Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance
Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk prod...
Saved in:
Published in | Microbiome Vol. 8; no. 1; pp. 64 - 19 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
12.05.2020
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels.
Metagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host's metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY.
These findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding. Video Abstract. |
---|---|
AbstractList | Abstract Background Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels. Results Metagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host’s metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY. Conclusions These findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding. Video Abstract Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels. Metagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host's metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY. These findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding. Video Abstract. Background Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels. Results Metagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host’s metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY. Conclusions These findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding. Video Abstract Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels.BACKGROUNDRecently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels.Metagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host's metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY.RESULTSMetagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host's metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY.These findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding. Video Abstract.CONCLUSIONSThese findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding. Video Abstract. |
ArticleNumber | 64 |
Author | Sun, Hui-Zeng Xue, Ming-Yuan Liu, Jian-Xin Guan, Le Luo Wu, Xue-Hui |
Author_xml | – sequence: 1 givenname: Ming-Yuan surname: Xue fullname: Xue, Ming-Yuan – sequence: 2 givenname: Hui-Zeng surname: Sun fullname: Sun, Hui-Zeng – sequence: 3 givenname: Xue-Hui surname: Wu fullname: Wu, Xue-Hui – sequence: 4 givenname: Jian-Xin surname: Liu fullname: Liu, Jian-Xin – sequence: 5 givenname: Le Luo surname: Guan fullname: Guan, Le Luo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32398126$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNUREvpH-CALHHhEvBXbOeChCo-KhVxgbNlO5Ndr5J4sZ2t2v_B_8XZLdW2B3ywrZnnfTX2zMvqZAoTVNVrgt8TosSHxDERqsYU1xgr0tbqWXVGMW9rKog6ObqfVhcpbXBZLeGSqxfVKaOsVYSKs-rP93nIvg6jdwlF2IEZEsprk8sGKM4jTKjkYrA-jIDM1CGfExohGxuGJZTDCgob0Y3P671qHVI-JlyYcvR2zguM_NT5ne9mM_g76FBnfLwtyA3aQuxDHM3k4FX1vC-FwMX9eV79-vL55-W3-vrH16vLT9e1463INbOOU2cZtoJJqYQEoaQiijSYY4uZxC3uJO8b2jOrBCXQGK6wtIoZJpxj59XVwbcLZqO30Y8m3upgvN4HQlxpE7N3A2gLruWEgjLYctJ2bcMp5RJzC53sSVO8Ph68trMdoXNQHm2GR6aPM5Nf61XYaUmJaiQrBu_uDWL4PUPKevTJwTCYCcKcNOWYck44FQV9-wTdhDlO5asWilPeCEIL9ea4oodS_nW_APQAlP6mFKF_QAjWy5Tpw5TpMmV6P2VaFZF6InI-m-yXJhs__E_6F4rz2C4 |
CitedBy_id | crossref_primary_10_3389_fmicb_2024_1301292 crossref_primary_10_1038_s41598_023_33067_5 crossref_primary_10_3389_fnut_2022_847966 crossref_primary_10_1186_s40168_023_01682_z crossref_primary_10_1186_s40168_024_01892_z crossref_primary_10_3389_fmicb_2022_1034675 crossref_primary_10_3390_microorganisms12081701 crossref_primary_10_33284_2658_3135_107_4_266 crossref_primary_10_1007_s00253_023_12620_2 crossref_primary_10_1016_j_aquaculture_2023_739420 crossref_primary_10_3389_fmicb_2022_845621 crossref_primary_10_1016_j_micres_2023_127510 crossref_primary_10_3389_fmicb_2022_783058 crossref_primary_10_3390_vetsci10120679 crossref_primary_10_1186_s40168_024_01760_w crossref_primary_10_3168_jds_2024_24753 crossref_primary_10_1016_j_animal_2023_100780 crossref_primary_10_3389_fmicb_2023_1247251 crossref_primary_10_1016_j_aninu_2022_03_002 crossref_primary_10_1016_j_scitotenv_2021_152773 crossref_primary_10_3389_fmicb_2022_1013980 crossref_primary_10_3389_fvets_2022_902001 crossref_primary_10_1016_j_aninu_2023_05_013 crossref_primary_10_1080_1828051X_2022_2129477 crossref_primary_10_1186_s42523_021_00142_z crossref_primary_10_1186_s12866_021_02311_1 crossref_primary_10_1071_AN21508 crossref_primary_10_3389_fvets_2021_747519 crossref_primary_10_1186_s40168_023_01654_3 crossref_primary_10_1186_s42523_022_00170_3 crossref_primary_10_3390_ani14142057 crossref_primary_10_1080_1828051X_2022_2077147 crossref_primary_10_1093_jas_skab193 crossref_primary_10_3390_ani14131968 crossref_primary_10_1186_s40104_023_00963_9 crossref_primary_10_3390_ani14131965 crossref_primary_10_3168_jds_2020_18612 crossref_primary_10_3389_fmicb_2024_1467841 crossref_primary_10_1186_s40104_022_00823_y crossref_primary_10_1186_s40168_023_01510_4 crossref_primary_10_1186_s42523_021_00081_9 crossref_primary_10_3389_fvets_2024_1447238 crossref_primary_10_3390_ani14172586 crossref_primary_10_3389_fmicb_2024_1387957 crossref_primary_10_3390_metabo12030225 crossref_primary_10_1186_s12866_024_03638_1 crossref_primary_10_3390_ani12101300 crossref_primary_10_1016_j_isci_2023_107754 crossref_primary_10_3390_ani15050738 crossref_primary_10_3390_ijms241914856 crossref_primary_10_3390_microorganisms12112180 crossref_primary_10_3390_life14070802 crossref_primary_10_3390_fermentation8050240 crossref_primary_10_3390_microorganisms12081729 crossref_primary_10_1186_s12967_024_05232_5 crossref_primary_10_1186_s40168_024_01962_2 crossref_primary_10_3389_fmicb_2024_1459773 crossref_primary_10_1016_j_animal_2024_101202 crossref_primary_10_1038_s42003_025_07538_6 crossref_primary_10_1007_s10482_022_01791_z crossref_primary_10_3389_fimmu_2023_1329590 crossref_primary_10_1016_j_scitotenv_2021_147813 crossref_primary_10_1186_s40168_022_01228_9 crossref_primary_10_1186_s40168_021_01211_w crossref_primary_10_3389_fmicb_2022_821613 crossref_primary_10_3389_fmicb_2023_1247348 crossref_primary_10_3389_fvets_2022_812861 crossref_primary_10_1016_j_aninu_2024_06_007 crossref_primary_10_1038_s41598_024_57803_7 crossref_primary_10_1186_s40104_024_01056_x crossref_primary_10_3390_ani11082425 crossref_primary_10_1016_j_scitotenv_2024_175732 crossref_primary_10_1093_jas_skac275 crossref_primary_10_1002_advs_202410953 crossref_primary_10_1038_s41522_024_00609_2 crossref_primary_10_3389_fanim_2025_1489212 crossref_primary_10_1186_s40168_023_01652_5 crossref_primary_10_1016_j_aninu_2021_12_005 crossref_primary_10_1038_s42003_024_07252_9 crossref_primary_10_3390_fermentation9050411 crossref_primary_10_3389_fmicb_2022_1000750 crossref_primary_10_3389_fmicb_2024_1409659 crossref_primary_10_1186_s40168_024_01844_7 crossref_primary_10_3168_jds_2022_23066 crossref_primary_10_3389_fmicb_2022_844968 crossref_primary_10_3390_metabo14090476 crossref_primary_10_1016_j_foodres_2020_110017 crossref_primary_10_1128_msphere_00024_25 crossref_primary_10_1016_j_tim_2021_03_012 crossref_primary_10_1128_msystems_00844_23 crossref_primary_10_3390_microorganisms10040754 crossref_primary_10_1007_s00253_022_12240_2 crossref_primary_10_3389_fmicb_2023_1098813 crossref_primary_10_3390_ani12233375 crossref_primary_10_1186_s40168_023_01620_z crossref_primary_10_1016_j_aninu_2023_04_011 crossref_primary_10_1128_spectrum_03590_22 crossref_primary_10_3168_jds_2023_23751 crossref_primary_10_1038_s41598_023_37891_7 crossref_primary_10_3168_jds_2024_24817 crossref_primary_10_1186_s12711_023_00791_5 crossref_primary_10_3389_fmicb_2023_1309535 crossref_primary_10_1093_jambio_lxad278 crossref_primary_10_1186_s40168_024_01937_3 crossref_primary_10_1016_j_scitotenv_2024_175955 crossref_primary_10_3390_metabo12050374 crossref_primary_10_3389_fmicb_2024_1342804 crossref_primary_10_3389_fvets_2022_985824 crossref_primary_10_1093_jas_skac253 crossref_primary_10_3390_nu14142972 crossref_primary_10_1002_imt2_225 crossref_primary_10_1186_s44363_025_00002_0 crossref_primary_10_1128_msystems_00023_24 crossref_primary_10_1016_j_foodres_2025_115859 crossref_primary_10_3390_ani14162344 crossref_primary_10_1186_s40793_022_00436_y crossref_primary_10_3389_fvets_2023_1064774 crossref_primary_10_1038_s41598_025_93710_1 crossref_primary_10_1111_jam_15388 crossref_primary_10_1016_j_aninu_2022_07_014 crossref_primary_10_3389_fmicb_2022_861025 crossref_primary_10_3390_ani15020218 crossref_primary_10_3389_fmicb_2023_1284603 crossref_primary_10_3390_ani10081397 crossref_primary_10_1007_s42770_020_00380_4 crossref_primary_10_3390_ani14162294 crossref_primary_10_3390_microorganisms9010083 crossref_primary_10_3389_fnut_2022_927206 crossref_primary_10_1007_s12602_024_10379_0 crossref_primary_10_1146_annurev_animal_020420_032054 crossref_primary_10_1186_s42523_023_00288_y crossref_primary_10_2478_aoas_2022_0002 crossref_primary_10_3389_fvets_2024_1359234 crossref_primary_10_3389_fimmu_2021_643206 crossref_primary_10_1186_s12917_024_04073_0 crossref_primary_10_1038_s41392_023_01619_w crossref_primary_10_3389_fmicb_2024_1471732 crossref_primary_10_1128_AEM_01908_20 crossref_primary_10_1186_s40168_022_01367_z crossref_primary_10_3389_fmicb_2021_663945 crossref_primary_10_1186_s40168_023_01733_5 crossref_primary_10_3390_ani14091339 crossref_primary_10_1186_s12915_024_02035_4 crossref_primary_10_1186_s40168_021_01040_x crossref_primary_10_3389_fmicb_2021_636223 crossref_primary_10_3390_ani14152256 crossref_primary_10_1002_imt2_169 crossref_primary_10_3389_fvets_2024_1484175 crossref_primary_10_1021_acs_jafc_1c06662 crossref_primary_10_1155_2022_1098892 crossref_primary_10_1038_s41598_024_83017_y crossref_primary_10_3389_fvets_2023_1206346 crossref_primary_10_5713_ab_20_0601 crossref_primary_10_1093_femsec_fiab152 crossref_primary_10_3390_microorganisms10081491 crossref_primary_10_1017_anr_2024_24 crossref_primary_10_3390_ruminants4030024 crossref_primary_10_1016_j_heliyon_2024_e34380 crossref_primary_10_3389_fmicb_2024_1438566 crossref_primary_10_1186_s40168_023_01492_3 crossref_primary_10_1016_j_aninu_2022_01_002 crossref_primary_10_1016_j_anifeedsci_2021_115060 crossref_primary_10_3389_fmicb_2022_859601 crossref_primary_10_3389_fvets_2024_1455029 crossref_primary_10_1186_s40104_024_01110_8 crossref_primary_10_3389_fmicb_2021_651631 crossref_primary_10_3390_agriculture14122283 crossref_primary_10_1186_s40104_023_00862_z crossref_primary_10_1016_j_aninu_2024_02_004 crossref_primary_10_1038_s41598_024_66200_z crossref_primary_10_3389_fmicb_2023_1305772 crossref_primary_10_1186_s12864_024_10272_8 crossref_primary_10_3168_jds_2024_25425 crossref_primary_10_1186_s40104_023_00850_3 crossref_primary_10_3390_ani11051248 crossref_primary_10_3390_ani11051247 crossref_primary_10_1016_j_envres_2024_119458 crossref_primary_10_1016_j_anifeedsci_2025_116287 crossref_primary_10_1016_j_jia_2024_04_015 crossref_primary_10_3389_fnut_2021_815358 crossref_primary_10_1186_s12917_023_03799_7 crossref_primary_10_3389_fvets_2022_922817 crossref_primary_10_3390_ani13193034 crossref_primary_10_1038_s41564_022_01266_x crossref_primary_10_1128_spectrum_03758_23 crossref_primary_10_1186_s40168_024_01943_5 crossref_primary_10_3389_fmicb_2023_1124917 crossref_primary_10_1128_msystems_00422_22 crossref_primary_10_3390_microorganisms10020323 crossref_primary_10_3389_fmicb_2022_908244 crossref_primary_10_3389_fmicb_2021_658448 crossref_primary_10_1128_aem_00992_22 crossref_primary_10_3390_antiox11091715 crossref_primary_10_3390_ani15050758 crossref_primary_10_3390_ani14050788 crossref_primary_10_1093_jas_skae173 crossref_primary_10_1016_j_jprot_2023_104982 crossref_primary_10_3390_ani14101495 crossref_primary_10_1371_journal_pone_0319461 crossref_primary_10_1093_tas_txad011 crossref_primary_10_48130_animadv_0024_0002 crossref_primary_10_1186_s40168_024_02019_0 crossref_primary_10_1016_j_aninu_2024_10_003 crossref_primary_10_1371_journal_pone_0305674 crossref_primary_10_3389_fmicb_2025_1533851 crossref_primary_10_1186_s40168_024_01791_3 crossref_primary_10_3389_fmicb_2022_1056315 crossref_primary_10_3389_fmicb_2022_982338 crossref_primary_10_1016_j_scitotenv_2023_167776 crossref_primary_10_1186_s40104_023_00832_5 crossref_primary_10_3390_ani14213137 crossref_primary_10_1186_s40168_024_01946_2 crossref_primary_10_3389_fmicb_2022_940158 crossref_primary_10_7717_peerj_14444 crossref_primary_10_1186_s40168_023_01535_9 crossref_primary_10_3389_fmicb_2024_1525612 crossref_primary_10_1016_j_theriogenology_2023_09_016 crossref_primary_10_1016_j_livsci_2023_105171 crossref_primary_10_33920_sel_03_2206_01 crossref_primary_10_1093_jas_skac403 crossref_primary_10_1016_j_aninu_2024_04_021 crossref_primary_10_3390_fermentation10020094 crossref_primary_10_3389_fmicb_2022_815225 crossref_primary_10_3389_fmicb_2024_1376994 crossref_primary_10_30766_2072_9081_2024_25_2_159_171 crossref_primary_10_3168_jds_2022_21960 crossref_primary_10_1016_j_aninu_2024_04_013 crossref_primary_10_3389_fvets_2022_1010045 crossref_primary_10_1039_D2FO02751H crossref_primary_10_1155_2022_1248398 crossref_primary_10_1016_j_ecoenv_2024_116292 crossref_primary_10_3390_ani12080997 crossref_primary_10_1093_ismeco_ycaf021 crossref_primary_10_1186_s12917_024_04412_1 crossref_primary_10_1042_ETLS20210257 crossref_primary_10_32634_0869_8155_2024_384_7_85_90 crossref_primary_10_1186_s12864_025_11465_5 crossref_primary_10_1016_j_aninu_2021_03_004 crossref_primary_10_3390_ani15020248 crossref_primary_10_1016_j_aninu_2024_08_003 crossref_primary_10_3390_foods10010109 crossref_primary_10_3390_microorganisms11112673 crossref_primary_10_1016_j_aninu_2024_04_027 crossref_primary_10_3390_ijms26052343 crossref_primary_10_1128_msystems_01093_24 crossref_primary_10_1186_s42523_024_00336_1 crossref_primary_10_3390_microorganisms12112302 crossref_primary_10_1016_j_atech_2022_100170 crossref_primary_10_3389_fmicb_2024_1431063 |
Cites_doi | 10.1016/j.jprot.2018.06.005 10.1002/elps.200700851 10.3168/jds.2018-15974 10.1093/bioinformatics/btp324 10.1128/AEM.14.5.807-814.1966 10.1073/pnas.0609333103 10.1093/nar/gkl723 10.1093/nar/gkl842 10.1186/s40168-019-0618-5 10.1038/nature25973 10.1038/nmeth.3176 10.1093/nar/28.1.27 10.1093/bioinformatics/btq461 10.1021/ac9019522 10.1371/journal.ppat.1004483 10.1093/nar/gky310 10.1016/0955-2863(96)00034-4 10.1093/bioinformatics/btp336 10.1093/bioinformatics/btv033 10.1371/journal.pone.0129174 10.3168/jds.2017-13328 10.1371/journal.pgen.1007580 10.1099/00221287-144-9-2377 10.1186/s40168-019-0699-1 10.1098/rstb.2010.0149 10.1186/gb-2011-12-6-r60 10.1038/ismej.2016.62 10.1093/bioinformatics/bts565 10.2144/04365ST04 10.1007/s11250-014-0624-3 10.1128/JB.76.1.15-23.1958 10.1534/genetics.117.200782 10.1128/mBio.00703-17 10.1196/annals.1419.022 10.1126/science.1058830 10.1002/biof.8 10.1038/s41396-019-0367-2 10.3168/jds.2013-6679 10.3168/jds.2018-14622 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 10.1093/bioinformatics/btq418 10.1186/s12864-015-2032-0 10.1371/journal.pgen.1005846 10.1021/pr501305g 10.1007/s00253-006-0802-y 10.3168/jds.2010-3764 10.1038/nprot.2011.335 10.1126/sciadv.aav8391 10.1101/gr.168245.113 10.1007/s10545-016-9950-0 10.3168/jds.2013-7612 10.1093/nar/gkq329 10.18637/jss.v067.i01 10.3168/jds.S0022-0302(65)88178-4 10.1186/s40168-016-0201-2 10.1073/pnas.69.9.2509 10.1111/1462-2920.12724 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s40168-020-00819-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2049-2618 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_bec9412e8a0b419d954224704bed7f15 PMC7218573 32398126 10_1186_s40168_020_00819_8 |
Genre | Validation Study Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 31729004 – fundername: ; grantid: CARS-36 |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IEP IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SOJ UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c496t-3bc42cb30b6377867e68781815040b037090d74f52f3b8621e5a4807b83a36cc3 |
IEDL.DBID | 7X7 |
ISSN | 2049-2618 |
IngestDate | Wed Aug 27 01:27:53 EDT 2025 Thu Aug 21 18:34:03 EDT 2025 Fri Jul 11 02:01:02 EDT 2025 Fri Jul 25 12:12:15 EDT 2025 Mon Jul 21 06:07:17 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Tue Jul 01 04:16:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Milk protein yield Rumen metabolome Serum metabolome Rumen metagenome Dairy cattle |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-3bc42cb30b6377867e68781815040b037090d74f52f3b8621e5a4807b83a36cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.proquest.com/docview/2404245612?pq-origsite=%requestingapplication% |
PMID | 32398126 |
PQID | 2404245612 |
PQPubID | 2040205 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bec9412e8a0b419d954224704bed7f15 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7218573 proquest_miscellaneous_2402441426 proquest_journals_2404245612 pubmed_primary_32398126 crossref_primary_10_1186_s40168_020_00819_8 crossref_citationtrail_10_1186_s40168_020_00819_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-12 |
PublicationDateYYYYMMDD | 2020-05-12 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Microbiome |
PublicationTitleAlternate | Microbiome |
PublicationYear | 2020 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | W Shi (819_CR23) 2014; 24 F Li (819_CR42) 2019; 7 X Wu (819_CR6) 2018; 184 MY Xue (819_CR7) 2019; 102 B Niu (819_CR47) 2012; 28 N Segata (819_CR64) 2011; 12 J Kearney (819_CR1) 2010; 365 819_CR2 JB Russell (819_CR27) 2001; 292 RM Macnab (819_CR33) 1972; 69 R Gentleman (819_CR63) 2011; 1 M Kanehisa (819_CR51) 2000; 28 J Kamke (819_CR11) 2016; 4 T Kind (819_CR54) 2009; 81 819_CR61 MY Xue (819_CR8) 2018; 84 819_CR59 RK Thauer (819_CR22) 1998; 144 WB Dunn (819_CR55) 2011; 6 H-Z Sun (819_CR53) 2015; 14 Z Yu (819_CR43) 2004; 36 Y Rossez (819_CR34) 2015; 11 CM Smith (819_CR31) 1996; 7 H Noguchi (819_CR46) 2006; 34 C-M Liu (819_CR45) 2015; 31 GF Difford (819_CR14) 2018; 14 B Buchfink (819_CR49) 2014; 12 H Li (819_CR44) 2009; 25 KA Gillah (819_CR4) 2014; 46 BL Larson (819_CR16) 1965; 48 DS Wishart (819_CR57) 2010; 26 F Li (819_CR13) 2019; 7 MS Allen (819_CR35) 2014; 30 J Xia (819_CR58) 2010; 38 TM Taxis (819_CR9) 2015; 43 L Xiayan (819_CR36) 2008; 29 A Camarinha-Silva (819_CR40) 2017; 206 HJ Flint (819_CR26) 2008; 1125 DM Stevenson (819_CR19) 2007; 75 RJ Wallace (819_CR10) 2015; 16 J Zempleni (819_CR29) 2009; 35 RJ Wallace (819_CR38) 2019; 5 J Chong (819_CR56) 2018; 46 E Gernand (819_CR3) 2014; 97 PR Myer (819_CR24) 2015; 10 G Sasson (819_CR15) 2017; 8 D Bates (819_CR60) 2015; 67 AD Sova (819_CR5) 2013; 96 D Rothschild (819_CR39) 2018; 555 M Kaur (819_CR32) 2019; 102 MA Zapala (819_CR62) 2006; 103 F Li (819_CR12) 2017; 83 DM Bickhart (819_CR18) 2018; 101 KD Pruitt (819_CR50) 2006; 35 MP Bryant (819_CR20) 1958; 76 SKB Shabat (819_CR17) 2016; 10 R Roehe (819_CR21) 2016; 12 MJ Allison (819_CR25) 1966; 14 B Chen (819_CR28) 2011; 94 RC Edgar (819_CR52) 2010; 26 C Wen (819_CR41) 2019; 13 C Yu (819_CR48) 2009; 25 M Barile (819_CR30) 2016; 39 SY Mao (819_CR37) 2016; 18 |
References_xml | – volume: 184 start-page: 54 year: 2018 ident: 819_CR6 publication-title: J Proteomics. doi: 10.1016/j.jprot.2018.06.005 – volume: 29 start-page: 3724 year: 2008 ident: 819_CR36 publication-title: Electrophoresis. doi: 10.1002/elps.200700851 – volume: 102 start-page: 5031 year: 2019 ident: 819_CR7 publication-title: J Dairy Sci. doi: 10.3168/jds.2018-15974 – volume: 25 start-page: 1754 year: 2009 ident: 819_CR44 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btp324 – volume: 30 start-page: 577 year: 2014 ident: 819_CR35 publication-title: Vet Clin North Am: Food Anim Pract. – volume: 14 start-page: 807 year: 1966 ident: 819_CR25 publication-title: Appl Microbiol. doi: 10.1128/AEM.14.5.807-814.1966 – volume: 103 start-page: 19430 year: 2006 ident: 819_CR62 publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0609333103 – volume: 34 start-page: 5623 year: 2006 ident: 819_CR46 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl723 – volume: 35 start-page: D61 year: 2006 ident: 819_CR50 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl842 – volume: 7 start-page: 6 year: 2019 ident: 819_CR13 publication-title: Microbiome. doi: 10.1186/s40168-019-0618-5 – volume: 555 start-page: 210 year: 2018 ident: 819_CR39 publication-title: Nature. doi: 10.1038/nature25973 – volume: 12 start-page: 59 year: 2014 ident: 819_CR49 publication-title: Nat Methods. doi: 10.1038/nmeth.3176 – volume: 28 start-page: 27 year: 2000 ident: 819_CR51 publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.27 – volume: 26 start-page: 2460 year: 2010 ident: 819_CR52 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btq461 – volume: 81 start-page: 10038 year: 2009 ident: 819_CR54 publication-title: Anal Chem. doi: 10.1021/ac9019522 – ident: 819_CR2 – volume: 11 start-page: e1004483 year: 2015 ident: 819_CR34 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004483 – volume: 46 start-page: W486 year: 2018 ident: 819_CR56 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky310 – volume: 7 start-page: 312 year: 1996 ident: 819_CR31 publication-title: J Nutr Biochem. doi: 10.1016/0955-2863(96)00034-4 – volume: 25 start-page: 1966 year: 2009 ident: 819_CR48 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btp336 – volume: 31 start-page: 1674 year: 2015 ident: 819_CR45 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btv033 – volume: 10 start-page: e0129174 year: 2015 ident: 819_CR24 publication-title: PLoS One. doi: 10.1371/journal.pone.0129174 – volume: 101 start-page: 7680 year: 2018 ident: 819_CR18 publication-title: J Dairy Sci. doi: 10.3168/jds.2017-13328 – volume: 43 start-page: 9600 year: 2015 ident: 819_CR9 publication-title: Nucleic Acids Res. – volume: 14 start-page: e1007580 year: 2018 ident: 819_CR14 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1007580 – volume: 144 start-page: 2377 year: 1998 ident: 819_CR22 publication-title: Microbiol. doi: 10.1099/00221287-144-9-2377 – volume: 7 start-page: 92 year: 2019 ident: 819_CR42 publication-title: Microbiome. doi: 10.1186/s40168-019-0699-1 – volume: 365 start-page: 2793 year: 2010 ident: 819_CR1 publication-title: Phil Trans Roy Soc London B. doi: 10.1098/rstb.2010.0149 – volume: 12 start-page: R60 year: 2011 ident: 819_CR64 publication-title: Genome Biol. doi: 10.1186/gb-2011-12-6-r60 – volume: 10 start-page: 2958 issue: 12 year: 2016 ident: 819_CR17 publication-title: ISME J doi: 10.1038/ismej.2016.62 – volume: 28 start-page: 3150 year: 2012 ident: 819_CR47 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bts565 – volume: 84 start-page: e00970 year: 2018 ident: 819_CR8 publication-title: Appl Environ Microbiol. – volume: 36 start-page: 808 year: 2004 ident: 819_CR43 publication-title: BioTechniques. doi: 10.2144/04365ST04 – volume: 46 start-page: 1177 year: 2014 ident: 819_CR4 publication-title: Trop Anim Health Prod doi: 10.1007/s11250-014-0624-3 – volume: 76 start-page: 15 year: 1958 ident: 819_CR20 publication-title: J Bacteriol. doi: 10.1128/JB.76.1.15-23.1958 – volume: 206 start-page: 1637 year: 2017 ident: 819_CR40 publication-title: Genetics. doi: 10.1534/genetics.117.200782 – volume: 8 start-page: e00703 year: 2017 ident: 819_CR15 publication-title: mBio doi: 10.1128/mBio.00703-17 – volume: 1125 start-page: 280 year: 2008 ident: 819_CR26 publication-title: Ann N Y Acad Sci. doi: 10.1196/annals.1419.022 – volume: 292 start-page: 1119 year: 2001 ident: 819_CR27 publication-title: Science. doi: 10.1126/science.1058830 – volume: 35 start-page: 36 year: 2009 ident: 819_CR29 publication-title: BioFactors. doi: 10.1002/biof.8 – volume: 13 start-page: 1422 year: 2019 ident: 819_CR41 publication-title: ISME J. doi: 10.1038/s41396-019-0367-2 – volume: 96 start-page: 4759 year: 2013 ident: 819_CR5 publication-title: J Dairy Sci. doi: 10.3168/jds.2013-6679 – volume: 102 start-page: 1642 year: 2019 ident: 819_CR32 publication-title: J Dairy Sci. doi: 10.3168/jds.2018-14622 – ident: 819_CR61 doi: 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 – volume: 26 start-page: 2342 year: 2010 ident: 819_CR57 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btq418 – volume: 16 start-page: 1 year: 2015 ident: 819_CR10 publication-title: BMC Genomics. doi: 10.1186/s12864-015-2032-0 – volume: 12 start-page: e1005846 year: 2016 ident: 819_CR21 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005846 – volume: 83 start-page: 00061 year: 2017 ident: 819_CR12 publication-title: Appl Environ Microbiol. – volume: 14 start-page: 1287 year: 2015 ident: 819_CR53 publication-title: J Proteome Res. doi: 10.1021/pr501305g – volume: 1 start-page: 12 year: 2011 ident: 819_CR63 publication-title: Computing. – volume: 75 start-page: 165 year: 2007 ident: 819_CR19 publication-title: Appl Microbiol Biotechnol. doi: 10.1007/s00253-006-0802-y – volume: 94 start-page: 3537 year: 2011 ident: 819_CR28 publication-title: J Dairy Sci. doi: 10.3168/jds.2010-3764 – volume: 6 start-page: 1060 year: 2011 ident: 819_CR55 publication-title: Nat Protoc. doi: 10.1038/nprot.2011.335 – volume: 5 start-page: eaav8391 year: 2019 ident: 819_CR38 publication-title: Sci Adv doi: 10.1126/sciadv.aav8391 – volume: 24 start-page: 1517 year: 2014 ident: 819_CR23 publication-title: Genome Res. doi: 10.1101/gr.168245.113 – volume: 39 start-page: 545 year: 2016 ident: 819_CR30 publication-title: J Inherit Metab Dis. doi: 10.1007/s10545-016-9950-0 – volume: 97 start-page: 5872 year: 2014 ident: 819_CR3 publication-title: J Dairy Sci. doi: 10.3168/jds.2013-7612 – volume: 38 start-page: W71 year: 2010 ident: 819_CR58 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq329 – volume: 67 start-page: 48 year: 2015 ident: 819_CR60 publication-title: J Stat Softw. doi: 10.18637/jss.v067.i01 – volume: 48 start-page: 133 year: 1965 ident: 819_CR16 publication-title: J Dairy Sci. doi: 10.3168/jds.S0022-0302(65)88178-4 – volume: 4 start-page: 56 year: 2016 ident: 819_CR11 publication-title: Microbiome. doi: 10.1186/s40168-016-0201-2 – volume: 69 start-page: 2509 year: 1972 ident: 819_CR33 publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.69.9.2509 – volume: 18 start-page: 525 year: 2016 ident: 819_CR37 publication-title: Environ Microbiol. doi: 10.1111/1462-2920.12724 – ident: 819_CR59 |
SSID | ssj0000914748 |
Score | 2.607356 |
Snippet | Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a... Background Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY])... Abstract Background Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 64 |
SubjectTerms | Alanine Amino acids Animals Bacteria Biosynthesis Carbohydrates Carboxylic acids Cattle Dairy cattle Dairying Fatty acids Female Galactose Glutathione Glycine Information processing Lactation Metabolism Metabolites Metabolome Metabolomics Metagenomics Methanogenesis Methionine Microbiomes Microbiota Milk Milk production Milk protein yield Phenylalanine Prevotella - isolation & purification Prevotella - metabolism Proteins Rumen Rumen - microbiology Rumen metabolome Rumen metagenome Serine Serum metabolome Species Starch Sucrose Taxonomy Threonine Volatile fatty acids |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEDVm1Y8ePIyCqigMnKvVm2Y5DI3WzVTdVVf4H_5cZJxt2EYILlxzsieJkZjIzib9vCHkLESRx2UnWOReY0pKDz7WK1TLzYHhIYtrl-0WfnKrPZ83ZTqsv3BM20QNPD-4IruGUqLMNPCrhWtcoiDqGq5hb0xV4eQ0xb6eYKu9gJ5RRdouSsfpoA4WEtgyrpRIGmd2LRIWw_09Z5u-bJXeiz_EDcn9OG-n7abkPyZ08PCJ3p0aSt4_Jj4KjZYgw3lAkZQKjouN5GOGQKfIjDHTVT5xLq0zD0NJ-3NBVHsEGLnBoXH8r0F-KH2bLWQj_2JUom9qxOxYK034BcvXfc0vb0F_dgsgNvfyFRHhCTo8_ff14wuaGCywpp0cmY1J1ipJHLZFXzmRtDUR0SBoVj1wa7nhrVNfUnYxQConcBISkRyuD1CnJp-RgWA_5OaEidUolkEjGqtRpFwMkeqDE3PLQWV4RsX34Ps1s5NgU48KXqsRqPynMg8J8UZi3FXm3nHM5cXH8VfoD6nSRRB7tMgDW5Wfr8v-yroocbi3Cz8698ZAElf_Foq7Im2Ua3BL_tYQhr6-LDCROAvKfijybDGhZiUTORYEzZs-09pa6PzP054X6G-p12xj54n_c20tyry7u0DBRH5KD8eo6v4IMa4yvizP9BEPTI5w priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKERIXRHkGWmQkbshgx47tHBCiFVWFBCdW6s2yHaeNtJstu6lg-R_8X8bOgy5a9ZJDPJYcz0zmm8TzDUJvIIJ4ymtO6rK0REhOwecqQXIeqFXUetaf8v0mz2biy3lxvofGdkfDBq53pnaxn9RsNX_368fmIzj8h-TwWr5fQ44gNYmJUIpwRN9BdyEyqdjR4OsA99ObuWRCCT3WzuycuhWfEo3_Luz5_xHKGzHp9CF6MIBJ_KnX_gHaC-0jdK9vL7l5jP6k6loS647XOFI1wSPj7tJ2cAk4sia0eNH0TEyLgG1b4aZb40XowDLm8Va3vEgFwTh-rk2zYlHITYl01D32zIrCuJnKu5rfocKVbVYbEPmJr_7VJzxBs9PP30_OyNCGgXhRyo5w50XuHadO8sg2p4LUCuI8QElBHeWKlrRSoi7ymjtIkFgobCxUd5pbLr3nT9F-u2zDc4SZr4XwIOGVFr6WpbMA_7SloaK21jRDbNx84weO8tgqY25SrqKl6RVmQGEmKczoDL2d5lz1DB23Sh9HnU6SkV073ViuLszgrAbsuhQsD7AwJ1hZlYUApKOocKFSNSsydDhahBkt1gA0Sn-RWZ6h19MwOGv8A2PbsLxOMgCnGKCiDD3rDWhaCY9MjCyOqC3T2lrq9kjbXCZCcMjidaH4i9uX9RLdz5OhF4Tlh2i_W12HI0BUnXuV3OQv1-8eiw priority: 102 providerName: Scholars Portal |
Title | Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32398126 https://www.proquest.com/docview/2404245612 https://www.proquest.com/docview/2402441426 https://pubmed.ncbi.nlm.nih.gov/PMC7218573 https://doaj.org/article/bec9412e8a0b419d954224704bed7f15 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtQqGX0ne2TRcVeisikiVL8qk0JWkoNJTSwN6MLMuJIWtv1w4l_R_9v52RvU62lFx0sEYgPDOahzTfEPIOLIjnspKsyjLHlJYcdK5ULJGBO8OdF8Mr31N9cqa-LNLFmHDrxmeVmzMxHtRl6zFHfgCWJ17SieTD6ifDrlF4uzq20LhPdhG6DKXaLMyUYwFbqIyym1oZqw86CCe0ZRgzRWPI7JY9irD9__M1_30yecsGHT8mj0bnkX4cuP2E3AvNU_JgaCd5_Yz8idW0DOuMO4rQTCBatL9wPQyBIkpCQ5f1gLy0DNQ1Ja37ji5DD5JwiZ_69jwWAFNMz8ZVWARymyI-bcceWUhM66mcq_4dSlq6en0NJL_o6qYe4Tk5Oz768emEjW0XmFeZ7pksvEp8IXmhJaLLmaCtAbsOrqPiBZeGZ7w0qkqTShYQEImQOixML6x0UnsvX5Cdpm3CHqHCV0p5oPDGKl_prHDg7lnHQ8ldZfmMiM3Pz_2ISY6tMS7zGJtYnQ8My4FheWRYbmfk_bRmNSBy3El9iDydKBFNO35o1-f5qJw5yHGmRBJgY4USWZmlCjwbw1URSlOJdEb2NxKRjyre5TcCOSNvp2lQTrxxcU1oryINuE8CvKAZeTkI0LQTiciLAmfMlmhtbXV7pqkvIgA4RO02NfLV3dt6TR4mUdBTJpJ9stOvr8Ib8KD6Yh7VZE52D49Ov32fxzwEjJ8XAsavyv4F82sfsA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHghKLasRM7B4R4VVtaemqlvRnHcdpI3eyym6pa_gd_g9_IjLNJuwj11ksO9iSyMm_b8w0hb8CDOCYqEVd5bmOZCQY6V8o4EZ5Zxazj3S3fg2x0JL-N0_EG-dPXwuC1yt4mBkNdTh3ukW-D5wmHdDz5MPsZY9coPF3tW2h0YrHnl-eQsi3e734B_r5Nkp2vh59H8aqrQOxknrWxKJxMXCFYkQkET1M-0wrcFkRGkhVMKJazUskqTSpRQLzPfWqx7rrQworMOQHfvUFuguNlmOypsRr2dMD3SiV1X5ujs-0FpC-ZjjFHC8431mv-L7QJ-F9s--8VzUs-b-ceubsKVunHTrrukw3fPCC3uvaVy4fkd6jejbGueUERCgpEmbYntoWHp4jK0NBJ3SE9TTy1TUnrdkEnvgXJO8WhdnocCo4pbgeHt7Do5DJFuEqPPbmQmNZD-Vj9y5e0tPV8CSTndHZR__CIHF0LQx6TzWba-KeEcldJ6YDCKS1dleWFhfBSW-ZLZivNIsL7n2_cCgMdW3GcmpAL6cx0DDPAMBMYZnRE3g3vzDoEkCupPyFPB0pE7w4D0_mxWRkDA3qTS554WFgheV7mqYRISjFZ-FJVPI3IVi8RZmVSFuZCASLyepgGY4AnPLbx07NAA-Eah6grIk86ARpWIhDpkeOMWhOttaWuzzT1SQAcVwkiholnVy_rFbk9Ovy-b_Z3D_aekztJEPo05skW2WznZ_4FRG9t8TKoDCU_rltH_wKcFlVb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-omics+reveals+that+the+rumen+microbiome+and+its+metabolome+together+with+the+host+metabolome+contribute+to+individualized+dairy+cow+performance&rft.jtitle=Microbiome&rft.au=Ming-Yuan%2C+Xue&rft.au=Hui-Zeng%2C+Sun&rft.au=Xue-Hui%2C+Wu&rft.au=Liu%2C+Jian-Xin&rft.date=2020-05-12&rft.pub=BioMed+Central&rft.eissn=2049-2618&rft.volume=8&rft.spage=1&rft_id=info:doi/10.1186%2Fs40168-020-00819-8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon |