Pathology, University of Washington, Seattle, WA 98195, USA – name: 7 Department of Immunology, University of Washington, Seattle, WA 98195, USA – name: 4 Department of Medicine, University of Washington, Seattle, WA 98195, USA |
Author_xml | – sequence: 1 givenname: Christopher T. surname: Lux fullname: Lux, Christopher T. – sequence: 2 givenname: Sowmya surname: Pattabhi fullname: Pattabhi, Sowmya – sequence: 3 givenname: Mason surname: Berger fullname: Berger, Mason – sequence: 4 givenname: Cynthia surname: Nourigat fullname: Nourigat, Cynthia – sequence: 5 givenname: David A. surname: Flowers fullname: Flowers, David A. – sequence: 6 givenname: Olivier surname: Negre fullname: Negre, Olivier – sequence: 7 givenname: Olivier surname: Humbert fullname: Humbert, Olivier – sequence: 8 givenname: Julia G. surname: Yang fullname: Yang, Julia G. – sequence: 9 givenname: Calvin surname: Lee fullname: Lee, Calvin – sequence: 10 givenname: Kyle surname: Jacoby fullname: Jacoby, Kyle – sequence: 11 givenname: Irwin surname: Bernstein fullname: Bernstein, Irwin – sequence: 12 givenname: Hans-Peter surname: Kiem fullname: Kiem, Hans-Peter – sequence: 13 givenname: Andrew surname: Scharenberg fullname: Scharenberg, Andrew – sequence: 14 givenname: David J. surname: Rawlings fullname: Rawlings, David J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30705922$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAOyxIXLLv6KE1-Qymq7u9ICB5azNbEnW6-SeEkcJP49Tret2h7wwR553nsez7y32VkXOsyy94zOGWXq82Ee2tjOOWXlnPE5peWr7IILrmc0p-zsSXyeXQ3DgaalCypy_SY7F7Sgueb8Iou76-3y--wbOg8RHVlhh2TpfPTdnoSarL-uiO_Iemwh7dhCDMfgMXpLfkZsyQKbZiBbBDeQGMjuFns44jjlbzBCM3HCvglVEtl0brTRh-5d9rqGZsCr-_My-3Wz3C3Ws-2P1WZxvZ1ZqVWcSUptXrNCQulyZZViOdOu0jlzyGReWYVUMSilE1KzSgqQtQKu0SkrNFTiMtucdF2Agzn2voX-rwngzd1F6PcG-lRqg8YxpbTmstIFSgmyQqjBaccxPVNzkbS-nLSOY9Wis9jFHppnos8znb81-_DHKCFLXdIk8OleoA-_Rxyiaf1gU_ugwzAOhrNCy4IXcoJ-fAE9hLHvUqsMT6PLSy0ET6gPTyt6LOVhuAnATwDbh2HosX6EMGomE5nUg2QiM5nIMG6SiRKpfEGyPsI0tfQr3_yP-g_W1c0n |
CitedBy_id | crossref_primary_10_1038_s41588_021_00904_0 crossref_primary_10_1089_hum_2023_138 crossref_primary_10_1038_s41596_021_00529_x crossref_primary_10_3389_fgeed_2023_1104666 crossref_primary_10_1016_j_stem_2021_01_001 crossref_primary_10_1089_crispr_2023_0077 crossref_primary_10_2174_0929867327666200610175400 crossref_primary_10_1016_j_ymthe_2021_10_002 crossref_primary_10_3390_cells10061492 crossref_primary_10_1016_j_tig_2022_07_003 crossref_primary_10_3389_fgeed_2020_617780 crossref_primary_10_2478_acb_2020_0016 crossref_primary_10_1128_MCB_00253_20 crossref_primary_10_1182_bloodadvances_2019000820 crossref_primary_10_3389_fgeed_2022_997142 crossref_primary_10_1007_s00128_021_03249_w crossref_primary_10_1016_j_hoc_2022_12_012 crossref_primary_10_1016_j_ymthe_2021_09_001 crossref_primary_10_1182_blood_2020010020 crossref_primary_10_3390_genes13122222 crossref_primary_10_3390_ijms24119527 crossref_primary_10_3389_fphys_2022_848261 crossref_primary_10_1016_j_ymthe_2024_07_015 crossref_primary_10_3389_fgeed_2023_1141618 crossref_primary_10_1126_sciadv_aay9392 crossref_primary_10_1182_bloodadvances_2020003702 crossref_primary_10_1016_j_ymthe_2021_08_019 crossref_primary_10_1016_j_jcyt_2022_11_014 crossref_primary_10_1126_scitranslmed_aaw3768 crossref_primary_10_3389_fgeed_2021_618346 crossref_primary_10_2174_1871529X23666230123140926 crossref_primary_10_1016_j_drudis_2020_02_009 crossref_primary_10_3390_genes14020483 crossref_primary_10_1016_j_addr_2020_05_010 crossref_primary_10_1002_sctm_19_0338 crossref_primary_10_1007_s00439_023_02610_9 crossref_primary_10_1016_j_omtm_2021_10_008 crossref_primary_10_1016_j_omtm_2020_06_022 crossref_primary_10_1016_j_transci_2021_103060 crossref_primary_10_1097_MD_0000000000018143 crossref_primary_10_1007_s13237_024_00470_w crossref_primary_10_1182_blood_2019000949 crossref_primary_10_1111_bjh_16807 |
Cites_doi | 10.1016/j.ymthe.2017.03.024 10.1371/journal.pone.0047175 10.1038/s41588-018-0085-0 10.1093/emboj/cdf340 10.1126/science.1242088 10.1038/nm.4170 10.1001/jama.2014.10517 10.1182/blood-2016-01-678128 10.1093/nar/gkt1224 10.1016/j.ijpharm.2015.08.029 10.1182/blood.V99.8.3005 10.1182/blood-2015-09-672337 10.1177/2040620716653729 10.1126/science.aad3312 10.1093/nar/16.22.10635 10.1182/blood-2016-04-711580 10.1093/nar/gkt1326 10.1111/bjh.15038 10.1038/nmeth.1456 10.1182/blood-2017-10-811505 10.1172/JCI87885 10.1016/j.cell.2018.03.016 10.1371/journal.pmed.1001484 10.1093/nar/gkr218 10.1038/nbt.1755 10.1016/j.omtm.2016.12.009 10.2471/BLT.06.036673 10.1038/nbt.2304 10.1093/nar/gks608 10.1038/mtna.2016.21 10.1007/s00439-016-1696-0 10.1016/j.stemcr.2014.12.005 10.1007/978-1-4939-7299-9_4 10.1038/ncomms6987 10.1016/j.ajhg.2016.05.030 10.1038/nrm3486 10.1080/15384101.2015.1049784 10.1056/NEJM199406093302303 10.1016/j.celrep.2016.08.064 10.1093/hmg/ddw170 10.1089/hum.2016.007 |
ContentType | Journal Article |
Copyright | 2018. The Author(s) 2018 The Author(s) 2018 |
Copyright_xml | – notice: 2018. The Author(s) – notice: 2018 The Author(s) 2018 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1016/j.omtm.2018.12.008 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2329-0501 |
EndPage | 183 |
ExternalDocumentID | oai_doaj_org_article_d1669924b97e44a4beafad9d2ebc6f23 PMC6348980 30705922 10_1016_j_omtm_2018_12_008 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAEDW AAMRU AAYXX ABMAC ABUWG ACGFS ADBBV ADRAZ ADVLN AFKRA AFTJW AITUG ALIPV ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE LK8 M41 M48 M7P M~E O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC RNTTT ROL RPM SSZ UKHRP 0SF AACTN AALRI FDB NCXOZ NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c496t-400c5f174a8d56c661519db951de145bc6e061a84d3491b43a4f6a29ed6c39ab3 |
IEDL.DBID | 7X7 |
ISSN | 2329-0501 |
IngestDate | Wed Aug 27 01:27:06 EDT 2025 Thu Aug 21 14:13:15 EDT 2025 Thu Sep 04 19:03:53 EDT 2025 Fri Jul 25 11:16:21 EDT 2025 Wed Feb 19 02:34:41 EST 2025 Tue Jul 01 03:16:37 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | thalassemia SCD TALEN HSC HPFH HBG gene editing hemoglobinopathy hemoglobin sickle cell disease |
Language | English |
License | This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-400c5f174a8d56c661519db951de145bc6e061a84d3491b43a4f6a29ed6c39ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Present address: Casebia Therapeutics, Cambridge, MA 02139, USA |
OpenAccessLink | https://www.proquest.com/docview/2307589332?pq-origsite=%requestingapplication% |
PMID | 30705922 |
PQID | 2307589332 |
PQPubID | 2041945 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d1669924b97e44a4beafad9d2ebc6f23 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6348980 proquest_miscellaneous_2179472740 proquest_journals_2307589332 pubmed_primary_30705922 crossref_primary_10_1016_j_omtm_2018_12_008 crossref_citationtrail_10_1016_j_omtm_2018_12_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-15 |
PublicationDateYYYYMMDD | 2019-03-15 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Milwaukee |
PublicationTitle | Molecular therapy. Methods & clinical development |
PublicationTitleAlternate | Mol Ther Methods Clin Dev |
PublicationYear | 2019 |
Publisher | Elsevier Limited American Society of Gene & Cell Therapy Elsevier |
Publisher_xml | – name: Elsevier Limited – name: American Society of Gene & Cell Therapy – name: Elsevier |
References | Canver (10.1016/j.omtm.2018.12.008_bib11) 2016; 127 McIntosh (10.1016/j.omtm.2018.12.008_bib21) 2015; 4 Platt (10.1016/j.omtm.2018.12.008_bib7) 1994; 330 Bauer (10.1016/j.omtm.2018.12.008_bib38) 2013; 342 Vinjamur (10.1016/j.omtm.2018.12.008_bib22) 2018; 180 10.1016/j.omtm.2018.12.008_bib31 10.1016/j.omtm.2018.12.008_bib33 10.1016/j.omtm.2018.12.008_bib32 Traxler (10.1016/j.omtm.2018.12.008_bib13) 2016; 22 Grier (10.1016/j.omtm.2018.12.008_bib46) 2016; 5 Origa (10.1016/j.omtm.2018.12.008_bib5) 1993 Negre (10.1016/j.omtm.2018.12.008_bib30) 2016; 27 Doyle (10.1016/j.omtm.2018.12.008_bib43) 2012; 40 Bernaudin (10.1016/j.omtm.2018.12.008_bib6) 2017; 1013 Wojda (10.1016/j.omtm.2018.12.008_bib47) 2002; 99 Negritto (10.1016/j.omtm.2018.12.008_bib28) 2010; 3 Kostyrko (10.1016/j.omtm.2018.12.008_bib29) 2015; 14 Martyn (10.1016/j.omtm.2018.12.008_bib18) 2018; 50 Fine (10.1016/j.omtm.2018.12.008_bib45) 2014; 42 Modell (10.1016/j.omtm.2018.12.008_bib1) 2008; 86 Cavazzana (10.1016/j.omtm.2018.12.008_bib12) 2017; 25 Joung (10.1016/j.omtm.2018.12.008_bib19) 2013; 14 Antoniani (10.1016/j.omtm.2018.12.008_bib24) 2018; 131 Cermak (10.1016/j.omtm.2018.12.008_bib44) 2011; 39 Luc (10.1016/j.omtm.2018.12.008_bib37) 2016; 16 Miller (10.1016/j.omtm.2018.12.008_bib41) 2011; 29 Zhu (10.1016/j.omtm.2018.12.008_bib14) 2012; 7 Doyon (10.1016/j.omtm.2018.12.008_bib25) 2010; 7 Boissel (10.1016/j.omtm.2018.12.008_bib40) 2014; 42 Streubel (10.1016/j.omtm.2018.12.008_bib42) 2012; 30 Tanabe (10.1016/j.omtm.2018.12.008_bib15) 2002; 21 Goodman (10.1016/j.omtm.2018.12.008_bib3) 2016; 7 Dias (10.1016/j.omtm.2018.12.008_bib36) 2016; 99 Chang (10.1016/j.omtm.2018.12.008_bib27) 2017; 4 Richter (10.1016/j.omtm.2018.12.008_bib39) 2016; 128 Gilman (10.1016/j.omtm.2018.12.008_bib8) 1988; 16 Cottle (10.1016/j.omtm.2018.12.008_bib10) 2016; 135 Khaled (10.1016/j.omtm.2018.12.008_bib35) 2015; 6 Peterson (10.1016/j.omtm.2018.12.008_bib26) 2016; 127 Yawn (10.1016/j.omtm.2018.12.008_bib4) 2014; 312 Masuda (10.1016/j.omtm.2018.12.008_bib16) 2016; 351 Piel (10.1016/j.omtm.2018.12.008_bib2) 2013; 10 Liu (10.1016/j.omtm.2018.12.008_bib17) 2018; 173 Charlesworth (10.1016/j.omtm.2018.12.008_bib20) 2018; 4 Brendel (10.1016/j.omtm.2018.12.008_bib34) 2016; 126 Smith (10.1016/j.omtm.2018.12.008_bib23) 2016; 25 LaFountaine (10.1016/j.omtm.2018.12.008_bib9) 2015; 494 |
References_xml | – volume: 25 start-page: 1142 year: 2017 ident: 10.1016/j.omtm.2018.12.008_bib12 article-title: Gene Therapy for β-Hemoglobinopathies publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.03.024 – volume: 7 start-page: e47175 year: 2012 ident: 10.1016/j.omtm.2018.12.008_bib14 article-title: NF-Y recruits both transcription activator and repressor to modulate tissue- and developmental stage-specific expression of human γ-globin gene publication-title: PLoS ONE doi: 10.1371/journal.pone.0047175 – volume: 50 start-page: 498 year: 2018 ident: 10.1016/j.omtm.2018.12.008_bib18 article-title: Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding publication-title: Nat. Genet. doi: 10.1038/s41588-018-0085-0 – volume: 21 start-page: 3434 year: 2002 ident: 10.1016/j.omtm.2018.12.008_bib15 article-title: An embryonic/fetal β-type globin gene repressor contains a nuclear receptor TR2/TR4 heterodimer publication-title: EMBO J. doi: 10.1093/emboj/cdf340 – volume: 342 start-page: 253 year: 2013 ident: 10.1016/j.omtm.2018.12.008_bib38 article-title: An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level publication-title: Science doi: 10.1126/science.1242088 – volume: 22 start-page: 987 year: 2016 ident: 10.1016/j.omtm.2018.12.008_bib13 article-title: A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition publication-title: Nat. Med. doi: 10.1038/nm.4170 – volume: 312 start-page: 1033 year: 2014 ident: 10.1016/j.omtm.2018.12.008_bib4 article-title: Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members publication-title: JAMA doi: 10.1001/jama.2014.10517 – volume: 127 start-page: 2536 year: 2016 ident: 10.1016/j.omtm.2018.12.008_bib11 article-title: Customizing the genome as therapy for the β-hemoglobinopathies publication-title: Blood doi: 10.1182/blood-2016-01-678128 – volume: 42 start-page: 2591 year: 2014 ident: 10.1016/j.omtm.2018.12.008_bib40 article-title: megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1224 – volume: 494 start-page: 180 year: 2015 ident: 10.1016/j.omtm.2018.12.008_bib9 article-title: Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.08.029 – volume: 99 start-page: 3005 year: 2002 ident: 10.1016/j.omtm.2018.12.008_bib47 article-title: Fetal and adult hemoglobin production during adult erythropoiesis: coordinate expression correlates with cell proliferation publication-title: Blood doi: 10.1182/blood.V99.8.3005 – volume: 127 start-page: 2416 year: 2016 ident: 10.1016/j.omtm.2018.12.008_bib26 article-title: Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates publication-title: Blood doi: 10.1182/blood-2015-09-672337 – volume: 7 start-page: 302 year: 2016 ident: 10.1016/j.omtm.2018.12.008_bib3 article-title: The potential of gene therapy approaches for the treatment of hemoglobinopathies: achievements and challenges publication-title: Ther. Adv. Hematol. doi: 10.1177/2040620716653729 – volume: 4 year: 2018 ident: 10.1016/j.omtm.2018.12.008_bib20 article-title: Identification of Pre-Existing Adaptive Immunity to Cas9 Proteins in Humans publication-title: bioRxiv – volume: 351 start-page: 285 year: 2016 ident: 10.1016/j.omtm.2018.12.008_bib16 article-title: Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin publication-title: Science doi: 10.1126/science.aad3312 – volume: 16 start-page: 10635 year: 1988 ident: 10.1016/j.omtm.2018.12.008_bib8 article-title: Distal CCAAT box deletion in the A gamma globin gene of two black adolescents with elevated fetal A gamma globin publication-title: Nucleic Acids Res. doi: 10.1093/nar/16.22.10635 – ident: 10.1016/j.omtm.2018.12.008_bib32 – volume: 128 start-page: 2206 year: 2016 ident: 10.1016/j.omtm.2018.12.008_bib39 article-title: In vivo transduction of primitive mobilized hematopoietic stem cells after intravenous injection of integrating adenovirus vectors publication-title: Blood doi: 10.1182/blood-2016-04-711580 – volume: 42 start-page: e42 year: 2014 ident: 10.1016/j.omtm.2018.12.008_bib45 article-title: An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1326 – volume: 180 start-page: 630 year: 2018 ident: 10.1016/j.omtm.2018.12.008_bib22 article-title: Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies publication-title: Br. J. Haematol doi: 10.1111/bjh.15038 – volume: 7 start-page: 459 year: 2010 ident: 10.1016/j.omtm.2018.12.008_bib25 article-title: Transient cold shock enhances zinc-finger nuclease-mediated gene disruption publication-title: Nat. Methods doi: 10.1038/nmeth.1456 – volume: 131 start-page: 1960 year: 2018 ident: 10.1016/j.omtm.2018.12.008_bib24 article-title: Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus publication-title: Blood doi: 10.1182/blood-2017-10-811505 – volume: 126 start-page: 3868 year: 2016 ident: 10.1016/j.omtm.2018.12.008_bib34 article-title: Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype publication-title: J. Clin. Invest. doi: 10.1172/JCI87885 – volume: 173 start-page: 430 year: 2018 ident: 10.1016/j.omtm.2018.12.008_bib17 article-title: Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch publication-title: Cell doi: 10.1016/j.cell.2018.03.016 – volume: 10 start-page: e1001484 year: 2013 ident: 10.1016/j.omtm.2018.12.008_bib2 article-title: Global burden of sickle cell anaemia in children under five, 2010-2050: modelling based on demographics, excess mortality, and interventions publication-title: PLoS Med. doi: 10.1371/journal.pmed.1001484 – volume: 39 start-page: e82 year: 2011 ident: 10.1016/j.omtm.2018.12.008_bib44 article-title: Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr218 – volume: 29 start-page: 143 year: 2011 ident: 10.1016/j.omtm.2018.12.008_bib41 article-title: A TALE nuclease architecture for efficient genome editing publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1755 – volume: 4 start-page: 137 year: 2017 ident: 10.1016/j.omtm.2018.12.008_bib27 article-title: Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34+ Hematopoietic Stem and Progenitor Cells publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1016/j.omtm.2016.12.009 – volume: 86 start-page: 480 year: 2008 ident: 10.1016/j.omtm.2018.12.008_bib1 article-title: Global epidemiology of haemoglobin disorders and derived service indicators publication-title: Bull. World Health Organ. doi: 10.2471/BLT.06.036673 – volume: 30 start-page: 593 year: 2012 ident: 10.1016/j.omtm.2018.12.008_bib42 article-title: TAL effector RVD specificities and efficiencies publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2304 – volume: 40 start-page: W117 issue: Web Server issue, W1 year: 2012 ident: 10.1016/j.omtm.2018.12.008_bib43 article-title: TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks608 – volume: 5 start-page: e306 year: 2016 ident: 10.1016/j.omtm.2018.12.008_bib46 article-title: pEVL: A Linear Plasmid for Generating mRNA IVT Templates With Extended Encoded Poly(A) Sequences publication-title: Mol. Ther. Nucleic Acids doi: 10.1038/mtna.2016.21 – volume: 135 start-page: 993 year: 2016 ident: 10.1016/j.omtm.2018.12.008_bib10 article-title: Treating hemoglobinopathies using gene-correction approaches: promises and challenges publication-title: Hum. Genet. doi: 10.1007/s00439-016-1696-0 – volume: 4 start-page: 171 year: 2015 ident: 10.1016/j.omtm.2018.12.008_bib21 article-title: Nonirradiated NOD,B6.SCID Il2rγ-/- Kit(W41/W41) (NBSGW) mice support multilineage engraftment of human hematopoietic cells publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2014.12.005 – year: 1993 ident: 10.1016/j.omtm.2018.12.008_bib5 article-title: Beta-thalassemia – volume: 1013 start-page: 89 year: 2017 ident: 10.1016/j.omtm.2018.12.008_bib6 article-title: Allogeneic/Matched Related Transplantation for β-Thalassemia and Sickle Cell Anemia publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4939-7299-9_4 – volume: 3 start-page: 26 year: 2010 ident: 10.1016/j.omtm.2018.12.008_bib28 article-title: Repairing Double Strand DNA Breaks publication-title: Nature Education – volume: 6 start-page: 5987 year: 2015 ident: 10.1016/j.omtm.2018.12.008_bib35 article-title: BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells publication-title: Nat. Commun. doi: 10.1038/ncomms6987 – volume: 99 start-page: 253 year: 2016 ident: 10.1016/j.omtm.2018.12.008_bib36 article-title: BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2016.05.030 – volume: 14 start-page: 49 year: 2013 ident: 10.1016/j.omtm.2018.12.008_bib19 article-title: TALENs: a widely applicable technology for targeted genome editing publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3486 – volume: 14 start-page: 2853 year: 2015 ident: 10.1016/j.omtm.2018.12.008_bib29 article-title: A role for homologous recombination proteins in cell cycle regulation publication-title: Cell Cycle doi: 10.1080/15384101.2015.1049784 – volume: 330 start-page: 1639 year: 1994 ident: 10.1016/j.omtm.2018.12.008_bib7 article-title: Mortality in sickle cell disease. Life expectancy and risk factors for early death publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199406093302303 – ident: 10.1016/j.omtm.2018.12.008_bib33 – ident: 10.1016/j.omtm.2018.12.008_bib31 – volume: 16 start-page: 3181 year: 2016 ident: 10.1016/j.omtm.2018.12.008_bib37 article-title: Bcl11a Deficiency Leads to Hematopoietic Stem Cell Defects with an Aging-like Phenotype publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.08.064 – volume: 25 start-page: R99 issue: R2 year: 2016 ident: 10.1016/j.omtm.2018.12.008_bib23 article-title: Hemoglobin genetics: recent contributions of GWAS and gene editing publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddw170 – volume: 27 start-page: 148 year: 2016 ident: 10.1016/j.omtm.2018.12.008_bib30 article-title: Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the β(A(T87Q))-Globin Gene publication-title: Hum. Gene Ther. doi: 10.1089/hum.2016.007 |
SSID | ssj0000970359 |
Score | 2.3267272 |
Snippet | Elements within the γ-hemoglobin promoters (
and
) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell... Elements within the γ-hemoglobin promoters (HBG1 and HBG2) function to bind transcription complexes that mediate repression of fetal hemoglobin expression.... Elements within the γ-hemoglobin promoters ( HBG1 and HBG2 ) function to bind transcription complexes that mediate repression of fetal hemoglobin expression.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 175 |
SubjectTerms | Binding sites CD34 antigen Cell differentiation Clonal deletion Deoxyribonucleic acid Design Disease DNA Fetuses Flow cytometry Gene deletion Gene silencing Genome editing Genotype & phenotype Hematopoietic stem cells Hemoglobin High-performance liquid chromatography Medical research Mutation Phenotypes Promoters Proteins Sickle cell disease Stem cell transplantation Stem cells Thalassemia Transcription activator-like effector nucleases Transcription factors Transfection Transplants & implants |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuCCgfgYKMxA1FxJ9rH9tql1VFe2Er9WbZsSMWbZOqmx7498w42WUXIXrpNbEjxzO2n-2Z9wj5xE1EDpB8NShLWKFgzAlTlcwbm4yofZM1ls4v9PxSnl2pqx2pL4wJG-iBh477EpnWFjYJwU6SlF6G5BsfbeQp1LrhmeezstXOZirPwXaC3HRZWY7bslIVGzNmhuCu7rrHNHRm8lkgakvurEqZvP9fiPPvwMmdlWj2jDwdISQ9Hpr-nDxK7QvyeBCV_HVI-sXxt-lFeZ41OFKkSCxNp3GJ8c20a-j85CtdtjSf3tM5UrZ2N90Scxnp9z5d09O0Wq0pSm-uad_RxZ8ELTpLANWxToc8IvARFP7IiREvyeVsujidl6O2QllLq3vYNla1amA74k1UutYIbGwMgLdiYlJB3yZY6b2RUUjLghReNtpzm6KuhfVBvCIHbdemN4TaEGRUKaloFMCbaEOyHGoYWStAe6IgbNO3rh6Jx1H_YuU2EWY_HdrDoT0c4w7sUZDP2zo3A-3Gf0ufoMm2JZEyOz8AR3KjI7n7HKkgRxuDu3Ecrx2GySuAdIIX5OP2NYxAvFbxberuoAzOaQADZVWQ14N_bFuCM6qyHGpP9jxnr6n7b9rlj8zyrYU01lRvH-Lf3pEn0F0WY-eYOiIH_e1deg9gqg8f8rj5DSKvGzc priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBelZbCXse9l_UCDvQ2P2PqI9DBGW5KFsfRlCfRNSJa8ZaRWl7jQ_ve7U-y0GaGvts7IOp3ud_bd7wj5WCiPHCDp1yDPwEOBzTHVz3KrdFCstFXqsTS5kOMZ_34pLvdI1-6oXcDVztAO-0nNlovPt3_vvoLBf7nP1YpXDVaV5yp92sPa3wPwTBKDsUkL99PJrAfIWNfWzuwW3fJPicZ_F_b8P4XygU8aPSfPWjBJT9faf0H2Qv2SPFm3l7x7RZrp6Y_hRTZJ3TiCp0gxTYd-jpnONFZ0fPaNzmuavuPTMZK3xus4x6pG-rMJV_Q8LBYrik04V7SJdHpfqkVHAdYLZSIyisBDsAVIKpF4TWaj4fR8nLVdFrKSa9lAANkvRQWBiVVeyFIixNHeAfLyIefClTKAz7eKe8Z17jizvJK20MHLkmnr2BuyX8c6vCNUO8e9CEF4JQDoeO2CLkBC8VIA7mM9kndra8qWghw7YSxMl2v2x6A-DOrD5IUBffTIp43M9ZqA49HRZ6iyzUgkz04X4vKXaW3R-FxKDXGn04PAueUu2Mp67YsAL1sVMM2jTuGm25AGE-YFgDtW9MiHzW2wRfzBYusQb2AMnm4ACHm_R96u98dmJni2Cl2A9GBr52xNdftOPf-d-L4l40qr_vvHp3VInsJCaMyPy8UR2W-WN-EYAFPjTpIV_AMMjROj priority: 102 providerName: Scholars Portal |
Title | TALEN-Mediated Gene Editing of HBG in Human Hematopoietic Stem Cells Leads to Therapeutic Fetal Hemoglobin Induction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30705922 https://www.proquest.com/docview/2307589332 https://www.proquest.com/docview/2179472740 https://pubmed.ncbi.nlm.nih.gov/PMC6348980 https://doaj.org/article/d1669924b97e44a4beafad9d2ebc6f23 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgExIXxG8KozISNxTRJLZjn9A6tVSIVgg6qTfLjp1R1MVlzQ7897znpNmK0C49NHbl5vnZn5_f-z5C3mfSIQdIvBpkCexQ4HO5HCWpkcrLvDRV1FiaL8TsnH1Z8VUXcNt1aZX7NTEu1C6UGCP_iAnLHLXhs0_b3wmqRuHtaiehcZ8cR-oymM_FquhjLCNVIENdVyvTpnWFywYL0FMZo4CoKnlrP4q0_f_Dmv-mTN7ag6aPyaMOPNLT1tpPyD1fPyUPWjnJP89Iszz9Olkk86i-4R1FSmk6cWvMbKahorPxZ7quaYzb0xmStYZtWGMVI_3R-Et65jebHUXRzR1tAl3elGbRqQeQjn0CMojAj6DkRyyJeE7Op5Pl2SzpVBWSkinRwIFxVPIKDiJGOi5KgZBGOQtIy_mUcVsKD3u8kczlTKWW5YZVwmTKO1Hmytj8BTmqQ-1fEaqsZY57z53kAGycsl5l0EOykgPOywck3b9bXXaU46h8sdH73LJfGu2h0R46zTTYY0A-9H22LeHGna3HaLK-JZJlxy_C1YXufE-7VAgF50yrCs-YYdabyjjlMg9_tspgmCd7g-vOg3f6Zr4NyLv-MfgeXqiY2odraIOrGQBANhqQl-386EeCaylXGfQuDmbOwVAPn9Trn5HfW-RMKjl6ffew3pCH8CIU5sOl_IQcNVfX_i0ApMYOoxcMyfF4svj2fRjDDPA5Z_IvZo4TBg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgQXxJtAASPBCa3Yh72xDwg1JWFLkwhBKvXm2msvBKW7odkK9U_xG5nZVxuEeut1_ZDX87Q9Mx8hr0NhsQZI9TTIPLBQIHOR8L1AC-lElOqswliazuLkkH0-4kdb5E-bC4Nhla1OrBS1LVK8I3-HAcscseHDD6tfHqJG4etqC6FRs8WBO_8NR7b1-_2PQN83YTgezfcSr0EV8FIm4xIOTH7KM3DEtbA8TmM06dIa8DSsCxg3aezAxmnBbMRkYFikWRbrUDobp5HUJoJ5b5BthhmtPbI9HM2-fO1udXw5wJp4TXZOHUhWnJSY8h6I6t4RcSwvWcAKKOB_3u2_QZqXrN74LrnTuKt0t-ave2TL5ffJzRrA8vwBKee7k9HMm1Z4H85SLGJNR3aBsdS0yGgy_EQXOa1eCmiC5WGLVbHAvEn6rXQndM8tl2uKMJ9rWhZ0fpEMRscOjgU4psCaJTAJgoxUSRgPyeG17Pgj0suL3D0hVBrDLHeOW8HBlbLSOBnCCMFSDp5l1CdBu7cqbYqcI9bGUrXRbD8V0kMhPVQQKqBHn7ztxqzqEh9X9h4iybqeWJ67-lCcfleNtCsbxLGEk62RA8eYZsbpTFtpQwc_m4WwzJ2W4KrRGWt1weF98qprBmnHJxydu-IM-qD-BJeT-X3yuOaPbiWovbkMYfRgg3M2lrrZki9-VBXF44gJKfynVy_rJbmVzKcTNdmfHTwjt2FTJEbjBXyH9MrTM_cc3LPSvGhkgpLj6xbDv3q6TVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TALEN-Mediated+Gene+Editing+of+HBG+in+Human+Hematopoietic+Stem+Cells+Leads+to+Therapeutic+Fetal+Hemoglobin+Induction&rft.jtitle=Molecular+therapy.+Methods+%26+clinical+development&rft.au=Lux%2C+Christopher+T&rft.au=Pattabhi%2C+Sowmya&rft.au=Berger%2C+Mason&rft.au=Nourigat%2C+Cynthia&rft.date=2019-03-15&rft.pub=Elsevier+Limited&rft.eissn=2329-0501&rft.volume=12&rft.spage=175&rft_id=info:doi/10.1016%2Fj.omtm.2018.12.008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-0501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-0501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-0501&client=summon |