Genome-wide identification and expression analysis of AP2/ERF transcription factors in sugarcane (Saccharum spontaneum L.)

APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide. A...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 21; no. 1; pp. 685 - 17
Main Authors Li, Peiting, Chai, Zhe, Lin, Pingping, Huang, Chaohua, Huang, Guoqiang, Xu, Liangnian, Deng, Zuhu, Zhang, Muqing, Zhang, Yu, Zhao, Xinwang
Format Journal Article
LanguageEnglish
Published England BioMed Central 02.10.2020
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide. A total of 218 AP2/ERF genes were identified in the Saccharum spontaneum genome. Phylogenetic analysis showed that these genes could be divided into four groups, including 43 AP2s, 160 ERFs and Dehydration-responsive element-binding (DREB) factors, 11 ABI3/VPs (RAV), and four Soloist genes. These genes were unevenly distributed on 32 chromosomes. The structural analysis of SsAP2/ERF genes showed that 91 SsAP2/ERFs lacked introns. Sugarcane and sorghum had a collinear relationship between 168 SsAP2/ERF genes and sorghum AP2/ERF genes that reflected their similarity. Multiple cis-regulatory elements (CREs) present in the SsAP2/ERF promoter were related to abiotic stresses, suggesting that SsAP2/ERF activity could contribute to sugarcane adaptation to environmental changes. The tissue-specific analysis showed spatiotemporal expression of SsAP2/ERF in the stems and leaves of sugarcane at different development stages. In ten sugarcane samples, 39 SsAP2/ERFs were not expressed, whereas 58 SsAP2/ERFs were expressed in all samples. Quantitative PCR experiments showed that SsERF52 expression was up-regulated under salt stress, but suppressed under dehydration stress. SsSoloist4 had the most considerable upregulation in response to treatment with the exogenous hormones ABA and GA. Within 3 h of ABA or PEG6000 treatment, SsSoloist4 expression was up-regulated, indicating that this gene could play a role in the responses to ABA and GA-associated dehydration stress. Analysis of AP2/ERF gene expression patterns under different treatments indicated that SsAP2/ERF genes played an essential role in dehydration and salt stress responses of S. spontaneum. In this study, a total of 218 members of the AP2 / ERF superfamily were identified in sugarcane, and their genetic structure, evolution characteristics, and expression patterns were studied and analyzed. The results of this study provide a foundation for future analyses to elucidate the importance of AP2/ERF transcription factors in the function and molecular breeding of sugarcane.
AbstractList Abstract Background APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide. Results A total of 218 AP2/ERF genes were identified in the Saccharum spontaneum genome. Phylogenetic analysis showed that these genes could be divided into four groups, including 43 AP2s, 160 ERFs and Dehydration-responsive element-binding (DREB) factors, 11 ABI3/VPs (RAV), and four Soloist genes. These genes were unevenly distributed on 32 chromosomes. The structural analysis of SsAP2/ERF genes showed that 91 SsAP2/ERFs lacked introns. Sugarcane and sorghum had a collinear relationship between 168 SsAP2/ERF genes and sorghum AP2/ERF genes that reflected their similarity. Multiple cis-regulatory elements (CREs) present in the SsAP2/ERF promoter were related to abiotic stresses, suggesting that SsAP2/ERF activity could contribute to sugarcane adaptation to environmental changes. The tissue-specific analysis showed spatiotemporal expression of SsAP2/ERF in the stems and leaves of sugarcane at different development stages. In ten sugarcane samples, 39 SsAP2/ERFs were not expressed, whereas 58 SsAP2/ERFs were expressed in all samples. Quantitative PCR experiments showed that SsERF52 expression was up-regulated under salt stress, but suppressed under dehydration stress. SsSoloist4 had the most considerable upregulation in response to treatment with the exogenous hormones ABA and GA. Within 3 h of ABA or PEG6000 treatment, SsSoloist4 expression was up-regulated, indicating that this gene could play a role in the responses to ABA and GA-associated dehydration stress. Analysis of AP2/ERF gene expression patterns under different treatments indicated that SsAP2/ERF genes played an essential role in dehydration and salt stress responses of S. spontaneum. Conclusions In this study, a total of 218 members of the AP2 / ERF superfamily were identified in sugarcane, and their genetic structure, evolution characteristics, and expression patterns were studied and analyzed. The results of this study provide a foundation for future analyses to elucidate the importance of AP2/ERF transcription factors in the function and molecular breeding of sugarcane.
Background APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide. Results A total of 218 AP2/ERF genes were identified in the Saccharum spontaneum genome. Phylogenetic analysis showed that these genes could be divided into four groups, including 43 AP2s, 160 ERFs and Dehydration-responsive element-binding (DREB) factors, 11 ABI3/VPs (RAV), and four Soloist genes. These genes were unevenly distributed on 32 chromosomes. The structural analysis of SsAP2/ERF genes showed that 91 SsAP2/ERFs lacked introns. Sugarcane and sorghum had a collinear relationship between 168 SsAP2/ERF genes and sorghum AP2/ERF genes that reflected their similarity. Multiple cis-regulatory elements (CREs) present in the SsAP2/ERF promoter were related to abiotic stresses, suggesting that SsAP2/ERF activity could contribute to sugarcane adaptation to environmental changes. The tissue-specific analysis showed spatiotemporal expression of SsAP2/ERF in the stems and leaves of sugarcane at different development stages. In ten sugarcane samples, 39 SsAP2/ERFs were not expressed, whereas 58 SsAP2/ERFs were expressed in all samples. Quantitative PCR experiments showed that SsERF52 expression was up-regulated under salt stress, but suppressed under dehydration stress. SsSoloist4 had the most considerable upregulation in response to treatment with the exogenous hormones ABA and GA. Within 3 h of ABA or PEG6000 treatment, SsSoloist4 expression was up-regulated, indicating that this gene could play a role in the responses to ABA and GA-associated dehydration stress. Analysis of AP2/ERF gene expression patterns under different treatments indicated that SsAP2/ERF genes played an essential role in dehydration and salt stress responses of S. spontaneum. Conclusions In this study, a total of 218 members of the AP2 / ERF superfamily were identified in sugarcane, and their genetic structure, evolution characteristics, and expression patterns were studied and analyzed. The results of this study provide a foundation for future analyses to elucidate the importance of AP2/ERF transcription factors in the function and molecular breeding of sugarcane.
APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide. A total of 218 AP2/ERF genes were identified in the Saccharum spontaneum genome. Phylogenetic analysis showed that these genes could be divided into four groups, including 43 AP2s, 160 ERFs and Dehydration-responsive element-binding (DREB) factors, 11 ABI3/VPs (RAV), and four Soloist genes. These genes were unevenly distributed on 32 chromosomes. The structural analysis of SsAP2/ERF genes showed that 91 SsAP2/ERFs lacked introns. Sugarcane and sorghum had a collinear relationship between 168 SsAP2/ERF genes and sorghum AP2/ERF genes that reflected their similarity. Multiple cis-regulatory elements (CREs) present in the SsAP2/ERF promoter were related to abiotic stresses, suggesting that SsAP2/ERF activity could contribute to sugarcane adaptation to environmental changes. The tissue-specific analysis showed spatiotemporal expression of SsAP2/ERF in the stems and leaves of sugarcane at different development stages. In ten sugarcane samples, 39 SsAP2/ERFs were not expressed, whereas 58 SsAP2/ERFs were expressed in all samples. Quantitative PCR experiments showed that SsERF52 expression was up-regulated under salt stress, but suppressed under dehydration stress. SsSoloist4 had the most considerable upregulation in response to treatment with the exogenous hormones ABA and GA. Within 3 h of ABA or PEG6000 treatment, SsSoloist4 expression was up-regulated, indicating that this gene could play a role in the responses to ABA and GA-associated dehydration stress. Analysis of AP2/ERF gene expression patterns under different treatments indicated that SsAP2/ERF genes played an essential role in dehydration and salt stress responses of S. spontaneum. In this study, a total of 218 members of the AP2 / ERF superfamily were identified in sugarcane, and their genetic structure, evolution characteristics, and expression patterns were studied and analyzed. The results of this study provide a foundation for future analyses to elucidate the importance of AP2/ERF transcription factors in the function and molecular breeding of sugarcane.
APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide.BACKGROUNDAPETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide.A total of 218 AP2/ERF genes were identified in the Saccharum spontaneum genome. Phylogenetic analysis showed that these genes could be divided into four groups, including 43 AP2s, 160 ERFs and Dehydration-responsive element-binding (DREB) factors, 11 ABI3/VPs (RAV), and four Soloist genes. These genes were unevenly distributed on 32 chromosomes. The structural analysis of SsAP2/ERF genes showed that 91 SsAP2/ERFs lacked introns. Sugarcane and sorghum had a collinear relationship between 168 SsAP2/ERF genes and sorghum AP2/ERF genes that reflected their similarity. Multiple cis-regulatory elements (CREs) present in the SsAP2/ERF promoter were related to abiotic stresses, suggesting that SsAP2/ERF activity could contribute to sugarcane adaptation to environmental changes. The tissue-specific analysis showed spatiotemporal expression of SsAP2/ERF in the stems and leaves of sugarcane at different development stages. In ten sugarcane samples, 39 SsAP2/ERFs were not expressed, whereas 58 SsAP2/ERFs were expressed in all samples. Quantitative PCR experiments showed that SsERF52 expression was up-regulated under salt stress, but suppressed under dehydration stress. SsSoloist4 had the most considerable upregulation in response to treatment with the exogenous hormones ABA and GA. Within 3 h of ABA or PEG6000 treatment, SsSoloist4 expression was up-regulated, indicating that this gene could play a role in the responses to ABA and GA-associated dehydration stress. Analysis of AP2/ERF gene expression patterns under different treatments indicated that SsAP2/ERF genes played an essential role in dehydration and salt stress responses of S. spontaneum.RESULTSA total of 218 AP2/ERF genes were identified in the Saccharum spontaneum genome. Phylogenetic analysis showed that these genes could be divided into four groups, including 43 AP2s, 160 ERFs and Dehydration-responsive element-binding (DREB) factors, 11 ABI3/VPs (RAV), and four Soloist genes. These genes were unevenly distributed on 32 chromosomes. The structural analysis of SsAP2/ERF genes showed that 91 SsAP2/ERFs lacked introns. Sugarcane and sorghum had a collinear relationship between 168 SsAP2/ERF genes and sorghum AP2/ERF genes that reflected their similarity. Multiple cis-regulatory elements (CREs) present in the SsAP2/ERF promoter were related to abiotic stresses, suggesting that SsAP2/ERF activity could contribute to sugarcane adaptation to environmental changes. The tissue-specific analysis showed spatiotemporal expression of SsAP2/ERF in the stems and leaves of sugarcane at different development stages. In ten sugarcane samples, 39 SsAP2/ERFs were not expressed, whereas 58 SsAP2/ERFs were expressed in all samples. Quantitative PCR experiments showed that SsERF52 expression was up-regulated under salt stress, but suppressed under dehydration stress. SsSoloist4 had the most considerable upregulation in response to treatment with the exogenous hormones ABA and GA. Within 3 h of ABA or PEG6000 treatment, SsSoloist4 expression was up-regulated, indicating that this gene could play a role in the responses to ABA and GA-associated dehydration stress. Analysis of AP2/ERF gene expression patterns under different treatments indicated that SsAP2/ERF genes played an essential role in dehydration and salt stress responses of S. spontaneum.In this study, a total of 218 members of the AP2 / ERF superfamily were identified in sugarcane, and their genetic structure, evolution characteristics, and expression patterns were studied and analyzed. The results of this study provide a foundation for future analyses to elucidate the importance of AP2/ERF transcription factors in the function and molecular breeding of sugarcane.CONCLUSIONSIn this study, a total of 218 members of the AP2 / ERF superfamily were identified in sugarcane, and their genetic structure, evolution characteristics, and expression patterns were studied and analyzed. The results of this study provide a foundation for future analyses to elucidate the importance of AP2/ERF transcription factors in the function and molecular breeding of sugarcane.
ArticleNumber 685
Author Huang, Chaohua
Xu, Liangnian
Deng, Zuhu
Li, Peiting
Zhang, Yu
Zhang, Muqing
Zhao, Xinwang
Huang, Guoqiang
Chai, Zhe
Lin, Pingping
Author_xml – sequence: 1
  givenname: Peiting
  surname: Li
  fullname: Li, Peiting
– sequence: 2
  givenname: Zhe
  surname: Chai
  fullname: Chai, Zhe
– sequence: 3
  givenname: Pingping
  surname: Lin
  fullname: Lin, Pingping
– sequence: 4
  givenname: Chaohua
  surname: Huang
  fullname: Huang, Chaohua
– sequence: 5
  givenname: Guoqiang
  surname: Huang
  fullname: Huang, Guoqiang
– sequence: 6
  givenname: Liangnian
  surname: Xu
  fullname: Xu, Liangnian
– sequence: 7
  givenname: Zuhu
  surname: Deng
  fullname: Deng, Zuhu
– sequence: 8
  givenname: Muqing
  orcidid: 0000-0003-3138-3422
  surname: Zhang
  fullname: Zhang, Muqing
– sequence: 9
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
– sequence: 10
  givenname: Xinwang
  surname: Zhao
  fullname: Zhao, Xinwang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33008299$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1P3DAQjSpQ-Wj_QA9VpF7oIeBvx5dKCAFFWqlVy91ynPHiVdbe2km79NfXuwsIOPRgeWb83tN45h1VeyEGqKoPGJ1i3IqzjEkrWIMIapBEUjTrN9UhZhI3BAu29yw-qI5yXiCEZUv42-qAUoRaotRh9fcaQlxC88f3UJcTRu-8NaOPoTahr2G9SpDzLjXDffa5jq4-_07OLn9c1WMyIdvkV1uCM3aMKdc-1Hmam2RNgPrkp7H2zqRpWedVDGOplXB2-vldte_MkOH9w31c3V5d3l58bWbfrm8uzmeNZUqMDQVqLMau7aCztrOI8o62PekFqJ4j1UnOqZWiZxJAMUaE7ZwCwgQnAgl6XN3sZPtoFnqV_NKkex2N19tCTHNt0ujtAJpbJbvecck7zpxzitJOEWDECqKgZUXry05rNXVL6G0ZVzLDC9GXL8Hf6Xn8rSWnGDNeBE4eBFL8NUEe9dJnC8NQphKnrAljLUMSi03fn15BF3FKZQcbFMctxZKggvr4vKOnVh43XABkB7Ap5pzAPUEw0hsb6Z2NdLGR3tpIrwupfUWyftyaovzKD_-j_gOACM4P
CitedBy_id crossref_primary_10_3390_ijms25020893
crossref_primary_10_1016_j_jksus_2023_102720
crossref_primary_10_1111_mpp_13453
crossref_primary_10_1186_s12870_024_05847_2
crossref_primary_10_3390_ijms23116334
crossref_primary_10_3390_agronomy13071900
crossref_primary_10_3390_ijms24087102
crossref_primary_10_1007_s11033_021_06375_0
crossref_primary_10_1186_s12864_024_10717_0
crossref_primary_10_1016_j_bbagen_2024_130755
crossref_primary_10_3390_plants13152119
crossref_primary_10_1016_j_ijbiomac_2023_127582
crossref_primary_10_1093_jxb_erac339
crossref_primary_10_32615_bp_2023_003
crossref_primary_10_3389_fpls_2022_828482
crossref_primary_10_1016_j_scienta_2023_112359
crossref_primary_10_3390_ijms252312849
crossref_primary_10_3390_horticulturae8121153
crossref_primary_10_1007_s00425_022_03837_y
crossref_primary_10_3389_fpls_2022_953623
crossref_primary_10_1186_s12870_021_03043_0
crossref_primary_10_1186_s12870_024_05244_9
crossref_primary_10_3390_genes16010097
crossref_primary_10_3390_ijms232314991
crossref_primary_10_3390_biology11101520
crossref_primary_10_1038_s41598_021_85072_1
crossref_primary_10_1016_j_plantsci_2025_112390
crossref_primary_10_1016_j_scienta_2022_111255
crossref_primary_10_1007_s13562_021_00746_1
crossref_primary_10_3389_fgene_2023_1172321
crossref_primary_10_3390_ijms23062920
crossref_primary_10_1186_s12864_023_09604_x
crossref_primary_10_3389_fpls_2023_1313113
crossref_primary_10_3390_f16010094
crossref_primary_10_1007_s12042_025_09398_0
crossref_primary_10_1038_s41598_024_81046_1
crossref_primary_10_1186_s12967_024_05567_z
crossref_primary_10_1007_s00425_022_04044_5
crossref_primary_10_3390_genes13050895
crossref_primary_10_3390_data8010001
crossref_primary_10_3390_horticulturae9020191
crossref_primary_10_3389_fgene_2021_750761
crossref_primary_10_3390_ijms222413568
crossref_primary_10_3390_ijms22062821
crossref_primary_10_1186_s12870_022_03521_z
crossref_primary_10_3390_ijms23147529
crossref_primary_10_2478_ebtj_2024_0016
crossref_primary_10_1016_j_stress_2024_100384
crossref_primary_10_1016_j_plgene_2024_100468
crossref_primary_10_1186_s12870_023_04180_4
crossref_primary_10_3390_ijms23179737
crossref_primary_10_1016_j_plaphy_2024_108629
crossref_primary_10_3389_fpls_2023_1293424
crossref_primary_10_3390_ijms23063272
crossref_primary_10_3389_fpls_2022_847754
crossref_primary_10_1007_s12355_022_01174_8
crossref_primary_10_1016_j_indcrop_2021_113469
Cites_doi 10.1093/gbe/evy193
10.1016/s1369-5266(03)00081-5
10.1016/j.gene.2012.10.018
10.3389/fpls.2016.01021
10.1038/nature11650
10.1038/ncomms14573
10.1093/bioinformatics/btu817
10.1105/tpc.109.069575
10.1007/s00425-011-1382-3
10.2478/s11756-009-0198-0
10.1371/journal.pone.0127831
10.1007/s11240-016-1114-2
10.1093/jxb/erh005
10.1111/j.1467-7652.2009.00492.x
10.1105/tpc.18.00918
10.7717/peerj.6071
10.1186/s12864-018-5349-7
10.1038/29286
10.1242/jcs.171207
10.1093/nar/gkr1293
10.1104/pp.15.00677
10.1016/j.molp.2020.06.009
10.1016/j.bbrc.2008.11.071
10.1111/j.1365-313X.2011.04610.x
10.1093/nar/gkp335
10.1038/s41598-018-33744-w
10.1016/j.tplants.2015.02.001
10.1093/bioinformatics/btm404
10.1006/meth.2001.1262
10.1016/j.gene.2010.02.011
10.1104/pp.111.174268
10.1093/molbev/mst197
10.1111/j.1744-7909.2011.01062.x
10.1007/s11427-020-1683-x
10.3389/fpls.2019.00228
10.1186/1471-2164-11-719
10.1104/pp.105.073783
10.1007/s11103-006-0057-0
10.1104/pp.16.00415
10.1007/s00299-013-1510-6
10.1126/science.290.5494.1151
10.1016/j.bbrc.2008.04.087
10.1104/pp.106.081752
10.1038/s41588-018-0237-2
10.1016/s1672-0229(10)60008-3
10.1038/srep29948
10.3389/fpls.2016.00067
10.1016/s1369-5266(02)00234-0
10.1016/j.cub.2011.02.020
10.1111/j.1757-1707.2009.01016.x
10.1007/s11033-010-0162-7
10.3389/fpls.2015.01059
10.1111/j.1365-313X.2010.04384.x
10.1186/gb-2006-7-5-r41
10.1007/s11103-013-0073-9
10.1007/s12033-018-0144-x
10.1007/s00299-014-1701-9
10.1007/s11103-010-9674-8
10.1007/s12042-011-9067-4
10.6026/97320630011101
10.1016/j.bbagrm.2011.08.004
10.1007/s11033-012-2228-1
10.1134/S1021443709010063
10.1007/s10681-014-1088-2
10.1104/pp.111.179945
10.4238/2012
10.1016/j.gene.2012.09.039
10.1016/j.jplph.2013.12.015
10.1104/pp.106.094532
10.1111/nph.12291
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/s12864-020-07076-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 17
ExternalDocumentID oai_doaj_org_article_5c97bdf575b54fff933b92e42c629e84
PMC7531145
33008299
10_1186_s12864_020_07076_x
Genre Journal Article
GrantInformation_xml – fundername: Open Foundation of State Key Laboratory for the Protection and Utilization of Subtropical Agricultural Biological Resources
  grantid: SKLCUSA-b201708, SKLCUSA-a201912, and SKLCUSA-b201806
– fundername: Earmarked Fund for Modern Agro-industry Technology Research System
  grantid: CARS-170106
– fundername: Special Fund for Science and Technology Innovation of Fujian Agriculture and Forestry University
  grantid: KFA17168A, KFA17525A, KFA17169A, 2018N1002
– fundername: National Natural Science Foundation of China
  grantid: 31801423 and 31771863
– fundername: ;
  grantid: 31801423 and 31771863
– fundername: ;
  grantid: KFA17168A, KFA17525A, KFA17169A, 2018N1002
– fundername: ;
  grantid: SKLCUSA-b201708, SKLCUSA-a201912, and SKLCUSA-b201806
– fundername: ;
  grantid: CARS-170106
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c496t-3e3ac11f8bebccbc035b38d2d6e9d509b7553c76d47ee94426cbf9e246526063
IEDL.DBID M48
ISSN 1471-2164
IngestDate Wed Aug 27 01:29:44 EDT 2025
Thu Aug 21 14:03:03 EDT 2025
Fri Jul 11 12:37:51 EDT 2025
Fri Jul 25 10:43:34 EDT 2025
Thu Apr 03 06:53:55 EDT 2025
Tue Jul 01 00:39:10 EDT 2025
Thu Apr 24 23:03:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords AP2/ERF gene
Transcription factor
Abiotic stress
Sugarcane
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-3e3ac11f8bebccbc035b38d2d6e9d509b7553c76d47ee94426cbf9e246526063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3138-3422
OpenAccessLink https://doaj.org/article/5c97bdf575b54fff933b92e42c629e84
PMID 33008299
PQID 2451831720
PQPubID 44682
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_5c97bdf575b54fff933b92e42c629e84
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7531145
proquest_miscellaneous_2448407166
proquest_journals_2451831720
pubmed_primary_33008299
crossref_primary_10_1186_s12864_020_07076_x
crossref_citationtrail_10_1186_s12864_020_07076_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-02
PublicationDateYYYYMMDD 2020-10-02
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2020
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References YL Qiu (7076_CR37) 1998; 394
H Zhang (7076_CR58) 2016; 6
ZQ Fan (7076_CR19) 2016; 7
RK Shukla (7076_CR43) 2006; 142
T Nakano (7076_CR8) 2006; 140
PJ Zwack (7076_CR60) 2016; 172
R Quan (7076_CR40) 2010; 8
J Chen (7076_CR26) 2009; 378
J Zhuang (7076_CR34) 2008; 371
IP Generozova (7076_CR57) 2009; 56
S Sazegari (7076_CR25) 2015; 11
CW Li (7076_CR11) 2011; 156
A Iwase (7076_CR14) 2011; 21
M Müller (7076_CR53) 2015; 169
J Zhang (7076_CR31) 2018; 50
ZS Xu (7076_CR39) 2011; 53
H Du (7076_CR33) 2014; 198
H Lin (7076_CR36) 2006; 7
Z Xie (7076_CR56) 2019; 31
F Licausi (7076_CR23) 2013; 199
V Chinnusamy (7076_CR3) 2004; 55
D Wang (7076_CR67) 2010; 8
C-T Wang (7076_CR21) 2009; 64
R Brenchley (7076_CR38) 2012; 491
X Dai (7076_CR49) 2007; 143
V Jisha (7076_CR41) 2015; 10
Y Zhai (7076_CR44) 2013; 513
GM Abogadallah (7076_CR47) 2011; 233
H Ye (7076_CR55) 2017; 8
MY Chung (7076_CR16) 2010; 64
P Wang (7076_CR32) 2018; 10
J Zhuang (7076_CR35) 2011; 38
Z Xie (7076_CR50) 2019; 10
K Kazan (7076_CR52) 2015; 20
Z Gong (7076_CR2) 2020; 63
L Grivet (7076_CR27) 2002; 5
KH Sohn (7076_CR45) 2006; 61
MA Larkin (7076_CR61) 2007; 23
SY Lee (7076_CR24) 2015; 34
RA Azevedo (7076_CR29) 2011; 4
TL Bailey (7076_CR63) 2009; 37
J Mizoi (7076_CR12) 2012; 1819
M Lynch (7076_CR68) 2000; 290
W Dong (7076_CR46) 2012; 511
L Xiang (7076_CR6) 2018; 6
Y Wang (7076_CR66) 2012; 40
H Wang (7076_CR1) 2016; 7
F Licausi (7076_CR17) 2010; 11
TS Serra (7076_CR20) 2013; 82
Y Kitomi (7076_CR42) 2011; 67
VM Manoj (7076_CR30) 2019; 19
X Shi (7076_CR59) 2014; 33
Z Zhang (7076_CR18) 2018; 8
Q Zhu (7076_CR7) 2010; 457
W Qi (7076_CR15) 2011; 157
S-G Bao (7076_CR22) 2017; 128
K Tamura (7076_CR62) 2013; 30
KJ Livak (7076_CR70) 2001; 25
J Debbarma (7076_CR5) 2019; 61
MK Giri (7076_CR13) 2014; 171
JZ Zhang (7076_CR4) 2003; 6
S El Ouakfaoui (7076_CR9) 2010; 74
LS Meng (7076_CR51) 2015; 128
C Chen (7076_CR65) 2020; 13
X Jin (7076_CR48) 2013; 40
E Lam (7076_CR28) 2009; 1
B Hu (7076_CR64) 2015; 31
S Ijaz (7076_CR69) 2012; 11
BI Je (7076_CR10) 2010; 2
JJ Tao (7076_CR54) 2015; 6
References_xml – volume: 10
  start-page: 2596
  issue: 10
  year: 2018
  ident: 7076_CR32
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evy193
– volume: 6
  start-page: 430
  issue: 5
  year: 2003
  ident: 7076_CR4
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/s1369-5266(03)00081-5
– volume: 513
  start-page: 174
  issue: 1
  year: 2013
  ident: 7076_CR44
  publication-title: Gene.
  doi: 10.1016/j.gene.2012.10.018
– volume: 7
  start-page: 1021
  year: 2016
  ident: 7076_CR19
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.01021
– volume: 491
  start-page: 705
  issue: 7426
  year: 2012
  ident: 7076_CR38
  publication-title: Nature.
  doi: 10.1038/nature11650
– volume: 8
  start-page: 14573
  year: 2017
  ident: 7076_CR55
  publication-title: Nat Commun
  doi: 10.1038/ncomms14573
– volume: 31
  start-page: 1296
  issue: 8
  year: 2015
  ident: 7076_CR64
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu817
– volume: 2
  start-page: 1777
  issue: 6
  year: 2010
  ident: 7076_CR10
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.069575
– volume: 233
  start-page: 1265
  issue: 6
  year: 2011
  ident: 7076_CR47
  publication-title: Planta.
  doi: 10.1007/s00425-011-1382-3
– volume: 64
  start-page: 1108
  issue: 6
  year: 2009
  ident: 7076_CR21
  publication-title: Biologia.
  doi: 10.2478/s11756-009-0198-0
– volume: 10
  start-page: e0127831
  issue: 6
  year: 2015
  ident: 7076_CR41
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0127831
– volume: 128
  start-page: 347
  issue: 2
  year: 2017
  ident: 7076_CR22
  publication-title: Plant Cell Tissue Organ Cult
  doi: 10.1007/s11240-016-1114-2
– volume: 55
  start-page: 225
  issue: 395
  year: 2004
  ident: 7076_CR3
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erh005
– volume: 8
  start-page: 476
  issue: 4
  year: 2010
  ident: 7076_CR40
  publication-title: Plant Biotechnol J
  doi: 10.1111/j.1467-7652.2009.00492.x
– volume: 31
  start-page: 1788
  issue: 8
  year: 2019
  ident: 7076_CR56
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00918
– volume: 6
  start-page: e6071
  year: 2018
  ident: 7076_CR6
  publication-title: PeerJ.
  doi: 10.7717/peerj.6071
– volume: 19
  start-page: 986
  issue: Suppl 9
  year: 2019
  ident: 7076_CR30
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-5349-7
– volume: 394
  start-page: 671
  issue: 6694
  year: 1998
  ident: 7076_CR37
  publication-title: Nature.
  doi: 10.1038/29286
– volume: 128
  start-page: 3922
  issue: 21
  year: 2015
  ident: 7076_CR51
  publication-title: J Cell Sci
  doi: 10.1242/jcs.171207
– volume: 40
  start-page: e49
  issue: 7
  year: 2012
  ident: 7076_CR66
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1293
– volume: 169
  start-page: 32
  issue: 1
  year: 2015
  ident: 7076_CR53
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.00677
– volume: 13
  start-page: 1194
  issue: 8
  year: 2020
  ident: 7076_CR65
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2020.06.009
– volume: 378
  start-page: 483
  issue: 3
  year: 2009
  ident: 7076_CR26
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2008.11.071
– volume: 67
  start-page: 472
  issue: 3
  year: 2011
  ident: 7076_CR42
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2011.04610.x
– volume: 37
  start-page: W202
  issue: Web Server issu
  year: 2009
  ident: 7076_CR63
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp335
– volume: 8
  start-page: 15612
  issue: 1
  year: 2018
  ident: 7076_CR18
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-33744-w
– volume: 20
  start-page: 219
  issue: 4
  year: 2015
  ident: 7076_CR52
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2015.02.001
– volume: 23
  start-page: 2947
  issue: 21
  year: 2007
  ident: 7076_CR61
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btm404
– volume: 25
  start-page: 402
  issue: 4
  year: 2001
  ident: 7076_CR70
  publication-title: Methods.
  doi: 10.1006/meth.2001.1262
– volume: 457
  start-page: 1
  issue: 1–2
  year: 2010
  ident: 7076_CR7
  publication-title: Gene.
  doi: 10.1016/j.gene.2010.02.011
– volume: 156
  start-page: 213
  issue: 1
  year: 2011
  ident: 7076_CR11
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.174268
– volume: 30
  start-page: 2725
  issue: 12
  year: 2013
  ident: 7076_CR62
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst197
– volume: 53
  start-page: 570
  issue: 7
  year: 2011
  ident: 7076_CR39
  publication-title: J Integr Plant Biol
  doi: 10.1111/j.1744-7909.2011.01062.x
– volume: 63
  start-page: 635
  issue: 5
  year: 2020
  ident: 7076_CR2
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-020-1683-x
– volume: 10
  start-page: 228
  year: 2019
  ident: 7076_CR50
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2019.00228
– volume: 11
  start-page: 719
  year: 2010
  ident: 7076_CR17
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-719
– volume: 140
  start-page: 411
  issue: 2
  year: 2006
  ident: 7076_CR8
  publication-title: Plant Physiol
  doi: 10.1104/pp.105.073783
– volume: 61
  start-page: 897
  issue: 6
  year: 2006
  ident: 7076_CR45
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-006-0057-0
– volume: 172
  start-page: 1249
  issue: 2
  year: 2016
  ident: 7076_CR60
  publication-title: Plant Physiol
  doi: 10.1104/pp.16.00415
– volume: 33
  start-page: 35
  issue: 1
  year: 2014
  ident: 7076_CR59
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-013-1510-6
– volume: 290
  start-page: 1151
  issue: 5494
  year: 2000
  ident: 7076_CR68
  publication-title: Science
  doi: 10.1126/science.290.5494.1151
– volume: 371
  start-page: 468
  issue: 3
  year: 2008
  ident: 7076_CR34
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2008.04.087
– volume: 142
  start-page: 113
  issue: 1
  year: 2006
  ident: 7076_CR43
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.081752
– volume: 50
  start-page: 1565
  issue: 11
  year: 2018
  ident: 7076_CR31
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0237-2
– volume: 8
  start-page: 77
  issue: 1
  year: 2010
  ident: 7076_CR67
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/s1672-0229(10)60008-3
– volume: 6
  start-page: 29948
  year: 2016
  ident: 7076_CR58
  publication-title: Sci Rep
  doi: 10.1038/srep29948
– volume: 7
  start-page: 67
  year: 2016
  ident: 7076_CR1
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.00067
– volume: 5
  start-page: 122
  issue: 2
  year: 2002
  ident: 7076_CR27
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/s1369-5266(02)00234-0
– volume: 21
  start-page: 508
  issue: 6
  year: 2011
  ident: 7076_CR14
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2011.02.020
– volume: 1
  start-page: 251
  issue: 3
  year: 2009
  ident: 7076_CR28
  publication-title: GCB Bioenergy
  doi: 10.1111/j.1757-1707.2009.01016.x
– volume: 38
  start-page: 745
  issue: 2
  year: 2011
  ident: 7076_CR35
  publication-title: Mol Biol Rep
  doi: 10.1007/s11033-010-0162-7
– volume: 6
  start-page: 1059
  year: 2015
  ident: 7076_CR54
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.01059
– volume: 64
  start-page: 936
  issue: 6
  year: 2010
  ident: 7076_CR16
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04384.x
– volume: 7
  start-page: R41
  issue: 5
  year: 2006
  ident: 7076_CR36
  publication-title: Genome Biol
  doi: 10.1186/gb-2006-7-5-r41
– volume: 82
  start-page: 439
  issue: 4–5
  year: 2013
  ident: 7076_CR20
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-013-0073-9
– volume: 61
  start-page: 153
  issue: 2
  year: 2019
  ident: 7076_CR5
  publication-title: Mol Biotechnol
  doi: 10.1007/s12033-018-0144-x
– volume: 34
  start-page: 223
  issue: 2
  year: 2015
  ident: 7076_CR24
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-014-1701-9
– volume: 74
  start-page: 313
  issue: 4–5
  year: 2010
  ident: 7076_CR9
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-010-9674-8
– volume: 4
  start-page: 42
  issue: 1
  year: 2011
  ident: 7076_CR29
  publication-title: Trop Plant Biol
  doi: 10.1007/s12042-011-9067-4
– volume: 11
  start-page: 101
  issue: 2
  year: 2015
  ident: 7076_CR25
  publication-title: Bioinformation.
  doi: 10.6026/97320630011101
– volume: 1819
  start-page: 86
  issue: 2
  year: 2012
  ident: 7076_CR12
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagrm.2011.08.004
– volume: 40
  start-page: 1743
  issue: 2
  year: 2013
  ident: 7076_CR48
  publication-title: Mol Biol Rep
  doi: 10.1007/s11033-012-2228-1
– volume: 56
  start-page: 38
  issue: 1
  year: 2009
  ident: 7076_CR57
  publication-title: Russ J Plant Physiol
  doi: 10.1134/S1021443709010063
– volume: 198
  start-page: 115
  issue: 1
  year: 2014
  ident: 7076_CR33
  publication-title: Euphytica.
  doi: 10.1007/s10681-014-1088-2
– volume: 157
  start-page: 216
  issue: 1
  year: 2011
  ident: 7076_CR15
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.179945
– volume: 11
  start-page: 512
  issue: 1
  year: 2012
  ident: 7076_CR69
  publication-title: Genet Mol Res
  doi: 10.4238/2012
– volume: 511
  start-page: 38
  issue: 1
  year: 2012
  ident: 7076_CR46
  publication-title: Gene.
  doi: 10.1016/j.gene.2012.09.039
– volume: 171
  start-page: 860
  issue: 10
  year: 2014
  ident: 7076_CR13
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2013.12.015
– volume: 143
  start-page: 1739
  issue: 4
  year: 2007
  ident: 7076_CR49
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.094532
– volume: 199
  start-page: 639
  issue: 3
  year: 2013
  ident: 7076_CR23
  publication-title: New Phytol
  doi: 10.1111/nph.12291
SSID ssj0017825
Score 2.54183
Snippet APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and...
Background APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to...
Abstract Background APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 685
SubjectTerms Abiotic stress
AP2/ERF gene
Cellular stress response
Chromosomes
Dehydration
Developmental stages
Energy crops
Environmental changes
Ethanol
Gene expression
Gene Expression Regulation, Developmental
Gene Expression Regulation, Plant
Genes
Genetic structure
Genomes
Genomics
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Hormones
Introns
Phylogenetics
Phylogeny
Plant breeding
Plant growth
Plant Proteins - genetics
Plant Proteins - metabolism
Plant resistance
Promoter Regions, Genetic
Proteins
Regulatory sequences
Rice
Saccharum - genetics
Saccharum - growth & development
Saccharum - metabolism
Saccharum spontaneum
Salt Stress
Signal transduction
Sorghum
Stresses
Structural analysis
Sugarcane
Transcription factor
Transcription factors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA6lIPRFrLa6tkqEPiiy3m1-7eaxSs8irUit0LewSSb1wO6Jd4enf72TbPboieiLb_sjC9nMJPN9ZPINIUfgxgpxOCAtCa4U0PISgwISV8WsrLhsq1Q_5fy9Ov0k3l3Jq1ulvmJOWC8P3A_cSDpdWx8QVVgpQghIwK1mIJhTTEOTlEAx5g1kKu8fYNyTwxGZRo3muAorUUaqFOVtVLnaCENJrf9PEPP3TMlboWdyj9zNmJEe933dJVvQ3Sd3-iqSPx6Qn2-hm91A-X3qgU59Tv9JI07bzlNY5WTXeNtLkNBZoMcf2OjkYkIXMVoNawfN9XfotKPz5TXOgrYD-vxj6-LxrOUNjRm1iCcBL89evdgjl5OTyzenZS6pUDqh1aLkwFtXVaGxYJ2zbsyl5Y1nXoH2iB1sLSV3tfKiBtACw7ezQQMTSiLxUXyfbHezDh4RijjNNo2W8VQ0QjJlhQ-2Es7zEFwFoSDVMMDGZbnxWPXii0m0o1GmN4pBo5hkFLMqyMv1N197sY2_tn4d7bZuGYWy0wN0H5Pdx_zLfQpyOFjd5Nk7N0xIXOkQ2o0L8mz9Gudd3EzBIZ4tYxvRRDKsVEEe9k6y7gnn6ciyLki94T4bXd18000_J21vZI_IUOXj__FvB2SHRZeP6Q7skGwvvi3hCUKohX2aZssvHHwZyw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifl_vTonggyJ1t81Hmyc55dZDVERP2LfQJJNzwWvP211c_eudpGl1Re6tbVIImZnM75dMZgh5AnYqEYcD0hJvcw4Ny9EpIHGVpREFE00R66e8_yCPv_C3czFPG27LFFY5rIlxoXadDXvkk5IL1D50t9OX59_zUDUqnK6mEhpXybWQuiyEdFXzkXAV6P3EcFGmlpMlrsWS54EwhSQ3Mt9sOaOYs_9_QPPfeMm_HNDsFrmZkCM97EV9m1yB9g653teS_HmX_HoDbXcG-Y-FA7pwKQgozjttWkdhk0Jew2ufiIR2nh5-LCdHn2Z0FXzWsILQVIWHLlq6XJ-iLTQt0KefGxsuaa3PaIirRVQJ-PjuxbN75GR2dPL6OE-FFXLLlVzlDFhji8LXBoy1xk6ZMKx2pZOgHCIIUwnBbCUdrwAURydujVdQcimQ_kh2n-y0XQu7hCJaM3WtRLgbjcBMGu68Kbh1zHtbgM9IMUywtinpeKh98U1H8lFL3QtFo1B0FIreZOT5-M95n3Lj0t6vgtzGniFddvzQXZzqZH1aWFUZ5xGaGsG994oxo0rgpZWlgppn5GCQuk42vNR_NC4jj8dmtL5wpIJT3K1DH14HSixlRh70SjKOhLF4cVllpNpSn62hbre0i68xwzdySOSpYu_yYe2TG2VQ5hDOUB6QndXFGh4iRFqZR9EOfgO3ExDs
  priority: 102
  providerName: ProQuest
Title Genome-wide identification and expression analysis of AP2/ERF transcription factors in sugarcane (Saccharum spontaneum L.)
URI https://www.ncbi.nlm.nih.gov/pubmed/33008299
https://www.proquest.com/docview/2451831720
https://www.proquest.com/docview/2448407166
https://pubmed.ncbi.nlm.nih.gov/PMC7531145
https://doaj.org/article/5c97bdf575b54fff933b92e42c629e84
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VVqBeEG9SyspIHEAo7SZ-JD4g1KJdKkSrqrTS3qLYGZeV2oTuQ2z59YzzWFi0cEtiJ7I8M57vi8czAK_R9hXhcCRa4mwoMOchOQUirio2MuIyj-r6Kccn6uhCfB7J0QZ05Y7aCZyupXa-ntTF5GpvcXP7gQz-fW3wqdqf0hqrROiJkE9eo0LClFvkmRJvqMfi964CeUPZHZxZ-9423CN-74-b6hU_VafzX4dB_w6l_MM3DR_A_RZUsoNGCx7CBpaP4G5TZvL2Mfz8hGV1jeGPcYFsXLTxQbVIWF4WDBdtNKy_bXKUsMqxg9N4f3A2ZDPvzrrFhbUFeti4ZNP5JZlJXiJ78zW3_vzW_Jr5kFsCnEiXX_bePoHz4eD841HY1lwIrdBqFnLkuY0ilxo01hrb59LwtIgLhbogcGESKblNVCESRC3Iv1vjNMZCSWJGij-FzbIq8TkwAnImTbX0x6YJsykjCmciYQvunI3QBRB1E5zZNh-5L4txldW8JFVZI5-M5JPV8skWAbxbvvO9ycbx396HXm7Lnj6Tdv2gmlxmrWFm0urEFI5Qq5HCOac5NzpGEVsVa0xFALud1LNOO7NYSFoKCfv1A3i1bCbD9LstNMXV3PcRqWfLSgXwrFGS5Ug6JQsgWVGflaGutpTjb3Xyb6KXRGHlzj-_-QK2Y6_SPsgh3oXN2WSOLwk4zUwP7iSjpAdbh4OT07Ne_fuhV1vILyXVF7g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anRC8IO4EBhgJJBAKbXxr8oDQBi0d66ppdNLerNixt0pbMtZW6_hP_EeOcykUob3trWmcyPI5Puf74nMBeG1NRyIOt0hLnAm5TVmITgGJq6RaREykUdk_ZXckBwf826E4XINfTS6MD6tsbGJpqLPC-G_kbcoFah-6286nsx-h7xrlT1ebFhqVWuzYywukbNOP219Qvm8o7ffGnwdh3VUgNDyRs5BZlpoocrG22hhtOkxoFmc0kzbJ0H3qrhDMdGXGu9YmHD2Y0S6xlEuB2F8yfO0NWOcMmUwL1rd6o7395bEFulvRZObEsj1F4y956Bmar6ojw8WK9yubBPwP2f4boPmXx-vfhTs1VCWblW7dgzWb34ebVfPKywfw86vNi1MbXkwySyZZHXVUCpqkeUbsoo6x9ZdV5RNSOLK5R9u9_T6ZeSfZmCxSt_0hk5xM50e4ymluydvvqfFZYfNT4gN5EcZa_Dn88O4hjK9jzR9BKy9y-wQIwkMdx4nwydiIBKXmmdMRNxlzzkTWBRA1C6xMXeXcN9s4USXbiaWqhKJQKKoUiloE8H75zFlV4-PK0VtebsuRvj53-UdxfqTq7a6ESbo6c4iFteDOuYQxnVDLqZE0sTEPYKORuqqNxlT9UfEAXi1v43b3Zzi4xMXcj-Gx5-BSBvC4UpLlTBgrM6WTALor6rMy1dU7-eS4LCmOpBWJsXh69bRewq3BeHeohtujnWdwm3rF9rEUdANas_O5fY74bKZf1LuCgLrmffgbqUFPAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+identification+and+expression+analysis+of+AP2%2FERF+transcription+factors+in+sugarcane+%28Saccharum+spontaneum+L.%29&rft.jtitle=BMC+genomics&rft.au=Li%2C+Peiting&rft.au=Chai%2C+Zhe&rft.au=Lin%2C+Pingping&rft.au=Huang%2C+Chaohua&rft.date=2020-10-02&rft.eissn=1471-2164&rft.volume=21&rft.issue=1&rft.spage=685&rft_id=info:doi/10.1186%2Fs12864-020-07076-x&rft_id=info%3Apmid%2F33008299&rft.externalDocID=33008299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon