Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance

Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk prod...

Full description

Saved in:
Bibliographic Details
Published inMicrobiome Vol. 8; no. 1; pp. 64 - 19
Main Authors Xue, Ming-Yuan, Sun, Hui-Zeng, Wu, Xue-Hui, Liu, Jian-Xin, Guan, Le Luo
Format Journal Article
LanguageEnglish
Published England BioMed Central 12.05.2020
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels. Metagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host's metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY. These findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding. Video Abstract.
AbstractList Abstract Background Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels. Results Metagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host’s metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY. Conclusions These findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding. Video Abstract
Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels. Metagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host's metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY. These findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding. Video Abstract.
Background Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels. Results Metagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host’s metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY. Conclusions These findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding. Video Abstract
Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels.BACKGROUNDRecently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels.Metagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host's metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY.RESULTSMetagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host's metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY.These findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding. Video Abstract.CONCLUSIONSThese findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding. Video Abstract.
ArticleNumber 64
Author Sun, Hui-Zeng
Xue, Ming-Yuan
Liu, Jian-Xin
Guan, Le Luo
Wu, Xue-Hui
Author_xml – sequence: 1
  givenname: Ming-Yuan
  surname: Xue
  fullname: Xue, Ming-Yuan
– sequence: 2
  givenname: Hui-Zeng
  surname: Sun
  fullname: Sun, Hui-Zeng
– sequence: 3
  givenname: Xue-Hui
  surname: Wu
  fullname: Wu, Xue-Hui
– sequence: 4
  givenname: Jian-Xin
  surname: Liu
  fullname: Liu, Jian-Xin
– sequence: 5
  givenname: Le Luo
  surname: Guan
  fullname: Guan, Le Luo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32398126$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CALHHhEvBXbOeChCo-KhVxgbNlO5Ndr5J4sZ2t2v_B_8XZLdW2B3ywrZnnfTX2zMvqZAoTVNVrgt8TosSHxDERqsYU1xgr0tbqWXVGMW9rKog6ObqfVhcpbXBZLeGSqxfVKaOsVYSKs-rP93nIvg6jdwlF2IEZEsprk8sGKM4jTKjkYrA-jIDM1CGfExohGxuGJZTDCgob0Y3P671qHVI-JlyYcvR2zguM_NT5ne9mM_g76FBnfLwtyA3aQuxDHM3k4FX1vC-FwMX9eV79-vL55-W3-vrH16vLT9e1463INbOOU2cZtoJJqYQEoaQiijSYY4uZxC3uJO8b2jOrBCXQGK6wtIoZJpxj59XVwbcLZqO30Y8m3upgvN4HQlxpE7N3A2gLruWEgjLYctJ2bcMp5RJzC53sSVO8Ph68trMdoXNQHm2GR6aPM5Nf61XYaUmJaiQrBu_uDWL4PUPKevTJwTCYCcKcNOWYck44FQV9-wTdhDlO5asWilPeCEIL9ea4oodS_nW_APQAlP6mFKF_QAjWy5Tpw5TpMmV6P2VaFZF6InI-m-yXJhs__E_6F4rz2C4
CitedBy_id crossref_primary_10_3389_fmicb_2024_1301292
crossref_primary_10_1038_s41598_023_33067_5
crossref_primary_10_3389_fnut_2022_847966
crossref_primary_10_1186_s40168_023_01682_z
crossref_primary_10_1186_s40168_024_01892_z
crossref_primary_10_3389_fmicb_2022_1034675
crossref_primary_10_3390_microorganisms12081701
crossref_primary_10_33284_2658_3135_107_4_266
crossref_primary_10_1007_s00253_023_12620_2
crossref_primary_10_1016_j_aquaculture_2023_739420
crossref_primary_10_3389_fmicb_2022_845621
crossref_primary_10_1016_j_micres_2023_127510
crossref_primary_10_3389_fmicb_2022_783058
crossref_primary_10_3390_vetsci10120679
crossref_primary_10_1186_s40168_024_01760_w
crossref_primary_10_3168_jds_2024_24753
crossref_primary_10_1016_j_animal_2023_100780
crossref_primary_10_3389_fmicb_2023_1247251
crossref_primary_10_1016_j_aninu_2022_03_002
crossref_primary_10_1016_j_scitotenv_2021_152773
crossref_primary_10_3389_fmicb_2022_1013980
crossref_primary_10_3389_fvets_2022_902001
crossref_primary_10_1016_j_aninu_2023_05_013
crossref_primary_10_1080_1828051X_2022_2129477
crossref_primary_10_1186_s42523_021_00142_z
crossref_primary_10_1186_s12866_021_02311_1
crossref_primary_10_1071_AN21508
crossref_primary_10_3389_fvets_2021_747519
crossref_primary_10_1186_s40168_023_01654_3
crossref_primary_10_1186_s42523_022_00170_3
crossref_primary_10_3390_ani14142057
crossref_primary_10_1080_1828051X_2022_2077147
crossref_primary_10_1093_jas_skab193
crossref_primary_10_3390_ani14131968
crossref_primary_10_1186_s40104_023_00963_9
crossref_primary_10_3390_ani14131965
crossref_primary_10_3168_jds_2020_18612
crossref_primary_10_3389_fmicb_2024_1467841
crossref_primary_10_1186_s40104_022_00823_y
crossref_primary_10_1186_s40168_023_01510_4
crossref_primary_10_1186_s42523_021_00081_9
crossref_primary_10_3389_fvets_2024_1447238
crossref_primary_10_3390_ani14172586
crossref_primary_10_3389_fmicb_2024_1387957
crossref_primary_10_3390_metabo12030225
crossref_primary_10_1186_s12866_024_03638_1
crossref_primary_10_3390_ani12101300
crossref_primary_10_1016_j_isci_2023_107754
crossref_primary_10_3390_ani15050738
crossref_primary_10_3390_ijms241914856
crossref_primary_10_3390_microorganisms12112180
crossref_primary_10_3390_life14070802
crossref_primary_10_3390_fermentation8050240
crossref_primary_10_3390_microorganisms12081729
crossref_primary_10_1186_s12967_024_05232_5
crossref_primary_10_1186_s40168_024_01962_2
crossref_primary_10_3389_fmicb_2024_1459773
crossref_primary_10_1016_j_animal_2024_101202
crossref_primary_10_1038_s42003_025_07538_6
crossref_primary_10_1007_s10482_022_01791_z
crossref_primary_10_3389_fimmu_2023_1329590
crossref_primary_10_1016_j_scitotenv_2021_147813
crossref_primary_10_1186_s40168_022_01228_9
crossref_primary_10_1186_s40168_021_01211_w
crossref_primary_10_3389_fmicb_2022_821613
crossref_primary_10_3389_fmicb_2023_1247348
crossref_primary_10_3389_fvets_2022_812861
crossref_primary_10_1016_j_aninu_2024_06_007
crossref_primary_10_1038_s41598_024_57803_7
crossref_primary_10_1186_s40104_024_01056_x
crossref_primary_10_3390_ani11082425
crossref_primary_10_1016_j_scitotenv_2024_175732
crossref_primary_10_1093_jas_skac275
crossref_primary_10_1002_advs_202410953
crossref_primary_10_1038_s41522_024_00609_2
crossref_primary_10_3389_fanim_2025_1489212
crossref_primary_10_1186_s40168_023_01652_5
crossref_primary_10_1016_j_aninu_2021_12_005
crossref_primary_10_1038_s42003_024_07252_9
crossref_primary_10_3390_fermentation9050411
crossref_primary_10_3389_fmicb_2022_1000750
crossref_primary_10_3389_fmicb_2024_1409659
crossref_primary_10_1186_s40168_024_01844_7
crossref_primary_10_3168_jds_2022_23066
crossref_primary_10_3389_fmicb_2022_844968
crossref_primary_10_3390_metabo14090476
crossref_primary_10_1016_j_foodres_2020_110017
crossref_primary_10_1128_msphere_00024_25
crossref_primary_10_1016_j_tim_2021_03_012
crossref_primary_10_1128_msystems_00844_23
crossref_primary_10_3390_microorganisms10040754
crossref_primary_10_1007_s00253_022_12240_2
crossref_primary_10_3389_fmicb_2023_1098813
crossref_primary_10_3390_ani12233375
crossref_primary_10_1186_s40168_023_01620_z
crossref_primary_10_1016_j_aninu_2023_04_011
crossref_primary_10_1128_spectrum_03590_22
crossref_primary_10_3168_jds_2023_23751
crossref_primary_10_1038_s41598_023_37891_7
crossref_primary_10_3168_jds_2024_24817
crossref_primary_10_1186_s12711_023_00791_5
crossref_primary_10_3389_fmicb_2023_1309535
crossref_primary_10_1093_jambio_lxad278
crossref_primary_10_1186_s40168_024_01937_3
crossref_primary_10_1016_j_scitotenv_2024_175955
crossref_primary_10_3390_metabo12050374
crossref_primary_10_3389_fmicb_2024_1342804
crossref_primary_10_3389_fvets_2022_985824
crossref_primary_10_1093_jas_skac253
crossref_primary_10_3390_nu14142972
crossref_primary_10_1002_imt2_225
crossref_primary_10_1186_s44363_025_00002_0
crossref_primary_10_1128_msystems_00023_24
crossref_primary_10_1016_j_foodres_2025_115859
crossref_primary_10_3390_ani14162344
crossref_primary_10_1186_s40793_022_00436_y
crossref_primary_10_3389_fvets_2023_1064774
crossref_primary_10_1038_s41598_025_93710_1
crossref_primary_10_1111_jam_15388
crossref_primary_10_1016_j_aninu_2022_07_014
crossref_primary_10_3389_fmicb_2022_861025
crossref_primary_10_3390_ani15020218
crossref_primary_10_3389_fmicb_2023_1284603
crossref_primary_10_3390_ani10081397
crossref_primary_10_1007_s42770_020_00380_4
crossref_primary_10_3390_ani14162294
crossref_primary_10_3390_microorganisms9010083
crossref_primary_10_3389_fnut_2022_927206
crossref_primary_10_1007_s12602_024_10379_0
crossref_primary_10_1146_annurev_animal_020420_032054
crossref_primary_10_1186_s42523_023_00288_y
crossref_primary_10_2478_aoas_2022_0002
crossref_primary_10_3389_fvets_2024_1359234
crossref_primary_10_3389_fimmu_2021_643206
crossref_primary_10_1186_s12917_024_04073_0
crossref_primary_10_1038_s41392_023_01619_w
crossref_primary_10_3389_fmicb_2024_1471732
crossref_primary_10_1128_AEM_01908_20
crossref_primary_10_1186_s40168_022_01367_z
crossref_primary_10_3389_fmicb_2021_663945
crossref_primary_10_1186_s40168_023_01733_5
crossref_primary_10_3390_ani14091339
crossref_primary_10_1186_s12915_024_02035_4
crossref_primary_10_1186_s40168_021_01040_x
crossref_primary_10_3389_fmicb_2021_636223
crossref_primary_10_3390_ani14152256
crossref_primary_10_1002_imt2_169
crossref_primary_10_3389_fvets_2024_1484175
crossref_primary_10_1021_acs_jafc_1c06662
crossref_primary_10_1155_2022_1098892
crossref_primary_10_1038_s41598_024_83017_y
crossref_primary_10_3389_fvets_2023_1206346
crossref_primary_10_5713_ab_20_0601
crossref_primary_10_1093_femsec_fiab152
crossref_primary_10_3390_microorganisms10081491
crossref_primary_10_1017_anr_2024_24
crossref_primary_10_3390_ruminants4030024
crossref_primary_10_1016_j_heliyon_2024_e34380
crossref_primary_10_3389_fmicb_2024_1438566
crossref_primary_10_1186_s40168_023_01492_3
crossref_primary_10_1016_j_aninu_2022_01_002
crossref_primary_10_1016_j_anifeedsci_2021_115060
crossref_primary_10_3389_fmicb_2022_859601
crossref_primary_10_3389_fvets_2024_1455029
crossref_primary_10_1186_s40104_024_01110_8
crossref_primary_10_3389_fmicb_2021_651631
crossref_primary_10_3390_agriculture14122283
crossref_primary_10_1186_s40104_023_00862_z
crossref_primary_10_1016_j_aninu_2024_02_004
crossref_primary_10_1038_s41598_024_66200_z
crossref_primary_10_3389_fmicb_2023_1305772
crossref_primary_10_1186_s12864_024_10272_8
crossref_primary_10_3168_jds_2024_25425
crossref_primary_10_1186_s40104_023_00850_3
crossref_primary_10_3390_ani11051248
crossref_primary_10_3390_ani11051247
crossref_primary_10_1016_j_envres_2024_119458
crossref_primary_10_1016_j_anifeedsci_2025_116287
crossref_primary_10_1016_j_jia_2024_04_015
crossref_primary_10_3389_fnut_2021_815358
crossref_primary_10_1186_s12917_023_03799_7
crossref_primary_10_3389_fvets_2022_922817
crossref_primary_10_3390_ani13193034
crossref_primary_10_1038_s41564_022_01266_x
crossref_primary_10_1128_spectrum_03758_23
crossref_primary_10_1186_s40168_024_01943_5
crossref_primary_10_3389_fmicb_2023_1124917
crossref_primary_10_1128_msystems_00422_22
crossref_primary_10_3390_microorganisms10020323
crossref_primary_10_3389_fmicb_2022_908244
crossref_primary_10_3389_fmicb_2021_658448
crossref_primary_10_1128_aem_00992_22
crossref_primary_10_3390_antiox11091715
crossref_primary_10_3390_ani15050758
crossref_primary_10_3390_ani14050788
crossref_primary_10_1093_jas_skae173
crossref_primary_10_1016_j_jprot_2023_104982
crossref_primary_10_3390_ani14101495
crossref_primary_10_1371_journal_pone_0319461
crossref_primary_10_1093_tas_txad011
crossref_primary_10_48130_animadv_0024_0002
crossref_primary_10_1186_s40168_024_02019_0
crossref_primary_10_1016_j_aninu_2024_10_003
crossref_primary_10_1371_journal_pone_0305674
crossref_primary_10_3389_fmicb_2025_1533851
crossref_primary_10_1186_s40168_024_01791_3
crossref_primary_10_3389_fmicb_2022_1056315
crossref_primary_10_3389_fmicb_2022_982338
crossref_primary_10_1016_j_scitotenv_2023_167776
crossref_primary_10_1186_s40104_023_00832_5
crossref_primary_10_3390_ani14213137
crossref_primary_10_1186_s40168_024_01946_2
crossref_primary_10_3389_fmicb_2022_940158
crossref_primary_10_7717_peerj_14444
crossref_primary_10_1186_s40168_023_01535_9
crossref_primary_10_3389_fmicb_2024_1525612
crossref_primary_10_1016_j_theriogenology_2023_09_016
crossref_primary_10_1016_j_livsci_2023_105171
crossref_primary_10_33920_sel_03_2206_01
crossref_primary_10_1093_jas_skac403
crossref_primary_10_1016_j_aninu_2024_04_021
crossref_primary_10_3390_fermentation10020094
crossref_primary_10_3389_fmicb_2022_815225
crossref_primary_10_3389_fmicb_2024_1376994
crossref_primary_10_30766_2072_9081_2024_25_2_159_171
crossref_primary_10_3168_jds_2022_21960
crossref_primary_10_1016_j_aninu_2024_04_013
crossref_primary_10_3389_fvets_2022_1010045
crossref_primary_10_1039_D2FO02751H
crossref_primary_10_1155_2022_1248398
crossref_primary_10_1016_j_ecoenv_2024_116292
crossref_primary_10_3390_ani12080997
crossref_primary_10_1093_ismeco_ycaf021
crossref_primary_10_1186_s12917_024_04412_1
crossref_primary_10_1042_ETLS20210257
crossref_primary_10_32634_0869_8155_2024_384_7_85_90
crossref_primary_10_1186_s12864_025_11465_5
crossref_primary_10_1016_j_aninu_2021_03_004
crossref_primary_10_3390_ani15020248
crossref_primary_10_1016_j_aninu_2024_08_003
crossref_primary_10_3390_foods10010109
crossref_primary_10_3390_microorganisms11112673
crossref_primary_10_1016_j_aninu_2024_04_027
crossref_primary_10_3390_ijms26052343
crossref_primary_10_1128_msystems_01093_24
crossref_primary_10_1186_s42523_024_00336_1
crossref_primary_10_3390_microorganisms12112302
crossref_primary_10_1016_j_atech_2022_100170
crossref_primary_10_3389_fmicb_2024_1431063
Cites_doi 10.1016/j.jprot.2018.06.005
10.1002/elps.200700851
10.3168/jds.2018-15974
10.1093/bioinformatics/btp324
10.1128/AEM.14.5.807-814.1966
10.1073/pnas.0609333103
10.1093/nar/gkl723
10.1093/nar/gkl842
10.1186/s40168-019-0618-5
10.1038/nature25973
10.1038/nmeth.3176
10.1093/nar/28.1.27
10.1093/bioinformatics/btq461
10.1021/ac9019522
10.1371/journal.ppat.1004483
10.1093/nar/gky310
10.1016/0955-2863(96)00034-4
10.1093/bioinformatics/btp336
10.1093/bioinformatics/btv033
10.1371/journal.pone.0129174
10.3168/jds.2017-13328
10.1371/journal.pgen.1007580
10.1099/00221287-144-9-2377
10.1186/s40168-019-0699-1
10.1098/rstb.2010.0149
10.1186/gb-2011-12-6-r60
10.1038/ismej.2016.62
10.1093/bioinformatics/bts565
10.2144/04365ST04
10.1007/s11250-014-0624-3
10.1128/JB.76.1.15-23.1958
10.1534/genetics.117.200782
10.1128/mBio.00703-17
10.1196/annals.1419.022
10.1126/science.1058830
10.1002/biof.8
10.1038/s41396-019-0367-2
10.3168/jds.2013-6679
10.3168/jds.2018-14622
10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2
10.1093/bioinformatics/btq418
10.1186/s12864-015-2032-0
10.1371/journal.pgen.1005846
10.1021/pr501305g
10.1007/s00253-006-0802-y
10.3168/jds.2010-3764
10.1038/nprot.2011.335
10.1126/sciadv.aav8391
10.1101/gr.168245.113
10.1007/s10545-016-9950-0
10.3168/jds.2013-7612
10.1093/nar/gkq329
10.18637/jss.v067.i01
10.3168/jds.S0022-0302(65)88178-4
10.1186/s40168-016-0201-2
10.1073/pnas.69.9.2509
10.1111/1462-2920.12724
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s40168-020-00819-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2049-2618
EndPage 19
ExternalDocumentID oai_doaj_org_article_bec9412e8a0b419d954224704bed7f15
PMC7218573
32398126
10_1186_s40168_020_00819_8
Genre Validation Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 31729004
– fundername: ;
  grantid: CARS-36
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
EBLON
EBS
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SOJ
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c496t-3bc42cb30b6377867e68781815040b037090d74f52f3b8621e5a4807b83a36cc3
IEDL.DBID 7X7
ISSN 2049-2618
IngestDate Wed Aug 27 01:27:53 EDT 2025
Thu Aug 21 18:34:03 EDT 2025
Fri Jul 11 02:01:02 EDT 2025
Fri Jul 25 12:12:15 EDT 2025
Mon Jul 21 06:07:17 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Tue Jul 01 04:16:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Milk protein yield
Rumen metabolome
Serum metabolome
Rumen metagenome
Dairy cattle
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-3bc42cb30b6377867e68781815040b037090d74f52f3b8621e5a4807b83a36cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.proquest.com/docview/2404245612?pq-origsite=%requestingapplication%
PMID 32398126
PQID 2404245612
PQPubID 2040205
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_bec9412e8a0b419d954224704bed7f15
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7218573
proquest_miscellaneous_2402441426
proquest_journals_2404245612
pubmed_primary_32398126
crossref_primary_10_1186_s40168_020_00819_8
crossref_citationtrail_10_1186_s40168_020_00819_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-12
PublicationDateYYYYMMDD 2020-05-12
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-12
  day: 12
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Microbiome
PublicationTitleAlternate Microbiome
PublicationYear 2020
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References W Shi (819_CR23) 2014; 24
F Li (819_CR42) 2019; 7
X Wu (819_CR6) 2018; 184
MY Xue (819_CR7) 2019; 102
B Niu (819_CR47) 2012; 28
N Segata (819_CR64) 2011; 12
J Kearney (819_CR1) 2010; 365
819_CR2
JB Russell (819_CR27) 2001; 292
RM Macnab (819_CR33) 1972; 69
R Gentleman (819_CR63) 2011; 1
M Kanehisa (819_CR51) 2000; 28
J Kamke (819_CR11) 2016; 4
T Kind (819_CR54) 2009; 81
819_CR61
MY Xue (819_CR8) 2018; 84
819_CR59
RK Thauer (819_CR22) 1998; 144
WB Dunn (819_CR55) 2011; 6
H-Z Sun (819_CR53) 2015; 14
Z Yu (819_CR43) 2004; 36
Y Rossez (819_CR34) 2015; 11
CM Smith (819_CR31) 1996; 7
H Noguchi (819_CR46) 2006; 34
C-M Liu (819_CR45) 2015; 31
GF Difford (819_CR14) 2018; 14
B Buchfink (819_CR49) 2014; 12
H Li (819_CR44) 2009; 25
KA Gillah (819_CR4) 2014; 46
BL Larson (819_CR16) 1965; 48
DS Wishart (819_CR57) 2010; 26
F Li (819_CR13) 2019; 7
MS Allen (819_CR35) 2014; 30
J Xia (819_CR58) 2010; 38
TM Taxis (819_CR9) 2015; 43
L Xiayan (819_CR36) 2008; 29
A Camarinha-Silva (819_CR40) 2017; 206
HJ Flint (819_CR26) 2008; 1125
DM Stevenson (819_CR19) 2007; 75
RJ Wallace (819_CR10) 2015; 16
J Zempleni (819_CR29) 2009; 35
RJ Wallace (819_CR38) 2019; 5
J Chong (819_CR56) 2018; 46
E Gernand (819_CR3) 2014; 97
PR Myer (819_CR24) 2015; 10
G Sasson (819_CR15) 2017; 8
D Bates (819_CR60) 2015; 67
AD Sova (819_CR5) 2013; 96
D Rothschild (819_CR39) 2018; 555
M Kaur (819_CR32) 2019; 102
MA Zapala (819_CR62) 2006; 103
F Li (819_CR12) 2017; 83
DM Bickhart (819_CR18) 2018; 101
KD Pruitt (819_CR50) 2006; 35
MP Bryant (819_CR20) 1958; 76
SKB Shabat (819_CR17) 2016; 10
R Roehe (819_CR21) 2016; 12
MJ Allison (819_CR25) 1966; 14
B Chen (819_CR28) 2011; 94
RC Edgar (819_CR52) 2010; 26
C Wen (819_CR41) 2019; 13
C Yu (819_CR48) 2009; 25
M Barile (819_CR30) 2016; 39
SY Mao (819_CR37) 2016; 18
References_xml – volume: 184
  start-page: 54
  year: 2018
  ident: 819_CR6
  publication-title: J Proteomics.
  doi: 10.1016/j.jprot.2018.06.005
– volume: 29
  start-page: 3724
  year: 2008
  ident: 819_CR36
  publication-title: Electrophoresis.
  doi: 10.1002/elps.200700851
– volume: 102
  start-page: 5031
  year: 2019
  ident: 819_CR7
  publication-title: J Dairy Sci.
  doi: 10.3168/jds.2018-15974
– volume: 25
  start-page: 1754
  year: 2009
  ident: 819_CR44
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btp324
– volume: 30
  start-page: 577
  year: 2014
  ident: 819_CR35
  publication-title: Vet Clin North Am: Food Anim Pract.
– volume: 14
  start-page: 807
  year: 1966
  ident: 819_CR25
  publication-title: Appl Microbiol.
  doi: 10.1128/AEM.14.5.807-814.1966
– volume: 103
  start-page: 19430
  year: 2006
  ident: 819_CR62
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.0609333103
– volume: 34
  start-page: 5623
  year: 2006
  ident: 819_CR46
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl723
– volume: 35
  start-page: D61
  year: 2006
  ident: 819_CR50
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl842
– volume: 7
  start-page: 6
  year: 2019
  ident: 819_CR13
  publication-title: Microbiome.
  doi: 10.1186/s40168-019-0618-5
– volume: 555
  start-page: 210
  year: 2018
  ident: 819_CR39
  publication-title: Nature.
  doi: 10.1038/nature25973
– volume: 12
  start-page: 59
  year: 2014
  ident: 819_CR49
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.3176
– volume: 28
  start-page: 27
  year: 2000
  ident: 819_CR51
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.27
– volume: 26
  start-page: 2460
  year: 2010
  ident: 819_CR52
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btq461
– volume: 81
  start-page: 10038
  year: 2009
  ident: 819_CR54
  publication-title: Anal Chem.
  doi: 10.1021/ac9019522
– ident: 819_CR2
– volume: 11
  start-page: e1004483
  year: 2015
  ident: 819_CR34
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004483
– volume: 46
  start-page: W486
  year: 2018
  ident: 819_CR56
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky310
– volume: 7
  start-page: 312
  year: 1996
  ident: 819_CR31
  publication-title: J Nutr Biochem.
  doi: 10.1016/0955-2863(96)00034-4
– volume: 25
  start-page: 1966
  year: 2009
  ident: 819_CR48
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btp336
– volume: 31
  start-page: 1674
  year: 2015
  ident: 819_CR45
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btv033
– volume: 10
  start-page: e0129174
  year: 2015
  ident: 819_CR24
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0129174
– volume: 101
  start-page: 7680
  year: 2018
  ident: 819_CR18
  publication-title: J Dairy Sci.
  doi: 10.3168/jds.2017-13328
– volume: 43
  start-page: 9600
  year: 2015
  ident: 819_CR9
  publication-title: Nucleic Acids Res.
– volume: 14
  start-page: e1007580
  year: 2018
  ident: 819_CR14
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007580
– volume: 144
  start-page: 2377
  year: 1998
  ident: 819_CR22
  publication-title: Microbiol.
  doi: 10.1099/00221287-144-9-2377
– volume: 7
  start-page: 92
  year: 2019
  ident: 819_CR42
  publication-title: Microbiome.
  doi: 10.1186/s40168-019-0699-1
– volume: 365
  start-page: 2793
  year: 2010
  ident: 819_CR1
  publication-title: Phil Trans Roy Soc London B.
  doi: 10.1098/rstb.2010.0149
– volume: 12
  start-page: R60
  year: 2011
  ident: 819_CR64
  publication-title: Genome Biol.
  doi: 10.1186/gb-2011-12-6-r60
– volume: 10
  start-page: 2958
  issue: 12
  year: 2016
  ident: 819_CR17
  publication-title: ISME J
  doi: 10.1038/ismej.2016.62
– volume: 28
  start-page: 3150
  year: 2012
  ident: 819_CR47
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bts565
– volume: 84
  start-page: e00970
  year: 2018
  ident: 819_CR8
  publication-title: Appl Environ Microbiol.
– volume: 36
  start-page: 808
  year: 2004
  ident: 819_CR43
  publication-title: BioTechniques.
  doi: 10.2144/04365ST04
– volume: 46
  start-page: 1177
  year: 2014
  ident: 819_CR4
  publication-title: Trop Anim Health Prod
  doi: 10.1007/s11250-014-0624-3
– volume: 76
  start-page: 15
  year: 1958
  ident: 819_CR20
  publication-title: J Bacteriol.
  doi: 10.1128/JB.76.1.15-23.1958
– volume: 206
  start-page: 1637
  year: 2017
  ident: 819_CR40
  publication-title: Genetics.
  doi: 10.1534/genetics.117.200782
– volume: 8
  start-page: e00703
  year: 2017
  ident: 819_CR15
  publication-title: mBio
  doi: 10.1128/mBio.00703-17
– volume: 1125
  start-page: 280
  year: 2008
  ident: 819_CR26
  publication-title: Ann N Y Acad Sci.
  doi: 10.1196/annals.1419.022
– volume: 292
  start-page: 1119
  year: 2001
  ident: 819_CR27
  publication-title: Science.
  doi: 10.1126/science.1058830
– volume: 35
  start-page: 36
  year: 2009
  ident: 819_CR29
  publication-title: BioFactors.
  doi: 10.1002/biof.8
– volume: 13
  start-page: 1422
  year: 2019
  ident: 819_CR41
  publication-title: ISME J.
  doi: 10.1038/s41396-019-0367-2
– volume: 96
  start-page: 4759
  year: 2013
  ident: 819_CR5
  publication-title: J Dairy Sci.
  doi: 10.3168/jds.2013-6679
– volume: 102
  start-page: 1642
  year: 2019
  ident: 819_CR32
  publication-title: J Dairy Sci.
  doi: 10.3168/jds.2018-14622
– ident: 819_CR61
  doi: 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2
– volume: 26
  start-page: 2342
  year: 2010
  ident: 819_CR57
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btq418
– volume: 16
  start-page: 1
  year: 2015
  ident: 819_CR10
  publication-title: BMC Genomics.
  doi: 10.1186/s12864-015-2032-0
– volume: 12
  start-page: e1005846
  year: 2016
  ident: 819_CR21
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005846
– volume: 83
  start-page: 00061
  year: 2017
  ident: 819_CR12
  publication-title: Appl Environ Microbiol.
– volume: 14
  start-page: 1287
  year: 2015
  ident: 819_CR53
  publication-title: J Proteome Res.
  doi: 10.1021/pr501305g
– volume: 1
  start-page: 12
  year: 2011
  ident: 819_CR63
  publication-title: Computing.
– volume: 75
  start-page: 165
  year: 2007
  ident: 819_CR19
  publication-title: Appl Microbiol Biotechnol.
  doi: 10.1007/s00253-006-0802-y
– volume: 94
  start-page: 3537
  year: 2011
  ident: 819_CR28
  publication-title: J Dairy Sci.
  doi: 10.3168/jds.2010-3764
– volume: 6
  start-page: 1060
  year: 2011
  ident: 819_CR55
  publication-title: Nat Protoc.
  doi: 10.1038/nprot.2011.335
– volume: 5
  start-page: eaav8391
  year: 2019
  ident: 819_CR38
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aav8391
– volume: 24
  start-page: 1517
  year: 2014
  ident: 819_CR23
  publication-title: Genome Res.
  doi: 10.1101/gr.168245.113
– volume: 39
  start-page: 545
  year: 2016
  ident: 819_CR30
  publication-title: J Inherit Metab Dis.
  doi: 10.1007/s10545-016-9950-0
– volume: 97
  start-page: 5872
  year: 2014
  ident: 819_CR3
  publication-title: J Dairy Sci.
  doi: 10.3168/jds.2013-7612
– volume: 38
  start-page: W71
  year: 2010
  ident: 819_CR58
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq329
– volume: 67
  start-page: 48
  year: 2015
  ident: 819_CR60
  publication-title: J Stat Softw.
  doi: 10.18637/jss.v067.i01
– volume: 48
  start-page: 133
  year: 1965
  ident: 819_CR16
  publication-title: J Dairy Sci.
  doi: 10.3168/jds.S0022-0302(65)88178-4
– volume: 4
  start-page: 56
  year: 2016
  ident: 819_CR11
  publication-title: Microbiome.
  doi: 10.1186/s40168-016-0201-2
– volume: 69
  start-page: 2509
  year: 1972
  ident: 819_CR33
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.69.9.2509
– volume: 18
  start-page: 525
  year: 2016
  ident: 819_CR37
  publication-title: Environ Microbiol.
  doi: 10.1111/1462-2920.12724
– ident: 819_CR59
SSID ssj0000914748
Score 2.607356
Snippet Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a...
Background Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY])...
Abstract Background Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 64
SubjectTerms Alanine
Amino acids
Animals
Bacteria
Biosynthesis
Carbohydrates
Carboxylic acids
Cattle
Dairy cattle
Dairying
Fatty acids
Female
Galactose
Glutathione
Glycine
Information processing
Lactation
Metabolism
Metabolites
Metabolome
Metabolomics
Metagenomics
Methanogenesis
Methionine
Microbiomes
Microbiota
Milk
Milk production
Milk protein yield
Phenylalanine
Prevotella - isolation & purification
Prevotella - metabolism
Proteins
Rumen
Rumen - microbiology
Rumen metabolome
Rumen metagenome
Serine
Serum metabolome
Species
Starch
Sucrose
Taxonomy
Threonine
Volatile fatty acids
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEDVm1Y8ePIyCqigMnKvVm2Y5DI3WzVTdVVf4H_5cZJxt2EYILlxzsieJkZjIzib9vCHkLESRx2UnWOReY0pKDz7WK1TLzYHhIYtrl-0WfnKrPZ83ZTqsv3BM20QNPD-4IruGUqLMNPCrhWtcoiDqGq5hb0xV4eQ0xb6eYKu9gJ5RRdouSsfpoA4WEtgyrpRIGmd2LRIWw_09Z5u-bJXeiz_EDcn9OG-n7abkPyZ08PCJ3p0aSt4_Jj4KjZYgw3lAkZQKjouN5GOGQKfIjDHTVT5xLq0zD0NJ-3NBVHsEGLnBoXH8r0F-KH2bLWQj_2JUom9qxOxYK034BcvXfc0vb0F_dgsgNvfyFRHhCTo8_ff14wuaGCywpp0cmY1J1ipJHLZFXzmRtDUR0SBoVj1wa7nhrVNfUnYxQConcBISkRyuD1CnJp-RgWA_5OaEidUolkEjGqtRpFwMkeqDE3PLQWV4RsX34Ps1s5NgU48KXqsRqPynMg8J8UZi3FXm3nHM5cXH8VfoD6nSRRB7tMgDW5Wfr8v-yroocbi3Cz8698ZAElf_Foq7Im2Ua3BL_tYQhr6-LDCROAvKfijybDGhZiUTORYEzZs-09pa6PzP054X6G-p12xj54n_c20tyry7u0DBRH5KD8eo6v4IMa4yvizP9BEPTI5w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKERIXRHkGWmQkbshgx47tHBCiFVWFBCdW6s2yHaeNtJstu6lg-R_8X8bOgy5a9ZJDPJYcz0zmm8TzDUJvIIJ4ymtO6rK0REhOwecqQXIeqFXUetaf8v0mz2biy3lxvofGdkfDBq53pnaxn9RsNX_368fmIzj8h-TwWr5fQ44gNYmJUIpwRN9BdyEyqdjR4OsA99ObuWRCCT3WzuycuhWfEo3_Luz5_xHKGzHp9CF6MIBJ_KnX_gHaC-0jdK9vL7l5jP6k6loS647XOFI1wSPj7tJ2cAk4sia0eNH0TEyLgG1b4aZb40XowDLm8Va3vEgFwTh-rk2zYlHITYl01D32zIrCuJnKu5rfocKVbVYbEPmJr_7VJzxBs9PP30_OyNCGgXhRyo5w50XuHadO8sg2p4LUCuI8QElBHeWKlrRSoi7ymjtIkFgobCxUd5pbLr3nT9F-u2zDc4SZr4XwIOGVFr6WpbMA_7SloaK21jRDbNx84weO8tgqY25SrqKl6RVmQGEmKczoDL2d5lz1DB23Sh9HnU6SkV073ViuLszgrAbsuhQsD7AwJ1hZlYUApKOocKFSNSsydDhahBkt1gA0Sn-RWZ6h19MwOGv8A2PbsLxOMgCnGKCiDD3rDWhaCY9MjCyOqC3T2lrq9kjbXCZCcMjidaH4i9uX9RLdz5OhF4Tlh2i_W12HI0BUnXuV3OQv1-8eiw
  priority: 102
  providerName: Scholars Portal
Title Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance
URI https://www.ncbi.nlm.nih.gov/pubmed/32398126
https://www.proquest.com/docview/2404245612
https://www.proquest.com/docview/2402441426
https://pubmed.ncbi.nlm.nih.gov/PMC7218573
https://doaj.org/article/bec9412e8a0b419d954224704bed7f15
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtQqGX0ne2TRcVeisikiVL8qk0JWkoNJTSwN6MLMuJIWtv1w4l_R_9v52RvU62lFx0sEYgPDOahzTfEPIOLIjnspKsyjLHlJYcdK5ULJGBO8OdF8Mr31N9cqa-LNLFmHDrxmeVmzMxHtRl6zFHfgCWJ17SieTD6ifDrlF4uzq20LhPdhG6DKXaLMyUYwFbqIyym1oZqw86CCe0ZRgzRWPI7JY9irD9__M1_30yecsGHT8mj0bnkX4cuP2E3AvNU_JgaCd5_Yz8idW0DOuMO4rQTCBatL9wPQyBIkpCQ5f1gLy0DNQ1Ja37ji5DD5JwiZ_69jwWAFNMz8ZVWARymyI-bcceWUhM66mcq_4dSlq6en0NJL_o6qYe4Tk5Oz768emEjW0XmFeZ7pksvEp8IXmhJaLLmaCtAbsOrqPiBZeGZ7w0qkqTShYQEImQOixML6x0UnsvX5Cdpm3CHqHCV0p5oPDGKl_prHDg7lnHQ8ldZfmMiM3Pz_2ISY6tMS7zGJtYnQ8My4FheWRYbmfk_bRmNSBy3El9iDydKBFNO35o1-f5qJw5yHGmRBJgY4USWZmlCjwbw1URSlOJdEb2NxKRjyre5TcCOSNvp2lQTrxxcU1oryINuE8CvKAZeTkI0LQTiciLAmfMlmhtbXV7pqkvIgA4RO02NfLV3dt6TR4mUdBTJpJ9stOvr8Ib8KD6Yh7VZE52D49Ov32fxzwEjJ8XAsavyv4F82sfsA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHghKLasRM7B4R4VVtaemqlvRnHcdpI3eyym6pa_gd_g9_IjLNJuwj11ksO9iSyMm_b8w0hb8CDOCYqEVd5bmOZCQY6V8o4EZ5Zxazj3S3fg2x0JL-N0_EG-dPXwuC1yt4mBkNdTh3ukW-D5wmHdDz5MPsZY9coPF3tW2h0YrHnl-eQsi3e734B_r5Nkp2vh59H8aqrQOxknrWxKJxMXCFYkQkET1M-0wrcFkRGkhVMKJazUskqTSpRQLzPfWqx7rrQworMOQHfvUFuguNlmOypsRr2dMD3SiV1X5ujs-0FpC-ZjjFHC8431mv-L7QJ-F9s--8VzUs-b-ceubsKVunHTrrukw3fPCC3uvaVy4fkd6jejbGueUERCgpEmbYntoWHp4jK0NBJ3SE9TTy1TUnrdkEnvgXJO8WhdnocCo4pbgeHt7Do5DJFuEqPPbmQmNZD-Vj9y5e0tPV8CSTndHZR__CIHF0LQx6TzWba-KeEcldJ6YDCKS1dleWFhfBSW-ZLZivNIsL7n2_cCgMdW3GcmpAL6cx0DDPAMBMYZnRE3g3vzDoEkCupPyFPB0pE7w4D0_mxWRkDA3qTS554WFgheV7mqYRISjFZ-FJVPI3IVi8RZmVSFuZCASLyepgGY4AnPLbx07NAA-Eah6grIk86ARpWIhDpkeOMWhOttaWuzzT1SQAcVwkiholnVy_rFbk9Ovy-b_Z3D_aekztJEPo05skW2WznZ_4FRG9t8TKoDCU_rltH_wKcFlVb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-omics+reveals+that+the+rumen+microbiome+and+its+metabolome+together+with+the+host+metabolome+contribute+to+individualized+dairy+cow+performance&rft.jtitle=Microbiome&rft.au=Ming-Yuan%2C+Xue&rft.au=Hui-Zeng%2C+Sun&rft.au=Xue-Hui%2C+Wu&rft.au=Liu%2C+Jian-Xin&rft.date=2020-05-12&rft.pub=BioMed+Central&rft.eissn=2049-2618&rft.volume=8&rft.spage=1&rft_id=info:doi/10.1186%2Fs40168-020-00819-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon