Genome-wide identification and expression analysis of AP2/ERF transcription factors in sugarcane (Saccharum spontaneum L.)
APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide. A...
Saved in:
Published in | BMC genomics Vol. 21; no. 1; pp. 685 - 17 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
02.10.2020
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide.
A total of 218 AP2/ERF genes were identified in the Saccharum spontaneum genome. Phylogenetic analysis showed that these genes could be divided into four groups, including 43 AP2s, 160 ERFs and Dehydration-responsive element-binding (DREB) factors, 11 ABI3/VPs (RAV), and four Soloist genes. These genes were unevenly distributed on 32 chromosomes. The structural analysis of SsAP2/ERF genes showed that 91 SsAP2/ERFs lacked introns. Sugarcane and sorghum had a collinear relationship between 168 SsAP2/ERF genes and sorghum AP2/ERF genes that reflected their similarity. Multiple cis-regulatory elements (CREs) present in the SsAP2/ERF promoter were related to abiotic stresses, suggesting that SsAP2/ERF activity could contribute to sugarcane adaptation to environmental changes. The tissue-specific analysis showed spatiotemporal expression of SsAP2/ERF in the stems and leaves of sugarcane at different development stages. In ten sugarcane samples, 39 SsAP2/ERFs were not expressed, whereas 58 SsAP2/ERFs were expressed in all samples. Quantitative PCR experiments showed that SsERF52 expression was up-regulated under salt stress, but suppressed under dehydration stress. SsSoloist4 had the most considerable upregulation in response to treatment with the exogenous hormones ABA and GA. Within 3 h of ABA or PEG6000 treatment, SsSoloist4 expression was up-regulated, indicating that this gene could play a role in the responses to ABA and GA-associated dehydration stress. Analysis of AP2/ERF gene expression patterns under different treatments indicated that SsAP2/ERF genes played an essential role in dehydration and salt stress responses of S. spontaneum.
In this study, a total of 218 members of the AP2 / ERF superfamily were identified in sugarcane, and their genetic structure, evolution characteristics, and expression patterns were studied and analyzed. The results of this study provide a foundation for future analyses to elucidate the importance of AP2/ERF transcription factors in the function and molecular breeding of sugarcane. |
---|---|
AbstractList | Abstract Background APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide. Results A total of 218 AP2/ERF genes were identified in the Saccharum spontaneum genome. Phylogenetic analysis showed that these genes could be divided into four groups, including 43 AP2s, 160 ERFs and Dehydration-responsive element-binding (DREB) factors, 11 ABI3/VPs (RAV), and four Soloist genes. These genes were unevenly distributed on 32 chromosomes. The structural analysis of SsAP2/ERF genes showed that 91 SsAP2/ERFs lacked introns. Sugarcane and sorghum had a collinear relationship between 168 SsAP2/ERF genes and sorghum AP2/ERF genes that reflected their similarity. Multiple cis-regulatory elements (CREs) present in the SsAP2/ERF promoter were related to abiotic stresses, suggesting that SsAP2/ERF activity could contribute to sugarcane adaptation to environmental changes. The tissue-specific analysis showed spatiotemporal expression of SsAP2/ERF in the stems and leaves of sugarcane at different development stages. In ten sugarcane samples, 39 SsAP2/ERFs were not expressed, whereas 58 SsAP2/ERFs were expressed in all samples. Quantitative PCR experiments showed that SsERF52 expression was up-regulated under salt stress, but suppressed under dehydration stress. SsSoloist4 had the most considerable upregulation in response to treatment with the exogenous hormones ABA and GA. Within 3 h of ABA or PEG6000 treatment, SsSoloist4 expression was up-regulated, indicating that this gene could play a role in the responses to ABA and GA-associated dehydration stress. Analysis of AP2/ERF gene expression patterns under different treatments indicated that SsAP2/ERF genes played an essential role in dehydration and salt stress responses of S. spontaneum. Conclusions In this study, a total of 218 members of the AP2 / ERF superfamily were identified in sugarcane, and their genetic structure, evolution characteristics, and expression patterns were studied and analyzed. The results of this study provide a foundation for future analyses to elucidate the importance of AP2/ERF transcription factors in the function and molecular breeding of sugarcane. Background APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide. Results A total of 218 AP2/ERF genes were identified in the Saccharum spontaneum genome. Phylogenetic analysis showed that these genes could be divided into four groups, including 43 AP2s, 160 ERFs and Dehydration-responsive element-binding (DREB) factors, 11 ABI3/VPs (RAV), and four Soloist genes. These genes were unevenly distributed on 32 chromosomes. The structural analysis of SsAP2/ERF genes showed that 91 SsAP2/ERFs lacked introns. Sugarcane and sorghum had a collinear relationship between 168 SsAP2/ERF genes and sorghum AP2/ERF genes that reflected their similarity. Multiple cis-regulatory elements (CREs) present in the SsAP2/ERF promoter were related to abiotic stresses, suggesting that SsAP2/ERF activity could contribute to sugarcane adaptation to environmental changes. The tissue-specific analysis showed spatiotemporal expression of SsAP2/ERF in the stems and leaves of sugarcane at different development stages. In ten sugarcane samples, 39 SsAP2/ERFs were not expressed, whereas 58 SsAP2/ERFs were expressed in all samples. Quantitative PCR experiments showed that SsERF52 expression was up-regulated under salt stress, but suppressed under dehydration stress. SsSoloist4 had the most considerable upregulation in response to treatment with the exogenous hormones ABA and GA. Within 3 h of ABA or PEG6000 treatment, SsSoloist4 expression was up-regulated, indicating that this gene could play a role in the responses to ABA and GA-associated dehydration stress. Analysis of AP2/ERF gene expression patterns under different treatments indicated that SsAP2/ERF genes played an essential role in dehydration and salt stress responses of S. spontaneum. Conclusions In this study, a total of 218 members of the AP2 / ERF superfamily were identified in sugarcane, and their genetic structure, evolution characteristics, and expression patterns were studied and analyzed. The results of this study provide a foundation for future analyses to elucidate the importance of AP2/ERF transcription factors in the function and molecular breeding of sugarcane. APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide. A total of 218 AP2/ERF genes were identified in the Saccharum spontaneum genome. Phylogenetic analysis showed that these genes could be divided into four groups, including 43 AP2s, 160 ERFs and Dehydration-responsive element-binding (DREB) factors, 11 ABI3/VPs (RAV), and four Soloist genes. These genes were unevenly distributed on 32 chromosomes. The structural analysis of SsAP2/ERF genes showed that 91 SsAP2/ERFs lacked introns. Sugarcane and sorghum had a collinear relationship between 168 SsAP2/ERF genes and sorghum AP2/ERF genes that reflected their similarity. Multiple cis-regulatory elements (CREs) present in the SsAP2/ERF promoter were related to abiotic stresses, suggesting that SsAP2/ERF activity could contribute to sugarcane adaptation to environmental changes. The tissue-specific analysis showed spatiotemporal expression of SsAP2/ERF in the stems and leaves of sugarcane at different development stages. In ten sugarcane samples, 39 SsAP2/ERFs were not expressed, whereas 58 SsAP2/ERFs were expressed in all samples. Quantitative PCR experiments showed that SsERF52 expression was up-regulated under salt stress, but suppressed under dehydration stress. SsSoloist4 had the most considerable upregulation in response to treatment with the exogenous hormones ABA and GA. Within 3 h of ABA or PEG6000 treatment, SsSoloist4 expression was up-regulated, indicating that this gene could play a role in the responses to ABA and GA-associated dehydration stress. Analysis of AP2/ERF gene expression patterns under different treatments indicated that SsAP2/ERF genes played an essential role in dehydration and salt stress responses of S. spontaneum. In this study, a total of 218 members of the AP2 / ERF superfamily were identified in sugarcane, and their genetic structure, evolution characteristics, and expression patterns were studied and analyzed. The results of this study provide a foundation for future analyses to elucidate the importance of AP2/ERF transcription factors in the function and molecular breeding of sugarcane. APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide.BACKGROUNDAPETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide.A total of 218 AP2/ERF genes were identified in the Saccharum spontaneum genome. Phylogenetic analysis showed that these genes could be divided into four groups, including 43 AP2s, 160 ERFs and Dehydration-responsive element-binding (DREB) factors, 11 ABI3/VPs (RAV), and four Soloist genes. These genes were unevenly distributed on 32 chromosomes. The structural analysis of SsAP2/ERF genes showed that 91 SsAP2/ERFs lacked introns. Sugarcane and sorghum had a collinear relationship between 168 SsAP2/ERF genes and sorghum AP2/ERF genes that reflected their similarity. Multiple cis-regulatory elements (CREs) present in the SsAP2/ERF promoter were related to abiotic stresses, suggesting that SsAP2/ERF activity could contribute to sugarcane adaptation to environmental changes. The tissue-specific analysis showed spatiotemporal expression of SsAP2/ERF in the stems and leaves of sugarcane at different development stages. In ten sugarcane samples, 39 SsAP2/ERFs were not expressed, whereas 58 SsAP2/ERFs were expressed in all samples. Quantitative PCR experiments showed that SsERF52 expression was up-regulated under salt stress, but suppressed under dehydration stress. SsSoloist4 had the most considerable upregulation in response to treatment with the exogenous hormones ABA and GA. Within 3 h of ABA or PEG6000 treatment, SsSoloist4 expression was up-regulated, indicating that this gene could play a role in the responses to ABA and GA-associated dehydration stress. Analysis of AP2/ERF gene expression patterns under different treatments indicated that SsAP2/ERF genes played an essential role in dehydration and salt stress responses of S. spontaneum.RESULTSA total of 218 AP2/ERF genes were identified in the Saccharum spontaneum genome. Phylogenetic analysis showed that these genes could be divided into four groups, including 43 AP2s, 160 ERFs and Dehydration-responsive element-binding (DREB) factors, 11 ABI3/VPs (RAV), and four Soloist genes. These genes were unevenly distributed on 32 chromosomes. The structural analysis of SsAP2/ERF genes showed that 91 SsAP2/ERFs lacked introns. Sugarcane and sorghum had a collinear relationship between 168 SsAP2/ERF genes and sorghum AP2/ERF genes that reflected their similarity. Multiple cis-regulatory elements (CREs) present in the SsAP2/ERF promoter were related to abiotic stresses, suggesting that SsAP2/ERF activity could contribute to sugarcane adaptation to environmental changes. The tissue-specific analysis showed spatiotemporal expression of SsAP2/ERF in the stems and leaves of sugarcane at different development stages. In ten sugarcane samples, 39 SsAP2/ERFs were not expressed, whereas 58 SsAP2/ERFs were expressed in all samples. Quantitative PCR experiments showed that SsERF52 expression was up-regulated under salt stress, but suppressed under dehydration stress. SsSoloist4 had the most considerable upregulation in response to treatment with the exogenous hormones ABA and GA. Within 3 h of ABA or PEG6000 treatment, SsSoloist4 expression was up-regulated, indicating that this gene could play a role in the responses to ABA and GA-associated dehydration stress. Analysis of AP2/ERF gene expression patterns under different treatments indicated that SsAP2/ERF genes played an essential role in dehydration and salt stress responses of S. spontaneum.In this study, a total of 218 members of the AP2 / ERF superfamily were identified in sugarcane, and their genetic structure, evolution characteristics, and expression patterns were studied and analyzed. The results of this study provide a foundation for future analyses to elucidate the importance of AP2/ERF transcription factors in the function and molecular breeding of sugarcane.CONCLUSIONSIn this study, a total of 218 members of the AP2 / ERF superfamily were identified in sugarcane, and their genetic structure, evolution characteristics, and expression patterns were studied and analyzed. The results of this study provide a foundation for future analyses to elucidate the importance of AP2/ERF transcription factors in the function and molecular breeding of sugarcane. |
ArticleNumber | 685 |
Author | Huang, Chaohua Xu, Liangnian Deng, Zuhu Li, Peiting Zhang, Yu Zhang, Muqing Zhao, Xinwang Huang, Guoqiang Chai, Zhe Lin, Pingping |
Author_xml | – sequence: 1 givenname: Peiting surname: Li fullname: Li, Peiting – sequence: 2 givenname: Zhe surname: Chai fullname: Chai, Zhe – sequence: 3 givenname: Pingping surname: Lin fullname: Lin, Pingping – sequence: 4 givenname: Chaohua surname: Huang fullname: Huang, Chaohua – sequence: 5 givenname: Guoqiang surname: Huang fullname: Huang, Guoqiang – sequence: 6 givenname: Liangnian surname: Xu fullname: Xu, Liangnian – sequence: 7 givenname: Zuhu surname: Deng fullname: Deng, Zuhu – sequence: 8 givenname: Muqing orcidid: 0000-0003-3138-3422 surname: Zhang fullname: Zhang, Muqing – sequence: 9 givenname: Yu surname: Zhang fullname: Zhang, Yu – sequence: 10 givenname: Xinwang surname: Zhao fullname: Zhao, Xinwang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33008299$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1P3DAQjSpQ-Wj_QA9VpF7oIeBvx5dKCAFFWqlVy91ynPHiVdbe2km79NfXuwsIOPRgeWb83tN45h1VeyEGqKoPGJ1i3IqzjEkrWIMIapBEUjTrN9UhZhI3BAu29yw-qI5yXiCEZUv42-qAUoRaotRh9fcaQlxC88f3UJcTRu-8NaOPoTahr2G9SpDzLjXDffa5jq4-_07OLn9c1WMyIdvkV1uCM3aMKdc-1Hmam2RNgPrkp7H2zqRpWedVDGOplXB2-vldte_MkOH9w31c3V5d3l58bWbfrm8uzmeNZUqMDQVqLMau7aCztrOI8o62PekFqJ4j1UnOqZWiZxJAMUaE7ZwCwgQnAgl6XN3sZPtoFnqV_NKkex2N19tCTHNt0ujtAJpbJbvecck7zpxzitJOEWDECqKgZUXry05rNXVL6G0ZVzLDC9GXL8Hf6Xn8rSWnGDNeBE4eBFL8NUEe9dJnC8NQphKnrAljLUMSi03fn15BF3FKZQcbFMctxZKggvr4vKOnVh43XABkB7Ap5pzAPUEw0hsb6Z2NdLGR3tpIrwupfUWyftyaovzKD_-j_gOACM4P |
CitedBy_id | crossref_primary_10_3390_ijms25020893 crossref_primary_10_1016_j_jksus_2023_102720 crossref_primary_10_1111_mpp_13453 crossref_primary_10_1186_s12870_024_05847_2 crossref_primary_10_3390_ijms23116334 crossref_primary_10_3390_agronomy13071900 crossref_primary_10_3390_ijms24087102 crossref_primary_10_1007_s11033_021_06375_0 crossref_primary_10_1186_s12864_024_10717_0 crossref_primary_10_1016_j_bbagen_2024_130755 crossref_primary_10_3390_plants13152119 crossref_primary_10_1016_j_ijbiomac_2023_127582 crossref_primary_10_1093_jxb_erac339 crossref_primary_10_32615_bp_2023_003 crossref_primary_10_3389_fpls_2022_828482 crossref_primary_10_1016_j_scienta_2023_112359 crossref_primary_10_3390_ijms252312849 crossref_primary_10_3390_horticulturae8121153 crossref_primary_10_1007_s00425_022_03837_y crossref_primary_10_3389_fpls_2022_953623 crossref_primary_10_1186_s12870_021_03043_0 crossref_primary_10_1186_s12870_024_05244_9 crossref_primary_10_3390_genes16010097 crossref_primary_10_3390_ijms232314991 crossref_primary_10_3390_biology11101520 crossref_primary_10_1038_s41598_021_85072_1 crossref_primary_10_1016_j_plantsci_2025_112390 crossref_primary_10_1016_j_scienta_2022_111255 crossref_primary_10_1007_s13562_021_00746_1 crossref_primary_10_3389_fgene_2023_1172321 crossref_primary_10_3390_ijms23062920 crossref_primary_10_1186_s12864_023_09604_x crossref_primary_10_3389_fpls_2023_1313113 crossref_primary_10_3390_f16010094 crossref_primary_10_1007_s12042_025_09398_0 crossref_primary_10_1038_s41598_024_81046_1 crossref_primary_10_1186_s12967_024_05567_z crossref_primary_10_1007_s00425_022_04044_5 crossref_primary_10_3390_genes13050895 crossref_primary_10_3390_data8010001 crossref_primary_10_3390_horticulturae9020191 crossref_primary_10_3389_fgene_2021_750761 crossref_primary_10_3390_ijms222413568 crossref_primary_10_3390_ijms22062821 crossref_primary_10_1186_s12870_022_03521_z crossref_primary_10_3390_ijms23147529 crossref_primary_10_2478_ebtj_2024_0016 crossref_primary_10_1016_j_stress_2024_100384 crossref_primary_10_1016_j_plgene_2024_100468 crossref_primary_10_1186_s12870_023_04180_4 crossref_primary_10_3390_ijms23179737 crossref_primary_10_1016_j_plaphy_2024_108629 crossref_primary_10_3389_fpls_2023_1293424 crossref_primary_10_3390_ijms23063272 crossref_primary_10_3389_fpls_2022_847754 crossref_primary_10_1007_s12355_022_01174_8 crossref_primary_10_1016_j_indcrop_2021_113469 |
Cites_doi | 10.1093/gbe/evy193 10.1016/s1369-5266(03)00081-5 10.1016/j.gene.2012.10.018 10.3389/fpls.2016.01021 10.1038/nature11650 10.1038/ncomms14573 10.1093/bioinformatics/btu817 10.1105/tpc.109.069575 10.1007/s00425-011-1382-3 10.2478/s11756-009-0198-0 10.1371/journal.pone.0127831 10.1007/s11240-016-1114-2 10.1093/jxb/erh005 10.1111/j.1467-7652.2009.00492.x 10.1105/tpc.18.00918 10.7717/peerj.6071 10.1186/s12864-018-5349-7 10.1038/29286 10.1242/jcs.171207 10.1093/nar/gkr1293 10.1104/pp.15.00677 10.1016/j.molp.2020.06.009 10.1016/j.bbrc.2008.11.071 10.1111/j.1365-313X.2011.04610.x 10.1093/nar/gkp335 10.1038/s41598-018-33744-w 10.1016/j.tplants.2015.02.001 10.1093/bioinformatics/btm404 10.1006/meth.2001.1262 10.1016/j.gene.2010.02.011 10.1104/pp.111.174268 10.1093/molbev/mst197 10.1111/j.1744-7909.2011.01062.x 10.1007/s11427-020-1683-x 10.3389/fpls.2019.00228 10.1186/1471-2164-11-719 10.1104/pp.105.073783 10.1007/s11103-006-0057-0 10.1104/pp.16.00415 10.1007/s00299-013-1510-6 10.1126/science.290.5494.1151 10.1016/j.bbrc.2008.04.087 10.1104/pp.106.081752 10.1038/s41588-018-0237-2 10.1016/s1672-0229(10)60008-3 10.1038/srep29948 10.3389/fpls.2016.00067 10.1016/s1369-5266(02)00234-0 10.1016/j.cub.2011.02.020 10.1111/j.1757-1707.2009.01016.x 10.1007/s11033-010-0162-7 10.3389/fpls.2015.01059 10.1111/j.1365-313X.2010.04384.x 10.1186/gb-2006-7-5-r41 10.1007/s11103-013-0073-9 10.1007/s12033-018-0144-x 10.1007/s00299-014-1701-9 10.1007/s11103-010-9674-8 10.1007/s12042-011-9067-4 10.6026/97320630011101 10.1016/j.bbagrm.2011.08.004 10.1007/s11033-012-2228-1 10.1134/S1021443709010063 10.1007/s10681-014-1088-2 10.1104/pp.111.179945 10.4238/2012 10.1016/j.gene.2012.09.039 10.1016/j.jplph.2013.12.015 10.1104/pp.106.094532 10.1111/nph.12291 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.1186/s12864-020-07076-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_5c97bdf575b54fff933b92e42c629e84 PMC7531145 33008299 10_1186_s12864_020_07076_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: Open Foundation of State Key Laboratory for the Protection and Utilization of Subtropical Agricultural Biological Resources grantid: SKLCUSA-b201708, SKLCUSA-a201912, and SKLCUSA-b201806 – fundername: Earmarked Fund for Modern Agro-industry Technology Research System grantid: CARS-170106 – fundername: Special Fund for Science and Technology Innovation of Fujian Agriculture and Forestry University grantid: KFA17168A, KFA17525A, KFA17169A, 2018N1002 – fundername: National Natural Science Foundation of China grantid: 31801423 and 31771863 – fundername: ; grantid: 31801423 and 31771863 – fundername: ; grantid: KFA17168A, KFA17525A, KFA17169A, 2018N1002 – fundername: ; grantid: SKLCUSA-b201708, SKLCUSA-a201912, and SKLCUSA-b201806 – fundername: ; grantid: CARS-170106 |
GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c496t-3e3ac11f8bebccbc035b38d2d6e9d509b7553c76d47ee94426cbf9e246526063 |
IEDL.DBID | M48 |
ISSN | 1471-2164 |
IngestDate | Wed Aug 27 01:29:44 EDT 2025 Thu Aug 21 14:03:03 EDT 2025 Fri Jul 11 12:37:51 EDT 2025 Fri Jul 25 10:43:34 EDT 2025 Thu Apr 03 06:53:55 EDT 2025 Tue Jul 01 00:39:10 EDT 2025 Thu Apr 24 23:03:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | AP2/ERF gene Transcription factor Abiotic stress Sugarcane |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-3e3ac11f8bebccbc035b38d2d6e9d509b7553c76d47ee94426cbf9e246526063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3138-3422 |
OpenAccessLink | https://doaj.org/article/5c97bdf575b54fff933b92e42c629e84 |
PMID | 33008299 |
PQID | 2451831720 |
PQPubID | 44682 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5c97bdf575b54fff933b92e42c629e84 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7531145 proquest_miscellaneous_2448407166 proquest_journals_2451831720 pubmed_primary_33008299 crossref_primary_10_1186_s12864_020_07076_x crossref_citationtrail_10_1186_s12864_020_07076_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-02 |
PublicationDateYYYYMMDD | 2020-10-02 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2020 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | YL Qiu (7076_CR37) 1998; 394 H Zhang (7076_CR58) 2016; 6 ZQ Fan (7076_CR19) 2016; 7 RK Shukla (7076_CR43) 2006; 142 T Nakano (7076_CR8) 2006; 140 PJ Zwack (7076_CR60) 2016; 172 R Quan (7076_CR40) 2010; 8 J Chen (7076_CR26) 2009; 378 J Zhuang (7076_CR34) 2008; 371 IP Generozova (7076_CR57) 2009; 56 S Sazegari (7076_CR25) 2015; 11 CW Li (7076_CR11) 2011; 156 A Iwase (7076_CR14) 2011; 21 M Müller (7076_CR53) 2015; 169 J Zhang (7076_CR31) 2018; 50 ZS Xu (7076_CR39) 2011; 53 H Du (7076_CR33) 2014; 198 H Lin (7076_CR36) 2006; 7 Z Xie (7076_CR56) 2019; 31 F Licausi (7076_CR23) 2013; 199 V Chinnusamy (7076_CR3) 2004; 55 D Wang (7076_CR67) 2010; 8 C-T Wang (7076_CR21) 2009; 64 R Brenchley (7076_CR38) 2012; 491 X Dai (7076_CR49) 2007; 143 V Jisha (7076_CR41) 2015; 10 Y Zhai (7076_CR44) 2013; 513 GM Abogadallah (7076_CR47) 2011; 233 H Ye (7076_CR55) 2017; 8 MY Chung (7076_CR16) 2010; 64 P Wang (7076_CR32) 2018; 10 J Zhuang (7076_CR35) 2011; 38 Z Xie (7076_CR50) 2019; 10 K Kazan (7076_CR52) 2015; 20 Z Gong (7076_CR2) 2020; 63 L Grivet (7076_CR27) 2002; 5 KH Sohn (7076_CR45) 2006; 61 MA Larkin (7076_CR61) 2007; 23 SY Lee (7076_CR24) 2015; 34 RA Azevedo (7076_CR29) 2011; 4 TL Bailey (7076_CR63) 2009; 37 J Mizoi (7076_CR12) 2012; 1819 M Lynch (7076_CR68) 2000; 290 W Dong (7076_CR46) 2012; 511 L Xiang (7076_CR6) 2018; 6 Y Wang (7076_CR66) 2012; 40 H Wang (7076_CR1) 2016; 7 F Licausi (7076_CR17) 2010; 11 TS Serra (7076_CR20) 2013; 82 Y Kitomi (7076_CR42) 2011; 67 VM Manoj (7076_CR30) 2019; 19 X Shi (7076_CR59) 2014; 33 Z Zhang (7076_CR18) 2018; 8 Q Zhu (7076_CR7) 2010; 457 W Qi (7076_CR15) 2011; 157 S-G Bao (7076_CR22) 2017; 128 K Tamura (7076_CR62) 2013; 30 KJ Livak (7076_CR70) 2001; 25 J Debbarma (7076_CR5) 2019; 61 MK Giri (7076_CR13) 2014; 171 JZ Zhang (7076_CR4) 2003; 6 S El Ouakfaoui (7076_CR9) 2010; 74 LS Meng (7076_CR51) 2015; 128 C Chen (7076_CR65) 2020; 13 X Jin (7076_CR48) 2013; 40 E Lam (7076_CR28) 2009; 1 B Hu (7076_CR64) 2015; 31 S Ijaz (7076_CR69) 2012; 11 BI Je (7076_CR10) 2010; 2 JJ Tao (7076_CR54) 2015; 6 |
References_xml | – volume: 10 start-page: 2596 issue: 10 year: 2018 ident: 7076_CR32 publication-title: Genome Biol Evol doi: 10.1093/gbe/evy193 – volume: 6 start-page: 430 issue: 5 year: 2003 ident: 7076_CR4 publication-title: Curr Opin Plant Biol doi: 10.1016/s1369-5266(03)00081-5 – volume: 513 start-page: 174 issue: 1 year: 2013 ident: 7076_CR44 publication-title: Gene. doi: 10.1016/j.gene.2012.10.018 – volume: 7 start-page: 1021 year: 2016 ident: 7076_CR19 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01021 – volume: 491 start-page: 705 issue: 7426 year: 2012 ident: 7076_CR38 publication-title: Nature. doi: 10.1038/nature11650 – volume: 8 start-page: 14573 year: 2017 ident: 7076_CR55 publication-title: Nat Commun doi: 10.1038/ncomms14573 – volume: 31 start-page: 1296 issue: 8 year: 2015 ident: 7076_CR64 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btu817 – volume: 2 start-page: 1777 issue: 6 year: 2010 ident: 7076_CR10 publication-title: Plant Cell doi: 10.1105/tpc.109.069575 – volume: 233 start-page: 1265 issue: 6 year: 2011 ident: 7076_CR47 publication-title: Planta. doi: 10.1007/s00425-011-1382-3 – volume: 64 start-page: 1108 issue: 6 year: 2009 ident: 7076_CR21 publication-title: Biologia. doi: 10.2478/s11756-009-0198-0 – volume: 10 start-page: e0127831 issue: 6 year: 2015 ident: 7076_CR41 publication-title: PLoS One doi: 10.1371/journal.pone.0127831 – volume: 128 start-page: 347 issue: 2 year: 2017 ident: 7076_CR22 publication-title: Plant Cell Tissue Organ Cult doi: 10.1007/s11240-016-1114-2 – volume: 55 start-page: 225 issue: 395 year: 2004 ident: 7076_CR3 publication-title: J Exp Bot doi: 10.1093/jxb/erh005 – volume: 8 start-page: 476 issue: 4 year: 2010 ident: 7076_CR40 publication-title: Plant Biotechnol J doi: 10.1111/j.1467-7652.2009.00492.x – volume: 31 start-page: 1788 issue: 8 year: 2019 ident: 7076_CR56 publication-title: Plant Cell doi: 10.1105/tpc.18.00918 – volume: 6 start-page: e6071 year: 2018 ident: 7076_CR6 publication-title: PeerJ. doi: 10.7717/peerj.6071 – volume: 19 start-page: 986 issue: Suppl 9 year: 2019 ident: 7076_CR30 publication-title: BMC Genomics doi: 10.1186/s12864-018-5349-7 – volume: 394 start-page: 671 issue: 6694 year: 1998 ident: 7076_CR37 publication-title: Nature. doi: 10.1038/29286 – volume: 128 start-page: 3922 issue: 21 year: 2015 ident: 7076_CR51 publication-title: J Cell Sci doi: 10.1242/jcs.171207 – volume: 40 start-page: e49 issue: 7 year: 2012 ident: 7076_CR66 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1293 – volume: 169 start-page: 32 issue: 1 year: 2015 ident: 7076_CR53 publication-title: Plant Physiol doi: 10.1104/pp.15.00677 – volume: 13 start-page: 1194 issue: 8 year: 2020 ident: 7076_CR65 publication-title: Mol Plant doi: 10.1016/j.molp.2020.06.009 – volume: 378 start-page: 483 issue: 3 year: 2009 ident: 7076_CR26 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2008.11.071 – volume: 67 start-page: 472 issue: 3 year: 2011 ident: 7076_CR42 publication-title: Plant J doi: 10.1111/j.1365-313X.2011.04610.x – volume: 37 start-page: W202 issue: Web Server issu year: 2009 ident: 7076_CR63 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp335 – volume: 8 start-page: 15612 issue: 1 year: 2018 ident: 7076_CR18 publication-title: Sci Rep doi: 10.1038/s41598-018-33744-w – volume: 20 start-page: 219 issue: 4 year: 2015 ident: 7076_CR52 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2015.02.001 – volume: 23 start-page: 2947 issue: 21 year: 2007 ident: 7076_CR61 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btm404 – volume: 25 start-page: 402 issue: 4 year: 2001 ident: 7076_CR70 publication-title: Methods. doi: 10.1006/meth.2001.1262 – volume: 457 start-page: 1 issue: 1–2 year: 2010 ident: 7076_CR7 publication-title: Gene. doi: 10.1016/j.gene.2010.02.011 – volume: 156 start-page: 213 issue: 1 year: 2011 ident: 7076_CR11 publication-title: Plant Physiol doi: 10.1104/pp.111.174268 – volume: 30 start-page: 2725 issue: 12 year: 2013 ident: 7076_CR62 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst197 – volume: 53 start-page: 570 issue: 7 year: 2011 ident: 7076_CR39 publication-title: J Integr Plant Biol doi: 10.1111/j.1744-7909.2011.01062.x – volume: 63 start-page: 635 issue: 5 year: 2020 ident: 7076_CR2 publication-title: Sci China Life Sci doi: 10.1007/s11427-020-1683-x – volume: 10 start-page: 228 year: 2019 ident: 7076_CR50 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00228 – volume: 11 start-page: 719 year: 2010 ident: 7076_CR17 publication-title: BMC Genomics doi: 10.1186/1471-2164-11-719 – volume: 140 start-page: 411 issue: 2 year: 2006 ident: 7076_CR8 publication-title: Plant Physiol doi: 10.1104/pp.105.073783 – volume: 61 start-page: 897 issue: 6 year: 2006 ident: 7076_CR45 publication-title: Plant Mol Biol doi: 10.1007/s11103-006-0057-0 – volume: 172 start-page: 1249 issue: 2 year: 2016 ident: 7076_CR60 publication-title: Plant Physiol doi: 10.1104/pp.16.00415 – volume: 33 start-page: 35 issue: 1 year: 2014 ident: 7076_CR59 publication-title: Plant Cell Rep doi: 10.1007/s00299-013-1510-6 – volume: 290 start-page: 1151 issue: 5494 year: 2000 ident: 7076_CR68 publication-title: Science doi: 10.1126/science.290.5494.1151 – volume: 371 start-page: 468 issue: 3 year: 2008 ident: 7076_CR34 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2008.04.087 – volume: 142 start-page: 113 issue: 1 year: 2006 ident: 7076_CR43 publication-title: Plant Physiol doi: 10.1104/pp.106.081752 – volume: 50 start-page: 1565 issue: 11 year: 2018 ident: 7076_CR31 publication-title: Nat Genet doi: 10.1038/s41588-018-0237-2 – volume: 8 start-page: 77 issue: 1 year: 2010 ident: 7076_CR67 publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/s1672-0229(10)60008-3 – volume: 6 start-page: 29948 year: 2016 ident: 7076_CR58 publication-title: Sci Rep doi: 10.1038/srep29948 – volume: 7 start-page: 67 year: 2016 ident: 7076_CR1 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00067 – volume: 5 start-page: 122 issue: 2 year: 2002 ident: 7076_CR27 publication-title: Curr Opin Plant Biol doi: 10.1016/s1369-5266(02)00234-0 – volume: 21 start-page: 508 issue: 6 year: 2011 ident: 7076_CR14 publication-title: Curr Biol doi: 10.1016/j.cub.2011.02.020 – volume: 1 start-page: 251 issue: 3 year: 2009 ident: 7076_CR28 publication-title: GCB Bioenergy doi: 10.1111/j.1757-1707.2009.01016.x – volume: 38 start-page: 745 issue: 2 year: 2011 ident: 7076_CR35 publication-title: Mol Biol Rep doi: 10.1007/s11033-010-0162-7 – volume: 6 start-page: 1059 year: 2015 ident: 7076_CR54 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.01059 – volume: 64 start-page: 936 issue: 6 year: 2010 ident: 7076_CR16 publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04384.x – volume: 7 start-page: R41 issue: 5 year: 2006 ident: 7076_CR36 publication-title: Genome Biol doi: 10.1186/gb-2006-7-5-r41 – volume: 82 start-page: 439 issue: 4–5 year: 2013 ident: 7076_CR20 publication-title: Plant Mol Biol doi: 10.1007/s11103-013-0073-9 – volume: 61 start-page: 153 issue: 2 year: 2019 ident: 7076_CR5 publication-title: Mol Biotechnol doi: 10.1007/s12033-018-0144-x – volume: 34 start-page: 223 issue: 2 year: 2015 ident: 7076_CR24 publication-title: Plant Cell Rep doi: 10.1007/s00299-014-1701-9 – volume: 74 start-page: 313 issue: 4–5 year: 2010 ident: 7076_CR9 publication-title: Plant Mol Biol doi: 10.1007/s11103-010-9674-8 – volume: 4 start-page: 42 issue: 1 year: 2011 ident: 7076_CR29 publication-title: Trop Plant Biol doi: 10.1007/s12042-011-9067-4 – volume: 11 start-page: 101 issue: 2 year: 2015 ident: 7076_CR25 publication-title: Bioinformation. doi: 10.6026/97320630011101 – volume: 1819 start-page: 86 issue: 2 year: 2012 ident: 7076_CR12 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagrm.2011.08.004 – volume: 40 start-page: 1743 issue: 2 year: 2013 ident: 7076_CR48 publication-title: Mol Biol Rep doi: 10.1007/s11033-012-2228-1 – volume: 56 start-page: 38 issue: 1 year: 2009 ident: 7076_CR57 publication-title: Russ J Plant Physiol doi: 10.1134/S1021443709010063 – volume: 198 start-page: 115 issue: 1 year: 2014 ident: 7076_CR33 publication-title: Euphytica. doi: 10.1007/s10681-014-1088-2 – volume: 157 start-page: 216 issue: 1 year: 2011 ident: 7076_CR15 publication-title: Plant Physiol doi: 10.1104/pp.111.179945 – volume: 11 start-page: 512 issue: 1 year: 2012 ident: 7076_CR69 publication-title: Genet Mol Res doi: 10.4238/2012 – volume: 511 start-page: 38 issue: 1 year: 2012 ident: 7076_CR46 publication-title: Gene. doi: 10.1016/j.gene.2012.09.039 – volume: 171 start-page: 860 issue: 10 year: 2014 ident: 7076_CR13 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2013.12.015 – volume: 143 start-page: 1739 issue: 4 year: 2007 ident: 7076_CR49 publication-title: Plant Physiol doi: 10.1104/pp.106.094532 – volume: 199 start-page: 639 issue: 3 year: 2013 ident: 7076_CR23 publication-title: New Phytol doi: 10.1111/nph.12291 |
SSID | ssj0017825 |
Score | 2.54183 |
Snippet | APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and... Background APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to... Abstract Background APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 685 |
SubjectTerms | Abiotic stress AP2/ERF gene Cellular stress response Chromosomes Dehydration Developmental stages Energy crops Environmental changes Ethanol Gene expression Gene Expression Regulation, Developmental Gene Expression Regulation, Plant Genes Genetic structure Genomes Genomics Homeodomain Proteins - genetics Homeodomain Proteins - metabolism Hormones Introns Phylogenetics Phylogeny Plant breeding Plant growth Plant Proteins - genetics Plant Proteins - metabolism Plant resistance Promoter Regions, Genetic Proteins Regulatory sequences Rice Saccharum - genetics Saccharum - growth & development Saccharum - metabolism Saccharum spontaneum Salt Stress Signal transduction Sorghum Stresses Structural analysis Sugarcane Transcription factor Transcription factors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA6lIPRFrLa6tkqEPiiy3m1-7eaxSs8irUit0LewSSb1wO6Jd4enf72TbPboieiLb_sjC9nMJPN9ZPINIUfgxgpxOCAtCa4U0PISgwISV8WsrLhsq1Q_5fy9Ov0k3l3Jq1ulvmJOWC8P3A_cSDpdWx8QVVgpQghIwK1mIJhTTEOTlEAx5g1kKu8fYNyTwxGZRo3muAorUUaqFOVtVLnaCENJrf9PEPP3TMlboWdyj9zNmJEe933dJVvQ3Sd3-iqSPx6Qn2-hm91A-X3qgU59Tv9JI07bzlNY5WTXeNtLkNBZoMcf2OjkYkIXMVoNawfN9XfotKPz5TXOgrYD-vxj6-LxrOUNjRm1iCcBL89evdgjl5OTyzenZS6pUDqh1aLkwFtXVaGxYJ2zbsyl5Y1nXoH2iB1sLSV3tfKiBtACw7ezQQMTSiLxUXyfbHezDh4RijjNNo2W8VQ0QjJlhQ-2Es7zEFwFoSDVMMDGZbnxWPXii0m0o1GmN4pBo5hkFLMqyMv1N197sY2_tn4d7bZuGYWy0wN0H5Pdx_zLfQpyOFjd5Nk7N0xIXOkQ2o0L8mz9Gudd3EzBIZ4tYxvRRDKsVEEe9k6y7gnn6ciyLki94T4bXd18000_J21vZI_IUOXj__FvB2SHRZeP6Q7skGwvvi3hCUKohX2aZssvHHwZyw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifl_vTonggyJ1t81Hmyc55dZDVERP2LfQJJNzwWvP211c_eudpGl1Re6tbVIImZnM75dMZgh5AnYqEYcD0hJvcw4Ny9EpIHGVpREFE00R66e8_yCPv_C3czFPG27LFFY5rIlxoXadDXvkk5IL1D50t9OX59_zUDUqnK6mEhpXybWQuiyEdFXzkXAV6P3EcFGmlpMlrsWS54EwhSQ3Mt9sOaOYs_9_QPPfeMm_HNDsFrmZkCM97EV9m1yB9g653teS_HmX_HoDbXcG-Y-FA7pwKQgozjttWkdhk0Jew2ufiIR2nh5-LCdHn2Z0FXzWsILQVIWHLlq6XJ-iLTQt0KefGxsuaa3PaIirRVQJ-PjuxbN75GR2dPL6OE-FFXLLlVzlDFhji8LXBoy1xk6ZMKx2pZOgHCIIUwnBbCUdrwAURydujVdQcimQ_kh2n-y0XQu7hCJaM3WtRLgbjcBMGu68Kbh1zHtbgM9IMUywtinpeKh98U1H8lFL3QtFo1B0FIreZOT5-M95n3Lj0t6vgtzGniFddvzQXZzqZH1aWFUZ5xGaGsG994oxo0rgpZWlgppn5GCQuk42vNR_NC4jj8dmtL5wpIJT3K1DH14HSixlRh70SjKOhLF4cVllpNpSn62hbre0i68xwzdySOSpYu_yYe2TG2VQ5hDOUB6QndXFGh4iRFqZR9EOfgO3ExDs priority: 102 providerName: ProQuest |
Title | Genome-wide identification and expression analysis of AP2/ERF transcription factors in sugarcane (Saccharum spontaneum L.) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33008299 https://www.proquest.com/docview/2451831720 https://www.proquest.com/docview/2448407166 https://pubmed.ncbi.nlm.nih.gov/PMC7531145 https://doaj.org/article/5c97bdf575b54fff933b92e42c629e84 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VVqBeEG9SyspIHEAo7SZ-JD4g1KJdKkSrqrTS3qLYGZeV2oTuQ2z59YzzWFi0cEtiJ7I8M57vi8czAK_R9hXhcCRa4mwoMOchOQUirio2MuIyj-r6Kccn6uhCfB7J0QZ05Y7aCZyupXa-ntTF5GpvcXP7gQz-fW3wqdqf0hqrROiJkE9eo0LClFvkmRJvqMfi964CeUPZHZxZ-9423CN-74-b6hU_VafzX4dB_w6l_MM3DR_A_RZUsoNGCx7CBpaP4G5TZvL2Mfz8hGV1jeGPcYFsXLTxQbVIWF4WDBdtNKy_bXKUsMqxg9N4f3A2ZDPvzrrFhbUFeti4ZNP5JZlJXiJ78zW3_vzW_Jr5kFsCnEiXX_bePoHz4eD841HY1lwIrdBqFnLkuY0ilxo01hrb59LwtIgLhbogcGESKblNVCESRC3Iv1vjNMZCSWJGij-FzbIq8TkwAnImTbX0x6YJsykjCmciYQvunI3QBRB1E5zZNh-5L4txldW8JFVZI5-M5JPV8skWAbxbvvO9ycbx396HXm7Lnj6Tdv2gmlxmrWFm0urEFI5Qq5HCOac5NzpGEVsVa0xFALud1LNOO7NYSFoKCfv1A3i1bCbD9LstNMXV3PcRqWfLSgXwrFGS5Ug6JQsgWVGflaGutpTjb3Xyb6KXRGHlzj-_-QK2Y6_SPsgh3oXN2WSOLwk4zUwP7iSjpAdbh4OT07Ne_fuhV1vILyXVF7g |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anRC8IO4EBhgJJBAKbXxr8oDQBi0d66ppdNLerNixt0pbMtZW6_hP_EeOcykUob3trWmcyPI5Puf74nMBeG1NRyIOt0hLnAm5TVmITgGJq6RaREykUdk_ZXckBwf826E4XINfTS6MD6tsbGJpqLPC-G_kbcoFah-6286nsx-h7xrlT1ebFhqVWuzYywukbNOP219Qvm8o7ffGnwdh3VUgNDyRs5BZlpoocrG22hhtOkxoFmc0kzbJ0H3qrhDMdGXGu9YmHD2Y0S6xlEuB2F8yfO0NWOcMmUwL1rd6o7395bEFulvRZObEsj1F4y956Bmar6ojw8WK9yubBPwP2f4boPmXx-vfhTs1VCWblW7dgzWb34ebVfPKywfw86vNi1MbXkwySyZZHXVUCpqkeUbsoo6x9ZdV5RNSOLK5R9u9_T6ZeSfZmCxSt_0hk5xM50e4ymluydvvqfFZYfNT4gN5EcZa_Dn88O4hjK9jzR9BKy9y-wQIwkMdx4nwydiIBKXmmdMRNxlzzkTWBRA1C6xMXeXcN9s4USXbiaWqhKJQKKoUiloE8H75zFlV4-PK0VtebsuRvj53-UdxfqTq7a6ESbo6c4iFteDOuYQxnVDLqZE0sTEPYKORuqqNxlT9UfEAXi1v43b3Zzi4xMXcj-Gx5-BSBvC4UpLlTBgrM6WTALor6rMy1dU7-eS4LCmOpBWJsXh69bRewq3BeHeohtujnWdwm3rF9rEUdANas_O5fY74bKZf1LuCgLrmffgbqUFPAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+identification+and+expression+analysis+of+AP2%2FERF+transcription+factors+in+sugarcane+%28Saccharum+spontaneum+L.%29&rft.jtitle=BMC+genomics&rft.au=Li%2C+Peiting&rft.au=Chai%2C+Zhe&rft.au=Lin%2C+Pingping&rft.au=Huang%2C+Chaohua&rft.date=2020-10-02&rft.eissn=1471-2164&rft.volume=21&rft.issue=1&rft.spage=685&rft_id=info:doi/10.1186%2Fs12864-020-07076-x&rft_id=info%3Apmid%2F33008299&rft.externalDocID=33008299 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |