Sensory Neurons Contacting the Cerebrospinal Fluid Require the Reissner Fiber to Detect Spinal Curvature In Vivo

Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 an...

Full description

Saved in:
Bibliographic Details
Published inCurrent biology Vol. 30; no. 5; pp. 827 - 839.e4
Main Authors Orts-Del’Immagine, Adeline, Cantaut-Belarif, Yasmine, Thouvenin, Olivier, Roussel, Julian, Baskaran, Asha, Langui, Dominique, Koëth, Fanny, Bivas, Paul, Lejeune, François-Xavier, Bardet, Pierre-Luc, Wyart, Claire
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 09.03.2020
Elsevier
Subjects
Online AccessGet full text
ISSN0960-9822
1879-0445
1879-0445
DOI10.1016/j.cub.2019.12.071

Cover

Loading…
Abstract Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord. [Display omitted] •Since its discovery in 1860, the role of the Reissner fiber has been debated•CSF-contacting neurons (CSF-cNs) are in close vicinity of the Reissner fiber•Mechanoreception in CSF-cNs requires the Reissner fiber•CSF-cNs together with the Reissner fiber detect spinal curvature in vivo The role of the Reissner fiber, a long extracellular thread running in the cerebrospinal fluid (CSF), has been, since its discovery in 1860, a subject of debate. Orts-Del’Immagine et al. report that the Reissner fiber plays a critical role in the detection of spinal curvature by sensory neurons contacting the CSF.
AbstractList Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord. [Display omitted] •Since its discovery in 1860, the role of the Reissner fiber has been debated•CSF-contacting neurons (CSF-cNs) are in close vicinity of the Reissner fiber•Mechanoreception in CSF-cNs requires the Reissner fiber•CSF-cNs together with the Reissner fiber detect spinal curvature in vivo The role of the Reissner fiber, a long extracellular thread running in the cerebrospinal fluid (CSF), has been, since its discovery in 1860, a subject of debate. Orts-Del’Immagine et al. report that the Reissner fiber plays a critical role in the detection of spinal curvature by sensory neurons contacting the CSF.
Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord.Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord.
Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord.
Author Orts-Del’Immagine, Adeline
Bivas, Paul
Roussel, Julian
Cantaut-Belarif, Yasmine
Wyart, Claire
Lejeune, François-Xavier
Bardet, Pierre-Luc
Langui, Dominique
Thouvenin, Olivier
Koëth, Fanny
Baskaran, Asha
Author_xml – sequence: 1
  givenname: Adeline
  surname: Orts-Del’Immagine
  fullname: Orts-Del’Immagine, Adeline
  organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
– sequence: 2
  givenname: Yasmine
  surname: Cantaut-Belarif
  fullname: Cantaut-Belarif, Yasmine
  organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
– sequence: 3
  givenname: Olivier
  surname: Thouvenin
  fullname: Thouvenin, Olivier
  organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
– sequence: 4
  givenname: Julian
  surname: Roussel
  fullname: Roussel, Julian
  organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
– sequence: 5
  givenname: Asha
  surname: Baskaran
  fullname: Baskaran, Asha
  organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
– sequence: 6
  givenname: Dominique
  surname: Langui
  fullname: Langui, Dominique
  organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
– sequence: 7
  givenname: Fanny
  surname: Koëth
  fullname: Koëth, Fanny
  organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
– sequence: 8
  givenname: Paul
  surname: Bivas
  fullname: Bivas, Paul
  organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
– sequence: 9
  givenname: François-Xavier
  surname: Lejeune
  fullname: Lejeune, François-Xavier
  organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
– sequence: 10
  givenname: Pierre-Luc
  surname: Bardet
  fullname: Bardet, Pierre-Luc
  organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
– sequence: 11
  givenname: Claire
  surname: Wyart
  fullname: Wyart, Claire
  email: claire.wyart@icm-institute.org
  organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32084399$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03334720$$DView record in HAL
BookMark eNp9kUFuEzEUQC1URNPCAdigWcJiwrc9mYzFqhoIrRSB1AJby_b8oY4mdmJ7IvU2nKUnq8OULlh0Y0v2e3_x3xk5cd4hIW8pzCnQ-uNmbkY9Z0DFnLI5LOkLMqPNUpRQVYsTMgNRQykaxk7JWYwbAMoaUb8ip5xBU3EhZmR_gy76cFd8wzF4F4vWu6RMsu53kW6xaDGgDj7urFNDsRpG2xXXuB9twL__12hjdBiKldX5TL74jAlNKm4mox3DQaUx01fu_s8ve_CvycteDRHfPN7n5Ofqy4_2slx__3rVXqxLU4k6lVzXVGtd9T3VaBqsuVgsWAeq6jjoTjQLqE2jVAOd6qnRXBmBFDpNTaXrnvJz8mGae6sGuQt2q8Kd9MrKy4u1PL4B57xaMjgc2fcTuwt-P2JMcmujwWFQDv0YJeM1g-VCgMjou0d01Fvsnib_W2kG6ASYvLYYsH9CKMhjNrmROZs8ZpOUyZwtO8v_HGOTSja3CMoOz5qfJhPzKg8Wg4zGojPY5UImyc7bZ-wHSyazOQ
CitedBy_id crossref_primary_10_1016_j_neuroscience_2023_07_008
crossref_primary_10_7554_eLife_83108
crossref_primary_10_7759_cureus_10410
crossref_primary_10_1051_medsci_2023082
crossref_primary_10_1016_j_ydbio_2023_01_010
crossref_primary_10_3389_fnbot_2020_604426
crossref_primary_10_1038_s41580_023_00698_5
crossref_primary_10_1093_icb_icad088
crossref_primary_10_1186_s12987_021_00277_w
crossref_primary_10_7554_eLife_86175
crossref_primary_10_1038_s41598_023_32536_1
crossref_primary_10_1016_j_tins_2020_08_006
crossref_primary_10_1038_s41598_020_72039_x
crossref_primary_10_1016_j_jksus_2020_04_008
crossref_primary_10_1523_ENEURO_0100_22_2022
crossref_primary_10_1016_j_cub_2023_01_039
crossref_primary_10_1016_j_jksus_2020_04_005
crossref_primary_10_1093_glycob_cwab033
crossref_primary_10_1002_glia_24118
crossref_primary_10_1016_j_bone_2021_116075
crossref_primary_10_7554_eLife_59469
crossref_primary_10_1242_dev_175794
crossref_primary_10_1172_JCI168783
crossref_primary_10_1093_icb_icad052
crossref_primary_10_1186_s12987_023_00491_8
crossref_primary_10_1016_j_cub_2021_05_042
crossref_primary_10_1002_glia_23982
crossref_primary_10_1016_j_ydbio_2020_11_009
crossref_primary_10_1038_s41583_023_00723_8
crossref_primary_10_1016_j_isci_2022_105028
crossref_primary_10_1007_s11427_020_1915_y
crossref_primary_10_1016_j_cub_2020_04_073
crossref_primary_10_1016_j_conb_2023_102777
crossref_primary_10_1098_rsob_210065
crossref_primary_10_3389_fcell_2021_801652
crossref_primary_10_1371_journal_pbio_3002008
crossref_primary_10_1016_j_isci_2022_105914
crossref_primary_10_1146_annurev_physiol_060121_041637
crossref_primary_10_1111_febs_16913
crossref_primary_10_1098_rsob_230228
crossref_primary_10_7554_eLife_83883
crossref_primary_10_1038_s41593_024_01639_x
crossref_primary_10_1002_cne_25590
crossref_primary_10_3389_fnana_2021_703835
crossref_primary_10_1007_s43390_024_00941_9
crossref_primary_10_1016_j_cub_2022_04_019
crossref_primary_10_1007_s43390_022_00488_7
crossref_primary_10_1007_s00018_022_04534_5
crossref_primary_10_1111_joa_13781
crossref_primary_10_1007_s43390_021_00390_8
crossref_primary_10_1242_jcs_260565
crossref_primary_10_7554_eLife_87054
Cites_doi 10.1371/journal.pbio.3000235
10.1126/science.aal3839
10.1002/cne.23104
10.1016/j.celrep.2016.01.069
10.1016/j.devcel.2015.01.001
10.1016/j.cub.2015.09.070
10.1073/pnas.95.24.14184
10.1113/jphysiol.2012.227959
10.1242/jcs.109.5.1053
10.1038/srep17085
10.3389/fnana.2014.00026
10.1679/aohc.46.427
10.1242/dev.123.1.129
10.1002/(SICI)1097-0029(19980401)41:1<57::AID-JEMT6>3.0.CO;2-R
10.1016/j.cub.2014.07.080
10.1016/j.cub.2016.08.026
10.1038/nmeth.2019
10.1371/journal.pgen.1002762
10.1002/(SICI)1097-0029(19980415)41:2<98::AID-JEMT2>3.0.CO;2-M
10.1016/j.neuron.2014.07.029
10.1007/s00441-018-2917-8
10.1371/journal.pone.0087748
10.1242/dev.101675
10.1016/j.cub.2018.05.079
10.1002/cne.10565
10.1038/s41467-018-06225-x
10.1038/nrn3921
10.1016/j.neuropharm.2015.07.030
10.1002/cne.23584
10.1038/s41588-018-0260-3
10.1016/j.pneurobio.2018.04.002
10.1016/j.stem.2016.06.013
10.1038/nrn3786
10.1242/dev.01456
10.1038/ncomms10002
10.1016/j.cub.2018.11.059
10.3389/fgene.2019.00024
10.1007/BF02593657
10.1038/ncomms10866
10.1371/journal.pone.0119290
10.1016/S0896-6273(02)01133-9
10.1016/j.neuron.2014.02.039
10.1038/nature05084
10.1016/j.cub.2016.03.048
10.1083/jcb.17.1.208
10.1126/science.aaf6419
10.1007/BF02593586
10.1186/1471-2105-11-274
10.1038/s41598-017-00350-1
10.1097/MOO.0b013e32834a8c33
10.1016/j.neuron.2011.01.023
10.1016/S0959-437X(96)80068-2
10.1007/BF00225666
10.1242/dev.048470
10.1007/BF00218215
10.1038/nature08323
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
DOI 10.1016/j.cub.2019.12.071
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-0445
EndPage 839.e4
ExternalDocumentID oai_HAL_hal_03334720v1
32084399
10_1016_j_cub_2019_12_071
S096098221931704X
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: U01 NS090501
GroupedDBID ---
--K
-DZ
-~X
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AGUBO
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FIRID
IHE
IXB
J1W
JIG
LX5
M3Z
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SCP
SDG
SES
SSZ
TR2
WQ6
ZA5
29F
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
ASPBG
AVWKF
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
OZT
R2-
RIG
SEW
UHS
XIH
XPP
Y6R
ZGI
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
EFKBS
VOOES
ID FETCH-LOGICAL-c496t-3b61bbb4ff1bec8e639552d0a4d30bd98506c8aa80daf1cb3ac9e10db1c4b6f13
IEDL.DBID IXB
ISSN 0960-9822
1879-0445
IngestDate Fri Aug 15 06:20:45 EDT 2025
Fri Jul 11 13:12:48 EDT 2025
Thu Jan 02 22:57:25 EST 2025
Tue Jul 01 01:57:12 EDT 2025
Thu Apr 24 22:53:53 EDT 2025
Fri Feb 23 02:48:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords mechanoreception
CSF-cNs
central canal
polycystin kidney disease 2 like 1
PKD2L1
Kolmer-Agduhr cells
SCO-spondin
RF
cerebrospinal fluid
CSF
motile cilia
CSF-contacting neurons
the Reissner fiber
spinal cord
KAs
Cerebrospinal fluid (CSF)
Polycystin Kidney Disease Like 1 (PKD2L1)
CSF-contacting neurons (CSF-cNs)
Kolmer Agduhr cells (KAs)
the Reissner fiber (RF)
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-3b61bbb4ff1bec8e639552d0a4d30bd98506c8aa80daf1cb3ac9e10db1c4b6f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8667-1483
0000-0001-5484-2359
0000-0001-7177-1230
0000-0002-6229-5364
0000-0002-1668-4975
OpenAccessLink https://hal.science/hal-03334720
PMID 32084399
PQID 2362075909
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_03334720v1
proquest_miscellaneous_2362075909
pubmed_primary_32084399
crossref_primary_10_1016_j_cub_2019_12_071
crossref_citationtrail_10_1016_j_cub_2019_12_071
elsevier_sciencedirect_doi_10_1016_j_cub_2019_12_071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-09
PublicationDateYYYYMMDD 2020-03-09
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-09
  day: 09
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current biology
PublicationTitleAlternate Curr Biol
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Jaffe, Grimes, Schottenfeld-Roames, Werner, Ku, Kim, Pelliccia, Morante, Mitchell, Burdine (bib42) 2016; 14
(bib63) 2018
Reissner (bib39) 1860; 77
Didier, Dastugue, Meiniel (bib55) 1995; 39
Kolmer (bib13) 1921; 60
Yang, Rastegar, Strähle (bib23) 2010; 137
Zhang, Jia, Chen, Chong, Xie, Feng, Wu, Song, Roy, Zhao (bib9) 2018; 50
Lehtinen, Zappaterra, Chen, Yang, Hill, Lun, Maynard, Gonzalez, Kim, Ye (bib4) 2011; 69
Huang, Chen, Hoon, Chandrashekar, Guo, Tränkner, Ryba, Zuker (bib30) 2006; 442
Codega, Silva-Vargas, Paul, Maldonado-Soto, Deleo, Pastrana, Doetsch (bib2) 2014; 82
Hudspeth (bib51) 2014; 15
Orts-Del’Immagine, Kastner, Tillement, Tardivel, Trouslard, Wanaverbecq (bib20) 2014; 9
Orts-Del’immagine, Wanaverbecq, Tardivel, Tillement, Dallaporta, Trouslard (bib35) 2012; 590
Granato, Nüsslein-Volhard (bib41) 1996; 6
Zur Lage, Newton, Jarman (bib53) 2019; 10
Böhm, Prendergast, Djenoune, Nunes Figueiredo, Gomez, Stokes, Kaiser, Suster, Kawakami, Charpentier (bib16) 2016; 7
Orts-Del’Immagine, Seddik, Tell, Airault, Er-Raoui, Najimi, Trouslard, Wanaverbecq (bib34) 2016; 101
Thouvenin, Keiser, Cantaut-Belarif, Carbo-Tano, Verweij, Jurisch-Yaksi, Bardet, Van Niel, Gallaire, Wyart (bib43) 2019
Cantaut-Belarif, Sternberg, Thouvenin, Wyart, Bardet (bib8) 2018; 28
Fidelin, Djenoune, Stokes, Prendergast, Gomez, Baradel, Del Bene, Wyart (bib29) 2015; 25
Jalalvand, Robertson, Wallén, Grillner (bib33) 2016; 7
Revenu, Streichan, Donà, Lecaudey, Hufnagel, Gilmour (bib57) 2014; 141
Doetsch, Petreanu, Caille, Garcia-Verdugo, Alvarez-Buylla (bib3) 2002; 36
Barral, Martin (bib52) 2011; 19
Becker, Becker, Hugnot (bib44) 2018; 170
Jalalvand, Robertson, Wallén, Hill, Grillner (bib46) 2014; 522
Troutwine, Gontarz, Minowa, Monstad-Rios, Konjikusic, Sepich, Kwon, Solnica-Krezel, Gray (bib47) 2019
Reynolds (bib62) 1963; 17
Desban, Prendergast, Roussel, Rosello, Geny, Wyart, Bardet (bib17) 2019; 17
Huang, Xiong, Megason, Schier (bib21) 2012; 8
Rodríguez, Rodríguez, Hein (bib26) 1998; 41
Silva-Vargas, Doetsch (bib7) 2014; 83
Karak, Jacobs, Kittelmann, Spalthoff, Katana, Sivan-Loukianova, Schon, Kernan, Eberl, Göpfert (bib54) 2015; 5
Fernández-Llebrez, Pérez, Cifuentes, Alvial, Rodríguez (bib37) 1987; 248
Vigh-Teichmann, Vigh (bib28) 1983; 46
Djenoune, Khabou, Joubert, Quan, Nunes Figueiredo, Bodineau, Del Bene, Burcklé, Tostivint, Wyart (bib19) 2014; 8
Djenoune, Desban, Gomez, Sternberg, Prendergast, Langui, Quan, Marnas, Auer, Rio (bib18) 2017; 7
Vigh, Vigh-Teichmann (bib14) 1998; 41
Sternberg, Prendergast, Brosse, Cantaut-Belarif, Thouvenin, Orts-Del’Immagine, Castillo, Djenoune, Kurisu, McDearmid (bib36) 2018; 9
Park, Shin, Appel (bib22) 2004; 131
Wyart, Del Bene, Warp, Scott, Trauner, Baier, Isacoff (bib31) 2009; 461
Brand, Heisenberg, Warga, Pelegri, Karlstrom, Beuchle, Picker, Jiang, Furutani-Seiki, van Eeden (bib40) 1996; 123
Robles, Laurell, Baier (bib56) 2014; 24
Quan, Dubessy, Galant, Kenigfest, Djenoune, Leprince, Wyart, Lihrmann, Tostivint (bib11) 2015; 10
Gobron, Monnerie, Meiniel, Creveaux, Lehmann, Lamalle, Dastugue, Meiniel (bib59) 1996; 109
Olstad, Ringers, Hansen, Wens, Brandt, Wachten, Yaksi, Jurisch-Yaksi (bib49) 2019; 29
Silva-Vargas, Maldonado-Soto, Mizrak, Codega, Doetsch (bib6) 2016; 19
Stoeckel, Uhl-Bronner, Hugel, Veinante, Klein, Mutterer, Freund-Mercier, Schlichter (bib50) 2003; 457
Lun, Monuki, Lehtinen (bib1) 2015; 16
Petracca, Sartoretti, Di Bella, Marin-Burgin, Carcagno, Schinder, Lanuza (bib24) 2016; 143
Muñoz, Kähne, Herrera, Rodríguez, Guerra, Vío, Hennig, Rapp, Rodríguez (bib38) 2019; 375
Lauga, Brenner, Stone (bib48) 2007
Hubbard, Böhm, Prendergast, Tseng, Newman, Stokes, Wyart (bib25) 2016; 26
Paul, Chaker, Doetsch (bib5) 2017; 356
Grimes, Boswell, Morante, Henkelman, Burdine, Ciruna (bib10) 2016; 352
Agduhr (bib12) 1922; 66
Becker, Becker (bib45) 2015; 32
Vigh, Vigh-Teichmann, Aros (bib27) 1977; 183
Schmid, Schindelin, Cardona, Longair, Heisenberg (bib60) 2010; 11
Jalalvand, Robertson, Tostivint, Wallén, Grillner (bib32) 2016; 26
Alfaro-Cervello, Soriano-Navarro, Mirzadeh, Alvarez-Buylla, Garcia-Verdugo (bib15) 2012; 520
Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid (bib58) 2012; 9
López, Montiel, Herrero, García-Palomero, Mayorgas, Hernández-Guijo, Villarroya, Olivares, Gandía, McIntosh (bib61) 1998; 95
Alfaro-Cervello (10.1016/j.cub.2019.12.071_bib15) 2012; 520
Schmid (10.1016/j.cub.2019.12.071_bib60) 2010; 11
Brand (10.1016/j.cub.2019.12.071_bib40) 1996; 123
Djenoune (10.1016/j.cub.2019.12.071_bib18) 2017; 7
Quan (10.1016/j.cub.2019.12.071_bib11) 2015; 10
Doetsch (10.1016/j.cub.2019.12.071_bib3) 2002; 36
Barral (10.1016/j.cub.2019.12.071_bib52) 2011; 19
Orts-Del’Immagine (10.1016/j.cub.2019.12.071_bib34) 2016; 101
Jalalvand (10.1016/j.cub.2019.12.071_bib46) 2014; 522
Kolmer (10.1016/j.cub.2019.12.071_bib13) 1921; 60
Hubbard (10.1016/j.cub.2019.12.071_bib25) 2016; 26
Muñoz (10.1016/j.cub.2019.12.071_bib38) 2019; 375
Karak (10.1016/j.cub.2019.12.071_bib54) 2015; 5
Stoeckel (10.1016/j.cub.2019.12.071_bib50) 2003; 457
Orts-Del’Immagine (10.1016/j.cub.2019.12.071_bib20) 2014; 9
Sternberg (10.1016/j.cub.2019.12.071_bib36) 2018; 9
(10.1016/j.cub.2019.12.071_bib63) 2018
Jalalvand (10.1016/j.cub.2019.12.071_bib33) 2016; 7
Reynolds (10.1016/j.cub.2019.12.071_bib62) 1963; 17
Fidelin (10.1016/j.cub.2019.12.071_bib29) 2015; 25
Becker (10.1016/j.cub.2019.12.071_bib44) 2018; 170
Silva-Vargas (10.1016/j.cub.2019.12.071_bib7) 2014; 83
Petracca (10.1016/j.cub.2019.12.071_bib24) 2016; 143
Robles (10.1016/j.cub.2019.12.071_bib56) 2014; 24
López (10.1016/j.cub.2019.12.071_bib61) 1998; 95
Rodríguez (10.1016/j.cub.2019.12.071_bib26) 1998; 41
Huang (10.1016/j.cub.2019.12.071_bib21) 2012; 8
Jalalvand (10.1016/j.cub.2019.12.071_bib32) 2016; 26
Thouvenin (10.1016/j.cub.2019.12.071_bib43) 2019
Hudspeth (10.1016/j.cub.2019.12.071_bib51) 2014; 15
Wyart (10.1016/j.cub.2019.12.071_bib31) 2009; 461
Granato (10.1016/j.cub.2019.12.071_bib41) 1996; 6
Becker (10.1016/j.cub.2019.12.071_bib45) 2015; 32
Zur Lage (10.1016/j.cub.2019.12.071_bib53) 2019; 10
Zhang (10.1016/j.cub.2019.12.071_bib9) 2018; 50
Huang (10.1016/j.cub.2019.12.071_bib30) 2006; 442
Gobron (10.1016/j.cub.2019.12.071_bib59) 1996; 109
Böhm (10.1016/j.cub.2019.12.071_bib16) 2016; 7
Cantaut-Belarif (10.1016/j.cub.2019.12.071_bib8) 2018; 28
Paul (10.1016/j.cub.2019.12.071_bib5) 2017; 356
Djenoune (10.1016/j.cub.2019.12.071_bib19) 2014; 8
Codega (10.1016/j.cub.2019.12.071_bib2) 2014; 82
Vigh (10.1016/j.cub.2019.12.071_bib27) 1977; 183
Jaffe (10.1016/j.cub.2019.12.071_bib42) 2016; 14
Didier (10.1016/j.cub.2019.12.071_bib55) 1995; 39
Lauga (10.1016/j.cub.2019.12.071_bib48) 2007
Desban (10.1016/j.cub.2019.12.071_bib17) 2019; 17
Fernández-Llebrez (10.1016/j.cub.2019.12.071_bib37) 1987; 248
Revenu (10.1016/j.cub.2019.12.071_bib57) 2014; 141
Schindelin (10.1016/j.cub.2019.12.071_bib58) 2012; 9
Orts-Del’immagine (10.1016/j.cub.2019.12.071_bib35) 2012; 590
Lun (10.1016/j.cub.2019.12.071_bib1) 2015; 16
Grimes (10.1016/j.cub.2019.12.071_bib10) 2016; 352
Troutwine (10.1016/j.cub.2019.12.071_bib47) 2019
Lehtinen (10.1016/j.cub.2019.12.071_bib4) 2011; 69
Vigh (10.1016/j.cub.2019.12.071_bib14) 1998; 41
Agduhr (10.1016/j.cub.2019.12.071_bib12) 1922; 66
Olstad (10.1016/j.cub.2019.12.071_bib49) 2019; 29
Silva-Vargas (10.1016/j.cub.2019.12.071_bib6) 2016; 19
Vigh-Teichmann (10.1016/j.cub.2019.12.071_bib28) 1983; 46
Park (10.1016/j.cub.2019.12.071_bib22) 2004; 131
Yang (10.1016/j.cub.2019.12.071_bib23) 2010; 137
Reissner (10.1016/j.cub.2019.12.071_bib39) 1860; 77
References_xml – volume: 10
  start-page: e0119290
  year: 2015
  ident: bib11
  article-title: Comparative distribution and in vitro activities of the urotensin II-related peptides URP1 and URP2 in zebrafish: evidence for their colocalization in spinal cerebrospinal fluid-contacting neurons
  publication-title: PLoS ONE
– volume: 14
  start-page: 1841
  year: 2016
  end-page: 1849
  ident: bib42
  article-title: c21orf59/kurly controls both cilia motility and polarization
  publication-title: Cell Rep.
– volume: 170
  start-page: 67
  year: 2018
  end-page: 80
  ident: bib44
  article-title: The spinal ependymal zone as a source of endogenous repair cells across vertebrates
  publication-title: Prog. Neurobiol.
– volume: 248
  start-page: 473
  year: 1987
  end-page: 478
  ident: bib37
  article-title: Immunocytochemical and ultrastructural evidence for a neurophysinergic innervation of the subcommissural organ of the snake Natrix maura
  publication-title: Cell Tissue Res.
– volume: 26
  start-page: 2841
  year: 2016
  end-page: 2853
  ident: bib25
  article-title: Intraspinal sensory neurons provide powerful inhibition to motor circuits ensuring postural control during locomotion
  publication-title: Curr. Biol.
– volume: 123
  start-page: 129
  year: 1996
  end-page: 142
  ident: bib40
  article-title: Mutations affecting development of the midline and general body shape during zebrafish embryogenesis
  publication-title: Development
– volume: 461
  start-page: 407
  year: 2009
  end-page: 410
  ident: bib31
  article-title: Optogenetic dissection of a behavioural module in the vertebrate spinal cord
  publication-title: Nature
– volume: 16
  start-page: 445
  year: 2015
  end-page: 457
  ident: bib1
  article-title: Development and functions of the choroid plexus-cerebrospinal fluid system
  publication-title: Nat. Rev. Neurosci.
– volume: 46
  start-page: 427
  year: 1983
  end-page: 468
  ident: bib28
  article-title: The system of cerebrospinal fluid-contacting neurons
  publication-title: Arch. Histol. Jpn.
– volume: 29
  start-page: 229
  year: 2019
  end-page: 241.e6
  ident: bib49
  article-title: Ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development
  publication-title: Curr. Biol.
– volume: 28
  start-page: 2479
  year: 2018
  end-page: 2486.e4
  ident: bib8
  article-title: The Reissner fiber in the cerebrospinal fluid controls morphogenesis of the body axis
  publication-title: Curr. Biol.
– volume: 66
  start-page: 223
  year: 1922
  end-page: 360
  ident: bib12
  article-title: Über ein zentrales Sinnesorgan (?) bei den Vertebraten.
  publication-title: Zeitschrift für Anatomie und Entwicklungsgeschichte
– volume: 95
  start-page: 14184
  year: 1998
  end-page: 14189
  ident: bib61
  article-title: Unmasking the functions of the chromaffin cell alpha7 nicotinic receptor by using short pulses of acetylcholine and selective blockers
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 41
  start-page: 98
  year: 1998
  end-page: 123
  ident: bib26
  article-title: The subcommissural organ
  publication-title: Microsc. Res. Tech.
– volume: 19
  start-page: 369
  year: 2011
  end-page: 375
  ident: bib52
  article-title: The physical basis of active mechanosensitivity by the hair-cell bundle
  publication-title: Curr. Opin. Otolaryngol. Head Neck Surg.
– volume: 6
  start-page: 461
  year: 1996
  end-page: 468
  ident: bib41
  article-title: Fishing for genes controlling development
  publication-title: Curr. Opin. Genet. Dev.
– start-page: 1219
  year: 2007
  end-page: 1240
  ident: bib48
  article-title: Microfluidics: the no-slip boundary condition
  publication-title: Springer Handbook of Experimental Fluid Mechanics
– year: 2018
  ident: bib63
  article-title: R: A language and environment for statistical computing
– volume: 143
  start-page: 880
  year: 2016
  end-page: 891
  ident: bib24
  article-title: The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord
  publication-title: Development
– volume: 41
  start-page: 57
  year: 1998
  end-page: 83
  ident: bib14
  article-title: Actual problems of the cerebrospinal fluid-contacting neurons
  publication-title: Microsc. Res. Tech.
– volume: 183
  start-page: 541
  year: 1977
  end-page: 552
  ident: bib27
  article-title: Special dendritic and axonal endings formed by the cerebrospinal fluid contacting neurons of the spinal cord
  publication-title: Cell Tissue Res.
– volume: 375
  start-page: 507
  year: 2019
  end-page: 529
  ident: bib38
  article-title: The subcommissural organ and the Reissner fiber: old friends revisited
  publication-title: Cell Tissue Res.
– volume: 9
  start-page: 3804
  year: 2018
  ident: bib36
  article-title: Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature
  publication-title: Nat. Commun.
– volume: 17
  start-page: 208
  year: 1963
  end-page: 212
  ident: bib62
  article-title: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy
  publication-title: J. Cell Biol.
– volume: 32
  start-page: 516
  year: 2015
  end-page: 527
  ident: bib45
  article-title: Neuronal regeneration from ependymo-radial glial cells: cook, little pot, cook!
  publication-title: Dev. Cell
– year: 2019
  ident: bib43
  article-title: Origin of the bidirectionality of cerebrospinal fluid flow and impact on long-range transport between brain and spinal cord
  publication-title: bioRxiv
– volume: 522
  start-page: Spc1
  year: 2014
  ident: bib46
  article-title: Laterally projecting cerebrospinal fluid-contacting cells in the lamprey spinal cord are of two distinct types
  publication-title: J. Comp. Neurol.
– volume: 19
  start-page: 643
  year: 2016
  end-page: 652
  ident: bib6
  article-title: Age-dependent niche signals from the choroid plexus regulate adult neural stem cells
  publication-title: Cell Stem Cell
– volume: 101
  start-page: 549
  year: 2016
  end-page: 565
  ident: bib34
  article-title: A single polycystic kidney disease 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of adult mouse brainstem
  publication-title: Neuropharmacology
– volume: 352
  start-page: 1341
  year: 2016
  end-page: 1344
  ident: bib10
  article-title: Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature
  publication-title: Science
– volume: 77
  start-page: 545
  year: 1860
  end-page: 588
  ident: bib39
  article-title: Beiträge zur Kenntnis vom Bau des Rückenmarkes von Petromyzon fluviatilis L.
  publication-title: Arch. Anat. Physiol.
– volume: 11
  start-page: 274
  year: 2010
  ident: bib60
  article-title: A high-level 3D visualization API for Java and ImageJ
  publication-title: BMC Bioinformatics
– volume: 36
  start-page: 1021
  year: 2002
  end-page: 1034
  ident: bib3
  article-title: EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells
  publication-title: Neuron
– volume: 7
  start-page: 719
  year: 2017
  ident: bib18
  article-title: The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes
  publication-title: Sci. Rep.
– volume: 590
  start-page: 3719
  year: 2012
  end-page: 3741
  ident: bib35
  article-title: Properties of subependymal cerebrospinal fluid contacting neurones in the dorsal vagal complex of the mouse brainstem
  publication-title: J. Physiol.
– volume: 520
  start-page: 3528
  year: 2012
  end-page: 3552
  ident: bib15
  article-title: Biciliated ependymal cell proliferation contributes to spinal cord growth
  publication-title: J. Comp. Neurol.
– volume: 15
  start-page: 600
  year: 2014
  end-page: 614
  ident: bib51
  article-title: Integrating the active process of hair cells with cochlear function
  publication-title: Nat. Rev. Neurosci.
– volume: 5
  start-page: 17085
  year: 2015
  ident: bib54
  article-title: Diverse roles of axonemal dyneins in Drosophila auditory neuron function and mechanical amplification in hearing
  publication-title: Sci. Rep.
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: bib58
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
– volume: 356
  start-page: 1383
  year: 2017
  end-page: 1386
  ident: bib5
  article-title: Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis
  publication-title: Science
– volume: 39
  start-page: 493
  year: 1995
  end-page: 499
  ident: bib55
  article-title: The secretory material of the subcommissural organ of the chick embryo. Characterization of a specific polypeptide by two-dimensional electrophoresis
  publication-title: Int. J. Dev. Biol.
– volume: 82
  start-page: 545
  year: 2014
  end-page: 559
  ident: bib2
  article-title: Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche
  publication-title: Neuron
– volume: 141
  start-page: 1282
  year: 2014
  end-page: 1291
  ident: bib57
  article-title: Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation
  publication-title: Development
– year: 2019
  ident: bib47
  article-title: The Reissner fiber is highly dynamic in vivo and controls morphogenesis of the spine
  publication-title: bioRxiv
– volume: 10
  start-page: 24
  year: 2019
  ident: bib53
  article-title: Survey of the ciliary motility machinery of
  publication-title: Front. Genet.
– volume: 69
  start-page: 893
  year: 2011
  end-page: 905
  ident: bib4
  article-title: The cerebrospinal fluid provides a proliferative niche for neural progenitor cells
  publication-title: Neuron
– volume: 131
  start-page: 5959
  year: 2004
  end-page: 5969
  ident: bib22
  article-title: Spatial and temporal regulation of ventral spinal cord precursor specification by Hedgehog signaling
  publication-title: Development
– volume: 7
  start-page: 10866
  year: 2016
  ident: bib16
  article-title: CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits
  publication-title: Nat. Commun.
– volume: 17
  start-page: e3000235
  year: 2019
  ident: bib17
  article-title: Regulation of the apical extension morphogenesis tunes the mechanosensory response of microvilliated neurons
  publication-title: PLoS Biol.
– volume: 457
  start-page: 159
  year: 2003
  end-page: 174
  ident: bib50
  article-title: Cerebrospinal fluid-contacting neurons in the rat spinal cord, a gamma-aminobutyric acidergic system expressing the P2X2 subunit of purinergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: light and electron microscopic study
  publication-title: J. Comp. Neurol.
– volume: 7
  start-page: 10002
  year: 2016
  ident: bib33
  article-title: Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3
  publication-title: Nat. Commun.
– volume: 26
  start-page: 1346
  year: 2016
  end-page: 1351
  ident: bib32
  article-title: The spinal cord has an intrinsic system for the control of pH
  publication-title: Curr. Biol.
– volume: 9
  start-page: e87748
  year: 2014
  ident: bib20
  article-title: Morphology, distribution and phenotype of polycystin kidney disease 2-like 1-positive cerebrospinal fluid contacting neurons in the brainstem of adult mice
  publication-title: PLoS ONE
– volume: 83
  start-page: 507
  year: 2014
  end-page: 509
  ident: bib7
  article-title: A new twist for neurotrophins: endothelial-derived NT-3 mediates adult neural stem cell quiescence
  publication-title: Neuron
– volume: 8
  start-page: e1002762
  year: 2012
  ident: bib21
  article-title: Attenuation of Notch and Hedgehog signaling is required for fate specification in the spinal cord
  publication-title: PLoS Genet.
– volume: 24
  start-page: 2085
  year: 2014
  end-page: 2096
  ident: bib56
  article-title: The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity
  publication-title: Curr. Biol.
– volume: 8
  start-page: 26
  year: 2014
  ident: bib19
  article-title: Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates
  publication-title: Front. Neuroanat.
– volume: 25
  start-page: 3035
  year: 2015
  end-page: 3047
  ident: bib29
  article-title: State-dependent modulation of locomotion by GABAergic spinal sensory neurons
  publication-title: Curr. Biol.
– volume: 60
  start-page: 652
  year: 1921
  end-page: 717
  ident: bib13
  article-title: Das “sagittalorgan” der wirbeltiere
  publication-title: Z. Anat. Entwicklungsgesch.
– volume: 137
  start-page: 2713
  year: 2010
  end-page: 2722
  ident: bib23
  article-title: Regulatory interactions specifying Kolmer-Agduhr interneurons
  publication-title: Development
– volume: 109
  start-page: 1053
  year: 1996
  end-page: 1061
  ident: bib59
  article-title: SCO-spondin: a new member of the thrombospondin family secreted by the subcommissural organ is a candidate in the modulation of neuronal aggregation
  publication-title: J. Cell Sci.
– volume: 50
  start-page: 1666
  year: 2018
  end-page: 1673
  ident: bib9
  article-title: Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis
  publication-title: Nat. Genet.
– volume: 442
  start-page: 934
  year: 2006
  end-page: 938
  ident: bib30
  article-title: The cells and logic for mammalian sour taste detection
  publication-title: Nature
– volume: 17
  start-page: e3000235
  year: 2019
  ident: 10.1016/j.cub.2019.12.071_bib17
  article-title: Regulation of the apical extension morphogenesis tunes the mechanosensory response of microvilliated neurons
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000235
– volume: 356
  start-page: 1383
  year: 2017
  ident: 10.1016/j.cub.2019.12.071_bib5
  article-title: Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis
  publication-title: Science
  doi: 10.1126/science.aal3839
– volume: 520
  start-page: 3528
  year: 2012
  ident: 10.1016/j.cub.2019.12.071_bib15
  article-title: Biciliated ependymal cell proliferation contributes to spinal cord growth
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.23104
– volume: 14
  start-page: 1841
  year: 2016
  ident: 10.1016/j.cub.2019.12.071_bib42
  article-title: c21orf59/kurly controls both cilia motility and polarization
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.01.069
– volume: 32
  start-page: 516
  year: 2015
  ident: 10.1016/j.cub.2019.12.071_bib45
  article-title: Neuronal regeneration from ependymo-radial glial cells: cook, little pot, cook!
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2015.01.001
– volume: 39
  start-page: 493
  year: 1995
  ident: 10.1016/j.cub.2019.12.071_bib55
  article-title: The secretory material of the subcommissural organ of the chick embryo. Characterization of a specific polypeptide by two-dimensional electrophoresis
  publication-title: Int. J. Dev. Biol.
– volume: 25
  start-page: 3035
  year: 2015
  ident: 10.1016/j.cub.2019.12.071_bib29
  article-title: State-dependent modulation of locomotion by GABAergic spinal sensory neurons
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.09.070
– volume: 95
  start-page: 14184
  year: 1998
  ident: 10.1016/j.cub.2019.12.071_bib61
  article-title: Unmasking the functions of the chromaffin cell alpha7 nicotinic receptor by using short pulses of acetylcholine and selective blockers
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.24.14184
– volume: 143
  start-page: 880
  year: 2016
  ident: 10.1016/j.cub.2019.12.071_bib24
  article-title: The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord
  publication-title: Development
– volume: 590
  start-page: 3719
  year: 2012
  ident: 10.1016/j.cub.2019.12.071_bib35
  article-title: Properties of subependymal cerebrospinal fluid contacting neurones in the dorsal vagal complex of the mouse brainstem
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2012.227959
– volume: 109
  start-page: 1053
  year: 1996
  ident: 10.1016/j.cub.2019.12.071_bib59
  article-title: SCO-spondin: a new member of the thrombospondin family secreted by the subcommissural organ is a candidate in the modulation of neuronal aggregation
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.109.5.1053
– volume: 5
  start-page: 17085
  year: 2015
  ident: 10.1016/j.cub.2019.12.071_bib54
  article-title: Diverse roles of axonemal dyneins in Drosophila auditory neuron function and mechanical amplification in hearing
  publication-title: Sci. Rep.
  doi: 10.1038/srep17085
– volume: 8
  start-page: 26
  year: 2014
  ident: 10.1016/j.cub.2019.12.071_bib19
  article-title: Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2014.00026
– volume: 46
  start-page: 427
  year: 1983
  ident: 10.1016/j.cub.2019.12.071_bib28
  article-title: The system of cerebrospinal fluid-contacting neurons
  publication-title: Arch. Histol. Jpn.
  doi: 10.1679/aohc.46.427
– volume: 123
  start-page: 129
  year: 1996
  ident: 10.1016/j.cub.2019.12.071_bib40
  article-title: Mutations affecting development of the midline and general body shape during zebrafish embryogenesis
  publication-title: Development
  doi: 10.1242/dev.123.1.129
– volume: 77
  start-page: 545
  year: 1860
  ident: 10.1016/j.cub.2019.12.071_bib39
  article-title: Beiträge zur Kenntnis vom Bau des Rückenmarkes von Petromyzon fluviatilis L.
  publication-title: Arch. Anat. Physiol.
– volume: 41
  start-page: 57
  year: 1998
  ident: 10.1016/j.cub.2019.12.071_bib14
  article-title: Actual problems of the cerebrospinal fluid-contacting neurons
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/(SICI)1097-0029(19980401)41:1<57::AID-JEMT6>3.0.CO;2-R
– volume: 24
  start-page: 2085
  year: 2014
  ident: 10.1016/j.cub.2019.12.071_bib56
  article-title: The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.07.080
– volume: 26
  start-page: 2841
  year: 2016
  ident: 10.1016/j.cub.2019.12.071_bib25
  article-title: Intraspinal sensory neurons provide powerful inhibition to motor circuits ensuring postural control during locomotion
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.08.026
– volume: 9
  start-page: 676
  year: 2012
  ident: 10.1016/j.cub.2019.12.071_bib58
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 8
  start-page: e1002762
  year: 2012
  ident: 10.1016/j.cub.2019.12.071_bib21
  article-title: Attenuation of Notch and Hedgehog signaling is required for fate specification in the spinal cord
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002762
– volume: 41
  start-page: 98
  year: 1998
  ident: 10.1016/j.cub.2019.12.071_bib26
  article-title: The subcommissural organ
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/(SICI)1097-0029(19980415)41:2<98::AID-JEMT2>3.0.CO;2-M
– volume: 83
  start-page: 507
  year: 2014
  ident: 10.1016/j.cub.2019.12.071_bib7
  article-title: A new twist for neurotrophins: endothelial-derived NT-3 mediates adult neural stem cell quiescence
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.07.029
– volume: 375
  start-page: 507
  year: 2019
  ident: 10.1016/j.cub.2019.12.071_bib38
  article-title: The subcommissural organ and the Reissner fiber: old friends revisited
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-018-2917-8
– volume: 9
  start-page: e87748
  year: 2014
  ident: 10.1016/j.cub.2019.12.071_bib20
  article-title: Morphology, distribution and phenotype of polycystin kidney disease 2-like 1-positive cerebrospinal fluid contacting neurons in the brainstem of adult mice
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0087748
– volume: 141
  start-page: 1282
  year: 2014
  ident: 10.1016/j.cub.2019.12.071_bib57
  article-title: Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation
  publication-title: Development
  doi: 10.1242/dev.101675
– volume: 28
  start-page: 2479
  year: 2018
  ident: 10.1016/j.cub.2019.12.071_bib8
  article-title: The Reissner fiber in the cerebrospinal fluid controls morphogenesis of the body axis
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.05.079
– volume: 457
  start-page: 159
  year: 2003
  ident: 10.1016/j.cub.2019.12.071_bib50
  article-title: Cerebrospinal fluid-contacting neurons in the rat spinal cord, a gamma-aminobutyric acidergic system expressing the P2X2 subunit of purinergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: light and electron microscopic study
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.10565
– volume: 9
  start-page: 3804
  year: 2018
  ident: 10.1016/j.cub.2019.12.071_bib36
  article-title: Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06225-x
– volume: 16
  start-page: 445
  year: 2015
  ident: 10.1016/j.cub.2019.12.071_bib1
  article-title: Development and functions of the choroid plexus-cerebrospinal fluid system
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3921
– volume: 101
  start-page: 549
  year: 2016
  ident: 10.1016/j.cub.2019.12.071_bib34
  article-title: A single polycystic kidney disease 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of adult mouse brainstem
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2015.07.030
– volume: 522
  start-page: Spc1
  year: 2014
  ident: 10.1016/j.cub.2019.12.071_bib46
  article-title: Laterally projecting cerebrospinal fluid-contacting cells in the lamprey spinal cord are of two distinct types
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.23584
– volume: 50
  start-page: 1666
  year: 2018
  ident: 10.1016/j.cub.2019.12.071_bib9
  article-title: Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0260-3
– volume: 170
  start-page: 67
  year: 2018
  ident: 10.1016/j.cub.2019.12.071_bib44
  article-title: The spinal ependymal zone as a source of endogenous repair cells across vertebrates
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2018.04.002
– volume: 19
  start-page: 643
  year: 2016
  ident: 10.1016/j.cub.2019.12.071_bib6
  article-title: Age-dependent niche signals from the choroid plexus regulate adult neural stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.06.013
– volume: 15
  start-page: 600
  year: 2014
  ident: 10.1016/j.cub.2019.12.071_bib51
  article-title: Integrating the active process of hair cells with cochlear function
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3786
– volume: 131
  start-page: 5959
  year: 2004
  ident: 10.1016/j.cub.2019.12.071_bib22
  article-title: Spatial and temporal regulation of ventral spinal cord precursor specification by Hedgehog signaling
  publication-title: Development
  doi: 10.1242/dev.01456
– year: 2019
  ident: 10.1016/j.cub.2019.12.071_bib47
  article-title: The Reissner fiber is highly dynamic in vivo and controls morphogenesis of the spine
  publication-title: bioRxiv
– year: 2018
  ident: 10.1016/j.cub.2019.12.071_bib63
– volume: 7
  start-page: 10002
  year: 2016
  ident: 10.1016/j.cub.2019.12.071_bib33
  article-title: Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10002
– volume: 29
  start-page: 229
  year: 2019
  ident: 10.1016/j.cub.2019.12.071_bib49
  article-title: Ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.11.059
– volume: 10
  start-page: 24
  year: 2019
  ident: 10.1016/j.cub.2019.12.071_bib53
  article-title: Survey of the ciliary motility machinery of Drosophila sperm and ciliated mechanosensory neurons reveals unexpected cell-type specific variations: a model for motile ciliopathies
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00024
– volume: 60
  start-page: 652
  year: 1921
  ident: 10.1016/j.cub.2019.12.071_bib13
  article-title: Das “sagittalorgan” der wirbeltiere
  publication-title: Z. Anat. Entwicklungsgesch.
  doi: 10.1007/BF02593657
– volume: 7
  start-page: 10866
  year: 2016
  ident: 10.1016/j.cub.2019.12.071_bib16
  article-title: CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10866
– volume: 10
  start-page: e0119290
  year: 2015
  ident: 10.1016/j.cub.2019.12.071_bib11
  article-title: Comparative distribution and in vitro activities of the urotensin II-related peptides URP1 and URP2 in zebrafish: evidence for their colocalization in spinal cerebrospinal fluid-contacting neurons
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0119290
– volume: 36
  start-page: 1021
  year: 2002
  ident: 10.1016/j.cub.2019.12.071_bib3
  article-title: EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)01133-9
– volume: 82
  start-page: 545
  year: 2014
  ident: 10.1016/j.cub.2019.12.071_bib2
  article-title: Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.02.039
– volume: 442
  start-page: 934
  year: 2006
  ident: 10.1016/j.cub.2019.12.071_bib30
  article-title: The cells and logic for mammalian sour taste detection
  publication-title: Nature
  doi: 10.1038/nature05084
– volume: 26
  start-page: 1346
  year: 2016
  ident: 10.1016/j.cub.2019.12.071_bib32
  article-title: The spinal cord has an intrinsic system for the control of pH
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.03.048
– volume: 17
  start-page: 208
  year: 1963
  ident: 10.1016/j.cub.2019.12.071_bib62
  article-title: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.17.1.208
– start-page: 1219
  year: 2007
  ident: 10.1016/j.cub.2019.12.071_bib48
  article-title: Microfluidics: the no-slip boundary condition
– volume: 352
  start-page: 1341
  year: 2016
  ident: 10.1016/j.cub.2019.12.071_bib10
  article-title: Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature
  publication-title: Science
  doi: 10.1126/science.aaf6419
– volume: 66
  start-page: 223
  year: 1922
  ident: 10.1016/j.cub.2019.12.071_bib12
  article-title: Über ein zentrales Sinnesorgan (?) bei den Vertebraten.
  publication-title: Zeitschrift für Anatomie und Entwicklungsgeschichte
  doi: 10.1007/BF02593586
– volume: 11
  start-page: 274
  year: 2010
  ident: 10.1016/j.cub.2019.12.071_bib60
  article-title: A high-level 3D visualization API for Java and ImageJ
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-274
– volume: 7
  start-page: 719
  year: 2017
  ident: 10.1016/j.cub.2019.12.071_bib18
  article-title: The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00350-1
– year: 2019
  ident: 10.1016/j.cub.2019.12.071_bib43
  article-title: Origin of the bidirectionality of cerebrospinal fluid flow and impact on long-range transport between brain and spinal cord
  publication-title: bioRxiv
– volume: 19
  start-page: 369
  year: 2011
  ident: 10.1016/j.cub.2019.12.071_bib52
  article-title: The physical basis of active mechanosensitivity by the hair-cell bundle
  publication-title: Curr. Opin. Otolaryngol. Head Neck Surg.
  doi: 10.1097/MOO.0b013e32834a8c33
– volume: 69
  start-page: 893
  year: 2011
  ident: 10.1016/j.cub.2019.12.071_bib4
  article-title: The cerebrospinal fluid provides a proliferative niche for neural progenitor cells
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.01.023
– volume: 6
  start-page: 461
  year: 1996
  ident: 10.1016/j.cub.2019.12.071_bib41
  article-title: Fishing for genes controlling development
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/S0959-437X(96)80068-2
– volume: 183
  start-page: 541
  year: 1977
  ident: 10.1016/j.cub.2019.12.071_bib27
  article-title: Special dendritic and axonal endings formed by the cerebrospinal fluid contacting neurons of the spinal cord
  publication-title: Cell Tissue Res.
  doi: 10.1007/BF00225666
– volume: 137
  start-page: 2713
  year: 2010
  ident: 10.1016/j.cub.2019.12.071_bib23
  article-title: Regulatory interactions specifying Kolmer-Agduhr interneurons
  publication-title: Development
  doi: 10.1242/dev.048470
– volume: 248
  start-page: 473
  year: 1987
  ident: 10.1016/j.cub.2019.12.071_bib37
  article-title: Immunocytochemical and ultrastructural evidence for a neurophysinergic innervation of the subcommissural organ of the snake Natrix maura
  publication-title: Cell Tissue Res.
  doi: 10.1007/BF00218215
– volume: 461
  start-page: 407
  year: 2009
  ident: 10.1016/j.cub.2019.12.071_bib31
  article-title: Optogenetic dissection of a behavioural module in the vertebrate spinal cord
  publication-title: Nature
  doi: 10.1038/nature08323
SSID ssj0012896
Score 2.5308826
Snippet Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 827
SubjectTerms Animal biology
Animals
central canal
cerebrospinal fluid
Cerebrospinal Fluid - physiology
CSF
CSF-cNs
CSF-contacting neurons
KAs
Kolmer-Agduhr cells
Life Sciences
mechanoreception
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Morphogenesis
motile cilia
PKD2L1
polycystin kidney disease 2 like 1
SCO-spondin
Sensory Receptor Cells - physiology
spinal cord
Spinal Cord - growth & development
Spinal Cord - ultrastructure
the Reissner fiber
Vertebrate Zoology
Zebrafish - growth & development
Title Sensory Neurons Contacting the Cerebrospinal Fluid Require the Reissner Fiber to Detect Spinal Curvature In Vivo
URI https://dx.doi.org/10.1016/j.cub.2019.12.071
https://www.ncbi.nlm.nih.gov/pubmed/32084399
https://www.proquest.com/docview/2362075909
https://hal.science/hal-03334720
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKERIXxJstUBnECSlaO3YePi4Lq4UCh10Ke7P8SllUJe12U6n_ht_CL2PGSVbi0B64JmMr8jgz33g-zxDyxvoAqLXKEmGYS6QyeaKKUCSZSX3hPStsrDP75Ws-P5afVtlqj0yHuzBIq-xtf2fTo7Xun4z71RyfrdfjZSyWBv4NIAgvmFyBHRayjJf4Vu92mQQIKGK-EoQTlB4ym5Hj5VqL7C4VTwQLfp1vuvUTSZLXIdDoiWb3yb0eQtJJ95UPyF6oH5I7XVPJq0fkfAmRabO5orHuRn1BsQAVXl-oTyigPToNG4iDsV0IzjI7bdeeLgISgkN8vwhoF8KGzpBMQrcNfR8w00CX3Yhpi8e4LUh_rP_8_r6-bB6T49mHb9N50jdWSJxU-TYRNufWWllVHFRYBkApWZZ6ZqQXzHqFVexcaUzJvKm4s8I4FTjzljtp84qLJ2S_burwjNCQVSwASswyB9jGKuxbVvjKh9LbYKUdETYsqXZ91XFsfnGqB3rZLw1a0KgFzVMNWhiRt7shZ13JjZuE5aAn_c--0eASbhr2GnS6mx5rbM8nnzU-Y0IIWaTsEoReDSrX8NNhJsXUoWkvdApuH7CWYmpEnnZ7YTeXSFmJQd7B_33Zc3I3xZAeaW7qBdnfbtrwEnDP1h6S25OjxY-jw7jB_wINlQK7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBbaDsN6GfZu1j20YacBRiRLfujYZQuSLe2haYfcBOvhNUVhd2lcoP9mv6W_bKRsB9ihPewqU4Ig0uRHkSIJ-WScB9RaJpEomI2kKtJIZT6LkiJ2mXMsM6HO7OFROjmV3xfJYouM-rcwmFbZ6f5Wpwdt3Y0Mu9McXi6Xw3kolgb2DSAIz5hcbJMHgAZSFO3p4ssmlAAeRQhYAnWE5H1oMyR52cZgepcKV4IZv8s4bZ9hluRdEDSYovET8rjDkPSg3eZTsuWrZ-Rh21Xy5jn5PQfXtF7d0FB4o7qiWIEK3y9UvyjAPTryK3CEsV8IrjK-aJaOHnvMCPbh-7FHxeBXdIzZJHRd068eQw103s4YNXiP2wD1tLr983N5Xb8gp-NvJ6NJ1HVWiKxU6ToSJuXGGFmWHHiYe4ApSRI7VkgnmHEKy9jZvChy5oqSWyMKqzxnznArTVpy8ZLsVHXl9wj1Sck8wMQksQBujMLGZZkrnc-d8UaaAWH9kWrblR3H7hcXus8vO9fABY1c0DzWwIUB-byZctnW3LiPWPZ80v8IjgabcN-0j8DTzfJYZHtyMNM4xoQQMovZNRB96Fmu4a_DUEpR-bq50jHYfQBbiqkBedXKwmYtEbMcvbzX_7ez9-TR5ORwpmfTox_7ZDdG_x5z3tQbsrNeNf4tgKC1eReE_C8CBQQ_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensory+neurons+contacting+the+cerebrospinal+fluid+require+the+Reissner+fiber+to+detect+spinal+curvature+in+vivo&rft.jtitle=Current+biology&rft.au=Orts-Del%27Immagine%2C+Adeline&rft.au=Cantaut-Belarif%2C+Yasmine&rft.au=Thouvenin%2C+Olivier&rft.au=Roussel%2C+Julian&rft.date=2020-03-09&rft.pub=Elsevier&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016%2Fj.cub.2019.12.071&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03334720v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon