TALEN-Mediated Gene Editing of HBG in Human Hematopoietic Stem Cells Leads to Therapeutic Fetal Hemoglobin Induction

Elements within the γ-hemoglobin promoters ( and ) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH...

Full description

Saved in:
Bibliographic Details
Published inMolecular therapy. Methods & clinical development Vol. 12; pp. 175 - 183
Main Authors Lux, Christopher T., Pattabhi, Sowmya, Berger, Mason, Nourigat, Cynthia, Flowers, David A., Negre, Olivier, Humbert, Olivier, Yang, Julia G., Lee, Calvin, Jacoby, Kyle, Bernstein, Irwin, Kiem, Hans-Peter, Scharenberg, Andrew, Rawlings, David J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Limited 15.03.2019
American Society of Gene & Cell Therapy
Elsevier
Subjects
Online AccessGet full text
ISSN2329-0501
2329-0501
DOI10.1016/j.omtm.2018.12.008

Cover

Abstract Elements within the γ-hemoglobin promoters ( and ) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous promoters to de-repress fetal hemoglobin. Transfection of human CD34 cells with TALEN mRNA resulted in indel generation in (43%) and (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34 cells in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression and , suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia.
AbstractList Elements within the γ-hemoglobin promoters ( and ) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous promoters to de-repress fetal hemoglobin. Transfection of human CD34 cells with TALEN mRNA resulted in indel generation in (43%) and (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34 cells in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression and , suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia.
Elements within the γ-hemoglobin promoters (HBG1 and HBG2) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the HBG1 promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous HBG promoters to de-repress fetal hemoglobin. Transfection of human CD34+ cells with TALEN mRNA resulted in indel generation in HBG1 (43%) and HBG2 (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34+ cells in vivo in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression in vitro and in vivo, suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia.
Elements within the γ-hemoglobin promoters ( HBG1 and HBG2 ) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the HBG1 promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous HBG promoters to de-repress fetal hemoglobin. Transfection of human CD34 + cells with TALEN mRNA resulted in indel generation in HBG1 (43%) and HBG2 (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34 + cells in vivo in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression in vitro and in vivo , suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia.
Elements within the γ-hemoglobin promoters (HBG1 and HBG2) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the HBG1 promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous HBG promoters to de-repress fetal hemoglobin. Transfection of human CD34+ cells with TALEN mRNA resulted in indel generation in HBG1 (43%) and HBG2 (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34+ cells in vivo in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression in vitro and in vivo, suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia.Elements within the γ-hemoglobin promoters (HBG1 and HBG2) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the HBG1 promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous HBG promoters to de-repress fetal hemoglobin. Transfection of human CD34+ cells with TALEN mRNA resulted in indel generation in HBG1 (43%) and HBG2 (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34+ cells in vivo in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression in vitro and in vivo, suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia.
Elements within the γ-hemoglobin promoters (HBG1 and HBG2) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the HBG1 promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous HBG promoters to de-repress fetal hemoglobin. Transfection of human CD34+ cells with TALEN mRNA resulted in indel generation in HBG1 (43%) and HBG2 (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34+ cells in vivo in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression in vitro and in vivo, suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia. Keywords: TALEN, hemoglobinopathy, HBG, hemoglobin, HPFH, SCD, sickle cell disease, thalassemia, gene editing, HSC
Author Jacoby, Kyle
Rawlings, David J.
Scharenberg, Andrew
Flowers, David A.
Pattabhi, Sowmya
Humbert, Olivier
Bernstein, Irwin
Lux, Christopher T.
Yang, Julia G.
Lee, Calvin
Berger, Mason
Nourigat, Cynthia
Negre, Olivier
Kiem, Hans-Peter
AuthorAffiliation 2 Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
6 Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
4 Department of Medicine, University of Washington, Seattle, WA 98195, USA
7 Department of Immunology, University of Washington, Seattle, WA 98195, USA
1 Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
3 bluebird bio, Inc., Cambridge MA 02142, USA
5 Department of Pathology, University of Washington, Seattle, WA 98195, USA
AuthorAffiliation_xml – name: 2 Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
– name: 1 Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
– name: 6 Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
– name: 3 bluebird bio, Inc., Cambridge MA 02142, USA
– name: 5 Department of Pathology, University of Washington, Seattle, WA 98195, USA
– name: 7 Department of Immunology, University of Washington, Seattle, WA 98195, USA
– name: 4 Department of Medicine, University of Washington, Seattle, WA 98195, USA
Author_xml – sequence: 1
  givenname: Christopher T.
  surname: Lux
  fullname: Lux, Christopher T.
– sequence: 2
  givenname: Sowmya
  surname: Pattabhi
  fullname: Pattabhi, Sowmya
– sequence: 3
  givenname: Mason
  surname: Berger
  fullname: Berger, Mason
– sequence: 4
  givenname: Cynthia
  surname: Nourigat
  fullname: Nourigat, Cynthia
– sequence: 5
  givenname: David A.
  surname: Flowers
  fullname: Flowers, David A.
– sequence: 6
  givenname: Olivier
  surname: Negre
  fullname: Negre, Olivier
– sequence: 7
  givenname: Olivier
  surname: Humbert
  fullname: Humbert, Olivier
– sequence: 8
  givenname: Julia G.
  surname: Yang
  fullname: Yang, Julia G.
– sequence: 9
  givenname: Calvin
  surname: Lee
  fullname: Lee, Calvin
– sequence: 10
  givenname: Kyle
  surname: Jacoby
  fullname: Jacoby, Kyle
– sequence: 11
  givenname: Irwin
  surname: Bernstein
  fullname: Bernstein, Irwin
– sequence: 12
  givenname: Hans-Peter
  surname: Kiem
  fullname: Kiem, Hans-Peter
– sequence: 13
  givenname: Andrew
  surname: Scharenberg
  fullname: Scharenberg, Andrew
– sequence: 14
  givenname: David J.
  surname: Rawlings
  fullname: Rawlings, David J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30705922$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAOyxIXLLv6KE1-Qymq7u9ICB5azNbEnW6-SeEkcJP49Tret2h7wwR553nsez7y32VkXOsyy94zOGWXq82Ee2tjOOWXlnPE5peWr7IILrmc0p-zsSXyeXQ3DgaalCypy_SY7F7Sgueb8Iou76-3y--wbOg8RHVlhh2TpfPTdnoSarL-uiO_Iemwh7dhCDMfgMXpLfkZsyQKbZiBbBDeQGMjuFns44jjlbzBCM3HCvglVEtl0brTRh-5d9rqGZsCr-_My-3Wz3C3Ws-2P1WZxvZ1ZqVWcSUptXrNCQulyZZViOdOu0jlzyGReWYVUMSilE1KzSgqQtQKu0SkrNFTiMtucdF2Agzn2voX-rwngzd1F6PcG-lRqg8YxpbTmstIFSgmyQqjBaccxPVNzkbS-nLSOY9Wis9jFHppnos8znb81-_DHKCFLXdIk8OleoA-_Rxyiaf1gU_ugwzAOhrNCy4IXcoJ-fAE9hLHvUqsMT6PLSy0ET6gPTyt6LOVhuAnATwDbh2HosX6EMGomE5nUg2QiM5nIMG6SiRKpfEGyPsI0tfQr3_yP-g_W1c0n
CitedBy_id crossref_primary_10_1038_s41588_021_00904_0
crossref_primary_10_1089_hum_2023_138
crossref_primary_10_1038_s41596_021_00529_x
crossref_primary_10_3389_fgeed_2023_1104666
crossref_primary_10_1016_j_stem_2021_01_001
crossref_primary_10_1089_crispr_2023_0077
crossref_primary_10_2174_0929867327666200610175400
crossref_primary_10_1016_j_ymthe_2021_10_002
crossref_primary_10_3390_cells10061492
crossref_primary_10_1016_j_tig_2022_07_003
crossref_primary_10_3389_fgeed_2020_617780
crossref_primary_10_2478_acb_2020_0016
crossref_primary_10_1128_MCB_00253_20
crossref_primary_10_1182_bloodadvances_2019000820
crossref_primary_10_3389_fgeed_2022_997142
crossref_primary_10_1007_s00128_021_03249_w
crossref_primary_10_1016_j_hoc_2022_12_012
crossref_primary_10_1016_j_ymthe_2021_09_001
crossref_primary_10_1182_blood_2020010020
crossref_primary_10_3390_genes13122222
crossref_primary_10_3390_ijms24119527
crossref_primary_10_3389_fphys_2022_848261
crossref_primary_10_1016_j_ymthe_2024_07_015
crossref_primary_10_3389_fgeed_2023_1141618
crossref_primary_10_1126_sciadv_aay9392
crossref_primary_10_1182_bloodadvances_2020003702
crossref_primary_10_1016_j_ymthe_2021_08_019
crossref_primary_10_1016_j_jcyt_2022_11_014
crossref_primary_10_1126_scitranslmed_aaw3768
crossref_primary_10_3389_fgeed_2021_618346
crossref_primary_10_2174_1871529X23666230123140926
crossref_primary_10_1016_j_drudis_2020_02_009
crossref_primary_10_3390_genes14020483
crossref_primary_10_1016_j_addr_2020_05_010
crossref_primary_10_1002_sctm_19_0338
crossref_primary_10_1007_s00439_023_02610_9
crossref_primary_10_1016_j_omtm_2021_10_008
crossref_primary_10_1016_j_omtm_2020_06_022
crossref_primary_10_1016_j_transci_2021_103060
crossref_primary_10_1097_MD_0000000000018143
crossref_primary_10_1007_s13237_024_00470_w
crossref_primary_10_1182_blood_2019000949
crossref_primary_10_1111_bjh_16807
Cites_doi 10.1016/j.ymthe.2017.03.024
10.1371/journal.pone.0047175
10.1038/s41588-018-0085-0
10.1093/emboj/cdf340
10.1126/science.1242088
10.1038/nm.4170
10.1001/jama.2014.10517
10.1182/blood-2016-01-678128
10.1093/nar/gkt1224
10.1016/j.ijpharm.2015.08.029
10.1182/blood.V99.8.3005
10.1182/blood-2015-09-672337
10.1177/2040620716653729
10.1126/science.aad3312
10.1093/nar/16.22.10635
10.1182/blood-2016-04-711580
10.1093/nar/gkt1326
10.1111/bjh.15038
10.1038/nmeth.1456
10.1182/blood-2017-10-811505
10.1172/JCI87885
10.1016/j.cell.2018.03.016
10.1371/journal.pmed.1001484
10.1093/nar/gkr218
10.1038/nbt.1755
10.1016/j.omtm.2016.12.009
10.2471/BLT.06.036673
10.1038/nbt.2304
10.1093/nar/gks608
10.1038/mtna.2016.21
10.1007/s00439-016-1696-0
10.1016/j.stemcr.2014.12.005
10.1007/978-1-4939-7299-9_4
10.1038/ncomms6987
10.1016/j.ajhg.2016.05.030
10.1038/nrm3486
10.1080/15384101.2015.1049784
10.1056/NEJM199406093302303
10.1016/j.celrep.2016.08.064
10.1093/hmg/ddw170
10.1089/hum.2016.007
ContentType Journal Article
Copyright 2018. The Author(s)
2018 The Author(s) 2018
Copyright_xml – notice: 2018. The Author(s)
– notice: 2018 The Author(s) 2018
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1016/j.omtm.2018.12.008
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2329-0501
EndPage 183
ExternalDocumentID oai_doaj_org_article_d1669924b97e44a4beafad9d2ebc6f23
PMC6348980
30705922
10_1016_j_omtm_2018_12_008
Genre Journal Article
GroupedDBID 0R~
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAEDW
AAMRU
AAYXX
ABMAC
ABUWG
ACGFS
ADBBV
ADRAZ
ADVLN
AFKRA
AFTJW
AITUG
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
LK8
M41
M48
M7P
M~E
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNTTT
ROL
RPM
SSZ
UKHRP
0SF
AACTN
AALRI
FDB
NCXOZ
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c496t-400c5f174a8d56c661519db951de145bc6e061a84d3491b43a4f6a29ed6c39ab3
IEDL.DBID 7X7
ISSN 2329-0501
IngestDate Wed Aug 27 01:27:06 EDT 2025
Thu Aug 21 14:13:15 EDT 2025
Thu Sep 04 19:03:53 EDT 2025
Fri Jul 25 11:16:21 EDT 2025
Wed Feb 19 02:34:41 EST 2025
Tue Jul 01 03:16:37 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords thalassemia
SCD
TALEN
HSC
HPFH
HBG
gene editing
hemoglobinopathy
hemoglobin
sickle cell disease
Language English
License This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-400c5f174a8d56c661519db951de145bc6e061a84d3491b43a4f6a29ed6c39ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Present address: Casebia Therapeutics, Cambridge, MA 02139, USA
OpenAccessLink https://www.proquest.com/docview/2307589332?pq-origsite=%requestingapplication%
PMID 30705922
PQID 2307589332
PQPubID 2041945
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_d1669924b97e44a4beafad9d2ebc6f23
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6348980
proquest_miscellaneous_2179472740
proquest_journals_2307589332
pubmed_primary_30705922
crossref_primary_10_1016_j_omtm_2018_12_008
crossref_citationtrail_10_1016_j_omtm_2018_12_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-15
PublicationDateYYYYMMDD 2019-03-15
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Milwaukee
PublicationTitle Molecular therapy. Methods & clinical development
PublicationTitleAlternate Mol Ther Methods Clin Dev
PublicationYear 2019
Publisher Elsevier Limited
American Society of Gene & Cell Therapy
Elsevier
Publisher_xml – name: Elsevier Limited
– name: American Society of Gene & Cell Therapy
– name: Elsevier
References Canver (10.1016/j.omtm.2018.12.008_bib11) 2016; 127
McIntosh (10.1016/j.omtm.2018.12.008_bib21) 2015; 4
Platt (10.1016/j.omtm.2018.12.008_bib7) 1994; 330
Bauer (10.1016/j.omtm.2018.12.008_bib38) 2013; 342
Vinjamur (10.1016/j.omtm.2018.12.008_bib22) 2018; 180
10.1016/j.omtm.2018.12.008_bib31
10.1016/j.omtm.2018.12.008_bib33
10.1016/j.omtm.2018.12.008_bib32
Traxler (10.1016/j.omtm.2018.12.008_bib13) 2016; 22
Grier (10.1016/j.omtm.2018.12.008_bib46) 2016; 5
Origa (10.1016/j.omtm.2018.12.008_bib5) 1993
Negre (10.1016/j.omtm.2018.12.008_bib30) 2016; 27
Doyle (10.1016/j.omtm.2018.12.008_bib43) 2012; 40
Bernaudin (10.1016/j.omtm.2018.12.008_bib6) 2017; 1013
Wojda (10.1016/j.omtm.2018.12.008_bib47) 2002; 99
Negritto (10.1016/j.omtm.2018.12.008_bib28) 2010; 3
Kostyrko (10.1016/j.omtm.2018.12.008_bib29) 2015; 14
Martyn (10.1016/j.omtm.2018.12.008_bib18) 2018; 50
Fine (10.1016/j.omtm.2018.12.008_bib45) 2014; 42
Modell (10.1016/j.omtm.2018.12.008_bib1) 2008; 86
Cavazzana (10.1016/j.omtm.2018.12.008_bib12) 2017; 25
Joung (10.1016/j.omtm.2018.12.008_bib19) 2013; 14
Antoniani (10.1016/j.omtm.2018.12.008_bib24) 2018; 131
Cermak (10.1016/j.omtm.2018.12.008_bib44) 2011; 39
Luc (10.1016/j.omtm.2018.12.008_bib37) 2016; 16
Miller (10.1016/j.omtm.2018.12.008_bib41) 2011; 29
Zhu (10.1016/j.omtm.2018.12.008_bib14) 2012; 7
Doyon (10.1016/j.omtm.2018.12.008_bib25) 2010; 7
Boissel (10.1016/j.omtm.2018.12.008_bib40) 2014; 42
Streubel (10.1016/j.omtm.2018.12.008_bib42) 2012; 30
Tanabe (10.1016/j.omtm.2018.12.008_bib15) 2002; 21
Goodman (10.1016/j.omtm.2018.12.008_bib3) 2016; 7
Dias (10.1016/j.omtm.2018.12.008_bib36) 2016; 99
Chang (10.1016/j.omtm.2018.12.008_bib27) 2017; 4
Richter (10.1016/j.omtm.2018.12.008_bib39) 2016; 128
Gilman (10.1016/j.omtm.2018.12.008_bib8) 1988; 16
Cottle (10.1016/j.omtm.2018.12.008_bib10) 2016; 135
Khaled (10.1016/j.omtm.2018.12.008_bib35) 2015; 6
Peterson (10.1016/j.omtm.2018.12.008_bib26) 2016; 127
Yawn (10.1016/j.omtm.2018.12.008_bib4) 2014; 312
Masuda (10.1016/j.omtm.2018.12.008_bib16) 2016; 351
Piel (10.1016/j.omtm.2018.12.008_bib2) 2013; 10
Liu (10.1016/j.omtm.2018.12.008_bib17) 2018; 173
Charlesworth (10.1016/j.omtm.2018.12.008_bib20) 2018; 4
Brendel (10.1016/j.omtm.2018.12.008_bib34) 2016; 126
Smith (10.1016/j.omtm.2018.12.008_bib23) 2016; 25
LaFountaine (10.1016/j.omtm.2018.12.008_bib9) 2015; 494
References_xml – volume: 25
  start-page: 1142
  year: 2017
  ident: 10.1016/j.omtm.2018.12.008_bib12
  article-title: Gene Therapy for β-Hemoglobinopathies
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.03.024
– volume: 7
  start-page: e47175
  year: 2012
  ident: 10.1016/j.omtm.2018.12.008_bib14
  article-title: NF-Y recruits both transcription activator and repressor to modulate tissue- and developmental stage-specific expression of human γ-globin gene
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0047175
– volume: 50
  start-page: 498
  year: 2018
  ident: 10.1016/j.omtm.2018.12.008_bib18
  article-title: Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0085-0
– volume: 21
  start-page: 3434
  year: 2002
  ident: 10.1016/j.omtm.2018.12.008_bib15
  article-title: An embryonic/fetal β-type globin gene repressor contains a nuclear receptor TR2/TR4 heterodimer
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf340
– volume: 342
  start-page: 253
  year: 2013
  ident: 10.1016/j.omtm.2018.12.008_bib38
  article-title: An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level
  publication-title: Science
  doi: 10.1126/science.1242088
– volume: 22
  start-page: 987
  year: 2016
  ident: 10.1016/j.omtm.2018.12.008_bib13
  article-title: A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition
  publication-title: Nat. Med.
  doi: 10.1038/nm.4170
– volume: 312
  start-page: 1033
  year: 2014
  ident: 10.1016/j.omtm.2018.12.008_bib4
  article-title: Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members
  publication-title: JAMA
  doi: 10.1001/jama.2014.10517
– volume: 127
  start-page: 2536
  year: 2016
  ident: 10.1016/j.omtm.2018.12.008_bib11
  article-title: Customizing the genome as therapy for the β-hemoglobinopathies
  publication-title: Blood
  doi: 10.1182/blood-2016-01-678128
– volume: 42
  start-page: 2591
  year: 2014
  ident: 10.1016/j.omtm.2018.12.008_bib40
  article-title: megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1224
– volume: 494
  start-page: 180
  year: 2015
  ident: 10.1016/j.omtm.2018.12.008_bib9
  article-title: Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2015.08.029
– volume: 99
  start-page: 3005
  year: 2002
  ident: 10.1016/j.omtm.2018.12.008_bib47
  article-title: Fetal and adult hemoglobin production during adult erythropoiesis: coordinate expression correlates with cell proliferation
  publication-title: Blood
  doi: 10.1182/blood.V99.8.3005
– volume: 127
  start-page: 2416
  year: 2016
  ident: 10.1016/j.omtm.2018.12.008_bib26
  article-title: Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates
  publication-title: Blood
  doi: 10.1182/blood-2015-09-672337
– volume: 7
  start-page: 302
  year: 2016
  ident: 10.1016/j.omtm.2018.12.008_bib3
  article-title: The potential of gene therapy approaches for the treatment of hemoglobinopathies: achievements and challenges
  publication-title: Ther. Adv. Hematol.
  doi: 10.1177/2040620716653729
– volume: 4
  year: 2018
  ident: 10.1016/j.omtm.2018.12.008_bib20
  article-title: Identification of Pre-Existing Adaptive Immunity to Cas9 Proteins in Humans
  publication-title: bioRxiv
– volume: 351
  start-page: 285
  year: 2016
  ident: 10.1016/j.omtm.2018.12.008_bib16
  article-title: Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin
  publication-title: Science
  doi: 10.1126/science.aad3312
– volume: 16
  start-page: 10635
  year: 1988
  ident: 10.1016/j.omtm.2018.12.008_bib8
  article-title: Distal CCAAT box deletion in the A gamma globin gene of two black adolescents with elevated fetal A gamma globin
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/16.22.10635
– ident: 10.1016/j.omtm.2018.12.008_bib32
– volume: 128
  start-page: 2206
  year: 2016
  ident: 10.1016/j.omtm.2018.12.008_bib39
  article-title: In vivo transduction of primitive mobilized hematopoietic stem cells after intravenous injection of integrating adenovirus vectors
  publication-title: Blood
  doi: 10.1182/blood-2016-04-711580
– volume: 42
  start-page: e42
  year: 2014
  ident: 10.1016/j.omtm.2018.12.008_bib45
  article-title: An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1326
– volume: 180
  start-page: 630
  year: 2018
  ident: 10.1016/j.omtm.2018.12.008_bib22
  article-title: Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies
  publication-title: Br. J. Haematol
  doi: 10.1111/bjh.15038
– volume: 7
  start-page: 459
  year: 2010
  ident: 10.1016/j.omtm.2018.12.008_bib25
  article-title: Transient cold shock enhances zinc-finger nuclease-mediated gene disruption
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1456
– volume: 131
  start-page: 1960
  year: 2018
  ident: 10.1016/j.omtm.2018.12.008_bib24
  article-title: Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus
  publication-title: Blood
  doi: 10.1182/blood-2017-10-811505
– volume: 126
  start-page: 3868
  year: 2016
  ident: 10.1016/j.omtm.2018.12.008_bib34
  article-title: Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI87885
– volume: 173
  start-page: 430
  year: 2018
  ident: 10.1016/j.omtm.2018.12.008_bib17
  article-title: Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.016
– volume: 10
  start-page: e1001484
  year: 2013
  ident: 10.1016/j.omtm.2018.12.008_bib2
  article-title: Global burden of sickle cell anaemia in children under five, 2010-2050: modelling based on demographics, excess mortality, and interventions
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001484
– volume: 39
  start-page: e82
  year: 2011
  ident: 10.1016/j.omtm.2018.12.008_bib44
  article-title: Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr218
– volume: 29
  start-page: 143
  year: 2011
  ident: 10.1016/j.omtm.2018.12.008_bib41
  article-title: A TALE nuclease architecture for efficient genome editing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1755
– volume: 4
  start-page: 137
  year: 2017
  ident: 10.1016/j.omtm.2018.12.008_bib27
  article-title: Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34+ Hematopoietic Stem and Progenitor Cells
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1016/j.omtm.2016.12.009
– volume: 86
  start-page: 480
  year: 2008
  ident: 10.1016/j.omtm.2018.12.008_bib1
  article-title: Global epidemiology of haemoglobin disorders and derived service indicators
  publication-title: Bull. World Health Organ.
  doi: 10.2471/BLT.06.036673
– volume: 30
  start-page: 593
  year: 2012
  ident: 10.1016/j.omtm.2018.12.008_bib42
  article-title: TAL effector RVD specificities and efficiencies
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2304
– volume: 40
  start-page: W117
  issue: Web Server issue, W1
  year: 2012
  ident: 10.1016/j.omtm.2018.12.008_bib43
  article-title: TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks608
– volume: 5
  start-page: e306
  year: 2016
  ident: 10.1016/j.omtm.2018.12.008_bib46
  article-title: pEVL: A Linear Plasmid for Generating mRNA IVT Templates With Extended Encoded Poly(A) Sequences
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2016.21
– volume: 135
  start-page: 993
  year: 2016
  ident: 10.1016/j.omtm.2018.12.008_bib10
  article-title: Treating hemoglobinopathies using gene-correction approaches: promises and challenges
  publication-title: Hum. Genet.
  doi: 10.1007/s00439-016-1696-0
– volume: 4
  start-page: 171
  year: 2015
  ident: 10.1016/j.omtm.2018.12.008_bib21
  article-title: Nonirradiated NOD,B6.SCID Il2rγ-/- Kit(W41/W41) (NBSGW) mice support multilineage engraftment of human hematopoietic cells
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2014.12.005
– year: 1993
  ident: 10.1016/j.omtm.2018.12.008_bib5
  article-title: Beta-thalassemia
– volume: 1013
  start-page: 89
  year: 2017
  ident: 10.1016/j.omtm.2018.12.008_bib6
  article-title: Allogeneic/Matched Related Transplantation for β-Thalassemia and Sickle Cell Anemia
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4939-7299-9_4
– volume: 3
  start-page: 26
  year: 2010
  ident: 10.1016/j.omtm.2018.12.008_bib28
  article-title: Repairing Double Strand DNA Breaks
  publication-title: Nature Education
– volume: 6
  start-page: 5987
  year: 2015
  ident: 10.1016/j.omtm.2018.12.008_bib35
  article-title: BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6987
– volume: 99
  start-page: 253
  year: 2016
  ident: 10.1016/j.omtm.2018.12.008_bib36
  article-title: BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2016.05.030
– volume: 14
  start-page: 49
  year: 2013
  ident: 10.1016/j.omtm.2018.12.008_bib19
  article-title: TALENs: a widely applicable technology for targeted genome editing
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3486
– volume: 14
  start-page: 2853
  year: 2015
  ident: 10.1016/j.omtm.2018.12.008_bib29
  article-title: A role for homologous recombination proteins in cell cycle regulation
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2015.1049784
– volume: 330
  start-page: 1639
  year: 1994
  ident: 10.1016/j.omtm.2018.12.008_bib7
  article-title: Mortality in sickle cell disease. Life expectancy and risk factors for early death
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199406093302303
– ident: 10.1016/j.omtm.2018.12.008_bib33
– ident: 10.1016/j.omtm.2018.12.008_bib31
– volume: 16
  start-page: 3181
  year: 2016
  ident: 10.1016/j.omtm.2018.12.008_bib37
  article-title: Bcl11a Deficiency Leads to Hematopoietic Stem Cell Defects with an Aging-like Phenotype
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.08.064
– volume: 25
  start-page: R99
  issue: R2
  year: 2016
  ident: 10.1016/j.omtm.2018.12.008_bib23
  article-title: Hemoglobin genetics: recent contributions of GWAS and gene editing
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddw170
– volume: 27
  start-page: 148
  year: 2016
  ident: 10.1016/j.omtm.2018.12.008_bib30
  article-title: Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the β(A(T87Q))-Globin Gene
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2016.007
SSID ssj0000970359
Score 2.3267272
Snippet Elements within the γ-hemoglobin promoters ( and ) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell...
Elements within the γ-hemoglobin promoters (HBG1 and HBG2) function to bind transcription complexes that mediate repression of fetal hemoglobin expression....
Elements within the γ-hemoglobin promoters ( HBG1 and HBG2 ) function to bind transcription complexes that mediate repression of fetal hemoglobin expression....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 175
SubjectTerms Binding sites
CD34 antigen
Cell differentiation
Clonal deletion
Deoxyribonucleic acid
Design
Disease
DNA
Fetuses
Flow cytometry
Gene deletion
Gene silencing
Genome editing
Genotype & phenotype
Hematopoietic stem cells
Hemoglobin
High-performance liquid chromatography
Medical research
Mutation
Phenotypes
Promoters
Proteins
Sickle cell disease
Stem cell transplantation
Stem cells
Thalassemia
Transcription activator-like effector nucleases
Transcription factors
Transfection
Transplants & implants
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuCCgfgYKMxA1FxJ9rH9tql1VFe2Er9WbZsSMWbZOqmx7498w42WUXIXrpNbEjxzO2n-2Z9wj5xE1EDpB8NShLWKFgzAlTlcwbm4yofZM1ls4v9PxSnl2pqx2pL4wJG-iBh477EpnWFjYJwU6SlF6G5BsfbeQp1LrhmeezstXOZirPwXaC3HRZWY7bslIVGzNmhuCu7rrHNHRm8lkgakvurEqZvP9fiPPvwMmdlWj2jDwdISQ9Hpr-nDxK7QvyeBCV_HVI-sXxt-lFeZ41OFKkSCxNp3GJ8c20a-j85CtdtjSf3tM5UrZ2N90Scxnp9z5d09O0Wq0pSm-uad_RxZ8ELTpLANWxToc8IvARFP7IiREvyeVsujidl6O2QllLq3vYNla1amA74k1UutYIbGwMgLdiYlJB3yZY6b2RUUjLghReNtpzm6KuhfVBvCIHbdemN4TaEGRUKaloFMCbaEOyHGoYWStAe6IgbNO3rh6Jx1H_YuU2EWY_HdrDoT0c4w7sUZDP2zo3A-3Gf0ufoMm2JZEyOz8AR3KjI7n7HKkgRxuDu3Ecrx2GySuAdIIX5OP2NYxAvFbxberuoAzOaQADZVWQ14N_bFuCM6qyHGpP9jxnr6n7b9rlj8zyrYU01lRvH-Lf3pEn0F0WY-eYOiIH_e1deg9gqg8f8rj5DSKvGzc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBelZbCXse9l_UCDvQ2P2PqI9DBGW5KFsfRlCfRNSJa8ZaRWl7jQ_ve7U-y0GaGvts7IOp3ud_bd7wj5WCiPHCDp1yDPwEOBzTHVz3KrdFCstFXqsTS5kOMZ_34pLvdI1-6oXcDVztAO-0nNlovPt3_vvoLBf7nP1YpXDVaV5yp92sPa3wPwTBKDsUkL99PJrAfIWNfWzuwW3fJPicZ_F_b8P4XygU8aPSfPWjBJT9faf0H2Qv2SPFm3l7x7RZrp6Y_hRTZJ3TiCp0gxTYd-jpnONFZ0fPaNzmuavuPTMZK3xus4x6pG-rMJV_Q8LBYrik04V7SJdHpfqkVHAdYLZSIyisBDsAVIKpF4TWaj4fR8nLVdFrKSa9lAANkvRQWBiVVeyFIixNHeAfLyIefClTKAz7eKe8Z17jizvJK20MHLkmnr2BuyX8c6vCNUO8e9CEF4JQDoeO2CLkBC8VIA7mM9kndra8qWghw7YSxMl2v2x6A-DOrD5IUBffTIp43M9ZqA49HRZ6iyzUgkz04X4vKXaW3R-FxKDXGn04PAueUu2Mp67YsAL1sVMM2jTuGm25AGE-YFgDtW9MiHzW2wRfzBYusQb2AMnm4ACHm_R96u98dmJni2Cl2A9GBr52xNdftOPf-d-L4l40qr_vvHp3VInsJCaMyPy8UR2W-WN-EYAFPjTpIV_AMMjROj
  priority: 102
  providerName: Scholars Portal
Title TALEN-Mediated Gene Editing of HBG in Human Hematopoietic Stem Cells Leads to Therapeutic Fetal Hemoglobin Induction
URI https://www.ncbi.nlm.nih.gov/pubmed/30705922
https://www.proquest.com/docview/2307589332
https://www.proquest.com/docview/2179472740
https://pubmed.ncbi.nlm.nih.gov/PMC6348980
https://doaj.org/article/d1669924b97e44a4beafad9d2ebc6f23
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgExIXxG8KozISNxTRJLZjn9A6tVSIVgg6qTfLjp1R1MVlzQ7897znpNmK0C49NHbl5vnZn5_f-z5C3mfSIQdIvBpkCexQ4HO5HCWpkcrLvDRV1FiaL8TsnH1Z8VUXcNt1aZX7NTEu1C6UGCP_iAnLHLXhs0_b3wmqRuHtaiehcZ8cR-oymM_FquhjLCNVIENdVyvTpnWFywYL0FMZo4CoKnlrP4q0_f_Dmv-mTN7ag6aPyaMOPNLT1tpPyD1fPyUPWjnJP89Iszz9Olkk86i-4R1FSmk6cWvMbKahorPxZ7quaYzb0xmStYZtWGMVI_3R-Et65jebHUXRzR1tAl3elGbRqQeQjn0CMojAj6DkRyyJeE7Op5Pl2SzpVBWSkinRwIFxVPIKDiJGOi5KgZBGOQtIy_mUcVsKD3u8kczlTKWW5YZVwmTKO1Hmytj8BTmqQ-1fEaqsZY57z53kAGycsl5l0EOykgPOywck3b9bXXaU46h8sdH73LJfGu2h0R46zTTYY0A-9H22LeHGna3HaLK-JZJlxy_C1YXufE-7VAgF50yrCs-YYdabyjjlMg9_tspgmCd7g-vOg3f6Zr4NyLv-MfgeXqiY2odraIOrGQBANhqQl-386EeCaylXGfQuDmbOwVAPn9Trn5HfW-RMKjl6ffew3pCH8CIU5sOl_IQcNVfX_i0ApMYOoxcMyfF4svj2fRjDDPA5Z_IvZo4TBg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgQXxJtAASPBCa3Yh72xDwg1JWFLkwhBKvXm2msvBKW7odkK9U_xG5nZVxuEeut1_ZDX87Q9Mx8hr0NhsQZI9TTIPLBQIHOR8L1AC-lElOqswliazuLkkH0-4kdb5E-bC4Nhla1OrBS1LVK8I3-HAcscseHDD6tfHqJG4etqC6FRs8WBO_8NR7b1-_2PQN83YTgezfcSr0EV8FIm4xIOTH7KM3DEtbA8TmM06dIa8DSsCxg3aezAxmnBbMRkYFikWRbrUDobp5HUJoJ5b5BthhmtPbI9HM2-fO1udXw5wJp4TXZOHUhWnJSY8h6I6t4RcSwvWcAKKOB_3u2_QZqXrN74LrnTuKt0t-ave2TL5ffJzRrA8vwBKee7k9HMm1Z4H85SLGJNR3aBsdS0yGgy_EQXOa1eCmiC5WGLVbHAvEn6rXQndM8tl2uKMJ9rWhZ0fpEMRscOjgU4psCaJTAJgoxUSRgPyeG17Pgj0suL3D0hVBrDLHeOW8HBlbLSOBnCCMFSDp5l1CdBu7cqbYqcI9bGUrXRbD8V0kMhPVQQKqBHn7ztxqzqEh9X9h4iybqeWJ67-lCcfleNtCsbxLGEk62RA8eYZsbpTFtpQwc_m4WwzJ2W4KrRGWt1weF98qprBmnHJxydu-IM-qD-BJeT-X3yuOaPbiWovbkMYfRgg3M2lrrZki9-VBXF44gJKfynVy_rJbmVzKcTNdmfHTwjt2FTJEbjBXyH9MrTM_cc3LPSvGhkgpLj6xbDv3q6TVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TALEN-Mediated+Gene+Editing+of+HBG+in+Human+Hematopoietic+Stem+Cells+Leads+to+Therapeutic+Fetal+Hemoglobin+Induction&rft.jtitle=Molecular+therapy.+Methods+%26+clinical+development&rft.au=Lux%2C+Christopher+T&rft.au=Pattabhi%2C+Sowmya&rft.au=Berger%2C+Mason&rft.au=Nourigat%2C+Cynthia&rft.date=2019-03-15&rft.pub=Elsevier+Limited&rft.eissn=2329-0501&rft.volume=12&rft.spage=175&rft_id=info:doi/10.1016%2Fj.omtm.2018.12.008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-0501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-0501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-0501&client=summon