Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome
Pseudouridine (ψ) is a C-linked uracil modification originally discovered in tRNA. MS analysis and CeU-Seq, a method that permits chemical tagging, pulldown and sequencing of ψ residues, reveal that these modifications are more abundant in the mammalian transcriptome than previously thought. Pseudou...
Saved in:
Published in | Nature chemical biology Vol. 11; no. 8; pp. 592 - 597 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.08.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pseudouridine (ψ) is a C-linked uracil modification originally discovered in tRNA. MS analysis and CeU-Seq, a method that permits chemical tagging, pulldown and sequencing of ψ residues, reveal that these modifications are more abundant in the mammalian transcriptome than previously thought.
Pseudouridine (Ψ) is the most abundant post-transcriptional RNA modification, yet little is known about its prevalence, mechanism and function in mRNA. Here, we performed quantitative MS analysis and show that Ψ is much more prevalent (Ψ/U ratio ∼0.2–0.6%) in mammalian mRNA than previously believed. We developed N
3
-CMC–enriched pseudouridine sequencing (CeU-Seq), a selective chemical labeling and pulldown method, to identify 2,084 Ψ sites within 1,929 human transcripts, of which four (in ribosomal RNA and
EEF1A1
mRNA) are biochemically verified. We show that hPUS1, a known Ψ synthase, acts on human mRNA; under stress, CeU-Seq demonstrates inducible and stress-specific mRNA pseudouridylation. Applying CeU-Seq to the mouse transcriptome revealed conserved and tissue-specific pseudouridylation. Collectively, our approaches allow comprehensive analysis of transcriptome-wide pseudouridylation and provide tools for functional studies of Ψ-mediated epigenetic regulation. |
---|---|
AbstractList | Pseudouridine (Ψ) is the most abundant post-transcriptional RNA modification, yet little is known about its prevalence, mechanism and function in mRNA. Here, we performed quantitative MS analysis and show that Ψ is much more prevalent (Ψ/U ratio ∼0.2-0.6%) in mammalian mRNA than previously believed. We developed N3-CMC-enriched pseudouridine sequencing (CeU-Seq), a selective chemical labeling and pulldown method, to identify 2,084 Ψ sites within 1,929 human transcripts, of which four (in ribosomal RNA and EEF1A1 mRNA) are biochemically verified. We show that hPUS1, a known Ψ synthase, acts on human mRNA; under stress, CeU-Seq demonstrates inducible and stress-specific mRNA pseudouridylation. Applying CeU-Seq to the mouse transcriptome revealed conserved and tissue-specific pseudouridylation. Collectively, our approaches allow comprehensive analysis of transcriptome-wide pseudouridylation and provide tools for functional studies of Ψ-mediated epigenetic regulation.Pseudouridine (Ψ) is the most abundant post-transcriptional RNA modification, yet little is known about its prevalence, mechanism and function in mRNA. Here, we performed quantitative MS analysis and show that Ψ is much more prevalent (Ψ/U ratio ∼0.2-0.6%) in mammalian mRNA than previously believed. We developed N3-CMC-enriched pseudouridine sequencing (CeU-Seq), a selective chemical labeling and pulldown method, to identify 2,084 Ψ sites within 1,929 human transcripts, of which four (in ribosomal RNA and EEF1A1 mRNA) are biochemically verified. We show that hPUS1, a known Ψ synthase, acts on human mRNA; under stress, CeU-Seq demonstrates inducible and stress-specific mRNA pseudouridylation. Applying CeU-Seq to the mouse transcriptome revealed conserved and tissue-specific pseudouridylation. Collectively, our approaches allow comprehensive analysis of transcriptome-wide pseudouridylation and provide tools for functional studies of Ψ-mediated epigenetic regulation. Pseudouridine (Ψ) is the most abundant post-transcriptional RNA modification, yet little is known about its prevalence, mechanism and function in mRNA. Here, we performed quantitative MS analysis and show that Ψ is much more prevalent (Ψ/U ratio ∼0.2-0.6%) in mammalian mRNA than previously believed. We developed N3-CMC-enriched pseudouridine sequencing (CeU-Seq), a selective chemical labeling and pulldown method, to identify 2,084 Ψ sites within 1,929 human transcripts, of which four (in ribosomal RNA and EEF1A1 mRNA) are biochemically verified. We show that hPUS1, a known Ψ synthase, acts on human mRNA; under stress, CeU-Seq demonstrates inducible and stress-specific mRNA pseudouridylation. Applying CeU-Seq to the mouse transcriptome revealed conserved and tissue-specific pseudouridylation. Collectively, our approaches allow comprehensive analysis of transcriptome-wide pseudouridylation and provide tools for functional studies of Ψ-mediated epigenetic regulation. Pseudouridine (ψ) is a C-linked uracil modification originally discovered in tRNA. MS analysis and CeU-Seq, a method that permits chemical tagging, pulldown and sequencing of ψ residues, reveal that these modifications are more abundant in the mammalian transcriptome than previously thought. Pseudouridine (Ψ) is the most abundant post-transcriptional RNA modification, yet little is known about its prevalence, mechanism and function in mRNA. Here, we performed quantitative MS analysis and show that Ψ is much more prevalent (Ψ/U ratio ∼0.2–0.6%) in mammalian mRNA than previously believed. We developed N 3 -CMC–enriched pseudouridine sequencing (CeU-Seq), a selective chemical labeling and pulldown method, to identify 2,084 Ψ sites within 1,929 human transcripts, of which four (in ribosomal RNA and EEF1A1 mRNA) are biochemically verified. We show that hPUS1, a known Ψ synthase, acts on human mRNA; under stress, CeU-Seq demonstrates inducible and stress-specific mRNA pseudouridylation. Applying CeU-Seq to the mouse transcriptome revealed conserved and tissue-specific pseudouridylation. Collectively, our approaches allow comprehensive analysis of transcriptome-wide pseudouridylation and provide tools for functional studies of Ψ-mediated epigenetic regulation. Pseudouridine () is the most abundant post-transcriptional RNA modification, yet little is known about its prevalence, mechanism and function in mRNA. Here, we performed quantitative MS analysis and show that is much more prevalent (/U ratio ~0.20.6%) in mammalian mRNA than previously believed. We developed N3-CMCenriched pseudouridine sequencing (CeU-Seq), a selective chemical labeling and pulldown method, to identify 2,084 sites within 1,929 human transcripts, of which four (in ribosomal RNA and EEF1A1 mRNA) are biochemically verified. We show that hPUS1, a known synthase, acts on human mRNA; under stress, CeU-Seq demonstrates inducible and stress-specific mRNA pseudouridylation. Applying CeUSeq to the mouse transcriptome revealed conserved and tissue-specific pseudouridylation. Collectively, our approaches allow comprehensive analysis of transcriptome-wide pseudouridylation and provide tools for functional studies of -mediated epigenetic regulation. |
Author | Sun, Fangfang Li, Xiaoyu Bai, Jinyi Yi, Chengqi Zhu, Ping Ma, Shiqing Song, Jinghui |
Author_xml | – sequence: 1 givenname: Xiaoyu surname: Li fullname: Li, Xiaoyu organization: State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University – sequence: 2 givenname: Ping surname: Zhu fullname: Zhu, Ping organization: Biodynamic Optical Imaging Center, School of Life Sciences, Peking University – sequence: 3 givenname: Shiqing surname: Ma fullname: Ma, Shiqing organization: State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Academy for Advanced Interdisciplinary Studies, Peking University – sequence: 4 givenname: Jinghui surname: Song fullname: Song, Jinghui organization: State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University – sequence: 5 givenname: Jinyi surname: Bai fullname: Bai, Jinyi organization: State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Academy for Advanced Interdisciplinary Studies, Peking University – sequence: 6 givenname: Fangfang surname: Sun fullname: Sun, Fangfang organization: State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University – sequence: 7 givenname: Chengqi surname: Yi fullname: Yi, Chengqi email: chengqi.yi@pku.edu.cn organization: State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Department of Chemical Biology, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26075521$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1L7TAQxYMofi_dSsGNm16TJk2TpVz0vQeCILouaTPRSJrUpFXuf298V0VEVzMwvzPMnLOHNn3wgNARwQuCqTjz_QMMnQ0LIijfQLukrquSMS43P_sa76C9lB4xppwTsY12Ko6bPCO76GaZ5bZXrhhn53R48UWEZ1AuFXrlVR4VY4JZhzlavXJqssEXwRTTAxSDGgblrPLFFJVPfbTjFAY4QFsm6-Hwve6ju8uL2-Xf8ur6z7_l-VXZM8mnkhrdY8KoqYQRumpEJaiujKRCVNAYLlgtQBjJuppKKgWGuuOSiY7UXGsj6D46Xe8dY3iaIU3tYFMPzikPYU4t4VJQiZsGZ_TkG_qYH_L5upY0nFe8YazJ1PE7NXcD6HaMdlBx1X64lYFyDfQxpBTBfCIEt29ptB9ptG9pZJ5-43s7_bcwG2bdr6rFWpXydn8P8cuxPwpeAWohn_Q |
CitedBy_id | crossref_primary_10_1109_TCBB_2024_3389094 crossref_primary_10_3389_fonc_2025_1576651 crossref_primary_10_1002_adbi_202100834 crossref_primary_10_1007_s11515_018_1480_8 crossref_primary_10_1261_rna_072124_119 crossref_primary_10_1016_j_ab_2023_115247 crossref_primary_10_1093_nar_gkaa769 crossref_primary_10_3390_ijms22116166 crossref_primary_10_3390_ijms25063383 crossref_primary_10_1002_slct_202400006 crossref_primary_10_1002_advs_202004344 crossref_primary_10_1534_g3_120_401767 crossref_primary_10_3389_fonc_2023_1145766 crossref_primary_10_1080_15476286_2016_1276150 crossref_primary_10_1261_rna_056796_116 crossref_primary_10_3324_haematol_2022_282211 crossref_primary_10_1002_1873_3468_14854 crossref_primary_10_1038_s41598_024_72994_9 crossref_primary_10_1038_nrm_2016_132 crossref_primary_10_1093_bib_bbab245 crossref_primary_10_1021_acs_accounts_3c00532 crossref_primary_10_3390_cells9010017 crossref_primary_10_1021_acs_bioconjchem_8b00541 crossref_primary_10_1021_acschembio_2c00881 crossref_primary_10_1093_nar_gkv1036 crossref_primary_10_3390_ncrna6020022 crossref_primary_10_3389_fcell_2021_727595 crossref_primary_10_1261_rna_062794_117 crossref_primary_10_1093_g3journal_jkac333 crossref_primary_10_1016_j_isci_2024_110524 crossref_primary_10_1016_j_ymeth_2021_03_003 crossref_primary_10_1038_s41467_020_18068_6 crossref_primary_10_1016_j_cell_2017_05_045 crossref_primary_10_1007_s12015_019_09894_3 crossref_primary_10_1126_sciadv_adg1805 crossref_primary_10_1016_j_bbagrm_2017_01_004 crossref_primary_10_1016_j_ymeth_2018_12_007 crossref_primary_10_1261_rna_079219_122 crossref_primary_10_1016_j_omtn_2019_11_014 crossref_primary_10_3724_abbs_2024159 crossref_primary_10_1093_pcp_pcac060 crossref_primary_10_1007_s42977_022_00142_3 crossref_primary_10_1093_nar_gkx135 crossref_primary_10_1016_j_bbagrm_2018_11_005 crossref_primary_10_1016_j_bmc_2025_118138 crossref_primary_10_3389_fgene_2020_00088 crossref_primary_10_1016_j_bbagrm_2018_11_002 crossref_primary_10_1038_s41392_023_01638_7 crossref_primary_10_1002_ijch_202400005 crossref_primary_10_3389_fgene_2022_920987 crossref_primary_10_1371_journal_pone_0291267 crossref_primary_10_1039_D4SC03576C crossref_primary_10_3389_fimmu_2021_809808 crossref_primary_10_1038_nature16998 crossref_primary_10_1038_ncomms11285 crossref_primary_10_1089_ars_2023_0233 crossref_primary_10_1016_j_cclet_2019_02_005 crossref_primary_10_5483_BMBRep_2021_54_2_212 crossref_primary_10_1007_s11033_025_10419_0 crossref_primary_10_1016_j_pharmthera_2022_108254 crossref_primary_10_1080_15476286_2016_1191737 crossref_primary_10_1111_nph_18479 crossref_primary_10_1016_j_bpc_2022_106780 crossref_primary_10_1021_acs_analchem_3c02166 crossref_primary_10_1080_15476286_2016_1249091 crossref_primary_10_1016_j_jmb_2019_10_006 crossref_primary_10_1002_ijch_202400024 crossref_primary_10_1007_s12975_021_00927_z crossref_primary_10_5483_BMBRep_2020_53_11_204 crossref_primary_10_1016_j_molcel_2022_11_011 crossref_primary_10_1021_acs_chemrestox_9b00042 crossref_primary_10_1039_D4CB00215F crossref_primary_10_1261_rna_076026_120 crossref_primary_10_1042_EBC20200029 crossref_primary_10_1101_gr_207613_116 crossref_primary_10_1002_adbi_202100866 crossref_primary_10_1038_s41392_022_01003_0 crossref_primary_10_1038_s43586_024_00365_9 crossref_primary_10_1007_s11427_019_1658_x crossref_primary_10_1186_s13059_017_1336_6 crossref_primary_10_3390_ijms20051226 crossref_primary_10_3724_abbs_2024201 crossref_primary_10_1002_wrna_1375 crossref_primary_10_1007_s11426_017_9186_y crossref_primary_10_3389_fgene_2021_633681 crossref_primary_10_1186_s12943_020_01263_w crossref_primary_10_1016_j_cbpa_2016_06_014 crossref_primary_10_1038_nrm_2016_163 crossref_primary_10_1360_TB_2024_0097 crossref_primary_10_1021_acscentsci_1c00788 crossref_primary_10_1038_s41580_023_00622_x crossref_primary_10_1186_s12943_021_01322_w crossref_primary_10_1093_nar_gkz477 crossref_primary_10_1007_s11427_020_1906_4 crossref_primary_10_1093_nar_gkaa790 crossref_primary_10_1021_acs_orglett_2c02427 crossref_primary_10_1039_C9SC05094A crossref_primary_10_1261_rna_079975_124 crossref_primary_10_1093_nar_gkv1182 crossref_primary_10_1016_j_ymeth_2021_05_010 crossref_primary_10_1093_nar_gkae1201 crossref_primary_10_1038_s41589_019_0353_z crossref_primary_10_1021_acschembio_2c00307 crossref_primary_10_3389_fnmol_2024_1482999 crossref_primary_10_1007_s12033_023_00792_1 crossref_primary_10_1021_acs_analchem_0c02122 crossref_primary_10_1111_pbi_13829 crossref_primary_10_3389_fcell_2021_628415 crossref_primary_10_3389_fimmu_2022_829425 crossref_primary_10_1039_D1CS00920F crossref_primary_10_1146_annurev_cancerbio_030419_033357 crossref_primary_10_59717_j_xinn_med_2023_100041 crossref_primary_10_1016_j_molcel_2019_03_036 crossref_primary_10_3390_ncrna4020015 crossref_primary_10_1021_acs_bioconjchem_6b00403 crossref_primary_10_1038_542503a crossref_primary_10_1016_j_bmc_2024_117922 crossref_primary_10_3390_ijms232213851 crossref_primary_10_1038_s41598_019_52637_0 crossref_primary_10_1016_j_ymeth_2016_02_012 crossref_primary_10_3233_JPD_230457 crossref_primary_10_1016_j_urolonc_2020_06_026 crossref_primary_10_1021_acs_bioconjchem_7b00035 crossref_primary_10_1111_mmi_14774 crossref_primary_10_1093_nar_gkae1064 crossref_primary_10_1073_pnas_2002328117 crossref_primary_10_1016_j_crmeth_2021_100061 crossref_primary_10_1021_acs_biochem_9b00485 crossref_primary_10_1038_nrg_2016_169 crossref_primary_10_1360_TB_2023_0800 crossref_primary_10_18632_aging_204311 crossref_primary_10_1186_s12967_024_05687_6 crossref_primary_10_1016_j_cell_2016_09_022 crossref_primary_10_1261_rna_079950_124 crossref_primary_10_3389_fgene_2018_00440 crossref_primary_10_1016_j_conb_2017_10_018 crossref_primary_10_1002_mas_21798 crossref_primary_10_1039_C5CS00271K crossref_primary_10_1038_s41596_023_00917_5 crossref_primary_10_1016_j_molcel_2021_12_023 crossref_primary_10_3892_ijmm_2021_5064 crossref_primary_10_1038_nchembio_2546 crossref_primary_10_1016_j_tig_2017_04_003 crossref_primary_10_3934_mbe_2022644 crossref_primary_10_1093_nar_gkac347 crossref_primary_10_1038_mp_2017_141 crossref_primary_10_1038_nn_4378 crossref_primary_10_1093_bioinformatics_btaa155 crossref_primary_10_1016_j_bmcl_2021_128105 crossref_primary_10_1016_j_trecan_2023_04_003 crossref_primary_10_3389_fgene_2023_1247309 crossref_primary_10_1093_nar_gkv1462 crossref_primary_10_1016_j_amjcard_2019_03_017 crossref_primary_10_1007_s13238_020_00733_7 crossref_primary_10_1007_s00294_021_01168_1 crossref_primary_10_1016_j_bmc_2024_117861 crossref_primary_10_1111_jipb_12483 crossref_primary_10_1007_s00018_018_2935_4 crossref_primary_10_1039_D4CC00179F crossref_primary_10_1016_j_chembiol_2015_11_007 crossref_primary_10_1186_s13059_021_02557_y crossref_primary_10_1021_jacs_7b06837 crossref_primary_10_1039_C6CS00599C crossref_primary_10_1016_j_ymeth_2016_03_001 crossref_primary_10_1093_bfgp_elab003 crossref_primary_10_1002_chem_202001667 crossref_primary_10_1038_s41589_019_0420_5 crossref_primary_10_7554_eLife_48847 crossref_primary_10_1073_pnas_1817334116 crossref_primary_10_1111_mmi_14688 crossref_primary_10_1039_D2CB00087C crossref_primary_10_3389_fcell_2024_1465546 crossref_primary_10_1097_HEP_0000000000000702 crossref_primary_10_1038_s41418_023_01213_1 crossref_primary_10_1080_10409238_2021_1887807 crossref_primary_10_1007_s00439_019_01980_3 crossref_primary_10_1038_s41392_024_01777_5 crossref_primary_10_1016_j_lfs_2021_119565 crossref_primary_10_1038_s41467_023_35858_w crossref_primary_10_3389_fncel_2019_00327 crossref_primary_10_1002_ange_201708276 crossref_primary_10_1016_j_tibtech_2016_11_002 crossref_primary_10_1016_j_ab_2019_113350 crossref_primary_10_1126_science_aad8711 crossref_primary_10_1101_cshperspect_a032201 crossref_primary_10_1038_s41576_022_00559_5 crossref_primary_10_12677_HJBM_2022_122014 crossref_primary_10_1038_s41467_019_11375_7 crossref_primary_10_1002_wrna_1601 crossref_primary_10_1158_2159_8290_CD_16_1292 crossref_primary_10_3390_genes8090219 crossref_primary_10_1007_s42977_023_00158_3 crossref_primary_10_1038_nrc_2016_27 crossref_primary_10_1126_sciadv_abm8501 crossref_primary_10_3390_ncrna7030051 crossref_primary_10_1093_nar_gkab1241 crossref_primary_10_2139_ssrn_3906935 crossref_primary_10_3390_biology13040248 crossref_primary_10_1038_srep25296 crossref_primary_10_1016_j_mod_2018_04_002 crossref_primary_10_1038_nchembio_2040 crossref_primary_10_3389_fncel_2022_1058083 crossref_primary_10_1093_cvr_cvad014 crossref_primary_10_1007_s12275_022_2324_4 crossref_primary_10_1002_1873_3468_14188 crossref_primary_10_1002_wrna_1852 crossref_primary_10_3390_ijms221910592 crossref_primary_10_1016_j_ymthe_2019_03_002 crossref_primary_10_1042_BCJ20230096 crossref_primary_10_1007_s12672_023_00843_8 crossref_primary_10_1093_nar_gkae344 crossref_primary_10_1261_rna_080315_124 crossref_primary_10_1016_j_bbagrm_2015_10_019 crossref_primary_10_1039_C5TB01753J crossref_primary_10_1080_15476286_2016_1251543 crossref_primary_10_1099_mgen_0_001327 crossref_primary_10_1073_pnas_1821754116 crossref_primary_10_1080_15476286_2021_2002003 crossref_primary_10_1186_s12943_020_01159_9 crossref_primary_10_1093_nar_gkx934 crossref_primary_10_1177_1176934320925752 crossref_primary_10_3389_fbioe_2018_00008 crossref_primary_10_1016_j_molmed_2016_10_009 crossref_primary_10_1007_s10822_022_00447_4 crossref_primary_10_1038_nmeth_4110 crossref_primary_10_1038_s41589_023_01304_7 crossref_primary_10_3389_fphar_2022_984453 crossref_primary_10_1038_nrd_2018_71 crossref_primary_10_1016_j_omtn_2018_12_007 crossref_primary_10_1016_j_cell_2018_03_008 crossref_primary_10_3390_ncrna4040024 crossref_primary_10_1016_j_cbpa_2015_10_024 crossref_primary_10_1039_D2CB00229A crossref_primary_10_1016_j_yjmcc_2020_11_011 crossref_primary_10_1021_acschembio_6b00960 crossref_primary_10_1021_acschembio_1c00633 crossref_primary_10_1093_nar_gkae203 crossref_primary_10_1186_s12859_018_2321_0 crossref_primary_10_1016_j_chemolab_2021_104250 crossref_primary_10_1002_ctm2_1811 crossref_primary_10_1016_j_molcel_2021_07_036 crossref_primary_10_1007_s40484_018_0147_4 crossref_primary_10_1021_jacs_9b08630 crossref_primary_10_1002_chem_201804043 crossref_primary_10_1016_j_cca_2021_01_001 crossref_primary_10_1134_S0006297917110013 crossref_primary_10_1146_annurev_genet_112618_043830 crossref_primary_10_1038_s12276_020_0407_z crossref_primary_10_1038_s41477_024_01894_7 crossref_primary_10_1093_narcan_zcad026 crossref_primary_10_1128_microbiolspec_RWR_0015_2017 crossref_primary_10_1038_s42003_025_07467_4 crossref_primary_10_1016_j_apsb_2018_06_001 crossref_primary_10_1016_j_fmre_2023_05_010 crossref_primary_10_1146_annurev_immunol_101921_045401 crossref_primary_10_1021_acs_analchem_8b04078 crossref_primary_10_1101_cshperspect_a032623 crossref_primary_10_1093_jxb_erz273 crossref_primary_10_1002_wrna_1829 crossref_primary_10_1080_15476286_2016_1267096 crossref_primary_10_3390_ijms23052680 crossref_primary_10_1021_acs_est_5c00907 crossref_primary_10_1002_wrna_1700 crossref_primary_10_1093_narcan_zcae005 crossref_primary_10_2144_btn_2018_0117 crossref_primary_10_1093_nargab_lqaf013 crossref_primary_10_1002_cbic_202400220 crossref_primary_10_1093_nar_gkad1070 crossref_primary_10_1007_s11427_022_2235_4 crossref_primary_10_1146_annurev_genet_120417_031522 crossref_primary_10_1080_15476286_2016_1261788 crossref_primary_10_1080_15476286_2017_1295905 crossref_primary_10_1016_j_omtn_2024_102391 crossref_primary_10_1038_nature21351 crossref_primary_10_1038_s41598_020_73376_7 crossref_primary_10_1038_cr_2017_55 crossref_primary_10_15252_embr_201744940 crossref_primary_10_1038_s41587_021_00915_6 crossref_primary_10_3390_ncrna7020031 crossref_primary_10_1016_j_ymeth_2019_02_016 crossref_primary_10_1038_s41467_021_25105_5 crossref_primary_10_1038_s41598_023_44143_1 crossref_primary_10_1038_s43018_021_00238_0 crossref_primary_10_3389_fbioe_2018_00046 crossref_primary_10_1016_j_trac_2024_117606 crossref_primary_10_1186_s12964_024_01854_w crossref_primary_10_1261_rna_067348_118 crossref_primary_10_3389_fmicb_2021_654370 crossref_primary_10_1038_s41592_024_02439_8 crossref_primary_10_1109_TCBB_2021_3083789 crossref_primary_10_1016_j_isci_2024_109265 crossref_primary_10_1002_chem_201801640 crossref_primary_10_3389_fgene_2022_1110799 crossref_primary_10_1002_wrna_1561 crossref_primary_10_1016_j_omtn_2020_01_037 crossref_primary_10_3390_genes10010052 crossref_primary_10_1016_j_trecan_2019_02_011 crossref_primary_10_3390_genes8110301 crossref_primary_10_1016_j_csbj_2022_11_022 crossref_primary_10_1093_nar_gkaa811 crossref_primary_10_3390_molecules28041517 crossref_primary_10_1007_s00438_019_01600_9 crossref_primary_10_1016_j_sjbs_2020_09_033 crossref_primary_10_1016_j_gpb_2017_03_003 crossref_primary_10_1016_j_ijpara_2023_04_002 crossref_primary_10_3389_fcell_2022_922351 crossref_primary_10_1016_j_cell_2022_02_007 crossref_primary_10_1002_wrna_1576 crossref_primary_10_3892_ijo_2021_5287 crossref_primary_10_1021_jacs_8b02618 crossref_primary_10_1186_s13046_021_01951_5 crossref_primary_10_1016_j_molcel_2017_11_029 crossref_primary_10_1038_s41576_020_00295_8 crossref_primary_10_3390_cimb43030129 crossref_primary_10_3724_SP_J_1123_2023_12025 crossref_primary_10_1093_jxb_erad323 crossref_primary_10_2174_1574893614666191018171521 crossref_primary_10_1080_15476286_2018_1462654 crossref_primary_10_15252_embj_2020104708 crossref_primary_10_1016_j_molcel_2017_10_019 crossref_primary_10_1038_s41583_019_0244_z crossref_primary_10_1038_s41380_022_01570_2 crossref_primary_10_1158_0008_5472_CAN_24_1102 crossref_primary_10_1016_j_ymeth_2021_08_008 crossref_primary_10_1038_s41467_022_32963_0 crossref_primary_10_3892_ijmm_2019_4169 crossref_primary_10_1016_j_ymeth_2018_10_003 crossref_primary_10_1093_nar_gkae150 crossref_primary_10_1002_wrna_1586 crossref_primary_10_1016_j_gpb_2019_11_015 crossref_primary_10_1021_acschembio_0c00260 crossref_primary_10_1016_j_jpba_2020_113589 crossref_primary_10_3390_genes10010035 crossref_primary_10_1016_j_molcel_2024_06_013 crossref_primary_10_1038_s41568_020_0253_2 crossref_primary_10_1042_BCJ20180445 crossref_primary_10_1101_gad_349072_121 crossref_primary_10_3390_genes12020278 crossref_primary_10_1146_annurev_bioeng_081922_021233 crossref_primary_10_1016_j_tig_2023_09_001 crossref_primary_10_1038_s12276_022_00821_0 crossref_primary_10_1039_D1CS00214G crossref_primary_10_1261_rna_078940_121 crossref_primary_10_1002_wrna_1595 crossref_primary_10_1021_acschembio_2c00221 crossref_primary_10_1146_annurev_biochem_052521_035330 crossref_primary_10_1016_j_gde_2024_102212 crossref_primary_10_1261_rna_057547_116 crossref_primary_10_1016_j_banm_2022_05_007 crossref_primary_10_1039_D1CC06080E crossref_primary_10_1038_s41380_023_02339_x crossref_primary_10_1016_j_ymeth_2018_10_011 crossref_primary_10_1002_bip_23403 crossref_primary_10_1016_j_molmed_2018_07_010 crossref_primary_10_1093_nar_gkab934 crossref_primary_10_1111_gbb_12426 crossref_primary_10_1186_s12943_020_01194_6 crossref_primary_10_3892_ol_2021_13036 crossref_primary_10_1038_s41589_024_01792_1 crossref_primary_10_62347_JPHF4071 crossref_primary_10_1111_gbb_12428 crossref_primary_10_3389_fbioe_2020_00134 crossref_primary_10_1093_nar_gkae096 crossref_primary_10_1038_s41594_024_01392_6 crossref_primary_10_1126_sciadv_abd2605 crossref_primary_10_1039_D4OB00786G crossref_primary_10_3390_ijms22020581 crossref_primary_10_1002_ctm2_70190 crossref_primary_10_1002_mco2_546 crossref_primary_10_1039_C6SC01589A crossref_primary_10_1016_j_ymgme_2022_01_103 crossref_primary_10_1186_s13045_023_01466_w crossref_primary_10_1093_nar_gkaa612 crossref_primary_10_3390_biom8020038 crossref_primary_10_1002_humu_24471 crossref_primary_10_1080_15384101_2023_2165632 crossref_primary_10_1261_rna_077271_120 crossref_primary_10_1186_s13578_025_01347_4 crossref_primary_10_1038_s41587_022_01505_w crossref_primary_10_1021_acs_accounts_3c00458 crossref_primary_10_1016_j_tips_2022_03_008 crossref_primary_10_1371_journal_pone_0227102 crossref_primary_10_1016_j_tibtech_2020_06_002 crossref_primary_10_1083_jcb_201511041 crossref_primary_10_1016_j_cellsig_2023_110726 crossref_primary_10_3389_fmicb_2022_926099 crossref_primary_10_1098_rsob_170077 crossref_primary_10_1002_wrna_1663 crossref_primary_10_1093_nar_gkw482 crossref_primary_10_1016_j_amolm_2023_100023 crossref_primary_10_1016_j_cmet_2016_05_013 crossref_primary_10_1038_s12276_022_00824_x crossref_primary_10_1002_anie_201708276 crossref_primary_10_1016_j_tibs_2023_10_008 crossref_primary_10_1038_s41380_023_02083_2 crossref_primary_10_3390_ijms18112387 crossref_primary_10_1016_j_ajhg_2018_10_026 crossref_primary_10_1016_j_bmc_2019_03_057 crossref_primary_10_1021_acs_accounts_3c00436 crossref_primary_10_1002_cpch_82 crossref_primary_10_1016_j_biopha_2023_115524 crossref_primary_10_1016_j_cels_2025_101238 |
Cites_doi | 10.1261/rna.041178.113 10.1016/S0079-6603(08)60629-7 10.1073/pnas.71.10.3971 10.1038/nrg3724 10.1016/j.chembiol.2006.09.009 10.1261/rna.5520403 10.1093/nar/gkr1017 10.1038/nchembio.687 10.1021/bi00864a002 10.1016/j.cell.2012.04.031 10.1016/j.molcel.2011.09.017 10.1016/j.jbiotec.2014.01.024 10.1093/nar/gkt1330 10.1016/j.molcel.2004.06.044 10.1093/nar/25.22.4493 10.1038/nature12756 10.1080/152165400410182 10.1093/nar/gks1007 10.1016/j.molcel.2012.05.021 10.1093/bioinformatics/btp324 10.1146/annurev-biochem-060208-105251 10.1038/nature11112 10.1016/j.celrep.2014.07.004 10.1016/j.molcel.2012.10.015 10.1007/s13238-011-1087-1 10.1038/nature13802 10.1038/nchembio.482 10.1086/421530 10.1042/bj1710781 10.1016/j.tibs.2013.01.002 10.1371/journal.pone.0110799 10.1093/nar/gkr948 10.1038/emboj.2010.316 10.1093/nar/2.10.1653 10.1038/nature12302 10.1016/S1367-5931(02)00397-6 10.1021/bi00088a030 10.1073/pnas.250426397 10.1016/j.molcel.2010.01.032 10.1038/nature14234 10.1038/ng0598-32 10.1038/nature10165 10.1126/science.1231143 10.1016/j.cell.2012.05.003 10.1016/j.cell.2014.08.028 10.1038/nature12730 10.1038/nsmb.1838 10.1002/9780470151808.sc01c04s5 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2015 Copyright Nature Publishing Group Aug 2015 |
Copyright_xml | – notice: Springer Nature America, Inc. 2015 – notice: Copyright Nature Publishing Group Aug 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7TK 7TM 7U9 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. LK8 M0S M1P M2P M7N M7P P64 PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 |
DOI | 10.1038/nchembio.1836 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1552-4469 |
EndPage | 597 |
ExternalDocumentID | 3957164791 26075521 10_1038_nchembio_1836 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- 0R~ 123 29M 39C 3V. 4.4 53G 5BI 70F 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ KB. KC. LK5 LK8 M0L M1P M2P M7P M7R NACWA NNMJJ O9- ODYON P2P PCBAR PDBOC PQQKQ PROAC PSQYO Q2X RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM 7QL 7QP 7QR 7TK 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c496t-3fdc0143f28f8d278283d2f93882e7f68458e8f94b5393980e5b6948b156ddf83 |
IEDL.DBID | 7X7 |
ISSN | 1552-4450 1552-4469 |
IngestDate | Thu Jul 10 23:32:06 EDT 2025 Fri Jul 25 08:58:04 EDT 2025 Thu Apr 03 07:09:12 EDT 2025 Thu Apr 24 23:00:52 EDT 2025 Tue Jul 01 01:27:45 EDT 2025 Fri Feb 21 02:39:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-3fdc0143f28f8d278283d2f93882e7f68458e8f94b5393980e5b6948b156ddf83 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 26075521 |
PQID | 1766267447 |
PQPubID | 29034 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1698390770 proquest_journals_1766267447 pubmed_primary_26075521 crossref_primary_10_1038_nchembio_1836 crossref_citationtrail_10_1038_nchembio_1836 springer_journals_10_1038_nchembio_1836 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-01 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Cambridge |
PublicationTitle | Nature chemical biology |
PublicationTitleAbbrev | Nat Chem Biol |
PublicationTitleAlternate | Nat Chem Biol |
PublicationYear | 2015 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Wu, Xiao, Yang, Yu (CR11) 2011; 30 Ho, Gilham (CR18) 1967; 6 Dubin, Taylor (CR29) 1975; 2 Cavaillé (CR14) 2000; 97 Jia (CR26) 2011; 7 Becker, Motorin, Planta, Grosjean (CR37) 1997; 25 Kierzek (CR6) 2014; 42 Bakin, Ofengand (CR19) 1993; 32 Meyer (CR40) 2012; 149 Charette, Gray (CR2) 2000; 49 Lovejoy, Riordan, Brown (CR23) 2014; 9 Wang (CR44) 2014; 505 Maden (CR25) 1990; 39 Tremml, Singer, Malavarca (CR45) 2008; 5 Nishikura (CR30) 2010; 79 Dominissini (CR39) 2012; 485 Sibert, Patton (CR36) 2012; 40 Jack (CR4) 2011; 44 Schwartz (CR22) 2014; 159 Hughes, Maden (CR24) 1978; 171 Desrosiers, Friderici, Rottman (CR28) 1974; 71 Bykhovskaya, Casas, Mengesha, Inbal, Fischel-Ghodsian (CR10) 2004; 74 Liu (CR43) 2015; 518 Li, Durbin (CR47) 2009; 25 Ding (CR48) 2014; 505 Basak, Query (CR13) 2014; 8 Behm-Ansmant (CR38) 2003; 9 Baltz (CR34) 2012; 46 Machnicka (CR1) 2013; 41 Castello (CR33) 2012; 149 Liu (CR31) 2013; 19 He (CR41) 2010; 6 Hunter (CR32) 2012; 40 Bakin, Ofengand (CR20) 1998; 77 Ge, Yu (CR3) 2013; 38 Yu, Ge, Yu (CR5) 2011; 2 Heiss (CR9) 1998; 19 König (CR46) 2010; 17 Courtes (CR12) 2014; 174 Karijolich, Yu (CR16) 2011; 474 Zheng (CR27) 2013; 49 Cong (CR49) 2013; 339 Zhao (CR35) 2004; 15 Kiss, Fayet-Lebaron, Jady (CR7) 2010; 37 Carlile (CR21) 2014; 515 Fu, Dominissini, Rechavi, He (CR42) 2014; 15 Fernández (CR17) 2013; 500 Hamma, Ferre-D′Amare (CR8) 2006; 13 Hüttenhofer, Brosius, Bachellerie (CR15) 2002; 6 R Desrosiers (BFnchembio1836_CR28) 1974; 71 Y Bykhovskaya (BFnchembio1836_CR10) 2004; 74 DG Hughes (BFnchembio1836_CR24) 1978; 171 DT Dubin (BFnchembio1836_CR29) 1975; 2 S Hunter (BFnchembio1836_CR32) 2012; 40 G Wu (BFnchembio1836_CR11) 2011; 30 Y Fu (BFnchembio1836_CR42) 2014; 15 KD Meyer (BFnchembio1836_CR40) 2012; 149 T Kiss (BFnchembio1836_CR7) 2010; 37 G Jia (BFnchembio1836_CR26) 2011; 7 S Schwartz (BFnchembio1836_CR22) 2014; 159 I Behm-Ansmant (BFnchembio1836_CR38) 2003; 9 J Ge (BFnchembio1836_CR3) 2013; 38 MA Machnicka (BFnchembio1836_CR1) 2013; 41 H Li (BFnchembio1836_CR47) 2009; 25 NW Ho (BFnchembio1836_CR18) 1967; 6 A Castello (BFnchembio1836_CR33) 2012; 149 M Charette (BFnchembio1836_CR2) 2000; 49 K Nishikura (BFnchembio1836_CR30) 2010; 79 K Jack (BFnchembio1836_CR4) 2011; 44 E Kierzek (BFnchembio1836_CR6) 2014; 42 NS Heiss (BFnchembio1836_CR9) 1998; 19 D Dominissini (BFnchembio1836_CR39) 2012; 485 J König (BFnchembio1836_CR46) 2010; 17 G Tremml (BFnchembio1836_CR45) 2008; 5 A Bakin (BFnchembio1836_CR19) 1993; 32 A Basak (BFnchembio1836_CR13) 2014; 8 X Wang (BFnchembio1836_CR44) 2014; 505 C He (BFnchembio1836_CR41) 2010; 6 N Liu (BFnchembio1836_CR43) 2015; 518 AG Baltz (BFnchembio1836_CR34) 2012; 46 L Cong (BFnchembio1836_CR49) 2013; 339 FC Courtes (BFnchembio1836_CR12) 2014; 174 AT Yu (BFnchembio1836_CR5) 2011; 2 HF Becker (BFnchembio1836_CR37) 1997; 25 AV Bakin (BFnchembio1836_CR20) 1998; 77 J Karijolich (BFnchembio1836_CR16) 2011; 474 TM Carlile (BFnchembio1836_CR21) 2014; 515 X Zhao (BFnchembio1836_CR35) 2004; 15 BS Sibert (BFnchembio1836_CR36) 2012; 40 BE Maden (BFnchembio1836_CR25) 1990; 39 T Hamma (BFnchembio1836_CR8) 2006; 13 N Liu (BFnchembio1836_CR31) 2013; 19 AF Lovejoy (BFnchembio1836_CR23) 2014; 9 J Cavaillé (BFnchembio1836_CR14) 2000; 97 G Zheng (BFnchembio1836_CR27) 2013; 49 Y Ding (BFnchembio1836_CR48) 2014; 505 IS Fernández (BFnchembio1836_CR17) 2013; 500 A Hüttenhofer (BFnchembio1836_CR15) 2002; 6 22002720 - Nat Chem Biol. 2011 Oct 16;7(12 ):885-7 24270811 - Nature. 2014 Jan 30;505(7485):696-700 22099312 - Mol Cell. 2011 Nov 18;44(4):660-6 21976061 - Protein Cell. 2011 Sep;2(9):712-25 22681889 - Mol Cell. 2012 Jun 8;46(5):674-90 8373778 - Biochemistry. 1993 Sep 21;32(37):9754-62 24369424 - Nucleic Acids Res. 2014 Mar;42(5):3492-501 21079590 - Nat Chem Biol. 2010 Dec;6(12):863-5 23391857 - Trends Biochem Sci. 2013 Apr;38(4):210-8 23812587 - Nature. 2013 Aug 1;500(7460):107-10 24284625 - Nature. 2014 Jan 2;505(7481):117-20 25353621 - PLoS One. 2014 Oct 29;9(10):e110799 25219674 - Cell. 2014 Sep 25;159(1):148-62 22102571 - Nucleic Acids Res. 2012 Mar;40(5):2107-18 23287718 - Science. 2013 Feb 15;339(6121):819-23 10902565 - IUBMB Life. 2000 May;49(5):341-51 9590285 - Nat Genet. 1998 May;19(1):32-8 22575960 - Nature. 2012 Apr 29;485(7397):201-6 24480570 - J Biotechnol. 2014 Mar 20;174:16-21 15108122 - Am J Hum Genet. 2004 Jun;74(6):1303-8 2247610 - Prog Nucleic Acid Res Mol Biol. 1990;39:241-303 23118484 - Nucleic Acids Res. 2013 Jan;41(Database issue):D262-7 20227365 - Mol Cell. 2010 Mar 12;37(5):597-606 25127136 - Cell Rep. 2014 Aug 21;8(4):966-73 20601959 - Nat Struct Mol Biol. 2010 Jul;17(7):909-15 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 9358157 - Nucleic Acids Res. 1997 Nov 15;25(22):4493-9 24662220 - Nat Rev Genet. 2014 May;15(5):293-306 11106375 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14311-6 24141618 - RNA. 2013 Dec;19(12):1848-56 21677757 - Nature. 2011 Jun 15;474(7351):395-8 23177736 - Mol Cell. 2013 Jan 10;49(1):18-29 14561887 - RNA. 2003 Nov;9(11):1371-82 4372599 - Proc Natl Acad Sci U S A. 1974 Oct;71(10):3971-5 666737 - Biochem J. 1978 Jun 1;171(3):781-6 17113994 - Chem Biol. 2006 Nov;13(11):1125-35 25719671 - Nature. 2015 Feb 26;518(7540):560-4 1187339 - Nucleic Acids Res. 1975 Oct;2(10):1653-68 9770678 - Methods Mol Biol. 1998;77:297-309 20192758 - Annu Rev Biochem. 2010;79:321-49 25192136 - Nature. 2014 Nov 6;515(7525):143-6 21131909 - EMBO J. 2011 Jan 5;30(1):79-89 22658674 - Cell. 2012 Jun 8;149(6):1393-406 22096229 - Nucleic Acids Res. 2012 Jan;40(Database issue):D306-12 12470739 - Curr Opin Chem Biol. 2002 Dec;6(6):835-43 18770628 - Curr Protoc Stem Cell Biol. 2008 Apr;Chapter 1:Unit 1C.4 15327771 - Mol Cell. 2004 Aug 27;15(4):549-58 6076617 - Biochemistry. 1967 Dec;6(12):3632-9 22608085 - Cell. 2012 Jun 22;149(7):1635-46 |
References_xml | – volume: 19 start-page: 1848 year: 2013 end-page: 1856 ident: CR31 article-title: Probing -methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA publication-title: RNA doi: 10.1261/rna.041178.113 – volume: 39 start-page: 241 year: 1990 end-page: 303 ident: CR25 article-title: The numerous modified nucleotides in eukaryotic ribosomal RNA publication-title: Prog. Nucleic Acid Res. Mol. Biol. doi: 10.1016/S0079-6603(08)60629-7 – volume: 71 start-page: 3971 year: 1974 end-page: 3975 ident: CR28 article-title: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.71.10.3971 – volume: 15 start-page: 293 year: 2014 end-page: 306 ident: CR42 article-title: Gene expression regulation mediated through reversible m A RNA methylation publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3724 – volume: 13 start-page: 1125 year: 2006 end-page: 1135 ident: CR8 article-title: Pseudouridine synthases publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2006.09.009 – volume: 9 start-page: 1371 year: 2003 end-page: 1382 ident: CR38 article-title: The U2 snRNA:pseudouridine-synthase Pus7p is a novel multisite-multisubstrate RNA:Psi-synthase also acting on tRNAs publication-title: RNA doi: 10.1261/rna.5520403 – volume: 40 start-page: 2107 year: 2012 end-page: 2118 ident: CR36 article-title: Pseudouridine synthase 1: a site-specific synthase without strict sequence recognition requirements publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1017 – volume: 7 start-page: 885 year: 2011 end-page: 887 ident: CR26 article-title: -methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.687 – volume: 6 start-page: 3632 year: 1967 end-page: 3639 ident: CR18 article-title: The reversible chemical modification of uracil, thymine, and guanine nucleotides and the modification of the action of ribonuclease on ribonucleic acid publication-title: Biochemistry doi: 10.1021/bi00864a002 – volume: 149 start-page: 1393 year: 2012 end-page: 1406 ident: CR33 article-title: Insights into RNA biology from an atlas of mammalian mRNA-binding proteins publication-title: Cell doi: 10.1016/j.cell.2012.04.031 – volume: 44 start-page: 660 year: 2011 end-page: 666 ident: CR4 article-title: rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.09.017 – volume: 174 start-page: 16 year: 2014 end-page: 21 ident: CR12 article-title: 28S rRNA is inducibly pseudouridylated by the mTOR pathway translational control in CHO cell cultures publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2014.01.024 – volume: 42 start-page: 3492 year: 2014 end-page: 3501 ident: CR6 article-title: The contribution of pseudouridine to stabilities and structure of RNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1330 – volume: 15 start-page: 549 year: 2004 end-page: 558 ident: CR35 article-title: Regulation of nuclear receptor activity by a pseudouridine synthase through posttranscriptional modification of steroid receptor RNA activator publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.06.044 – volume: 25 start-page: 4493 year: 1997 end-page: 4499 ident: CR37 article-title: The yeast gene encodes a pseudouridine synthase (Pus4) catalyzing the formation of Ψ55 in both mitochondrial and cytoplasmic tRNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.22.4493 – volume: 5 start-page: 1C4 year: 2008 ident: CR45 article-title: Culture of mouse embryonic stem cells publication-title: Curr. Protoc. Stem Cell Biol. – volume: 505 start-page: 696 year: 2014 end-page: 700 ident: CR48 article-title: genome-wide profiling of RNA secondary structure reveals novel regulatory features publication-title: Nature doi: 10.1038/nature12756 – volume: 49 start-page: 341 year: 2000 end-page: 351 ident: CR2 article-title: Pseudouridine in RNA: what, where, how, and why publication-title: IUBMB Life doi: 10.1080/152165400410182 – volume: 41 start-page: D262 year: 2013 end-page: D267 ident: CR1 article-title: MODOMICS: a database of RNA modification pathways–2013 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1007 – volume: 46 start-page: 674 year: 2012 end-page: 690 ident: CR34 article-title: The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.021 – volume: 77 start-page: 297 year: 1998 end-page: 309 ident: CR20 article-title: Mapping of pseudouridine residues in RNA to nucleotide resolution publication-title: Methods Mol. Biol. – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: CR47 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 79 start-page: 321 year: 2010 end-page: 349 ident: CR30 article-title: Functions and regulation of RNA editing by ADAR deaminases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060208-105251 – volume: 485 start-page: 201 year: 2012 end-page: 206 ident: CR39 article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq publication-title: Nature doi: 10.1038/nature11112 – volume: 8 start-page: 966 year: 2014 end-page: 973 ident: CR13 article-title: A pseudouridine residue in the spliceosome core is part of the filamentous growth program in yeast publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.07.004 – volume: 49 start-page: 18 year: 2013 end-page: 29 ident: CR27 article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.10.015 – volume: 2 start-page: 712 year: 2011 end-page: 725 ident: CR5 article-title: Pseudouridines in spliceosomal snRNAs publication-title: Protein Cell doi: 10.1007/s13238-011-1087-1 – volume: 515 start-page: 143 year: 2014 end-page: 146 ident: CR21 article-title: Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells publication-title: Nature doi: 10.1038/nature13802 – volume: 6 start-page: 863 year: 2010 end-page: 865 ident: CR41 article-title: Grand challenge commentary: RNA epigenetics? publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.482 – volume: 74 start-page: 1303 year: 2004 end-page: 1308 ident: CR10 article-title: Missense mutation in pseudouridine synthase 1 ( ) causes mitochondrial myopathy and sideroblastic anemia (MLASA) publication-title: Am. J. Hum. Genet. doi: 10.1086/421530 – volume: 171 start-page: 781 year: 1978 end-page: 786 ident: CR24 article-title: The pseudouridine contents of the ribosomal ribonucleic acids of three vertebrate species. Numerical correspondence between pseudouridine residues and 2′- -methyl groups is not always conserved publication-title: Biochem. J. doi: 10.1042/bj1710781 – volume: 38 start-page: 210 year: 2013 end-page: 218 ident: CR3 article-title: RNA pseudouridylation: new insights into an old modification publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2013.01.002 – volume: 9 start-page: e110799 year: 2014 ident: CR23 article-title: Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in publication-title: PLoS ONE doi: 10.1371/journal.pone.0110799 – volume: 40 start-page: D306 year: 2012 end-page: D312 ident: CR32 article-title: InterPro in 2011: new developments in the family and domain prediction database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr948 – volume: 30 start-page: 79 year: 2011 end-page: 89 ident: CR11 article-title: U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNP publication-title: EMBO J. doi: 10.1038/emboj.2010.316 – volume: 2 start-page: 1653 year: 1975 end-page: 1668 ident: CR29 article-title: The methylation state of poly A–containing messenger RNA from cultured hamster cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/2.10.1653 – volume: 500 start-page: 107 year: 2013 end-page: 110 ident: CR17 article-title: Unusual base pairing during the decoding of a stop codon by the ribosome publication-title: Nature doi: 10.1038/nature12302 – volume: 6 start-page: 835 year: 2002 end-page: 843 ident: CR15 article-title: RNomics: identification and function of small, non-messenger RNAs publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/S1367-5931(02)00397-6 – volume: 32 start-page: 9754 year: 1993 end-page: 9762 ident: CR19 article-title: Four newly located pseudouridylate residues in 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique publication-title: Biochemistry doi: 10.1021/bi00088a030 – volume: 505 start-page: 117 year: 2014 end-page: 120 ident: CR44 article-title: -methyladenosine-dependent regulation of messenger RNA stability publication-title: Nature – volume: 97 start-page: 14311 year: 2000 end-page: 14316 ident: CR14 article-title: Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.250426397 – volume: 37 start-page: 597 year: 2010 end-page: 606 ident: CR7 article-title: Box H/ACA small ribonucleoproteins publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.01.032 – volume: 518 start-page: 560 year: 2015 end-page: 564 ident: CR43 article-title: -methyladenosine–dependent RNA structural switches regulate RNA-protein interactions publication-title: Nature doi: 10.1038/nature14234 – volume: 19 start-page: 32 year: 1998 end-page: 38 ident: CR9 article-title: X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions publication-title: Nat. Genet. doi: 10.1038/ng0598-32 – volume: 474 start-page: 395 year: 2011 end-page: 398 ident: CR16 article-title: Converting nonsense codons into sense codons by targeted pseudouridylation publication-title: Nature doi: 10.1038/nature10165 – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: CR49 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 149 start-page: 1635 year: 2012 end-page: 1646 ident: CR40 article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons publication-title: Cell doi: 10.1016/j.cell.2012.05.003 – volume: 159 start-page: 148 year: 2014 end-page: 162 ident: CR22 article-title: Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA publication-title: Cell doi: 10.1016/j.cell.2014.08.028 – volume: 17 start-page: 909 year: 2010 end-page: 915 ident: CR46 article-title: iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution publication-title: Nat. Struct. Mol. Biol. – volume: 171 start-page: 781 year: 1978 ident: BFnchembio1836_CR24 publication-title: Biochem. J. doi: 10.1042/bj1710781 – volume: 79 start-page: 321 year: 2010 ident: BFnchembio1836_CR30 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060208-105251 – volume: 25 start-page: 1754 year: 2009 ident: BFnchembio1836_CR47 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 174 start-page: 16 year: 2014 ident: BFnchembio1836_CR12 publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2014.01.024 – volume: 42 start-page: 3492 year: 2014 ident: BFnchembio1836_CR6 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1330 – volume: 19 start-page: 1848 year: 2013 ident: BFnchembio1836_CR31 publication-title: RNA doi: 10.1261/rna.041178.113 – volume: 6 start-page: 863 year: 2010 ident: BFnchembio1836_CR41 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.482 – volume: 505 start-page: 117 year: 2014 ident: BFnchembio1836_CR44 publication-title: Nature doi: 10.1038/nature12730 – volume: 38 start-page: 210 year: 2013 ident: BFnchembio1836_CR3 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2013.01.002 – volume: 159 start-page: 148 year: 2014 ident: BFnchembio1836_CR22 publication-title: Cell doi: 10.1016/j.cell.2014.08.028 – volume: 9 start-page: 1371 year: 2003 ident: BFnchembio1836_CR38 publication-title: RNA doi: 10.1261/rna.5520403 – volume: 518 start-page: 560 year: 2015 ident: BFnchembio1836_CR43 publication-title: Nature doi: 10.1038/nature14234 – volume: 6 start-page: 3632 year: 1967 ident: BFnchembio1836_CR18 publication-title: Biochemistry doi: 10.1021/bi00864a002 – volume: 515 start-page: 143 year: 2014 ident: BFnchembio1836_CR21 publication-title: Nature doi: 10.1038/nature13802 – volume: 485 start-page: 201 year: 2012 ident: BFnchembio1836_CR39 publication-title: Nature doi: 10.1038/nature11112 – volume: 505 start-page: 696 year: 2014 ident: BFnchembio1836_CR48 publication-title: Nature doi: 10.1038/nature12756 – volume: 2 start-page: 712 year: 2011 ident: BFnchembio1836_CR5 publication-title: Protein Cell doi: 10.1007/s13238-011-1087-1 – volume: 15 start-page: 549 year: 2004 ident: BFnchembio1836_CR35 publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.06.044 – volume: 49 start-page: 18 year: 2013 ident: BFnchembio1836_CR27 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.10.015 – volume: 46 start-page: 674 year: 2012 ident: BFnchembio1836_CR34 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.021 – volume: 13 start-page: 1125 year: 2006 ident: BFnchembio1836_CR8 publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2006.09.009 – volume: 71 start-page: 3971 year: 1974 ident: BFnchembio1836_CR28 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.71.10.3971 – volume: 9 start-page: e110799 year: 2014 ident: BFnchembio1836_CR23 publication-title: PLoS ONE doi: 10.1371/journal.pone.0110799 – volume: 44 start-page: 660 year: 2011 ident: BFnchembio1836_CR4 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.09.017 – volume: 41 start-page: D262 year: 2013 ident: BFnchembio1836_CR1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1007 – volume: 19 start-page: 32 year: 1998 ident: BFnchembio1836_CR9 publication-title: Nat. Genet. doi: 10.1038/ng0598-32 – volume: 149 start-page: 1635 year: 2012 ident: BFnchembio1836_CR40 publication-title: Cell doi: 10.1016/j.cell.2012.05.003 – volume: 339 start-page: 819 year: 2013 ident: BFnchembio1836_CR49 publication-title: Science doi: 10.1126/science.1231143 – volume: 8 start-page: 966 year: 2014 ident: BFnchembio1836_CR13 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.07.004 – volume: 17 start-page: 909 year: 2010 ident: BFnchembio1836_CR46 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1838 – volume: 15 start-page: 293 year: 2014 ident: BFnchembio1836_CR42 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3724 – volume: 40 start-page: 2107 year: 2012 ident: BFnchembio1836_CR36 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1017 – volume: 7 start-page: 885 year: 2011 ident: BFnchembio1836_CR26 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.687 – volume: 2 start-page: 1653 year: 1975 ident: BFnchembio1836_CR29 publication-title: Nucleic Acids Res. doi: 10.1093/nar/2.10.1653 – volume: 149 start-page: 1393 year: 2012 ident: BFnchembio1836_CR33 publication-title: Cell doi: 10.1016/j.cell.2012.04.031 – volume: 30 start-page: 79 year: 2011 ident: BFnchembio1836_CR11 publication-title: EMBO J. doi: 10.1038/emboj.2010.316 – volume: 5 start-page: 1C4 year: 2008 ident: BFnchembio1836_CR45 publication-title: Curr. Protoc. Stem Cell Biol. doi: 10.1002/9780470151808.sc01c04s5 – volume: 40 start-page: D306 year: 2012 ident: BFnchembio1836_CR32 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr948 – volume: 77 start-page: 297 year: 1998 ident: BFnchembio1836_CR20 publication-title: Methods Mol. Biol. – volume: 39 start-page: 241 year: 1990 ident: BFnchembio1836_CR25 publication-title: Prog. Nucleic Acid Res. Mol. Biol. doi: 10.1016/S0079-6603(08)60629-7 – volume: 97 start-page: 14311 year: 2000 ident: BFnchembio1836_CR14 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.250426397 – volume: 32 start-page: 9754 year: 1993 ident: BFnchembio1836_CR19 publication-title: Biochemistry doi: 10.1021/bi00088a030 – volume: 49 start-page: 341 year: 2000 ident: BFnchembio1836_CR2 publication-title: IUBMB Life doi: 10.1080/152165400410182 – volume: 74 start-page: 1303 year: 2004 ident: BFnchembio1836_CR10 publication-title: Am. J. Hum. Genet. doi: 10.1086/421530 – volume: 500 start-page: 107 year: 2013 ident: BFnchembio1836_CR17 publication-title: Nature doi: 10.1038/nature12302 – volume: 25 start-page: 4493 year: 1997 ident: BFnchembio1836_CR37 publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.22.4493 – volume: 6 start-page: 835 year: 2002 ident: BFnchembio1836_CR15 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/S1367-5931(02)00397-6 – volume: 474 start-page: 395 year: 2011 ident: BFnchembio1836_CR16 publication-title: Nature doi: 10.1038/nature10165 – volume: 37 start-page: 597 year: 2010 ident: BFnchembio1836_CR7 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.01.032 – reference: 1187339 - Nucleic Acids Res. 1975 Oct;2(10):1653-68 – reference: 14561887 - RNA. 2003 Nov;9(11):1371-82 – reference: 20601959 - Nat Struct Mol Biol. 2010 Jul;17(7):909-15 – reference: 24480570 - J Biotechnol. 2014 Mar 20;174:16-21 – reference: 24270811 - Nature. 2014 Jan 30;505(7485):696-700 – reference: 4372599 - Proc Natl Acad Sci U S A. 1974 Oct;71(10):3971-5 – reference: 23287718 - Science. 2013 Feb 15;339(6121):819-23 – reference: 20192758 - Annu Rev Biochem. 2010;79:321-49 – reference: 22099312 - Mol Cell. 2011 Nov 18;44(4):660-6 – reference: 21131909 - EMBO J. 2011 Jan 5;30(1):79-89 – reference: 23812587 - Nature. 2013 Aug 1;500(7460):107-10 – reference: 2247610 - Prog Nucleic Acid Res Mol Biol. 1990;39:241-303 – reference: 24662220 - Nat Rev Genet. 2014 May;15(5):293-306 – reference: 9770678 - Methods Mol Biol. 1998;77:297-309 – reference: 25127136 - Cell Rep. 2014 Aug 21;8(4):966-73 – reference: 25219674 - Cell. 2014 Sep 25;159(1):148-62 – reference: 15108122 - Am J Hum Genet. 2004 Jun;74(6):1303-8 – reference: 20227365 - Mol Cell. 2010 Mar 12;37(5):597-606 – reference: 24141618 - RNA. 2013 Dec;19(12):1848-56 – reference: 22096229 - Nucleic Acids Res. 2012 Jan;40(Database issue):D306-12 – reference: 11106375 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14311-6 – reference: 22102571 - Nucleic Acids Res. 2012 Mar;40(5):2107-18 – reference: 22608085 - Cell. 2012 Jun 22;149(7):1635-46 – reference: 9590285 - Nat Genet. 1998 May;19(1):32-8 – reference: 21079590 - Nat Chem Biol. 2010 Dec;6(12):863-5 – reference: 9358157 - Nucleic Acids Res. 1997 Nov 15;25(22):4493-9 – reference: 6076617 - Biochemistry. 1967 Dec;6(12):3632-9 – reference: 21677757 - Nature. 2011 Jun 15;474(7351):395-8 – reference: 666737 - Biochem J. 1978 Jun 1;171(3):781-6 – reference: 23391857 - Trends Biochem Sci. 2013 Apr;38(4):210-8 – reference: 23177736 - Mol Cell. 2013 Jan 10;49(1):18-29 – reference: 22002720 - Nat Chem Biol. 2011 Oct 16;7(12 ):885-7 – reference: 24284625 - Nature. 2014 Jan 2;505(7481):117-20 – reference: 25192136 - Nature. 2014 Nov 6;515(7525):143-6 – reference: 21976061 - Protein Cell. 2011 Sep;2(9):712-25 – reference: 12470739 - Curr Opin Chem Biol. 2002 Dec;6(6):835-43 – reference: 8373778 - Biochemistry. 1993 Sep 21;32(37):9754-62 – reference: 25719671 - Nature. 2015 Feb 26;518(7540):560-4 – reference: 18770628 - Curr Protoc Stem Cell Biol. 2008 Apr;Chapter 1:Unit 1C.4 – reference: 15327771 - Mol Cell. 2004 Aug 27;15(4):549-58 – reference: 22681889 - Mol Cell. 2012 Jun 8;46(5):674-90 – reference: 22658674 - Cell. 2012 Jun 8;149(6):1393-406 – reference: 10902565 - IUBMB Life. 2000 May;49(5):341-51 – reference: 24369424 - Nucleic Acids Res. 2014 Mar;42(5):3492-501 – reference: 25353621 - PLoS One. 2014 Oct 29;9(10):e110799 – reference: 23118484 - Nucleic Acids Res. 2013 Jan;41(Database issue):D262-7 – reference: 17113994 - Chem Biol. 2006 Nov;13(11):1125-35 – reference: 22575960 - Nature. 2012 Apr 29;485(7397):201-6 – reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 |
SSID | ssj0036618 |
Score | 2.620093 |
Snippet | Pseudouridine (ψ) is a C-linked uracil modification originally discovered in tRNA. MS analysis and CeU-Seq, a method that permits chemical tagging, pulldown... Pseudouridine (Ψ) is the most abundant post-transcriptional RNA modification, yet little is known about its prevalence, mechanism and function in mRNA. Here,... Pseudouridine () is the most abundant post-transcriptional RNA modification, yet little is known about its prevalence, mechanism and function in mRNA. Here, we... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 592 |
SubjectTerms | 101/58 13/1 13/100 13/109 13/89 38/22 38/23 38/77 38/90 38/91 42/70 45/29 631/1647/296 631/337/1645/2570 631/553 631/92/500 82/80 Analysis Animals Biochemical Engineering Biochemistry Bioorganic Chemistry Cell Biology Chemistry Chemistry/Food Science Epigenesis, Genetic Humans Hydro-Lyases - chemistry Hydro-Lyases - genetics Hydro-Lyases - metabolism Mammals Mice Organ Specificity Peptide Elongation Factor 1 - chemistry Peptide Elongation Factor 1 - genetics Peptide Elongation Factor 1 - metabolism Pseudouridine - chemistry Pseudouridine - genetics Pseudouridine - metabolism Ribonucleic acid RNA RNA Processing, Post-Transcriptional RNA, Messenger - chemistry RNA, Messenger - genetics RNA, Messenger - metabolism RNA, Ribosomal - chemistry RNA, Ribosomal - genetics RNA, Ribosomal - metabolism Staining and Labeling - methods Stress, Physiological Studies Transcriptome |
Title | Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome |
URI | https://link.springer.com/article/10.1038/nchembio.1836 https://www.ncbi.nlm.nih.gov/pubmed/26075521 https://www.proquest.com/docview/1766267447 https://www.proquest.com/docview/1698390770 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4ALoi2PQFsZCZULpt7Yjp0TaqsuFRIVqqi0tyjesaVKJFnY3UP_PWMnWSoVesklI8eaGXue-QbgvRIW0aLhWBvBlfU1rz06rmptBGrnBMY85LfL4uJafZ3p2ZBwWw5tleOdmC5q7OYxR34cgQzzwihlPi9-8Tg1KlZXhxEaj2E7QpdFrTazTcAlyfakX-G0zrlSWgwYm0La45ZY0rib7tOkR2e-Y5PuOZr3iqTJ9kyfw7PBaWQnvZR34JFvd2HvpKWAubllRyy1cab8-C48ORtHuO3B1QgHwBYUaSIF3CwiNpHGMewn0bPF0q8xJuLxtu-KY11g5BSypm6alANhq2jO0uXSNf4FXE_Pf5xd8GGIAp-rslhxGXAeMfxCboPFnBwCKzEPpSTX2ptQWKWtt6FUTstSllZ47YpSWUeBHWKw8iVstV3rXwObSB0obs3RuqBqR0ddkwo4WskTKWIGH0c2VvMBYTwOuvhZpUq3tNXI9SpyPYOjDfmih9b4H-H-KJNqOGHL6q8-ZPBu85r4Gwsedeu7NdEUJfl_whiRwatelpsvURxnSC8mGXwYhXtn8X9t483D23gLT8mZ0n1z4D5srX6v_QE5LCt3mLSSnnb65RC2T88vv1_9AZJu78Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXBC2FlAJGgnIhrDe2E-eAUFVYtvRxQK3UW4h3bAmJJFt2V2j_FL-RcRIvlUq59ZyRY82M5-XxNwCvJNeIGrMYy4zHUtsyLi2aWJYq46iM4ejrkCen6fhcfrlQF2vwO7yF8W2VwSa2hhqbia-RDzyQYZJmUmYfppexnxrlb1fDCI1OLY7s8helbLP3hx9Jvq-TZPTp7GAc91MF4onM03ksHE48qJ1LtNOYkIfUAhOXC4o1beZSLZW22uXSKJGLXHOrTJpLbSjTQXRa0Lp34K4U5Mn9y_TR52D5Bfm69umdUkkspeI9picXelCTCCrzvXk37NCgr_jAa4HttUvZ1teNHsD9Pkhl-51WPYQ1W2_C1n5NCXq1ZHusbRtt6_GbsHEQRsZtwdcAP8CmlNkiJfjMI0SRhjPsJt-z6cwu0Bf-cdl14bHGMQpCWVVWVVtzYXPvPltj1lT2EZzfCnu3Yb1uavsE2FAoR3lygto4WRoyLYpUztBKlkgRI3gb2FhMekRzP1jjR9HerAtdBK4XnusR7K3Ipx2Ux02Eu0EmRX-iZ8Vf_Yvg5eoz8ddfsJS1bRZEk-YUb_Is4xE87mS5-hPljRnpxTCCN0G4Vxb_1zZ2_r-NF7AxPjs5Lo4PT4-ewj0K5FTXmLgL6_OfC_uMgqW5ed5qKINvt30k_gDWMCip |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEGx8FAYYCcYLoWlsx84DQmNbtTGopolJe8vini1NWpJCW6H-a_x1nJO4TBrwtuecHOvufB--8-8AXotYI2pUERYqjoS2RVRYNJEopIpRGhOjv4f8Ok4PTsXnM3m2Br_CWxjfVhlsYmOosZ74O_KBBzJMUiWEGriuLeJ4b_Rx-j3yE6R8pTWM02hV5Mguf1L6NvtwuEeyfpMko_1vuwdRN2EgmogsnUfc4cQD3LlEO40JeUvNMXEZp7jTKpdqIbXVLhNG8oxnOrbSpJnQhrIeRKc5rXsL1pXPinqw_ml_fHwS_AAnz9c8xJMyiYSQcYfwGXM9qEggpbmo3w9bbOgrHvFamHutRNt4vtF9uNeFrGyn1bEHsGarDdjcqShdL5dsmzVNpM3t_Abc2Q0D5DbhJIARsCmxEindZx4vivSd4bIq6BObzuwCfRkAl21PHqsdo5CUlUVZNjcwbO6daWPa6tI-hNMbYfAj6FV1ZZ8AG3LpKGtOUBsnCkOGRpICGlrJEiliH94FNuaTDt_cj9m4zJs6O9d54Hruud6H7RX5tAX2-BfhVpBJ3p3vWf5HG_vwavWZ-OvLLUVl6wXRpBlFn7FScR8et7Jc_YmySEV6MezD2yDcK4v_bRtP_7-Nl3CbjkP-5XB89AzuUlQn2y7FLejNfyzsc4qc5uZFp6IMzm_6VPwGb9AuOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+pulldown+reveals+dynamic+pseudouridylation+of+the+mammalian+transcriptome&rft.jtitle=Nature+chemical+biology&rft.au=Li%2C+Xiaoyu&rft.au=Zhu%2C+Ping&rft.au=Ma%2C+Shiqing&rft.au=Song%2C+Jinghui&rft.date=2015-08-01&rft.issn=1552-4450&rft.eissn=1552-4469&rft.volume=11&rft.issue=8&rft.spage=592&rft.epage=597&rft_id=info:doi/10.1038%2Fnchembio.1836&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nchembio_1836 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4450&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4450&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4450&client=summon |