Sensory Neurons Contacting the Cerebrospinal Fluid Require the Reissner Fiber to Detect Spinal Curvature In Vivo
Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 an...
Saved in:
Published in | Current biology Vol. 30; no. 5; pp. 827 - 839.e4 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
09.03.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0960-9822 1879-0445 1879-0445 |
DOI | 10.1016/j.cub.2019.12.071 |
Cover
Loading…
Abstract | Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord.
[Display omitted]
•Since its discovery in 1860, the role of the Reissner fiber has been debated•CSF-contacting neurons (CSF-cNs) are in close vicinity of the Reissner fiber•Mechanoreception in CSF-cNs requires the Reissner fiber•CSF-cNs together with the Reissner fiber detect spinal curvature in vivo
The role of the Reissner fiber, a long extracellular thread running in the cerebrospinal fluid (CSF), has been, since its discovery in 1860, a subject of debate. Orts-Del’Immagine et al. report that the Reissner fiber plays a critical role in the detection of spinal curvature by sensory neurons contacting the CSF. |
---|---|
AbstractList | Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord.
[Display omitted]
•Since its discovery in 1860, the role of the Reissner fiber has been debated•CSF-contacting neurons (CSF-cNs) are in close vicinity of the Reissner fiber•Mechanoreception in CSF-cNs requires the Reissner fiber•CSF-cNs together with the Reissner fiber detect spinal curvature in vivo
The role of the Reissner fiber, a long extracellular thread running in the cerebrospinal fluid (CSF), has been, since its discovery in 1860, a subject of debate. Orts-Del’Immagine et al. report that the Reissner fiber plays a critical role in the detection of spinal curvature by sensory neurons contacting the CSF. Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord.Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord. Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord. |
Author | Orts-Del’Immagine, Adeline Bivas, Paul Roussel, Julian Cantaut-Belarif, Yasmine Wyart, Claire Lejeune, François-Xavier Bardet, Pierre-Luc Langui, Dominique Thouvenin, Olivier Koëth, Fanny Baskaran, Asha |
Author_xml | – sequence: 1 givenname: Adeline surname: Orts-Del’Immagine fullname: Orts-Del’Immagine, Adeline organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France – sequence: 2 givenname: Yasmine surname: Cantaut-Belarif fullname: Cantaut-Belarif, Yasmine organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France – sequence: 3 givenname: Olivier surname: Thouvenin fullname: Thouvenin, Olivier organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France – sequence: 4 givenname: Julian surname: Roussel fullname: Roussel, Julian organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France – sequence: 5 givenname: Asha surname: Baskaran fullname: Baskaran, Asha organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France – sequence: 6 givenname: Dominique surname: Langui fullname: Langui, Dominique organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France – sequence: 7 givenname: Fanny surname: Koëth fullname: Koëth, Fanny organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France – sequence: 8 givenname: Paul surname: Bivas fullname: Bivas, Paul organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France – sequence: 9 givenname: François-Xavier surname: Lejeune fullname: Lejeune, François-Xavier organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France – sequence: 10 givenname: Pierre-Luc surname: Bardet fullname: Bardet, Pierre-Luc organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France – sequence: 11 givenname: Claire surname: Wyart fullname: Wyart, Claire email: claire.wyart@icm-institute.org organization: Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013 Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32084399$$D View this record in MEDLINE/PubMed https://hal.science/hal-03334720$$DView record in HAL |
BookMark | eNp9kUFuEzEUQC1URNPCAdigWcJiwrc9mYzFqhoIrRSB1AJby_b8oY4mdmJ7IvU2nKUnq8OULlh0Y0v2e3_x3xk5cd4hIW8pzCnQ-uNmbkY9Z0DFnLI5LOkLMqPNUpRQVYsTMgNRQykaxk7JWYwbAMoaUb8ip5xBU3EhZmR_gy76cFd8wzF4F4vWu6RMsu53kW6xaDGgDj7urFNDsRpG2xXXuB9twL__12hjdBiKldX5TL74jAlNKm4mox3DQaUx01fu_s8ve_CvycteDRHfPN7n5Ofqy4_2slx__3rVXqxLU4k6lVzXVGtd9T3VaBqsuVgsWAeq6jjoTjQLqE2jVAOd6qnRXBmBFDpNTaXrnvJz8mGae6sGuQt2q8Kd9MrKy4u1PL4B57xaMjgc2fcTuwt-P2JMcmujwWFQDv0YJeM1g-VCgMjou0d01Fvsnib_W2kG6ASYvLYYsH9CKMhjNrmROZs8ZpOUyZwtO8v_HGOTSja3CMoOz5qfJhPzKg8Wg4zGojPY5UImyc7bZ-wHSyazOQ |
CitedBy_id | crossref_primary_10_1016_j_neuroscience_2023_07_008 crossref_primary_10_7554_eLife_83108 crossref_primary_10_7759_cureus_10410 crossref_primary_10_1051_medsci_2023082 crossref_primary_10_1016_j_ydbio_2023_01_010 crossref_primary_10_3389_fnbot_2020_604426 crossref_primary_10_1038_s41580_023_00698_5 crossref_primary_10_1093_icb_icad088 crossref_primary_10_1186_s12987_021_00277_w crossref_primary_10_7554_eLife_86175 crossref_primary_10_1038_s41598_023_32536_1 crossref_primary_10_1016_j_tins_2020_08_006 crossref_primary_10_1038_s41598_020_72039_x crossref_primary_10_1016_j_jksus_2020_04_008 crossref_primary_10_1523_ENEURO_0100_22_2022 crossref_primary_10_1016_j_cub_2023_01_039 crossref_primary_10_1016_j_jksus_2020_04_005 crossref_primary_10_1093_glycob_cwab033 crossref_primary_10_1002_glia_24118 crossref_primary_10_1016_j_bone_2021_116075 crossref_primary_10_7554_eLife_59469 crossref_primary_10_1242_dev_175794 crossref_primary_10_1172_JCI168783 crossref_primary_10_1093_icb_icad052 crossref_primary_10_1186_s12987_023_00491_8 crossref_primary_10_1016_j_cub_2021_05_042 crossref_primary_10_1002_glia_23982 crossref_primary_10_1016_j_ydbio_2020_11_009 crossref_primary_10_1038_s41583_023_00723_8 crossref_primary_10_1016_j_isci_2022_105028 crossref_primary_10_1007_s11427_020_1915_y crossref_primary_10_1016_j_cub_2020_04_073 crossref_primary_10_1016_j_conb_2023_102777 crossref_primary_10_1098_rsob_210065 crossref_primary_10_3389_fcell_2021_801652 crossref_primary_10_1371_journal_pbio_3002008 crossref_primary_10_1016_j_isci_2022_105914 crossref_primary_10_1146_annurev_physiol_060121_041637 crossref_primary_10_1111_febs_16913 crossref_primary_10_1098_rsob_230228 crossref_primary_10_7554_eLife_83883 crossref_primary_10_1038_s41593_024_01639_x crossref_primary_10_1002_cne_25590 crossref_primary_10_3389_fnana_2021_703835 crossref_primary_10_1007_s43390_024_00941_9 crossref_primary_10_1016_j_cub_2022_04_019 crossref_primary_10_1007_s43390_022_00488_7 crossref_primary_10_1007_s00018_022_04534_5 crossref_primary_10_1111_joa_13781 crossref_primary_10_1007_s43390_021_00390_8 crossref_primary_10_1242_jcs_260565 crossref_primary_10_7554_eLife_87054 |
Cites_doi | 10.1371/journal.pbio.3000235 10.1126/science.aal3839 10.1002/cne.23104 10.1016/j.celrep.2016.01.069 10.1016/j.devcel.2015.01.001 10.1016/j.cub.2015.09.070 10.1073/pnas.95.24.14184 10.1113/jphysiol.2012.227959 10.1242/jcs.109.5.1053 10.1038/srep17085 10.3389/fnana.2014.00026 10.1679/aohc.46.427 10.1242/dev.123.1.129 10.1002/(SICI)1097-0029(19980401)41:1<57::AID-JEMT6>3.0.CO;2-R 10.1016/j.cub.2014.07.080 10.1016/j.cub.2016.08.026 10.1038/nmeth.2019 10.1371/journal.pgen.1002762 10.1002/(SICI)1097-0029(19980415)41:2<98::AID-JEMT2>3.0.CO;2-M 10.1016/j.neuron.2014.07.029 10.1007/s00441-018-2917-8 10.1371/journal.pone.0087748 10.1242/dev.101675 10.1016/j.cub.2018.05.079 10.1002/cne.10565 10.1038/s41467-018-06225-x 10.1038/nrn3921 10.1016/j.neuropharm.2015.07.030 10.1002/cne.23584 10.1038/s41588-018-0260-3 10.1016/j.pneurobio.2018.04.002 10.1016/j.stem.2016.06.013 10.1038/nrn3786 10.1242/dev.01456 10.1038/ncomms10002 10.1016/j.cub.2018.11.059 10.3389/fgene.2019.00024 10.1007/BF02593657 10.1038/ncomms10866 10.1371/journal.pone.0119290 10.1016/S0896-6273(02)01133-9 10.1016/j.neuron.2014.02.039 10.1038/nature05084 10.1016/j.cub.2016.03.048 10.1083/jcb.17.1.208 10.1126/science.aaf6419 10.1007/BF02593586 10.1186/1471-2105-11-274 10.1038/s41598-017-00350-1 10.1097/MOO.0b013e32834a8c33 10.1016/j.neuron.2011.01.023 10.1016/S0959-437X(96)80068-2 10.1007/BF00225666 10.1242/dev.048470 10.1007/BF00218215 10.1038/nature08323 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES |
DOI | 10.1016/j.cub.2019.12.071 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 839.e4 |
ExternalDocumentID | oai_HAL_hal_03334720v1 32084399 10_1016_j_cub_2019_12_071 S096098221931704X |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: U01 NS090501 |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AGUBO AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SCP SDG SES SSZ TR2 WQ6 ZA5 29F 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP ASPBG AVWKF CAG CITATION COF EJD FEDTE FGOYB G-2 HVGLF HZ~ OZT R2- RIG SEW UHS XIH XPP Y6R ZGI 0SF CGR CUY CVF ECM EIF NPM 7X8 1XC EFKBS VOOES |
ID | FETCH-LOGICAL-c496t-3b61bbb4ff1bec8e639552d0a4d30bd98506c8aa80daf1cb3ac9e10db1c4b6f13 |
IEDL.DBID | IXB |
ISSN | 0960-9822 1879-0445 |
IngestDate | Fri Aug 15 06:20:45 EDT 2025 Fri Jul 11 13:12:48 EDT 2025 Thu Jan 02 22:57:25 EST 2025 Tue Jul 01 01:57:12 EDT 2025 Thu Apr 24 22:53:53 EDT 2025 Fri Feb 23 02:48:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | mechanoreception CSF-cNs central canal polycystin kidney disease 2 like 1 PKD2L1 Kolmer-Agduhr cells SCO-spondin RF cerebrospinal fluid CSF motile cilia CSF-contacting neurons the Reissner fiber spinal cord KAs Cerebrospinal fluid (CSF) Polycystin Kidney Disease Like 1 (PKD2L1) CSF-contacting neurons (CSF-cNs) Kolmer Agduhr cells (KAs) the Reissner fiber (RF) |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-3b61bbb4ff1bec8e639552d0a4d30bd98506c8aa80daf1cb3ac9e10db1c4b6f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8667-1483 0000-0001-5484-2359 0000-0001-7177-1230 0000-0002-6229-5364 0000-0002-1668-4975 |
OpenAccessLink | https://hal.science/hal-03334720 |
PMID | 32084399 |
PQID | 2362075909 |
PQPubID | 23479 |
ParticipantIDs | hal_primary_oai_HAL_hal_03334720v1 proquest_miscellaneous_2362075909 pubmed_primary_32084399 crossref_primary_10_1016_j_cub_2019_12_071 crossref_citationtrail_10_1016_j_cub_2019_12_071 elsevier_sciencedirect_doi_10_1016_j_cub_2019_12_071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-09 |
PublicationDateYYYYMMDD | 2020-03-09 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Jaffe, Grimes, Schottenfeld-Roames, Werner, Ku, Kim, Pelliccia, Morante, Mitchell, Burdine (bib42) 2016; 14 (bib63) 2018 Reissner (bib39) 1860; 77 Didier, Dastugue, Meiniel (bib55) 1995; 39 Kolmer (bib13) 1921; 60 Yang, Rastegar, Strähle (bib23) 2010; 137 Zhang, Jia, Chen, Chong, Xie, Feng, Wu, Song, Roy, Zhao (bib9) 2018; 50 Lehtinen, Zappaterra, Chen, Yang, Hill, Lun, Maynard, Gonzalez, Kim, Ye (bib4) 2011; 69 Huang, Chen, Hoon, Chandrashekar, Guo, Tränkner, Ryba, Zuker (bib30) 2006; 442 Codega, Silva-Vargas, Paul, Maldonado-Soto, Deleo, Pastrana, Doetsch (bib2) 2014; 82 Hudspeth (bib51) 2014; 15 Orts-Del’Immagine, Kastner, Tillement, Tardivel, Trouslard, Wanaverbecq (bib20) 2014; 9 Orts-Del’immagine, Wanaverbecq, Tardivel, Tillement, Dallaporta, Trouslard (bib35) 2012; 590 Granato, Nüsslein-Volhard (bib41) 1996; 6 Zur Lage, Newton, Jarman (bib53) 2019; 10 Böhm, Prendergast, Djenoune, Nunes Figueiredo, Gomez, Stokes, Kaiser, Suster, Kawakami, Charpentier (bib16) 2016; 7 Orts-Del’Immagine, Seddik, Tell, Airault, Er-Raoui, Najimi, Trouslard, Wanaverbecq (bib34) 2016; 101 Thouvenin, Keiser, Cantaut-Belarif, Carbo-Tano, Verweij, Jurisch-Yaksi, Bardet, Van Niel, Gallaire, Wyart (bib43) 2019 Cantaut-Belarif, Sternberg, Thouvenin, Wyart, Bardet (bib8) 2018; 28 Fidelin, Djenoune, Stokes, Prendergast, Gomez, Baradel, Del Bene, Wyart (bib29) 2015; 25 Jalalvand, Robertson, Wallén, Grillner (bib33) 2016; 7 Revenu, Streichan, Donà, Lecaudey, Hufnagel, Gilmour (bib57) 2014; 141 Doetsch, Petreanu, Caille, Garcia-Verdugo, Alvarez-Buylla (bib3) 2002; 36 Barral, Martin (bib52) 2011; 19 Becker, Becker, Hugnot (bib44) 2018; 170 Jalalvand, Robertson, Wallén, Hill, Grillner (bib46) 2014; 522 Troutwine, Gontarz, Minowa, Monstad-Rios, Konjikusic, Sepich, Kwon, Solnica-Krezel, Gray (bib47) 2019 Reynolds (bib62) 1963; 17 Desban, Prendergast, Roussel, Rosello, Geny, Wyart, Bardet (bib17) 2019; 17 Huang, Xiong, Megason, Schier (bib21) 2012; 8 Rodríguez, Rodríguez, Hein (bib26) 1998; 41 Silva-Vargas, Doetsch (bib7) 2014; 83 Karak, Jacobs, Kittelmann, Spalthoff, Katana, Sivan-Loukianova, Schon, Kernan, Eberl, Göpfert (bib54) 2015; 5 Fernández-Llebrez, Pérez, Cifuentes, Alvial, Rodríguez (bib37) 1987; 248 Vigh-Teichmann, Vigh (bib28) 1983; 46 Djenoune, Khabou, Joubert, Quan, Nunes Figueiredo, Bodineau, Del Bene, Burcklé, Tostivint, Wyart (bib19) 2014; 8 Djenoune, Desban, Gomez, Sternberg, Prendergast, Langui, Quan, Marnas, Auer, Rio (bib18) 2017; 7 Vigh, Vigh-Teichmann (bib14) 1998; 41 Sternberg, Prendergast, Brosse, Cantaut-Belarif, Thouvenin, Orts-Del’Immagine, Castillo, Djenoune, Kurisu, McDearmid (bib36) 2018; 9 Park, Shin, Appel (bib22) 2004; 131 Wyart, Del Bene, Warp, Scott, Trauner, Baier, Isacoff (bib31) 2009; 461 Brand, Heisenberg, Warga, Pelegri, Karlstrom, Beuchle, Picker, Jiang, Furutani-Seiki, van Eeden (bib40) 1996; 123 Robles, Laurell, Baier (bib56) 2014; 24 Quan, Dubessy, Galant, Kenigfest, Djenoune, Leprince, Wyart, Lihrmann, Tostivint (bib11) 2015; 10 Gobron, Monnerie, Meiniel, Creveaux, Lehmann, Lamalle, Dastugue, Meiniel (bib59) 1996; 109 Olstad, Ringers, Hansen, Wens, Brandt, Wachten, Yaksi, Jurisch-Yaksi (bib49) 2019; 29 Silva-Vargas, Maldonado-Soto, Mizrak, Codega, Doetsch (bib6) 2016; 19 Stoeckel, Uhl-Bronner, Hugel, Veinante, Klein, Mutterer, Freund-Mercier, Schlichter (bib50) 2003; 457 Lun, Monuki, Lehtinen (bib1) 2015; 16 Petracca, Sartoretti, Di Bella, Marin-Burgin, Carcagno, Schinder, Lanuza (bib24) 2016; 143 Muñoz, Kähne, Herrera, Rodríguez, Guerra, Vío, Hennig, Rapp, Rodríguez (bib38) 2019; 375 Lauga, Brenner, Stone (bib48) 2007 Hubbard, Böhm, Prendergast, Tseng, Newman, Stokes, Wyart (bib25) 2016; 26 Paul, Chaker, Doetsch (bib5) 2017; 356 Grimes, Boswell, Morante, Henkelman, Burdine, Ciruna (bib10) 2016; 352 Agduhr (bib12) 1922; 66 Becker, Becker (bib45) 2015; 32 Vigh, Vigh-Teichmann, Aros (bib27) 1977; 183 Schmid, Schindelin, Cardona, Longair, Heisenberg (bib60) 2010; 11 Jalalvand, Robertson, Tostivint, Wallén, Grillner (bib32) 2016; 26 Alfaro-Cervello, Soriano-Navarro, Mirzadeh, Alvarez-Buylla, Garcia-Verdugo (bib15) 2012; 520 Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid (bib58) 2012; 9 López, Montiel, Herrero, García-Palomero, Mayorgas, Hernández-Guijo, Villarroya, Olivares, Gandía, McIntosh (bib61) 1998; 95 Alfaro-Cervello (10.1016/j.cub.2019.12.071_bib15) 2012; 520 Schmid (10.1016/j.cub.2019.12.071_bib60) 2010; 11 Brand (10.1016/j.cub.2019.12.071_bib40) 1996; 123 Djenoune (10.1016/j.cub.2019.12.071_bib18) 2017; 7 Quan (10.1016/j.cub.2019.12.071_bib11) 2015; 10 Doetsch (10.1016/j.cub.2019.12.071_bib3) 2002; 36 Barral (10.1016/j.cub.2019.12.071_bib52) 2011; 19 Orts-Del’Immagine (10.1016/j.cub.2019.12.071_bib34) 2016; 101 Jalalvand (10.1016/j.cub.2019.12.071_bib46) 2014; 522 Kolmer (10.1016/j.cub.2019.12.071_bib13) 1921; 60 Hubbard (10.1016/j.cub.2019.12.071_bib25) 2016; 26 Muñoz (10.1016/j.cub.2019.12.071_bib38) 2019; 375 Karak (10.1016/j.cub.2019.12.071_bib54) 2015; 5 Stoeckel (10.1016/j.cub.2019.12.071_bib50) 2003; 457 Orts-Del’Immagine (10.1016/j.cub.2019.12.071_bib20) 2014; 9 Sternberg (10.1016/j.cub.2019.12.071_bib36) 2018; 9 (10.1016/j.cub.2019.12.071_bib63) 2018 Jalalvand (10.1016/j.cub.2019.12.071_bib33) 2016; 7 Reynolds (10.1016/j.cub.2019.12.071_bib62) 1963; 17 Fidelin (10.1016/j.cub.2019.12.071_bib29) 2015; 25 Becker (10.1016/j.cub.2019.12.071_bib44) 2018; 170 Silva-Vargas (10.1016/j.cub.2019.12.071_bib7) 2014; 83 Petracca (10.1016/j.cub.2019.12.071_bib24) 2016; 143 Robles (10.1016/j.cub.2019.12.071_bib56) 2014; 24 López (10.1016/j.cub.2019.12.071_bib61) 1998; 95 Rodríguez (10.1016/j.cub.2019.12.071_bib26) 1998; 41 Huang (10.1016/j.cub.2019.12.071_bib21) 2012; 8 Jalalvand (10.1016/j.cub.2019.12.071_bib32) 2016; 26 Thouvenin (10.1016/j.cub.2019.12.071_bib43) 2019 Hudspeth (10.1016/j.cub.2019.12.071_bib51) 2014; 15 Wyart (10.1016/j.cub.2019.12.071_bib31) 2009; 461 Granato (10.1016/j.cub.2019.12.071_bib41) 1996; 6 Becker (10.1016/j.cub.2019.12.071_bib45) 2015; 32 Zur Lage (10.1016/j.cub.2019.12.071_bib53) 2019; 10 Zhang (10.1016/j.cub.2019.12.071_bib9) 2018; 50 Huang (10.1016/j.cub.2019.12.071_bib30) 2006; 442 Gobron (10.1016/j.cub.2019.12.071_bib59) 1996; 109 Böhm (10.1016/j.cub.2019.12.071_bib16) 2016; 7 Cantaut-Belarif (10.1016/j.cub.2019.12.071_bib8) 2018; 28 Paul (10.1016/j.cub.2019.12.071_bib5) 2017; 356 Djenoune (10.1016/j.cub.2019.12.071_bib19) 2014; 8 Codega (10.1016/j.cub.2019.12.071_bib2) 2014; 82 Vigh (10.1016/j.cub.2019.12.071_bib27) 1977; 183 Jaffe (10.1016/j.cub.2019.12.071_bib42) 2016; 14 Didier (10.1016/j.cub.2019.12.071_bib55) 1995; 39 Lauga (10.1016/j.cub.2019.12.071_bib48) 2007 Desban (10.1016/j.cub.2019.12.071_bib17) 2019; 17 Fernández-Llebrez (10.1016/j.cub.2019.12.071_bib37) 1987; 248 Revenu (10.1016/j.cub.2019.12.071_bib57) 2014; 141 Schindelin (10.1016/j.cub.2019.12.071_bib58) 2012; 9 Orts-Del’immagine (10.1016/j.cub.2019.12.071_bib35) 2012; 590 Lun (10.1016/j.cub.2019.12.071_bib1) 2015; 16 Grimes (10.1016/j.cub.2019.12.071_bib10) 2016; 352 Troutwine (10.1016/j.cub.2019.12.071_bib47) 2019 Lehtinen (10.1016/j.cub.2019.12.071_bib4) 2011; 69 Vigh (10.1016/j.cub.2019.12.071_bib14) 1998; 41 Agduhr (10.1016/j.cub.2019.12.071_bib12) 1922; 66 Olstad (10.1016/j.cub.2019.12.071_bib49) 2019; 29 Silva-Vargas (10.1016/j.cub.2019.12.071_bib6) 2016; 19 Vigh-Teichmann (10.1016/j.cub.2019.12.071_bib28) 1983; 46 Park (10.1016/j.cub.2019.12.071_bib22) 2004; 131 Yang (10.1016/j.cub.2019.12.071_bib23) 2010; 137 Reissner (10.1016/j.cub.2019.12.071_bib39) 1860; 77 |
References_xml | – volume: 10 start-page: e0119290 year: 2015 ident: bib11 article-title: Comparative distribution and in vitro activities of the urotensin II-related peptides URP1 and URP2 in zebrafish: evidence for their colocalization in spinal cerebrospinal fluid-contacting neurons publication-title: PLoS ONE – volume: 14 start-page: 1841 year: 2016 end-page: 1849 ident: bib42 article-title: c21orf59/kurly controls both cilia motility and polarization publication-title: Cell Rep. – volume: 170 start-page: 67 year: 2018 end-page: 80 ident: bib44 article-title: The spinal ependymal zone as a source of endogenous repair cells across vertebrates publication-title: Prog. Neurobiol. – volume: 248 start-page: 473 year: 1987 end-page: 478 ident: bib37 article-title: Immunocytochemical and ultrastructural evidence for a neurophysinergic innervation of the subcommissural organ of the snake Natrix maura publication-title: Cell Tissue Res. – volume: 26 start-page: 2841 year: 2016 end-page: 2853 ident: bib25 article-title: Intraspinal sensory neurons provide powerful inhibition to motor circuits ensuring postural control during locomotion publication-title: Curr. Biol. – volume: 123 start-page: 129 year: 1996 end-page: 142 ident: bib40 article-title: Mutations affecting development of the midline and general body shape during zebrafish embryogenesis publication-title: Development – volume: 461 start-page: 407 year: 2009 end-page: 410 ident: bib31 article-title: Optogenetic dissection of a behavioural module in the vertebrate spinal cord publication-title: Nature – volume: 16 start-page: 445 year: 2015 end-page: 457 ident: bib1 article-title: Development and functions of the choroid plexus-cerebrospinal fluid system publication-title: Nat. Rev. Neurosci. – volume: 46 start-page: 427 year: 1983 end-page: 468 ident: bib28 article-title: The system of cerebrospinal fluid-contacting neurons publication-title: Arch. Histol. Jpn. – volume: 29 start-page: 229 year: 2019 end-page: 241.e6 ident: bib49 article-title: Ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development publication-title: Curr. Biol. – volume: 28 start-page: 2479 year: 2018 end-page: 2486.e4 ident: bib8 article-title: The Reissner fiber in the cerebrospinal fluid controls morphogenesis of the body axis publication-title: Curr. Biol. – volume: 66 start-page: 223 year: 1922 end-page: 360 ident: bib12 article-title: Über ein zentrales Sinnesorgan (?) bei den Vertebraten. publication-title: Zeitschrift für Anatomie und Entwicklungsgeschichte – volume: 95 start-page: 14184 year: 1998 end-page: 14189 ident: bib61 article-title: Unmasking the functions of the chromaffin cell alpha7 nicotinic receptor by using short pulses of acetylcholine and selective blockers publication-title: Proc. Natl. Acad. Sci. USA – volume: 41 start-page: 98 year: 1998 end-page: 123 ident: bib26 article-title: The subcommissural organ publication-title: Microsc. Res. Tech. – volume: 19 start-page: 369 year: 2011 end-page: 375 ident: bib52 article-title: The physical basis of active mechanosensitivity by the hair-cell bundle publication-title: Curr. Opin. Otolaryngol. Head Neck Surg. – volume: 6 start-page: 461 year: 1996 end-page: 468 ident: bib41 article-title: Fishing for genes controlling development publication-title: Curr. Opin. Genet. Dev. – start-page: 1219 year: 2007 end-page: 1240 ident: bib48 article-title: Microfluidics: the no-slip boundary condition publication-title: Springer Handbook of Experimental Fluid Mechanics – year: 2018 ident: bib63 article-title: R: A language and environment for statistical computing – volume: 143 start-page: 880 year: 2016 end-page: 891 ident: bib24 article-title: The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord publication-title: Development – volume: 41 start-page: 57 year: 1998 end-page: 83 ident: bib14 article-title: Actual problems of the cerebrospinal fluid-contacting neurons publication-title: Microsc. Res. Tech. – volume: 183 start-page: 541 year: 1977 end-page: 552 ident: bib27 article-title: Special dendritic and axonal endings formed by the cerebrospinal fluid contacting neurons of the spinal cord publication-title: Cell Tissue Res. – volume: 375 start-page: 507 year: 2019 end-page: 529 ident: bib38 article-title: The subcommissural organ and the Reissner fiber: old friends revisited publication-title: Cell Tissue Res. – volume: 9 start-page: 3804 year: 2018 ident: bib36 article-title: Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature publication-title: Nat. Commun. – volume: 17 start-page: 208 year: 1963 end-page: 212 ident: bib62 article-title: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy publication-title: J. Cell Biol. – volume: 32 start-page: 516 year: 2015 end-page: 527 ident: bib45 article-title: Neuronal regeneration from ependymo-radial glial cells: cook, little pot, cook! publication-title: Dev. Cell – year: 2019 ident: bib43 article-title: Origin of the bidirectionality of cerebrospinal fluid flow and impact on long-range transport between brain and spinal cord publication-title: bioRxiv – volume: 522 start-page: Spc1 year: 2014 ident: bib46 article-title: Laterally projecting cerebrospinal fluid-contacting cells in the lamprey spinal cord are of two distinct types publication-title: J. Comp. Neurol. – volume: 19 start-page: 643 year: 2016 end-page: 652 ident: bib6 article-title: Age-dependent niche signals from the choroid plexus regulate adult neural stem cells publication-title: Cell Stem Cell – volume: 101 start-page: 549 year: 2016 end-page: 565 ident: bib34 article-title: A single polycystic kidney disease 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of adult mouse brainstem publication-title: Neuropharmacology – volume: 352 start-page: 1341 year: 2016 end-page: 1344 ident: bib10 article-title: Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature publication-title: Science – volume: 77 start-page: 545 year: 1860 end-page: 588 ident: bib39 article-title: Beiträge zur Kenntnis vom Bau des Rückenmarkes von Petromyzon fluviatilis L. publication-title: Arch. Anat. Physiol. – volume: 11 start-page: 274 year: 2010 ident: bib60 article-title: A high-level 3D visualization API for Java and ImageJ publication-title: BMC Bioinformatics – volume: 36 start-page: 1021 year: 2002 end-page: 1034 ident: bib3 article-title: EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells publication-title: Neuron – volume: 7 start-page: 719 year: 2017 ident: bib18 article-title: The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes publication-title: Sci. Rep. – volume: 590 start-page: 3719 year: 2012 end-page: 3741 ident: bib35 article-title: Properties of subependymal cerebrospinal fluid contacting neurones in the dorsal vagal complex of the mouse brainstem publication-title: J. Physiol. – volume: 520 start-page: 3528 year: 2012 end-page: 3552 ident: bib15 article-title: Biciliated ependymal cell proliferation contributes to spinal cord growth publication-title: J. Comp. Neurol. – volume: 15 start-page: 600 year: 2014 end-page: 614 ident: bib51 article-title: Integrating the active process of hair cells with cochlear function publication-title: Nat. Rev. Neurosci. – volume: 5 start-page: 17085 year: 2015 ident: bib54 article-title: Diverse roles of axonemal dyneins in Drosophila auditory neuron function and mechanical amplification in hearing publication-title: Sci. Rep. – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: bib58 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 356 start-page: 1383 year: 2017 end-page: 1386 ident: bib5 article-title: Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis publication-title: Science – volume: 39 start-page: 493 year: 1995 end-page: 499 ident: bib55 article-title: The secretory material of the subcommissural organ of the chick embryo. Characterization of a specific polypeptide by two-dimensional electrophoresis publication-title: Int. J. Dev. Biol. – volume: 82 start-page: 545 year: 2014 end-page: 559 ident: bib2 article-title: Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche publication-title: Neuron – volume: 141 start-page: 1282 year: 2014 end-page: 1291 ident: bib57 article-title: Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation publication-title: Development – year: 2019 ident: bib47 article-title: The Reissner fiber is highly dynamic in vivo and controls morphogenesis of the spine publication-title: bioRxiv – volume: 10 start-page: 24 year: 2019 ident: bib53 article-title: Survey of the ciliary motility machinery of publication-title: Front. Genet. – volume: 69 start-page: 893 year: 2011 end-page: 905 ident: bib4 article-title: The cerebrospinal fluid provides a proliferative niche for neural progenitor cells publication-title: Neuron – volume: 131 start-page: 5959 year: 2004 end-page: 5969 ident: bib22 article-title: Spatial and temporal regulation of ventral spinal cord precursor specification by Hedgehog signaling publication-title: Development – volume: 7 start-page: 10866 year: 2016 ident: bib16 article-title: CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits publication-title: Nat. Commun. – volume: 17 start-page: e3000235 year: 2019 ident: bib17 article-title: Regulation of the apical extension morphogenesis tunes the mechanosensory response of microvilliated neurons publication-title: PLoS Biol. – volume: 457 start-page: 159 year: 2003 end-page: 174 ident: bib50 article-title: Cerebrospinal fluid-contacting neurons in the rat spinal cord, a gamma-aminobutyric acidergic system expressing the P2X2 subunit of purinergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: light and electron microscopic study publication-title: J. Comp. Neurol. – volume: 7 start-page: 10002 year: 2016 ident: bib33 article-title: Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3 publication-title: Nat. Commun. – volume: 26 start-page: 1346 year: 2016 end-page: 1351 ident: bib32 article-title: The spinal cord has an intrinsic system for the control of pH publication-title: Curr. Biol. – volume: 9 start-page: e87748 year: 2014 ident: bib20 article-title: Morphology, distribution and phenotype of polycystin kidney disease 2-like 1-positive cerebrospinal fluid contacting neurons in the brainstem of adult mice publication-title: PLoS ONE – volume: 83 start-page: 507 year: 2014 end-page: 509 ident: bib7 article-title: A new twist for neurotrophins: endothelial-derived NT-3 mediates adult neural stem cell quiescence publication-title: Neuron – volume: 8 start-page: e1002762 year: 2012 ident: bib21 article-title: Attenuation of Notch and Hedgehog signaling is required for fate specification in the spinal cord publication-title: PLoS Genet. – volume: 24 start-page: 2085 year: 2014 end-page: 2096 ident: bib56 article-title: The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity publication-title: Curr. Biol. – volume: 8 start-page: 26 year: 2014 ident: bib19 article-title: Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates publication-title: Front. Neuroanat. – volume: 25 start-page: 3035 year: 2015 end-page: 3047 ident: bib29 article-title: State-dependent modulation of locomotion by GABAergic spinal sensory neurons publication-title: Curr. Biol. – volume: 60 start-page: 652 year: 1921 end-page: 717 ident: bib13 article-title: Das “sagittalorgan” der wirbeltiere publication-title: Z. Anat. Entwicklungsgesch. – volume: 137 start-page: 2713 year: 2010 end-page: 2722 ident: bib23 article-title: Regulatory interactions specifying Kolmer-Agduhr interneurons publication-title: Development – volume: 109 start-page: 1053 year: 1996 end-page: 1061 ident: bib59 article-title: SCO-spondin: a new member of the thrombospondin family secreted by the subcommissural organ is a candidate in the modulation of neuronal aggregation publication-title: J. Cell Sci. – volume: 50 start-page: 1666 year: 2018 end-page: 1673 ident: bib9 article-title: Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis publication-title: Nat. Genet. – volume: 442 start-page: 934 year: 2006 end-page: 938 ident: bib30 article-title: The cells and logic for mammalian sour taste detection publication-title: Nature – volume: 17 start-page: e3000235 year: 2019 ident: 10.1016/j.cub.2019.12.071_bib17 article-title: Regulation of the apical extension morphogenesis tunes the mechanosensory response of microvilliated neurons publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000235 – volume: 356 start-page: 1383 year: 2017 ident: 10.1016/j.cub.2019.12.071_bib5 article-title: Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis publication-title: Science doi: 10.1126/science.aal3839 – volume: 520 start-page: 3528 year: 2012 ident: 10.1016/j.cub.2019.12.071_bib15 article-title: Biciliated ependymal cell proliferation contributes to spinal cord growth publication-title: J. Comp. Neurol. doi: 10.1002/cne.23104 – volume: 14 start-page: 1841 year: 2016 ident: 10.1016/j.cub.2019.12.071_bib42 article-title: c21orf59/kurly controls both cilia motility and polarization publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.01.069 – volume: 32 start-page: 516 year: 2015 ident: 10.1016/j.cub.2019.12.071_bib45 article-title: Neuronal regeneration from ependymo-radial glial cells: cook, little pot, cook! publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.01.001 – volume: 39 start-page: 493 year: 1995 ident: 10.1016/j.cub.2019.12.071_bib55 article-title: The secretory material of the subcommissural organ of the chick embryo. Characterization of a specific polypeptide by two-dimensional electrophoresis publication-title: Int. J. Dev. Biol. – volume: 25 start-page: 3035 year: 2015 ident: 10.1016/j.cub.2019.12.071_bib29 article-title: State-dependent modulation of locomotion by GABAergic spinal sensory neurons publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.09.070 – volume: 95 start-page: 14184 year: 1998 ident: 10.1016/j.cub.2019.12.071_bib61 article-title: Unmasking the functions of the chromaffin cell alpha7 nicotinic receptor by using short pulses of acetylcholine and selective blockers publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.24.14184 – volume: 143 start-page: 880 year: 2016 ident: 10.1016/j.cub.2019.12.071_bib24 article-title: The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord publication-title: Development – volume: 590 start-page: 3719 year: 2012 ident: 10.1016/j.cub.2019.12.071_bib35 article-title: Properties of subependymal cerebrospinal fluid contacting neurones in the dorsal vagal complex of the mouse brainstem publication-title: J. Physiol. doi: 10.1113/jphysiol.2012.227959 – volume: 109 start-page: 1053 year: 1996 ident: 10.1016/j.cub.2019.12.071_bib59 article-title: SCO-spondin: a new member of the thrombospondin family secreted by the subcommissural organ is a candidate in the modulation of neuronal aggregation publication-title: J. Cell Sci. doi: 10.1242/jcs.109.5.1053 – volume: 5 start-page: 17085 year: 2015 ident: 10.1016/j.cub.2019.12.071_bib54 article-title: Diverse roles of axonemal dyneins in Drosophila auditory neuron function and mechanical amplification in hearing publication-title: Sci. Rep. doi: 10.1038/srep17085 – volume: 8 start-page: 26 year: 2014 ident: 10.1016/j.cub.2019.12.071_bib19 article-title: Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates publication-title: Front. Neuroanat. doi: 10.3389/fnana.2014.00026 – volume: 46 start-page: 427 year: 1983 ident: 10.1016/j.cub.2019.12.071_bib28 article-title: The system of cerebrospinal fluid-contacting neurons publication-title: Arch. Histol. Jpn. doi: 10.1679/aohc.46.427 – volume: 123 start-page: 129 year: 1996 ident: 10.1016/j.cub.2019.12.071_bib40 article-title: Mutations affecting development of the midline and general body shape during zebrafish embryogenesis publication-title: Development doi: 10.1242/dev.123.1.129 – volume: 77 start-page: 545 year: 1860 ident: 10.1016/j.cub.2019.12.071_bib39 article-title: Beiträge zur Kenntnis vom Bau des Rückenmarkes von Petromyzon fluviatilis L. publication-title: Arch. Anat. Physiol. – volume: 41 start-page: 57 year: 1998 ident: 10.1016/j.cub.2019.12.071_bib14 article-title: Actual problems of the cerebrospinal fluid-contacting neurons publication-title: Microsc. Res. Tech. doi: 10.1002/(SICI)1097-0029(19980401)41:1<57::AID-JEMT6>3.0.CO;2-R – volume: 24 start-page: 2085 year: 2014 ident: 10.1016/j.cub.2019.12.071_bib56 article-title: The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.07.080 – volume: 26 start-page: 2841 year: 2016 ident: 10.1016/j.cub.2019.12.071_bib25 article-title: Intraspinal sensory neurons provide powerful inhibition to motor circuits ensuring postural control during locomotion publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.08.026 – volume: 9 start-page: 676 year: 2012 ident: 10.1016/j.cub.2019.12.071_bib58 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 8 start-page: e1002762 year: 2012 ident: 10.1016/j.cub.2019.12.071_bib21 article-title: Attenuation of Notch and Hedgehog signaling is required for fate specification in the spinal cord publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002762 – volume: 41 start-page: 98 year: 1998 ident: 10.1016/j.cub.2019.12.071_bib26 article-title: The subcommissural organ publication-title: Microsc. Res. Tech. doi: 10.1002/(SICI)1097-0029(19980415)41:2<98::AID-JEMT2>3.0.CO;2-M – volume: 83 start-page: 507 year: 2014 ident: 10.1016/j.cub.2019.12.071_bib7 article-title: A new twist for neurotrophins: endothelial-derived NT-3 mediates adult neural stem cell quiescence publication-title: Neuron doi: 10.1016/j.neuron.2014.07.029 – volume: 375 start-page: 507 year: 2019 ident: 10.1016/j.cub.2019.12.071_bib38 article-title: The subcommissural organ and the Reissner fiber: old friends revisited publication-title: Cell Tissue Res. doi: 10.1007/s00441-018-2917-8 – volume: 9 start-page: e87748 year: 2014 ident: 10.1016/j.cub.2019.12.071_bib20 article-title: Morphology, distribution and phenotype of polycystin kidney disease 2-like 1-positive cerebrospinal fluid contacting neurons in the brainstem of adult mice publication-title: PLoS ONE doi: 10.1371/journal.pone.0087748 – volume: 141 start-page: 1282 year: 2014 ident: 10.1016/j.cub.2019.12.071_bib57 article-title: Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation publication-title: Development doi: 10.1242/dev.101675 – volume: 28 start-page: 2479 year: 2018 ident: 10.1016/j.cub.2019.12.071_bib8 article-title: The Reissner fiber in the cerebrospinal fluid controls morphogenesis of the body axis publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.05.079 – volume: 457 start-page: 159 year: 2003 ident: 10.1016/j.cub.2019.12.071_bib50 article-title: Cerebrospinal fluid-contacting neurons in the rat spinal cord, a gamma-aminobutyric acidergic system expressing the P2X2 subunit of purinergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: light and electron microscopic study publication-title: J. Comp. Neurol. doi: 10.1002/cne.10565 – volume: 9 start-page: 3804 year: 2018 ident: 10.1016/j.cub.2019.12.071_bib36 article-title: Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature publication-title: Nat. Commun. doi: 10.1038/s41467-018-06225-x – volume: 16 start-page: 445 year: 2015 ident: 10.1016/j.cub.2019.12.071_bib1 article-title: Development and functions of the choroid plexus-cerebrospinal fluid system publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3921 – volume: 101 start-page: 549 year: 2016 ident: 10.1016/j.cub.2019.12.071_bib34 article-title: A single polycystic kidney disease 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of adult mouse brainstem publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2015.07.030 – volume: 522 start-page: Spc1 year: 2014 ident: 10.1016/j.cub.2019.12.071_bib46 article-title: Laterally projecting cerebrospinal fluid-contacting cells in the lamprey spinal cord are of two distinct types publication-title: J. Comp. Neurol. doi: 10.1002/cne.23584 – volume: 50 start-page: 1666 year: 2018 ident: 10.1016/j.cub.2019.12.071_bib9 article-title: Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis publication-title: Nat. Genet. doi: 10.1038/s41588-018-0260-3 – volume: 170 start-page: 67 year: 2018 ident: 10.1016/j.cub.2019.12.071_bib44 article-title: The spinal ependymal zone as a source of endogenous repair cells across vertebrates publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2018.04.002 – volume: 19 start-page: 643 year: 2016 ident: 10.1016/j.cub.2019.12.071_bib6 article-title: Age-dependent niche signals from the choroid plexus regulate adult neural stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.06.013 – volume: 15 start-page: 600 year: 2014 ident: 10.1016/j.cub.2019.12.071_bib51 article-title: Integrating the active process of hair cells with cochlear function publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3786 – volume: 131 start-page: 5959 year: 2004 ident: 10.1016/j.cub.2019.12.071_bib22 article-title: Spatial and temporal regulation of ventral spinal cord precursor specification by Hedgehog signaling publication-title: Development doi: 10.1242/dev.01456 – year: 2019 ident: 10.1016/j.cub.2019.12.071_bib47 article-title: The Reissner fiber is highly dynamic in vivo and controls morphogenesis of the spine publication-title: bioRxiv – year: 2018 ident: 10.1016/j.cub.2019.12.071_bib63 – volume: 7 start-page: 10002 year: 2016 ident: 10.1016/j.cub.2019.12.071_bib33 article-title: Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3 publication-title: Nat. Commun. doi: 10.1038/ncomms10002 – volume: 29 start-page: 229 year: 2019 ident: 10.1016/j.cub.2019.12.071_bib49 article-title: Ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.11.059 – volume: 10 start-page: 24 year: 2019 ident: 10.1016/j.cub.2019.12.071_bib53 article-title: Survey of the ciliary motility machinery of Drosophila sperm and ciliated mechanosensory neurons reveals unexpected cell-type specific variations: a model for motile ciliopathies publication-title: Front. Genet. doi: 10.3389/fgene.2019.00024 – volume: 60 start-page: 652 year: 1921 ident: 10.1016/j.cub.2019.12.071_bib13 article-title: Das “sagittalorgan” der wirbeltiere publication-title: Z. Anat. Entwicklungsgesch. doi: 10.1007/BF02593657 – volume: 7 start-page: 10866 year: 2016 ident: 10.1016/j.cub.2019.12.071_bib16 article-title: CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits publication-title: Nat. Commun. doi: 10.1038/ncomms10866 – volume: 10 start-page: e0119290 year: 2015 ident: 10.1016/j.cub.2019.12.071_bib11 article-title: Comparative distribution and in vitro activities of the urotensin II-related peptides URP1 and URP2 in zebrafish: evidence for their colocalization in spinal cerebrospinal fluid-contacting neurons publication-title: PLoS ONE doi: 10.1371/journal.pone.0119290 – volume: 36 start-page: 1021 year: 2002 ident: 10.1016/j.cub.2019.12.071_bib3 article-title: EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells publication-title: Neuron doi: 10.1016/S0896-6273(02)01133-9 – volume: 82 start-page: 545 year: 2014 ident: 10.1016/j.cub.2019.12.071_bib2 article-title: Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche publication-title: Neuron doi: 10.1016/j.neuron.2014.02.039 – volume: 442 start-page: 934 year: 2006 ident: 10.1016/j.cub.2019.12.071_bib30 article-title: The cells and logic for mammalian sour taste detection publication-title: Nature doi: 10.1038/nature05084 – volume: 26 start-page: 1346 year: 2016 ident: 10.1016/j.cub.2019.12.071_bib32 article-title: The spinal cord has an intrinsic system for the control of pH publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.03.048 – volume: 17 start-page: 208 year: 1963 ident: 10.1016/j.cub.2019.12.071_bib62 article-title: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy publication-title: J. Cell Biol. doi: 10.1083/jcb.17.1.208 – start-page: 1219 year: 2007 ident: 10.1016/j.cub.2019.12.071_bib48 article-title: Microfluidics: the no-slip boundary condition – volume: 352 start-page: 1341 year: 2016 ident: 10.1016/j.cub.2019.12.071_bib10 article-title: Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature publication-title: Science doi: 10.1126/science.aaf6419 – volume: 66 start-page: 223 year: 1922 ident: 10.1016/j.cub.2019.12.071_bib12 article-title: Über ein zentrales Sinnesorgan (?) bei den Vertebraten. publication-title: Zeitschrift für Anatomie und Entwicklungsgeschichte doi: 10.1007/BF02593586 – volume: 11 start-page: 274 year: 2010 ident: 10.1016/j.cub.2019.12.071_bib60 article-title: A high-level 3D visualization API for Java and ImageJ publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-274 – volume: 7 start-page: 719 year: 2017 ident: 10.1016/j.cub.2019.12.071_bib18 article-title: The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes publication-title: Sci. Rep. doi: 10.1038/s41598-017-00350-1 – year: 2019 ident: 10.1016/j.cub.2019.12.071_bib43 article-title: Origin of the bidirectionality of cerebrospinal fluid flow and impact on long-range transport between brain and spinal cord publication-title: bioRxiv – volume: 19 start-page: 369 year: 2011 ident: 10.1016/j.cub.2019.12.071_bib52 article-title: The physical basis of active mechanosensitivity by the hair-cell bundle publication-title: Curr. Opin. Otolaryngol. Head Neck Surg. doi: 10.1097/MOO.0b013e32834a8c33 – volume: 69 start-page: 893 year: 2011 ident: 10.1016/j.cub.2019.12.071_bib4 article-title: The cerebrospinal fluid provides a proliferative niche for neural progenitor cells publication-title: Neuron doi: 10.1016/j.neuron.2011.01.023 – volume: 6 start-page: 461 year: 1996 ident: 10.1016/j.cub.2019.12.071_bib41 article-title: Fishing for genes controlling development publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/S0959-437X(96)80068-2 – volume: 183 start-page: 541 year: 1977 ident: 10.1016/j.cub.2019.12.071_bib27 article-title: Special dendritic and axonal endings formed by the cerebrospinal fluid contacting neurons of the spinal cord publication-title: Cell Tissue Res. doi: 10.1007/BF00225666 – volume: 137 start-page: 2713 year: 2010 ident: 10.1016/j.cub.2019.12.071_bib23 article-title: Regulatory interactions specifying Kolmer-Agduhr interneurons publication-title: Development doi: 10.1242/dev.048470 – volume: 248 start-page: 473 year: 1987 ident: 10.1016/j.cub.2019.12.071_bib37 article-title: Immunocytochemical and ultrastructural evidence for a neurophysinergic innervation of the subcommissural organ of the snake Natrix maura publication-title: Cell Tissue Res. doi: 10.1007/BF00218215 – volume: 461 start-page: 407 year: 2009 ident: 10.1016/j.cub.2019.12.071_bib31 article-title: Optogenetic dissection of a behavioural module in the vertebrate spinal cord publication-title: Nature doi: 10.1038/nature08323 |
SSID | ssj0012896 |
Score | 2.5308826 |
Snippet | Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 827 |
SubjectTerms | Animal biology Animals central canal cerebrospinal fluid Cerebrospinal Fluid - physiology CSF CSF-cNs CSF-contacting neurons KAs Kolmer-Agduhr cells Life Sciences mechanoreception Microscopy, Electron, Scanning Microscopy, Electron, Transmission Morphogenesis motile cilia PKD2L1 polycystin kidney disease 2 like 1 SCO-spondin Sensory Receptor Cells - physiology spinal cord Spinal Cord - growth & development Spinal Cord - ultrastructure the Reissner fiber Vertebrate Zoology Zebrafish - growth & development |
Title | Sensory Neurons Contacting the Cerebrospinal Fluid Require the Reissner Fiber to Detect Spinal Curvature In Vivo |
URI | https://dx.doi.org/10.1016/j.cub.2019.12.071 https://www.ncbi.nlm.nih.gov/pubmed/32084399 https://www.proquest.com/docview/2362075909 https://hal.science/hal-03334720 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKERIXxJstUBnECSlaO3YePi4Lq4UCh10Ke7P8SllUJe12U6n_ht_CL2PGSVbi0B64JmMr8jgz33g-zxDyxvoAqLXKEmGYS6QyeaKKUCSZSX3hPStsrDP75Ws-P5afVtlqj0yHuzBIq-xtf2fTo7Xun4z71RyfrdfjZSyWBv4NIAgvmFyBHRayjJf4Vu92mQQIKGK-EoQTlB4ym5Hj5VqL7C4VTwQLfp1vuvUTSZLXIdDoiWb3yb0eQtJJ95UPyF6oH5I7XVPJq0fkfAmRabO5orHuRn1BsQAVXl-oTyigPToNG4iDsV0IzjI7bdeeLgISgkN8vwhoF8KGzpBMQrcNfR8w00CX3Yhpi8e4LUh_rP_8_r6-bB6T49mHb9N50jdWSJxU-TYRNufWWllVHFRYBkApWZZ6ZqQXzHqFVexcaUzJvKm4s8I4FTjzljtp84qLJ2S_burwjNCQVSwASswyB9jGKuxbVvjKh9LbYKUdETYsqXZ91XFsfnGqB3rZLw1a0KgFzVMNWhiRt7shZ13JjZuE5aAn_c--0eASbhr2GnS6mx5rbM8nnzU-Y0IIWaTsEoReDSrX8NNhJsXUoWkvdApuH7CWYmpEnnZ7YTeXSFmJQd7B_33Zc3I3xZAeaW7qBdnfbtrwEnDP1h6S25OjxY-jw7jB_wINlQK7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBbaDsN6GfZu1j20YacBRiRLfujYZQuSLe2haYfcBOvhNUVhd2lcoP9mv6W_bKRsB9ihPewqU4Ig0uRHkSIJ-WScB9RaJpEomI2kKtJIZT6LkiJ2mXMsM6HO7OFROjmV3xfJYouM-rcwmFbZ6f5Wpwdt3Y0Mu9McXi6Xw3kolgb2DSAIz5hcbJMHgAZSFO3p4ssmlAAeRQhYAnWE5H1oMyR52cZgepcKV4IZv8s4bZ9hluRdEDSYovET8rjDkPSg3eZTsuWrZ-Rh21Xy5jn5PQfXtF7d0FB4o7qiWIEK3y9UvyjAPTryK3CEsV8IrjK-aJaOHnvMCPbh-7FHxeBXdIzZJHRd068eQw103s4YNXiP2wD1tLr983N5Xb8gp-NvJ6NJ1HVWiKxU6ToSJuXGGFmWHHiYe4ApSRI7VkgnmHEKy9jZvChy5oqSWyMKqzxnznArTVpy8ZLsVHXl9wj1Sck8wMQksQBujMLGZZkrnc-d8UaaAWH9kWrblR3H7hcXus8vO9fABY1c0DzWwIUB-byZctnW3LiPWPZ80v8IjgabcN-0j8DTzfJYZHtyMNM4xoQQMovZNRB96Fmu4a_DUEpR-bq50jHYfQBbiqkBedXKwmYtEbMcvbzX_7ez9-TR5ORwpmfTox_7ZDdG_x5z3tQbsrNeNf4tgKC1eReE_C8CBQQ_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensory+neurons+contacting+the+cerebrospinal+fluid+require+the+Reissner+fiber+to+detect+spinal+curvature+in+vivo&rft.jtitle=Current+biology&rft.au=Orts-Del%27Immagine%2C+Adeline&rft.au=Cantaut-Belarif%2C+Yasmine&rft.au=Thouvenin%2C+Olivier&rft.au=Roussel%2C+Julian&rft.date=2020-03-09&rft.pub=Elsevier&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016%2Fj.cub.2019.12.071&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03334720v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |